
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

MetaGFN: Exploring Distant Modes with Adapted Metadynamics
for Continuous GFlowNets

Anonymous Authors1

Abstract
Generative Flow Networks (GFlowNets) are a
class of generative models that sample objects in
proportion to a specified reward function through
a learned policy. They can be trained either on-
policy or off-policy, needing a balance between
exploration and exploitation for fast convergence
to a target distribution. While exploration strate-
gies for discrete GFlowNets have been studied,
exploration in the continuous case remains to be
investigated, despite the potential for novel ex-
ploration algorithms due to the local connected-
ness of continuous domains. Here, we introduce
Adapted Metadynamics, a variant of metadynam-
ics that can be applied to arbitrary black-box re-
ward functions on continuous domains. We use
Adapted Metadynamics as an exploration strategy
for continuous GFlowNets. We show two con-
tinuous domains where the resulting algorithm,
MetaGFN, accelerates convergence to the target
distribution and discovers more distant reward
modes than previous off-policy exploration strate-
gies used for GFlowNets.

1. Introduction
Generative Flow Networks (GFlowNets) are a type of gener-
ative model that samples from a discrete space χ by sequen-
tially constructing objects via actions taken from a learned
policy PF (2). The policy PF (s, s′) specifies the probabil-
ity of transitioning from some state s to some other state s′.
The policy is parameterised and trained so that, at conver-
gence, the probability of sampling an object x ∈ χ is pro-
portional to a specified reward function R(x). GFlowNets
offer advantages over more traditional sampling methods,
such as Markov chain Monte Carlo (MCMC), by learning
an amortised sampler, capable of single-shot generation of

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

samples from the desired distribution. Since GFlowNets
learn a parametric policy, they are able to generalise across
states, resulting in higher performance across various tasks
(2; 24; 40; 15; 9; 16; 13; 39; 34) and applications to con-
ditioned molecule generation (34), maximum likelihood
estimation in discrete latent variable models (13), structure
learning of Bayesian networks (9), scheduling computa-
tional operations (39), and discovering reticular materials
for carbon capture (7).

Although originally conceived for discrete state spaces,
GFlowNets have been extended to more general state spaces,
such as entirely continuous spaces, or spaces that are hybrid
discrete-continuous (19). In the continuous setting, given
the current state, the policy specifies a continuous probabil-
ity distribution over subsequent states, and the probability
density over states x ∈ χ sampled with the policy is pro-
portional to a reward density function r(x). The continuous
domain unlocks more applications for GFlowNets, such
as molecular conformation sampling (37) and continuous
control problems (22).

GFlowNets are trained in a manner similar to reinforcement
learning agents. Trajectories of states are generated either
on-policy or off-policy, with the terminating state x ∈ χ
providing a reward signal for informing a gradient step on
the policy parameters. GFlowNets therefore suffer from
the same training pitfalls as reinforcement learning. One
such issue is slow temporal credit assignment, which has
thus far been addressed by designing more effective loss
functions, such as detailed balance (3), trajectory balance
(24) and sub-trajectory balance (23).

Besides loss functions, another aspect of GFlowNet training
is the exploration strategy for acquiring training samples.
Exclusively on-policy learning is generally inadequate as it
leads to inefficient exploration of new modes. More success-
ful strategies therefore rely on off-policy exploration. For
the discrete setting, numerous exploration strategies have
been proposed including ϵ-noisy with a uniform random
policy, tempering, Generative Augmented Flow Networks
(GAFN) (28), Thompson sampling (30) and Local Search
GFlowNets (18). While these approaches can be generalised
to the continuous domain, there is no literature benchmark-
ing their effectiveness in this setting.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Under review for ICML 2024 AI for Science workshop

Sampling in the continuous setting is a common occurrence
in various domains such as molecular modelling (11; 38)
and Bayesian inference (32). The local connectedness of a
continuous domain allows for novel exploration strategies
that are not directly applicable in the discrete setting. In this
work we create MetaGFN, an exploration algorithm for con-
tinuous GFlowNets inspired by metadynamics, an enhanced
sampling method widely used for molecular modelling (21).
The main contributions of this work are:

• Presenting MetaGFN, an algorithm created by adapting
metadynamics to black box rewards and continuous
GFlowNets;

• Proving that the proposed Adapted Metadynamics is
consistent and reduces to standard metadynamics in a
limit;

• Showing empirically that MetaGFN outperforms exist-
ing GFlowNets exploration strategies.

The rest of the paper is as follows. In Section 2 we re-
view the theory of discrete and continuous GFlowNets. We
present Adapted Metadynamics and MetaGFN in Section
3. In Section 4, we evaluate MetaGFN against other explo-
ration strategies, showing that MetaGFN outperforms exist-
ing exploration strategies in two continuous environments.
We finish with limitations and conclusions in Sections 5 and
6. Code for MetaGFN is available at [link in camera-ready].

2. Preliminaries
2.1. Discrete GFlowNets

In a GFlowNet, the network refers to a directed acyclic
graph (DAG), denoted as G = (S,A). Nodes represent
states s ∈ S, and edges represent actions s → s′ ∈ A
denoting one-way transitions between states. The DAG has
two distinguishable states: a unique source state s0, that
has no incoming edges, and a unique sink state ⊥, that
has no outgoing edges. The set of states, χ ⊂ S, that are
directly connected to the sink state are known as terminating
states. GFlowNets learn forward transition probabilities,
known as a forward policy PF (s′|s), along the edges of
the DAG so that the resulting marginal distribution over
the terminal states, denoted as P⊥(x), is proportional to
a given reward function R : χ → R. GFlowNets also
introduce additional learnable objects, such as a backward
policy PB(s|s′), which is a distribution over the parents of
any state of the DAG, to create losses that train the forward
policy. Objective functions for GFlowNets include flow
matching (FM), detailed balance (DB), trajectory balance
(TB) and subtrajectory balance (STB) (2; 3; 24; 23). During
training, the parameters of the flow objects are updated
with stochastic gradients of the objective function applied

to batches of trajectories. These trajectory batches can be
obtained either directly from the current forward policy or
from an alternative algorithm that encourages exploration.
These approaches are known as on-policy and off-policy
training respectively.

2.2. Continuous GFlowNets

Continuous GFlowNets extend the generative problem to
continuous spaces (19), where the analogous quantity to the
DAG is a measurable pointed graph (MPG) (27). MPGs can
model continuous spaces (e.g., Euclidean space, spheres,
tori), as well as hybrid spaces, with a mix of discrete and
continuous components, as often encountered in robotics,
finance, and biology (26; 36; 5).

Definition 2.1 (Measurable pointed graph (MPG)). Let
(S̄, T) be a topological space, where S̄ is the state space, T
is the set of open subsets of S̄ , and Σ is the Borel σ-algebra
associated with the topology of S̄. Within this space, we
identify: the source state s0 ∈ S̄ and sink state ⊥∈ S̄ , both
distinct and isolated from the rest of the space. On this space
we define a reference transition kernel κ : S̄×Σ→ [0,+∞)
and a backward reference transition kernel κb : S̄ × Σ→
[0,+∞). The support of κ(s, ·) are all open sets accessible
from s. The support of κb(s, ·) are all open sets where
s is accessible from. Additionally, these objects must be
well-behaved in the following sense:

(i) Continuity: For all B ∈ Σ, the mapping s 7→ κ(s,B)
is continuous.

(ii) No way back from the source: The backward reference
kernel has zero support at the source state, i.e. for all
B ∈ Σ, κb(s0, B) = 0.

(iii) No way forward from the sink: When at the sink, apply-
ing the forward kernel keeps you there, i.e. κ(⊥, ·) =
δ⊥(·), where δ⊥ is the Dirac measure of the sink state.

(iv) A fully-explorable space: The number of steps re-
quired to be able to reach any measurable B ∈ Σ
from the source state with the forward reference kernel
is bounded.

The set of objects (S̄, T ,Σ, s0,⊥, κ, κb) then defines an
MPG.

Note that the support of κ(s, ·) and κb(s, ·) are analogous to
the child and parent sets of a state s in a DAG. Similarly, a
discrete GFlowNet’s DAG satisfies discrete versions of (ii),
(iii), and (iv).

The set of terminating states χ are the states that can tran-
sition to the sink, given by χ = {s ∈ S : κ(s, {⊥}) > 0},
where S := S̄ \ {s0}. Trajectories τ are sequences of states
that run from source to sink, τ = (s0, . . . , sn,⊥). The

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Under review for ICML 2024 AI for Science workshop

forward Markov kernel PF : S̄ × Σ → [0,∞) and back-
ward Markov kernel PB : S̄ × Σ→ [0,∞) have the same
support as κ(s, ·) and κb(s, ·) respectively, where being a
Markov kernel means states are mapped to probability mea-
sure, hence

∫
S̄ PF (s, ds

′) =
∫
S̄ PB(s, ds

′) = 1. A flow F
is a tuple F = (f, PF), where f : Σ → [0,∞) is a flow
measure, satisfying f({⊥}) = f(s0) = Z, where Z is the
total flow.

The reward measure is a positive and finite measure R
over the terminating states χ, we denote the density of this
reward measure as r. A flow F is said to satisfy the reward-
matching conditions if

R(dx) = f(dx)PF (x, {⊥}).

If a flow satisfies the reward-matching conditions and trajec-
tories are recursively sampled from the Markov kernel PF
starting at s0, the resulting measure over terminating states,
P⊥(B), is proportional to the reward: P⊥(B) = R(B)

R(χ) for
any B in the σ-algebra of terminating states (19).

Objective functions for discrete GFlowNets generalise to
continuous GFlowNets. However, in the continuous case,
the forward policy p̂F : S × S̄ → [0,∞), backward policy
p̂B : S × S̄ → [0,∞) and parameterised flow f̂ : S →
[0,∞) parameterise the PF , PB transition kernels and flow
measure f on an MPG. Discrete GFlowNets parameterise
log transition probabilities and flows on a DAG. In this
work, we consider DB, TB and STB losses. For a complete
trajectory τ , the TB loss can be written as

LTB(τ) =

(
log

Zθ
∏n
t=0 p̂F (st, st+1; θ)

r(sn)
∏n−1
t=0 p̂B(st+1, st; θ)

)2

,

where Zθ is the parameterised total flow (see Appendix A
for the DB and STB loss functions).

2.3. Exploration strategies for GFlowNets

GFlowNets can reliably learn using off-policy trajectories,
a key advantage over hierarchical variational models (25).
For optimal training, it is common to use a replay buffer
and alternate between on-policy and off-policy (exploration)
batches (33). Exploration strategies for discrete GFlowNets
include ϵ-noisy with a uniform random policy, tempering,
Generative Augmented Flow Networks (GAFN) (28), Lo-
cal Search GFlowNets (18), and Thompson sampling (TS),
which outperforms the others in grid and bit sequence do-
mains (30). TS aims to bias exploration in regions where
there is high uncertainty. When the forward policy is pa-
rameterised as an MLP, this is achieved using an ensemble
of K ∈ Z+ policy heads with a common network torso.
During training, an ensemble member is randomly sampled
and used to generate a trajectory τ . In a training batch, each

ensemble member is included with probability p and param-
eters are updated by taking a gradient step on the total loss
of τ over all included members.

No comparative literature exists on exploration strategies for
continuous GFlowNets, but many methods can be adapted,
and we do so here. For example, for TS in the continuous
setting, policy heads parameterise forward policy functions
instead of log probabilities. Another strategy unique to the
continuous setting is what we call noisy exploration. This
strategy involves introducing an additive noise parameter,
denoted as σ̄, to the variance parameters in the forward
policy distribution, where the value of σ̄ is scheduled to
gradually decrease to zero over the course of training.

2.4. Metadynamics

Molecular dynamics (MD) uses Langevin dynamics (LD)
(29), a stochastic differential equation modelling particle
motion with friction and random fluctuations, to simulate
atomic trajectories that ergodically sample a molecule’s
Gibbs measure, ρβ(x) ∝ e−βV (x). Here, x and p are atomic
positions and momenta, V (x) is the molecular potential, and
β is thermodynamic beta.1 If the potential V (x) has multi-
ple local minima, then unbiased LD can get trapped in these
minima, which can lead to inefficient sampling. Metady-
namics is an algorithm that enhances sampling by regularly
depositing repulsive Gaussian bias potentials at the center
of an evolving LD trajectory (21). The conservative compo-
nent of the LD force is then given by the negative gradient
of the total potential, i.e. −∇Vtotal = −∇(V +Vbias), where
Vbias is the cumulative bias. Bias potentials only vary in
the direction of user-specified low-dimensional collective
variables (CVs), z(x) : X → Z , mapping from the origi-
nal space X to the CV space Z . For biomolecules, typical
CVs include protein backbone angles or distances between
charge centers - quantities that play a central role in rare-
event transitions. As the bias potential progressively fills
up the potential landscape, energetic barriers are reduced,
thus accelerating exploration, eventually ensuring uniform
diffusion in CV space. In practice, the bias is defined on a
regular grid, which limits CV space dimensionality to 5-10
due to exponential memory costs. Thus, identifying good
CVs is crucial for effective metadynamics simulations in
applications such as drug discovery, chemistry and mate-
rials science (8; 20). In this work, we adapt the original
metadynamics algorithm discussed above. The method has
also seen numerous extensions. For a detailed review, see
Bussi and Laio (2020) and the references therein (6).

1We review Langevin dynamics in Appendix B.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Under review for ICML 2024 AI for Science workshop

3. MetaGFN: Adapted Metadynamics for
GFlowNets

Training GFlowNets in high-dimensional continuous spaces
requires exploration, especially if valuable reward peaks are
separated by large regions of low reward. In some tasks,
apriori knowledge of the principal manifold directions of the
reward measure can reduce the effective dimension of the
search. This is where exploration algorithms that guarantee
uniform sampling in that manifold, such as metadynamics,
become most effective. With this intuition in mind, we adapt
metadynamics to the black-box reward setting of continuous
GFlowNets.

Assumptions We assume that χ is a manifold (locally home-
omorphic to Euclidean space) and that the reward density
r is bounded and L1-integrable function over χ with at
most finitely many discontinuities. This implies the tar-
get density over terminal states, ρ = r(x)/

∫
χ
r(x) dx

, can be expressed as a Gibbs distribution: ρ =
exp(−β′V (x))/

∫
χ
r(x) dx, where V (x) = − 1

β′ ln r(x),
with fixed β′ > 0, is a potential with at most finitely many
discontinuities. If r(x) is multimodal, then V (x) has multi-
ple minima. Our aim is to explore V (x) using a variant
of metadynamics, thereby generating off-policy, high-
reward terminal states that encourage the GFlowNet to
eventually sample all the modes of the reward density.

Kernel density potential Metadynamics force computa-
tions require the gradient of the total potential, where
−∇Vtotal = −∇(V + Vbias). Using the above assumptions,
we have∇V = −r(x)/(β′∇r(x)). However, r(x) is often
a computationally expensive black-box function, and its
gradient, ∇r(x), is in general unknown. While finite dif-
ferences can estimate ∇r(x) for smooth, low-dimensional
reward distributions, this approach is impractical in high-
dimensional spaces. We avoid finite difference calculations
by computing a kernel density estimate (KDE) of V instead.
We use V̂ to denote the KDE estimate. We assume col-
lective variables z(x) = (z1(x), . . . , zk(x)), and compute
both the KDE and bias potentials in the CV space. Here,
each zi is a one-dimensional coordinate, and z : χ → Z ,
where Z is k-dimensional. As the potentials are stored on a
low-dimensional grid, gradient computations are guaranteed
to be cheap relative to the cost of evaluating r(x).

To compute V̂ , we maintain two separate KDEs: N̂ for the
histogram of metadynamics states and R̂ for cumulative
rewards. We update these KDE estimates on the fly at the
same time the bias potential is updated. If Z ∼= Rk, we use

Gaussian kernels with update rules:2

N̂ ← N̂ + exp

(
−1

2

k∑
i=1

∣∣∣∣zi − zt,iσ′
i

∣∣∣∣2
)
; (1)

R̂← R̂+ r(xt) exp

(
−1

2

k∑
i=1

∣∣∣∣zi − zt,iσ′
i

∣∣∣∣2
)
, (2)

where σ′ = (σ′
1, . . . , σ

′
k) ∈ Rk is the kernel width, xt is the

latest metadynamics sample and zt,i is the corresponding
ith CV coordinate of xt. The KDE potential V̂ is then
computed as:

V̂ = − 1

β′ log

(
R̂

N̂ + ϵ
+ ϵ

)
,

where ϵ > 0. We found empirically that ϵ ensured numerical
stability by preventing division by zero and bounding the
potential above by log (1/ϵ) /β′, while the ratio of a reward
and frequency KDE means that V̂ rapidly and smoothly
when new modes are discovered. In particular, we prove
that V̂ eventually discovers all reward modes in the CV
space. More precisely,

Theorem 3.1. If the collective variable z(x) is analytic
with a bounded domain, then

lim
ϵ→0

(
lim
σ′→0

(
lim
t→∞

V̂ (z, t)
))

= V, (3)

where V = V (z′) :=
∫
X δ(z

′ − z(x))V (x)dx is the
marginal potential in the CV space if z(x) is not invert-
ible. If z(x) is invertible, V is the original potential V (x)
in the original coordinates.

The proof is in Appendix C.

Implementation details We set potential energy beta (β′)
and Langevin dynamics beta (β) to be equal. This reduces
the number of parameters but also aids interpretability since
β is now inversely proportional to the (unbiased) transition
rates between minima of the potential.3 We also set the bias
and kernel widths equal, σ = σ′. This is reasonable since
it is the variability of V (x) that determines sensible values
for both these parameters. Finally, we set the Langevin
dynamics mass parameter to M = 1. This is reasonable
since mass is non-physical in the GFlowNet context. The
dynamic effect of changingM can be emulated by changing
other parameters of Langevin dynamics, namely the fric-
tion γ, thermodynamic β and integration timestep ∆t. The
resulting exploration algorithm we call Adapted Metady-
namics (AM), and is presented in Algorithm 1. Note that

2If Z ∼= Tk (k-torus), we use von Mises distributions instead
of Gaussians.

3From the Kramer formula; transition rate ∝ 1
β
exp(β∆V),

where ∆V ∝ 1
β′ = 1

β
.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Under review for ICML 2024 AI for Science workshop

the algorithm can be extended to a batch of trajectories,
where each metadynamics trajectory evolves independently,
but with a shared V̂ and Vbias which receive updates from
every trajectory in the batch. This is the version we use
in our experiments - it accelerates exploration and reduces
stochastic gradient noise during training.

Algorithm 1 Adapted Metadynamics

1: Input: Manifold environment of terminating states χ
with reward density r : χ→ R. Initial state (xt, pt) ∈
χ× Txt

(χ). Collective variables z = (z1, . . . , zk).
2: Parameter: Gaussian width σ = (σ1, . . . , σk) ∈ Rk.

Gaussian heightw > 0. Stride n ∈ Z+. LD parameters:
γ, β. Timestep ∆t.

3: N̂ ← 0
4: R̂← 0
5: V̂ (z)← 0
6: Vbias(z)← 0
7: every timestep ∆t:
8: zt ← z(xt)
9: every n timesteps n∆t:

10: N̂ ← N̂ + exp

(
− 1

2

∑k
i=1

∣∣∣ zi−zt,iσi

∣∣∣2)
11: R̂← R̂+ r(xt) · exp

(
− 1

2

∑k
i=1

∣∣∣ zi−zt,iσi

∣∣∣2)
12: V̂ ← − 1

β log
(

R̂
N̂+ϵ

+ ϵ
)

13: Vbias(z) ← Vbias(z) + n · ∆t · w ·

exp

(
− 1

2

∑k
i=1

∣∣∣ zi−zt,iσi

∣∣∣2)
14: compute forces:
15: F ← −

(
∇zV̂ (z)

∣∣
z=zt

+∇zVbias(z)
∣∣
z=zt

)
·

∇xz
∣∣
x=xt

16: propagate xt, pt by ∆t using Langevin dynamics with
computed force F (Alg. 2, Appendix D).

Training GFlowNets with Adaptive Metadynamics
(MetaGFN) Each Adaptive Metadynamics sample xi ∈ χ
is an off-policy terminal state sample. To train a GFlowNet,
complete trajectories are required. We generate these by
backward sampling from the terminal state, giving a tra-
jectory τ = (s0, s1, . . . , sn = xi), where each state si−1

is sampled from the current backward policy distribution
p̂B(si−1|si; θ), for i from n to 1. This approach means that
the generated trajectory τ has reasonable credit according
to the loss function, thereby providing a useful learning sig-
nal. However, since this requires a backward policy, this is
compatible with DB, TB, and STB losses, but not FM loss.
Given the superior credit assignment of the former losses,
this is not a limitation (23).

Additionally, we use a replay buffer. Due to the theoretical
guarantee that Adaptive Metadynamics will eventually sam-
ple all collective variable space (Theorem 3.1), AM samples

are ideal candidates for storing in a replay buffer. When
storing these trajectories in the replay buffer, there are two
obvious choices:

1. Store the entire trajectory the first time it is generated;

2. Store only the Adaptive Metadynamics sample and re-
generate trajectories using the current backward policy
when retrieving from the replay buffer.

We investigate both options in our experiments. We call
the overall training algorithm MetaGFN, with pseudocode
presented in Algorithm 3, Appendix D.

4. Experiments
4.1. Line environment

5 0 5 10 15 20
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r(x
)

Figure 1: Line Environment reward function, equation (4).

We consider a one-dimensional line environment, with state
space S = R×{t ∈ N, 1 ≤ t ≤ 3}, where t indexes the po-
sition of a state in a trajectory. The source state is s0 = (0, 0)
and trajectories terminate after exactly 3 steps. The terminal
states are therefore χ = R× {3} ∼= R. The reward density,
plotted in Figure 1, consists of an asymmetric bimodal peak
near the origin and an additional distant lone peak. It is
given by the Gaussian mixture distribution:

r(x) =

N (−2.0, 1.0) +N (−2.0, 0.4)+
N (2.0, 0.6) +N (20.0, 0.1); −5 ≤ x ≤ 23

0; otherwise,
(4)

where N (µ, σ2) is a Gaussian density with mean µ and
variance σ2. The forward and backward probability transi-
tion kernels are a mixture of 3 Gaussian distributions which,
along with the flow f̂ , are parameterised by an MLP.

We compare the following exploration strategies: entirely
on-policy (no exploration), noisy exploration, Thompson
Sampling, and MetaGFN. For each strategy, we use a re-
play buffer and alternate between an exploration batch and

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Under review for ICML 2024 AI for Science workshop

Figure 2: The L1 difference between on-policy and reward distribution during training in the line environment for different
loss functions and exploration strategies. Mean is plotted with standard error over 10 repeats. DB - Detailed Balance loss,
TB - Trajectory Balance loss, STB - Subtrajectory Balance loss.

a replay buffer batch. For MetaGFN, we use freqRB = 2,
freqMD = 10 and always regenerate MetaGFN training
trajectories using the current backward policy. As the envi-
ronment is one-dimensional, the collective variable is simply
z(x) = x. We evaluate performance by computing the L1
error between the known reward distribution and the empiri-
cal on-policy distribution during training (see Appendix E.1
for the full experimental details).

The results (mean and standard deviation over 10 random
seeds) for each loss function and exploration strategy are
shown in Figure 2. Among the three loss functions, TB
loss has the lowest variance loss profiles, and MetaGFN
consistently converges to a lower minimum error than all
other exploration strategies. Indeed, MetaGFN was the only
method that consistently sampled the distant reward peak at
x = 20, while other methods plateau in error after locking
onto the central modes (Appendix E.2). Despite this, we
observed that in the initial stages of training, all exploration
strategies found occasional samples from the distant peak.
The reason MetaGFN is the only method that converges is
that Adaptive Metadynamics manages to consistently sam-
ple the distant peak, even if the on-policy starts to focus
on the central modes. This keeps the replay buffer popu-
lated with samples from every reward peak during training,
which eventually encourages the on-policy to sample from
every mode. The small increase in the loss of MetaGFN
around batch number 5×103 happens because the on-policy
distribution widens when Adaptive Metadynamics first dis-
covers the distant peak. In Appendix E.2, we show further
details of Adaptive Metadynamics in this environment and
we compare different MetaGFN variants, with and without
noise, and with and without trajectory regeneration. We
confirm that the version of MetaGFN presented in Figure
2 (no added noise and always regenerate trajectories) is the
most robust variant.

4.2. Alanine dipeptide environment

One application of continuous GFlowNets is molecular con-
formation sampling (37). Here, we train a GFlowNet to
sample conformational states of alanine dipeptide (AD), a
small biomolecule of 23 atoms that plays a key role in mod-
elling backbone dynamics of proteins (12). The metastable
states of AD can be distinguished in a two-dimensional
CV space of ϕ and ψ, the two backbone dihedral angles.
The resulting free energy surface for AD in explicit water,
V (ϕ, ψ), obtained after extensive sampling long molecular
dynamics simulation is shown in Figure 3. The metastable
states (energy minima), in increasing energy, are P||, αR,
C5, α′, αL and αD.

The state space is S = T2 × {t ∈ N, 1 ≤ t ≤ 3}.
The source state is s0 = P|| = (−1.2, 2.68) and trajec-
tories terminate after exactly 3 steps. Terminal states are
χ = T2 × {3} ∼= T2. The reward density is given by the
Boltzmann weight, r(ϕ, ψ) = 1

Z exp(−βV (ϕ, ψ)), where
Z is the normalisation constant. The forward and backward
probability transition kernels are defined as a mixture of 3
bivariate von Mises distributions, parameterised through an
MLP. We consider the same exploration strategies and eval-
uation measure as for the Line Environment (see Appendix
F for full experimental details).

The results (mean and standard deviation over 10 random
seeds) for each loss function and exploration strategy are
shown in Figure 4. For each loss function, models trained
with MetaGFN generally converge to a lower minimum error
than all other exploration strategies. For TB loss, however,
the average L1 error is marginally higher than on-policy
training, but this conceals the fact that the best-case error is
smaller. Thus, to better understand this result, we examine
the best and worst training runs (as measured by L1 error)
for TB on-policy and TB MetaGFN, shown in Figure 5. We
see that the best run trained with metadynamics can sample
from the rare αL minima, unlike the on-policy run. In the

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Under review for ICML 2024 AI for Science workshop

0

0

C5

′

R

L

DP||

0

10

20

30

40

50

60

70

Fr
ee

 E
ne

rg
y

(k
J m

ol
1)

Figure 3: Free energy surface of alanine dipeptide in explicit
solvent with all metastable states annnotated.

worst run, MetaGFN fails to converge (although this is rare;
only one of 10 runs failed).

In Table 1, we quantify how often the different AD modes
were correctly sampled over the different repeats (a mode
is correctly sampled if the on-policy distribution also has a
mode within the correct basin of attraction). The only mode
not correctly sampled by any method is αD, which has a
natural abundance approximately 10 times less frequent
than αL. We see that TB loss with MetaGFN is the only
combination that can consistently sample the majority of
modes, whilst noisy exploration and Thompson Sampling
both perform worse than on-policy in this environment.

Table 1: Number of correct samples of AD modes in trained
GFlowNets over 10 independent repeats for DB, STB, and
TB loss functions. OP - On-policy and MD - MetaGFN.
The αD mode wasn’t sampled in any model due to its low
natural frequency.

DB STB TB

OP MD OP MD OP MD

P|| 1 7 6 5 10 8
αR 6 9 7 10 10 9
C5 2 7 5 6 10 8
α′ 6 9 5 10 5 9
αL 0 1 1 0 0 8

5. Limitations
For metadynamics to be an effective sampler, the CVs must
be low-dimensional and bounded, properties that were sat-
isfied in both our experimental environments. Therefore, it
is necessary to either know such CVs in advance, assuming
they exist or learn them automatically from data (35). An
alternative approach would be to learn CVs adaptively by
parameterising the CV function by a neural network and
updating its parameters by back-propagating through the
GFlowNet loss when training on MetaGFN trajectories. A

final improvement could be to replace the metadynamics
algorithm itself with a variant with smoother convergence
properties, such as well-tempered metadynamics (1) or on-
the-fly probability enhanced sampling (OPES) (14). We
leave these extensions for future work.

6. Conclusions
While exploration strategies for discrete Generative Flow
Networks (GFlowNets) have received extensive attention,
the methodologies for continuous GFlowNets remain rel-
atively underexplored. To address this gap, we illustrated
how metadynamics, a widely used enhanced sampling tech-
nique in molecular dynamics, can be adapted as an effective
exploration strategy for continuous GFlowNets.

In molecular dynamics, atomic forces can be computed as
the gradient of the potential, whereas continuous GFlowNets
tackle problems where the reward function is a black box
and gradients are inaccessible. We demonstrated how the
method could be adapted by updating a kernel density es-
timate of the reward function on-the-fly, and proved that
this is guaranteed to explore the space in an appropriate
limit. Our empirical investigations show that MetaGFN
offers a computationally efficient means to explore new
modes in environments where prior knowledge of collec-
tive variables exists. Importantly, this work advocates an
approach wherein techniques derived from molecular mod-
elling can be adapted for machine learning tasks. Looking
ahead, we anticipate that this could be a fruitful area of
cross-disciplinary research, where existing ideas from the
enhanced sampling literature can find applications in a broad
range of generative modelling and reinforcement learning
tasks.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Under review for ICML 2024 AI for Science workshop

Figure 4: The L1 difference between on-policy and reward distribution during training in the alanine dipeptide environment
for different loss functions and exploration strategies. Mean is plotted with standard error over 10 repeats. DB - Detailed
Balance loss, TB - Trajectory Balance loss, STB - Subtrajectory Balance loss.

Best On-policyWorst On-policy Worst MetaGFN Best MetaGFN

Figure 5: Learned on-policy distribution for TB on-policy and TB MetaGFN training runs. Colour bar shows the probability
density. Red histograms show the marginal distribution along the angular coordinates. Black curves show the marginal
distributions of the ground truth. In the best case, MetaGFN is able to learn the αL mode. In the worst case, MetaGFN fails
to converge. On-policy training, although more consistent, fails to learn to sample from the αL mode.

References
[1] Alessandro Barducci, Giovanni Bussi, and Michele

Parrinello. Well-Tempered Metadynamics: A
Smoothly Converging and Tunable Free-Energy
Method. Physical Review Letters, 100(2):020603, Jan-
uary 2008.

[2] Emmanuel Bengio, Moksh Jain, Maksym Korablyov,
Doina Precup, and Y. Bengio. Flow Network based
Generative Models for Non-Iterative Diverse Candi-
date Generation. ArXiv, June 2021.

[3] Yoshua Bengio, T. Deleu, J. E. Hu, Salem Lahlou,
Mo Tiwari, and Emmanuel Bengio. GFlowNet Foun-
dations. ArXiv, November 2021.

[4] Massimiliano Bonomi, Giovanni Bussi, Carlo Camil-
loni, Gareth A. Tribello, Pavel Banáš, Alessandro
Barducci, Mattia Bernetti, Peter G. Bolhuis, Sandro
Bottaro, Davide Branduardi, Riccardo Capelli, Paolo
Carloni, Michele Ceriotti, Andrea Cesari, Haochuan
Chen, Wei Chen, Francesco Colizzi, Sandip De, Marco
De La Pierre, Davide Donadio, Viktor Drobot, Bernd

Ensing, Andrew L. Ferguson, Marta Filizola, James S.
Fraser, Haohao Fu, Piero Gasparotto, Francesco Luigi
Gervasio, Federico Giberti, Alejandro Gil-Ley, Toni
Giorgino, Gabriella T. Heller, Glen M. Hocky, Mar-
cella Iannuzzi, Michele Invernizzi, Kim E. Jelfs,
Alexander Jussupow, Evgeny Kirilin, Alessandro Laio,
Vittorio Limongelli, Kresten Lindorff-Larsen, Thomas
Löhr, Fabrizio Marinelli, Layla Martin-Samos, Mat-
teo Masetti, Ralf Meyer, Angelos Michaelides, Carla
Molteni, Tetsuya Morishita, Marco Nava, and The
PLUMED consortium. Promoting transparency and
reproducibility in enhanced molecular simulations. Na-
ture Methods, 16(8):670–673, August 2019.

[5] Luca Bortolussi and Alberto Policriti. Hybrid Systems
and Biology. In Marco Bernardo, Pierpaolo Degano,
and Gianluigi Zavattaro, editors, Formal Methods
for Computational Systems Biology, pages 424–448,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[6] Giovanni Bussi and Alessandro Laio. Using metady-
namics to explore complex free-energy landscapes. Na-
ture Reviews Physics, 2:200–212, March 2020. ADS
Bibcode: 2020NatRP...2..200B.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Under review for ICML 2024 AI for Science workshop

[7] Flaviu Cipcigan, Jonathan Booth, Rodrigo Neu-
mann Barros Ferreira, Carine Ribeiro dos Santos, and
Mathias Steiner. Discovery of Novel Reticular Mate-
rials for Carbon Dioxide Capture using GFlowNets,
October 2023. arXiv:2310.07671 [cond-mat].

[8] Marco De Vivo, Matteo Masetti, Giovanni Bottegoni,
and Andrea Cavalli. Role of Molecular Dynamics
and Related Methods in Drug Discovery. Journal of
Medicinal Chemistry, 59(9):4035–4061, May 2016.
Publisher: American Chemical Society.

[9] Tristan Deleu, António Góis, Chris Emezue, Mansi
Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian Structure Learn-
ing with Generative Flow Networks, June 2022.
arXiv:2202.13903 [cs, stat].

[10] Peter Eastman, Jason Swails, John D. Chodera,
Robert T. McGibbon, Yutong Zhao, Kyle A.
Beauchamp, Lee-Ping Wang, Andrew C. Simmon-
ett, Matthew P. Harrigan, Chaya D. Stern, Rafal P.
Wiewiora, Bernard R. Brooks, and Vijay S. Pande.
OpenMM 7: Rapid development of high performance
algorithms for molecular dynamics. PLoS computa-
tional biology, 13(7):e1005659, July 2017.

[11] Paul C. D. Hawkins. Conformation Generation: The
State of the Art. Journal of Chemical Information and
Modeling, 57(8):1747–1756, August 2017. Publisher:
American Chemical Society.

[12] Jan Hermans. The amino acid dipeptide: Small but
still influential after 50 years. Proceedings of the Na-
tional Academy of Sciences, 108(8):3095–3096, Febru-
ary 2011. Publisher: Proceedings of the National
Academy of Sciences.

[13] Edward J. Hu, Nikolay Malkin, Moksh Jain, Katie
Everett, Alexandros Graikos, and Yoshua Bengio.
GFlowNet-EM for learning compositional latent vari-
able models, June 2023. arXiv:2302.06576 [cs, stat].

[14] Michele Invernizzi. OPES: On-the-fly Probability
Enhanced Sampling Method. Il Nuovo Cimento C,
44(405):1–4, September 2021. arXiv:2101.06991
[physics].

[15] Moksh Jain, Emmanuel Bengio, Alex Hernandez-
Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dos-
sou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang,
Michael Kilgour, Dinghuai Zhang, Lena Simine, Payel
Das, and Yoshua Bengio. Biological Sequence Design
with GFlowNets. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pages 9786–
9801. PMLR, June 2022. ISSN: 2640-3498.

[16] Moksh Jain, Sharath Chandra Raparthy, Alex
Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Ben-
gio, Santiago Miret, and Emmanuel Bengio. Multi-
Objective GFlowNets, July 2023. arXiv:2210.12765
[cs, stat].

[17] William L. Jorgensen, Jayaraman Chandrasekhar, Jef-
fry D. Madura, Roger W. Impey, and Michael L. Klein.
Comparison of simple potential functions for simulat-
ing liquid water. The Journal of Chemical Physics,
79(2):926–935, July 1983.

[18] Minsu Kim, Taeyoung Yun, Emmanuel Bengio,
Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, and
Jinkyoo Park. Local Search GFlowNets, March 2024.
arXiv:2310.02710 [cs, stat].

[19] Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai
Zhang, Alexandra Volokhova, Alex Hernández-Garcı́a,
Léna Néhale Ezzine, Yoshua Bengio, and Nikolay
Malkin. A theory of continuous generative flow net-
works. 2023. Publisher: arXiv Version Number: 2.

[20] Alessandro Laio and Francesco L. Gervasio. Metady-
namics: a method to simulate rare events and recon-
struct the free energy in biophysics, chemistry and
material science. Reports on Progress in Physics,
71(12):126601, November 2008.

[21] Alessandro Laio and Michele Parrinello. Escaping
free-energy minima. Proceedings of the National
Academy of Sciences, 99(20):12562–12566, Octo-
ber 2002. Publisher: Proceedings of the National
Academy of Sciences.

[22] Shuang Luo, Yinchuan Li, Shunyu Liu, Xu Zhang,
Yunfeng Shao, and Chao Wu. Multi-agent Continu-
ous Control with Generative Flow Networks. Neural
Networks, 174:106243, June 2024.

[23] Kanika Madan, Jarrid Rector-Brooks, Maksym Ko-
rablyov, Emmanuel Bengio, Moksh Jain, Andrei Nica,
Tom Bosc, Yoshua Bengio, and Nikolay Malkin.
Learning GFlowNets from partial episodes for im-
proved convergence and stability. arXiv, 2022. Version
Number: 3.

[24] Nikolay Malkin, Moksh Jain, Emmanuel Bengio,
Chen Sun, and Y. Bengio. Trajectory Balance: Im-
proved Credit Assignment in GFlowNets. ArXiv, Jan-
uary 2022.

[25] Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji,
Edward Hu, Katie Everett, Dinghuai Zhang, and
Yoshua Bengio. GFlowNets and variational inference,
March 2023. arXiv:2210.00580 [cs, stat].

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Under review for ICML 2024 AI for Science workshop

[26] Michael Neunert, Abbas Abdolmaleki, Markus
Wulfmeier, Thomas Lampe, Tobias Springenberg,
Roland Hafner, Francesco Romano, Jonas Buchli,
Nicolas Heess, and Martin Riedmiller. Continuous-
Discrete Reinforcement Learning for Hybrid Control
in Robotics. In Proceedings of the Conference on
Robot Learning, pages 735–751. PMLR, May 2020.
ISSN: 2640-3498.

[27] Esa Nummelin. General Irreducible Markov Chains
and Non-Negative Operators. Cambridge Tracts
in Mathematics. Cambridge University Press, Cam-
bridge, 1984.

[28] Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo
Huang, and Yoshua Bengio. Generative Augmented
Flow Networks, October 2022. arXiv:2210.03308 [cs].

[29] Grigorios A. Pavliotis. Stochastic Processes and Appli-
cations: Diffusion Processes, the Fokker-Planck and
Langevin Equations, volume 60 of Texts in Applied
Mathematics. Springer, New York, NY, 2014.

[30] Jarrid Rector-Brooks, Kanika Madan, Moksh Jain,
Maksym Korablyov, Cheng-Hao Liu, Sarath Chandar,
Nikolay Malkin, and Yoshua Bengio. Thompson sam-
pling for improved exploration in GFlowNets, June
2023. arXiv:2306.17693 [cs].

[31] Romelia Salomon-Ferrer, David A. Case, and
Ross C. Walker. An overview of the Amber
biomolecular simulation package. WIREs Computa-
tional Molecular Science, 3(2):198–210, 2013. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1121.

[32] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P.
Adams, and Nando De Freitas. Taking the Human
Out of the Loop: A Review of Bayesian Optimization.
Proceedings of the IEEE, 104(1):148–175, January
2016.

[33] Max W. Shen, Emmanuel Bengio, Ehsan Haji-
ramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards Understanding and Im-
proving GFlowNet Training. 2023. Publisher: arXiv
Version Number: 1.

[34] Tony Shen, Mohit Pandey, Jason Smith, Artem
Cherkasov, and Martin Ester. TacoGFN: Target Con-
ditioned GFlowNet for Structure-Based Drug Design,
December 2023. arXiv:2310.03223 [cs].

[35] Hythem Sidky, Wei Chen, and Andrew L. Ferguson.
Machine learning for collective variable discovery
and enhanced sampling in biomolecular simulation.
Molecular Physics, 118(5), March 2020. Institution:
Argonne National Laboratory (ANL), Argonne, IL
(United States) Publisher: Taylor & Francis.

[36] Laura Painton Swiler, Patricia Diane Hough, Peter
Qian, Xu Xu, Curtis B. Storlie, and Herbert K. H.
Lee. Surrogate models for mixed discrete-continuous
variables. Technical Report SAND2012-0491, Sandia
National Laboratories (SNL), Albuquerque, NM, and
Livermore, CA (United States), August 2012.

[37] Alexandra Volokhova, Michał Koziarski, Alex
Hernández-Garcı́a, Cheng-Hao Liu, Santiago Miret,
Pablo Lemos, Luca Thiede, Zichao Yan, Alán Aspuru-
Guzik, and Yoshua Bengio. Towards equilibrium
molecular conformation generation with GFlowNets,
October 2023. arXiv:2310.14782 [cs].

[38] Yi Isaac Yang, Qiang Shao, Jun Zhang, Lijiang Yang,
and Yi Qin Gao. Enhanced sampling in molecu-
lar dynamics. The Journal of Chemical Physics,
151(7):070902, August 2019.

[39] David W. Zhang, Corrado Rainone, Markus Peschl,
and Roberto Bondesan. Robust Scheduling with
GFlowNets, February 2023. arXiv:2302.05446 [cs].

[40] Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexan-
dra Volokhova, Aaron Courville, and Yoshua Bengio.
Generative Flow Networks for Discrete Probabilis-
tic Modeling. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pages 26412–
26428. PMLR, June 2022. ISSN: 2640-3498.

A. Loss functions
For a complete trajectory τ , the detailed balanced loss (DB)
is

LDB(τ) =

n−1∑
t=0

(
log

f̂(st; θ)p̂F (st, st+1; θ)

f̂(st+1; θ)p̂B(st+1, st; θ)

)2

,

where f̂(st+1; θ) is replaced with r(sn) if sn is terminal.

The subtrajectory balance loss (STB) is

LSTB(τ) =

∑
0≤i<j≤n λ

j−1LTB(τi:j)∑
0≤i<j≤n λ

j−i ,

LSTB(τi:j) :=

(
log

f̂(si; θ)
∏j−1
t=i p̂F (st+1|st; θ)

f̂(sj ; θ)
∏j
t=i+1 p̂B(st−1|st; θ)

)2

,

where f̂(sj ; θ) is replaced with r(sj) if sj is terminal. In
the above, λ < 0 is a hyperparameter. The limit λ → 0+

leads to average detailed balance. The λ→∞ limit gives
the trajectory balance objective. We use λ = 0.9 in our
experiments.

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Under review for ICML 2024 AI for Science workshop

B. Langevin dynamics
Langevin dynamics (LD), is defined through the Stochastic
Differential Equation (SDE):

dx =M−1pdt (5)

dp = F (x)dt− γpdt+
√
2γβ−1M1/2dW. (6)

In the above, x, p ∈ RD are vectors of instantaneous posi-
tion and momenta respectively, F : RD → RD is a force
function, W (t) is a vector of D independent Wiener pro-
cesses, M is a constant diagonal mass matrix, and γ, β > 0
are constant scalars which can be interpreted as a friction
coefficient and inverse temperature respectively. In conven-
tional Langevin dynamics, the force function is given by
the gradient of the potential energy function, F = −∇V ,
where V : RD → R and the dynamics are ergodic with
respect to the Gibbs-Boltzmann density

ρβ(x, p) ∝ e−βH(x,p),

where H(x, p) = pTM−1p/2 + V (x) is the Hamiltonian.
Since the Hamiltonian is separable in position and momenta
terms, the marginal Gibbs-Boltzmann density is position
space is simply ρβ(x) ∝ e−βV (x).

C. Proofs
Lemma C.1. Let (fn(x)) and (gn(x)) be sequences of real
functions where limn→∞ fn(x) = ∞, limn→∞ gn(x) =

∞ and limn→∞
fn(x)
gn(x)

= h(x). Then, for all ϵ > 0, we

have limn→∞
fn(x)
gn(x)+ϵ

= h(x).

Proof.

lim
n→∞

fn(x)

gn(x) + ϵ
= lim
n→∞

fn(x)

gn(x)

1

1 + ϵ/gn(x)

and the right hand side is the product of two functions whose
limit exists so, by the product rule of limits

lim
n→∞

fn(x)

gn(x)
lim
n→∞

1

1 + ϵ/gn(x)
= h(x) · 1 = h(x),

so done.

Lemma C.2. Let (Xi) be a sequence of continuous random
variables that take values on a bounded domain D ⊂ Rd
that asymptotically approach the uniform random variable
U on D, i.e. Xi → U uniformly. Further, suppose

h(x) :=

∑∞
i=1 f(xi)g(x, xi)∑∞

i=1 g(x, xi)

exists, where xi ∈ D is a sample from Xi and f(x) and
g(x, x′) are analytic functions onD andD×D respectively.
Then,

h(x) =

∑∞
i=1 f(ui)g(x, ui)∑∞

i=1 g(x, ui)
,

where the ui are samples from U . We make no assumption
of independence of samples.

Proof. Fix a probability space (Ω,F , P) on which (Xi)
and U are defined. Recall that a continuous random variable
X that takes values on D ⊂ Rd is a measurable function
X : Ω → D where (D,B) is a measure space and B is
the Borel σ-algebra on D. Let ω ⊂ Ω denote an arbitrary
element of the sample space. The requirement that Xi → U
uniformly can be written formally as:

∀ϵ > 0,∃N(ϵ) s.t. ∀i > N(ϵ),∀ω ⊂ Ω, |Xi(ω)−U(ω)| < ϵ.

We prove the Lemma by showing that equality holds for
all possible sequences of outcomes ω1, ω2, That is, we
prove: ∑∞

i=1 f(Xi(ωi))g(x,Xi(ωi))∑∞
i=1 g(x,Xi(ωi))

=

∑∞
i=1 f(U(ωi))g(x, U(ωi)))∑∞

i=1 g(x, U(ωi)))
.

(7)

Since these are ratios of infinite series, to prove their equality
it is sufficient to show that the numerator of the LHS is
asymptotically equivalent to the numerator of the RHS, and
that the denominator of the LHS is asymptotically equivalent
to the denomiantor of the RHS. Recall that two sequences of
real functions (an) and (bn) are asymptotically equivalent
if limn→∞

an(x)
bn(x)

= c where c is a constant. First, we prove
that this holds with

an :=

n∑
i=1

f(Xi(ωi))g(x,Xi(ωi)) (8)

and

bn :=

n∑
i=1

f(U(ωi))g(x, U(ωi))). (9)

We write an
bn

as∑N(ϵ)
i=1 f(Xi(ωi))g(x,Xi(ωi)) +

∑n
i=N(ϵ)+1 f(Xi(ωi))g(x,Xi(ωi))∑N(ϵ)

i=1 f(U(ωi))g(x, U(ωi))) +
∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

.

Dividing by
∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi))) and taking

the limit n→∞ we have

lim
n→∞

an
bn

= lim
n→∞

∑n
i=N(ϵ)+1 f(Xi(ωi))g(x,Xi(ωi))∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

.

Since f and g are analytic and i > N(ϵ) for all terms
in the sums we have, by Taylor expansion, f(Xi(ωi)) =
f(U(ωi)) +O(ϵ) and g(x,Xi(ωi)) = g(x, U(ωi)) +O(ϵ),
hence

lim
n→∞

an
bn

= lim
n→∞

(
1 +

nO(ϵ)∑n
i=N(ϵ)+1 f(U(ωi))g(x, U(ωi)))

)

= 1 + lim
n→∞

nO(ϵ)

O(n)
= 1 +O(ϵ).

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Under review for ICML 2024 AI for Science workshop

Finally, since ϵ can be made arbitrarily small by partitioning
the sum at a N(ϵ) that is sufficiently large, we conclude that
limn→∞

an
bn

= 1, hence (an) and (bn) as defined in (8) and
(9) are asymptotically equivalent. By a similar argument, it
can be shown that

cn :=

n∑
i=1

g(x,Xi(ωi))

and

dn :=

n∑
i=1

g(x, U(ωi)))

are also asymptotically equivalent. This proves (7).

Below, we present the proof of Theorem 3.1 that appears in
the main text.

Proof. For concreteness, throughout this proof we assume
that the kernel function is a Gaussian. We explain at the
appropriate stage in the proof, indicated by (*), how this
assumption can be relaxed.

First we take the t → ∞ limit. Since the log function is
continuous, the limit and log can be interchanged and we
have

lim
t→∞

V̂ (x, t) = − 1

β′ log

(
lim
t→∞

(
R̂(x, t)

N̂(x, t) + ϵ

)
+ ϵ

)
.

Recall the uniform time discretisation tn = n∆t of metady-
namics (Algorithm 1). Thus, we can write

R̂(x, tn) =

n∑
i=1

R(xi) exp

(
−

d∑
i=1

(zi(x)− z(xi))2

2σ′2
i

)
,

(10)

N̂(x, tn) =

n∑
i=1

exp

(
−

d∑
i=1

(zi(x)− z(xi))2

2σ′2
i

)
. (11)

Since the domain is bounded, we know that for fixed x, both
(10) and (11) have limit at infinity, i.e. limt→∞ R̂(x, t) =
∞ and limt→∞ N̂(x, t) = ∞. Hence, by Lemma C.1, we
have

lim
t→∞

R̂(x, t)

N̂(x, t) + ϵ
= lim
t→∞

R̂(x, t)

N̂(x, t)
,

provided the limit on the RHS exists. Next, we show that
this limit exists by computing it explicitly. The limit can be
written

lim
t→∞

R̂(x, t)

N̂(x, t)
= lim
n→∞

R̂(x, tn)

N̂(x, tn)

= lim
n→∞

∑n
i=1R(xi) exp

(
−
∑d
i=1

(zi−z(xi))
2

2σ′2
i

)
∑n
i=1 exp

(
−
∑d
i=1

(zi−z(xi))2

2σ′2
i

) .

Recall that metadynamics eventually leads to uniform sam-
pling over the domain, independent of the potential. Hence,
since R and z(x) are analytic, by Lemma C.2 we may re-
place the metadynamics samples xi with samples from a
uniform distribution, denoted ui:

lim
n→∞

R̂(x, tn)

N̂(x, tn)
= lim
n→∞

∑n
i=1R(ui) exp

(
−
∑d
i=1

(zi−z(ui))
2

2σ′2
i

)
∑n
i=1 exp

(
−
∑d
i=1

(zi−z(ui))2

2σ′2
i

) .

In the limit, the ratio of sums with uniform sampling be-
comes a ratio of integrals:

lim
n→∞

R̂(x, tn)

N̂(x, tn)
=

∫
D
R(x′) exp

(
−
∑d
i=1

(zi−z(x′
i))

2

2σ′2
i

)
dx′∫

D
exp

(
−
∑d
i=1

(zi−z(x′
i))

2

2σ′2
i

)
dx′

,

where D ⊂ Rd is the domain. The limit is therefore a
(scaled) convolution of the reward function with a Gaussian
in the collective variable space with width vector σ′. Taking
the limit σ′

i → 0 for all i ∈ {1, 2, . . . , d}, the Gaussian
convergences to a delta distribution in the collective variable
space and we have

lim
σ′→0

lim
n→∞

R̂(x, tn)

N̂(x, tn)
=

∫
D

R(x′)δ(z − z(x′))dx′.

(*) This step also holds for any kernel that becomes distri-
butionally equivalent to a Dirac delta function in the limit
that its variance parameter goes to zero. In particular, it
also holds for the von Mises distribution that we use in our
alanine dipeptide experiment in T2.

Finally, we take the limit ϵ→ 0 to obtain

lim
ϵ→0

lim
σ′→0

lim
t→∞

V̂ (x, t)

= − 1

β′ limϵ→0
log

(∫
D

R(x′)δ(z − z(x′))dx′ + ϵ

)
= − 1

β′

∫
D

log (R(x′)) δ(z − z(x′))dx′

=

∫
D

V (x′)δ(z − z(x′))dx′ := V (z),

(12)

where we have used the definition V (x′) = − 1
β′ log(R(x

′))
and in the last step we used the definition of the marginal
potential energy in the collective variable space. If z(x)
is invertible, then the delta function simplifies to a delta
function in the original space and we obtain the original
potential instead of the marginal potential.

D. Algorithms
In the algorithm below, we present the variant of MetaGFN
where we store Adaptive Metadynamics samples in the re-
play buffer and regenerate trajectories using the current

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Under review for ICML 2024 AI for Science workshop

Algorithm 2 Euler-Maruyama Langevin Dynamics Step

1: Input: Current state (xt, pt). Force F .
2: Parameter: Friction coefficient γ. Thermodynamic

beta β. Timestep ∆t.
3: Output: State (xt+∆t, pt+∆t) at the next timestep.
4: Sample a random vector R, with the same dimension as
xt, where each element is an independent sample from
a standard normal.

5: xt+∆t = xt + pt∆t
6: pt+∆t = pt + F∆t− γpt∆t+

√
2γ∆t/β ·R

7: return (xt+∆t, pt+∆t)

backward policy when retrieving from the replay buffer.
This is the variant we used in our experiments in the main
text.

Algorithm 3 MetaGFN

1: Input: Forward policy PF . Backwards policyPB . Loss
function L.

2: Parameter: How often to run Adaptive Metadynam-
ics batches, freqMD. How often to run replay buffer
batches, freqRB. Batch size, b. Stride, n ∈ Z+. Time
step, ∆t > 0.

3: for each episode do
4: if episode number is divisible by freqMD then
5: Run Adaptive Metadynamics (batch size b) for

time n∆t, obtain samples {x1, . . . , xb}
6: Push {x1, . . . , xb} to the replay buffer
7: Backward sample from {x1, . . . , xb} using current

PB to obtain trajectories {τ1, . . . , τb}
8: else if episode number is divisible by freqRB then
9: Random sample {x1, . . . , xb} from the replay

buffer
10: Backward sample from {x1, . . . , xb} using current

PB to obtain trajectories {τ1, . . . , τb}
11: else
12: Generate trajectories {τ1, . . . , τb} on-policy
13: end if
14: Compute loss l =

∑b
i=1 L(τi, PF , PB)

15: Take gradient step on loss l
16: end for

E. Experiment details: line environment
E.1. Experimental setup

Parameterisation We parameterise p̂F , p̂B and the flow f̂
through an MLP with 3 hidden layers, 256 hidden units per
layer. We use the GELU activation function and dropout
probability 0.2 after each layer. This defines the torso of
the MLP. Connecting from this common torso, the MLP
has three single-layer, fully-connected heads. The first two

heads have output dimension 9 and parameterise the 3 means
(µ), standard deviations (σ) and weights (w) of the mix-
ture of Gaussians for the forward and backward policies
respectively. The third head has output dimension 1 and
parameterises the flow function f̂ . The mean and standard
deviation outputs are passed through a sigmoid function and
transformed so that they map to the ranges µ ∈ (−14, 14)
and σ ∈ (0.1, 1). The mixture weights are normalised with
the softmax function. The exception to this parameterisation
is the backward transition to the source state, which in accor-
dance with theory, is fixed to be the Dirac delta distribution
centred on the source, i.e. p̂B(s0|s1; θ) = δs0 . For the TB
loss, we treat logZθ as a separate learnable parameter.

Replay buffer The replay buffer has capacity for 104 tra-
jectories. Trajectories are stored in the replay buffer only
if terminal state’s reward exceeds 10−3. When drawing a
replay buffer batch, trajectories are bias-sampled: 50% ran-
domly drawn from the upper 30% of trajectories with the
highest rewards, the remaining 50% randomly drawn from
the lower 70%.

0 2000 4000 6000 8000 10000
j

0.0

0.5

1.0

1.5

2.0

Figure 6: Exponential noise schedule.

Noisy exploration Noisy exploration is defined by adding
an additional constant, σ̄, to the standard deviations of the
Gaussian distributions of the forward and backward policies.
Specifically, the forward policy becomes p̂F (st, st−1; θ) =∑3
i=1 wiN (µi, (σi + σ̄)2), and similarly for the backward

policy. We schedule the value of σ̄ so that it decreases
during training according to an exponential-flat schedule:

σ̄ =

{
σ̄0
(
e−2je/(B/2) − e−2e

)
j < B/2

0 j ≥ B/2,
(13)

where j ∈ (1, . . . , B) is the batch number and σ̄0 = 2 is
the initial noise, plotted in Figure 6.

Thompson Sampling We use 10 heads with the bootstrap-
ping probability parameter set to 0.3.

MetaGFN We use ∆t = 0.05, n = 2, β = 1, γ = 2,
w = 0.15, σ = 0.1, ϵ = 10−3. The domain of Adaptive

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Under review for ICML 2024 AI for Science workshop

Figure 7: Forward policy and replay buffer distributions
after training for 105 iterations with TB loss. MetaGFN is
the only method that is able to consistently learn all three
peaks.

Metadynamics is restricted to [−5, 23] and reflection condi-
tions are imposed at the boundary. The bias and KDE po-
tentials are stored on a uniform grid with grid spacing 0.01.
Initial metadynamics samples are drawn from a Gaussian
distribution, mean 0 and variance 1, and initial momenta
from a Gaussian distribution, mean 0 and variance 0.5.

Training parameters In all experiments, we use batch size
b = 64 and for B = 105 batches. We use a learning rate
with a linear schedule, starting at 10−3 and finishing at 0.
For the TB loss we train the logZθ with a higher initial
learning rate of 10−1 (also linearly scheduled). For the
STB loss we use λ = 0.9, a value that has worked well
in the discrete setting (23). We use the Adam optimiser
with gradient clipping. For all loss functions, we clip the
minimum log-reward signal at −10. This enables the model
to learn despite regions of near-zero reward between the
modes of r(x).

Evaluation The L1 error between the known reward distri-
bution, ρ(x) = r(x)/Z, and the empirical on-policy distri-
bution, denoted ρ̂(x), estimated by sampling 104 on-policy
trajectories and computing the empirical distribution over
terminal states. Specifically, we compute

error =
1

2

∫ 23

−5

∣∣∣∣ρ̂(x)− r(x)

Z

∣∣∣∣dx, (14)

where the integral is estimated by a discrete sum with grid
spacing 0.01. Note that this error is normalised such that
for all valid probability distributions ρ̂(x), we have 0 ≤
error ≤ 1.

Compute resources Experiments are performed in PyTorch
a desktop with 32Gb of RAM and a 12-core 2.60GHz i7-
10750H CPU. It takes approximately 1 hour to train a contin-
uous GFlowNet in this environment with B = 105 batches.
The additional computational expense of running Adaptive
Metadynamics was negligible compared to the training time
of the models.

E.2. Results

On-policy distributions Figure 7 shows the forward policy
and replay buffer distributions (with bias sampling) after
training for 105 iterations with TB loss. MetaGFN is the
only method that is able to uniformly populate the replay
buffer and consistently learn all three peaks.

Adaptive Metadynamics Figure 9 shows the L1 error be-
tween the density implied by the kde potential and the true
reward distribution during a typical training run. Figure 10
shows the resulting V̂ and Vbias at the end of the training. By
(1), Adaptive Metadynamics has fully-explored the central
peaks. At (2), the third peak is discovered, prompting rapid
adjustment of the KDE potential. By 2.5× 104 iterations,
steady state is reached and the algorithm is sampling the
domain uniformly.

Comparing MetaGFN Variants We consider three
MetaGFN variants. The first variant, always backwards
sample, regenerates the entire trajectory using the current
backward policy when pulling from the replay buffer. The
second variant, reuse initial backwards sample, generates
the trajectory when first added to the replay buffer and
reuses the entire trajectory if subsequently sampled. The
third variant, with noise, is always backwards sample with
noisy exploration as per equation (13). We plot the L1 pol-
icy errors in Figure 8. We observe that always backward
sample is better than reuse initial backwards sample for all
loss functions. For DB and TB losses, there is no evidence
for any benefit of adding noise, whereas noise improves
training for STB loss, performing very similarly to TB loss
without noise.

F. Experiment details: alanine dipeptide
environment

Computing the Free Energy Surface To obtained a ground-
truth free energy surface (FES) in ϕ-ψ space, we ran a
250ns NPT well-tempered metadynamics MD simulation
of alanine dipeptide at temperature 300K (β = 0.4009),
pressure 1bar with the TIP3P explicit water model (17). We
used the PLUMMED plugin (4) for OpenMM (10) with the
AMBER14 force field (31).

Parameterisation We parameterise p̂F , p̂B and f̂ through
three heads of an MLP with 3 hidden layers with 512 hid-
den units per layer, with GeLU activations and dropout
probability 0.2, similar to the Line Environment. The first
two heads have output dimension 15, parameterising the 6
means, 6 concentrations and 3 weights of the mixture of von
Mises policy. The third head has output dimension 1 and
parameterises the flow function f̂ . The means are mapped
to the range (−π, π) through 2 arctan(·). Concentrations
are parameterised in log-space and are passed through a sig-
moid so that they map to the range ln(κ) ∈ (0, 5). Mixture

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Under review for ICML 2024 AI for Science workshop

DB TBSTB

L1
 E

rr
or

Figure 8: Comparing MetaGFN variants.

Figure 9: L1 error between ρ̂ = exp(−βV̂ (x))/Z and the
reward distribution, r(x)/Z.

Figure 10: KDE potential, bias potential, and positions of
final samples after 2.5× 104 training iterations.

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Under review for ICML 2024 AI for Science workshop

0

0

C5

′

R

L

DP||

0

5

10

15

20

25

30

Fr
ee

 E
ne

rg
y

(k
J m

ol
1)

Figure 11: The KDE potential V̂ learnt using Adapted Meta-
dynamics with von Mises kernel.

weights are normalised with the softmax function.

Replay buffer The replay buffer has capacity for 104 tra-
jectories. Trajectories are stored in the replay buffer only
if terminal state’s reward exceeds 10−10. When drawing
a replay buffer batch, trajectories are bias-sampled: 50%
randomly drawn from the upper 30% of trajectories with the
highest rewards, the remaining 50% randomly drawn from
the lower 70%.

Noisy exploration We use the same noise profile as the Line
Environment, equation (13). The noise σ̄ is now added to
the concentration parameter κ. Concentration is related to
standard deviation through σ = 1

κ2 .

Thompson Sampling We use 10 heads with the bootstrap
probability parameter set to 0.3.

MetaGFN We use freqRB = 2, freqMD = 10, ∆t =
0.01, n = 2, β = 0.4009, γ = 0.1, w = 10−5, κ = 10,
ϵ = 10−6. The bias and KDE potentials are stored on a uni-
form grid with grid spacing 0.1. Initial samples are drawn
from a Gaussian distribution, mean centered P||, variance
σ2 = (0.1, 0.1), and initial momenta from a Gaussian, mean
µ = (0, 0), variance σ2 = (0.05, 0.05). The resulting KDE
potential learnt during Adapted Metadynamics is shown in
Figure 11.

Training parameters The same as for the Line Environ-
ment, see Appendix E.1.

Evaluation The L1 error of a histogram of on-policy sam-
ples, ρ̂(ϕ, ψ), is computed via a two-dimensional generalisa-
tion of (14); error = 1

2

∫ π
−π
∫ π
−π

∣∣∣ρ̂(ϕ, ψ)− r(ϕ,ψ)
Z

∣∣∣dϕdψ,
estimated by a discrete sum with grid spacing 0.1.

Compute resources Experiments are performed in PyTorch
a desktop with 32Gb of RAM and a 12-core 2.60GHz i7-
10750H CPU. It takes approximately 10 hours to train a
continuous GFlowNet in this environment with B = 105

batches. The additional computational expense of running
Adaptive Metadynamics was less than 10%.

