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Figure 1: Examples of high-resolution images generated by a 2.3B U-ViT 1K model.

ABSTRACT

We empirically study the scaling properties of various Diffusion Transformers
(DiTs) for text-to-image generation by performing extensive and rigorous ablations,
including training scaled DiTs ranging from 0.3B upto 8B parameters on datasets
up to 600M images. We find that U-ViT, a pure self-attention based DiT model
provides a simpler design and scales more effectively in comparison with cross-
attention based DiT variants, which allows straightforward expansion for extra
conditions and other modalities. We identify a 2.3B U-ViT model can get better
performance than SDXL UNet and other DiT variants in controlled setting. On the
data scaling side, we investigate how increasing dataset size and enhanced long
caption improve the text-image alignment performance and the learning efficiency.

1 INTRODUCTION

Transformer (Vaswani et al., 2017)’s straightforward design and ability to scale efficiently has driven
significant advancements in large language models (LLMs) (Kaplan et al., 2020). Its inherent
simplicity and ease of parallelization makes it well-suited for hardware acceleration. Diffusion
Transformers (DiTs) (Peebles & Xie, 2023; Bao et al., 2023) initially replaces UNet with transformers
for diffusion-based image generation results in the proposal of numerous variants (Chen et al., 2024b;
Esser et al., 2024b; Crowson et al., 2024; Gao et al., 2024; Li et al., 2024b) and has since successfully
expanded into video generation (Brooks et al., 2024).

Despite the rapid evolution of DiT models, a comprehensive comparison between various DiT
architectures and UNet-based models for text-to-image generation (T2I) is still lacking. The impact
of model design on DiT’s ability to accurately translate text descriptions into images (text-to-image
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alignment) remains unclear. Furthermore, the optimal scaling strategy for transformer models in T2I
tasks compared to UNet is yet to be determined. The challenge of establishing a fair comparison is
further compounded by the variation in training settings and the significant computational resources
required to train these models.

In this work, we empirically study the scaling properties of several representative DiT architectures
for T2I by performing rigors ablations, including training scaled DiTs ranging from 0.3B to 8B
parameters on datasets up to 600M images in controlled settings. Specifically, we ablate and scale
three DiT variants, i.e., PixArt-α (Chen et al., 2024b), LargeDiT (Gao et al., 2024), and U-ViT (Bao
et al., 2023). We train them from scratch on large-scale datasets without using pre-trained DiT
initialization or ImageNet pre-training. All DiT variants are trained in a controlled setting with
the same autoencoder, text encoder and training settings for fair comparison. We find that U-ViT’s
simpler architecture design facilitates efficient model scaling and supports image editing by simply
expanding condition tokens. Finally, we explore the impact of dataset scaling, considering both
dataset size and caption density. The main contributions of our work include:

• We compare the architecture design of three text conditioned DiT models including scaled PixArt-α,
LargeDiT and U-ViT variants in controlled settings, allowing a fair comparison of recent DiT
variants for real-world text-to-image generation.

• We scale the three DiT variants along depth and width dimensions and verify their scalability with
model size as large as 8B. We find that the U-ViT architecture, a full self-attention based ViT with
skip connections, has competitive performance with other DiT designs. The scaled 2.3B U-ViT can
outperform SDXL’s UNet and much larger PixArt-α and LargeDiTs.

• We verified that the full self-attention design of U-ViT allows training image editing model
by simply concatenating masks or condition image as condition tokens, which shows better
performance than traditional channel concatenation approach.

• We examined why long caption enhancement and dataset scaling help to improve the text-image
alignment performance. We find captions with higher information density can yield better text-
image alignment performance.

2 RELATED WORK

Transformers for T2I U-Net (Ronneberger et al., 2015) was the de facto standard backbone for
diffusion based image generation since (Ho et al., 2020) and is widely used in text-to-image models
including LDM (Rombach et al., 2021), SDXL (Podell et al., 2023), DALL-E (Ramesh et al., 2022)
and Imagen (Saharia et al., 2022). U-ViT (Bao et al., 2023) treats all inputs including the time,
condition and noisy image patches as tokens and employs ViT equipped with long skip connections
between shallow and deep layers, suggesting the long skip connection is crucial while the downsam-
pling and up-sampling operators in CNN-based U-Net are not always necessary. DiT (Peebles & Xie,
2023) replaces U-Net with Transformers for class-conditioned image generation and identify there
is a strong correlation between the network complexity and sample quality. PixArt-α (Chen et al.,
2024b) extends DiT (Peebles & Xie, 2023) for text-conditioned image generation by initializing from
DiT pre-trained weights. PixArt-Σ (Chen et al., 2024a) upgrades PixArt-α with stronger VAE, larger
dataset and longer text token limit. It introduces token compression to support 4K image generation.
Those DiT variants are mostly around 0.6B and focus on showing comparable results with U-Net.

Scaling DiTs HourglassDiT (Crowson et al., 2024) introduces hierarchical design with down/up
sampling in DiT and reduces the computation complexity for high resolution image generation.
SD3 (Esser et al., 2024b) presents a transformer-based architecture that uses separate weights for
the image and text modalities and enables a bidirectional flow of information between image and
text tokens. They parameterize the size of the model in terms of the model’s depth and scale up
the backbone to 8B. Large-DiT (Gao et al., 2024) incorporates LLaMA’s text embedding (Touvron
et al., 2023) and scales the DiT backbone. Specifically, they modify the causal attention of LLaMA
to a bidirectional attention mechanism. They normalize the key and query within the attention
mechanism. They show scaling-up parameters up to 7B can improve the convergence speed. They
further extend it for generating multiple modalities in flow-based Lumnia-T2X (Gao et al., 2024) and
Lumina-Next (Zhuo et al., 2024).
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Figure 2: Illustration of the design of SDXL U-Net, DiT (e.g., PixArt-α/LargeDiT) and U-ViT.

3 SCALING DIFFUSION TRANSFORMERS

We ablate and scale three DiT variants, i.e., PixArt-α (Chen et al., 2024b), LargeDiT (Gao et al.,
2024), and U-ViT (Bao et al., 2023) in controlled settings. Fig. 2 compares the archtiecture design
among U-Net, DiT and U-ViT. To fairly compare DiT variants with U-Net models, we replace
SDXL’s U-Net with the DiT backbones and keep other components the same, i.e., we use SDXL’s
VAE and OpenCLIP-H (Ilharco et al., 2021) text encoder.

3.1 ABLATION SETTINGS

Model Design Space We ablate the transformer-based diffusion model design in the following
dimensions: 1) hidden dimension h: we scale it from 1024 to 3072. 2) transformer depth d: we scale
the transformer blocks from 28 to 80. 3) number of heads n, we keep it fixed to 16 or 32.

Training Settings We mainly train models and perform ablations on our curated dataset LensArt,
which contains 250M text-image pairs. For additional data scaling experiment in later sections, we
also use our curated dataset SSTK, which contains 350M text-image pairs. We train all models at
256×256 resolution with batch size 2048 up to 600K steps. We follow the setup of LDM (Rombach
et al., 2021) for DDPM schedules. We use AdamW (Loshchilov & Hutter, 2019) optimizer with 10K
steps warmup and then constant learning rate 8e−5. We employ mixed precision training with BF16
precision and enable FSDP (Zhao et al., 2023) for large models.

Evaluation We use the DDIM sampler (Song et al., 2020) in 50 steps with fixed seed and CFG
scale (7.5) for inference. We follow the setting of (Li et al., 2024a) for evaluation on composition
ability and image quality with: 1) TIFA (Hu et al., 2023) measures the faithfulness of a generated
image to its text input via VQA. It contains 4K collected prompts and corresponding question-answer
pairs generated by a language model. Image faithfulness is calculated by checking whether existing
VQA models can answer these questions using the generated image. 2) ImageReward (Xu et al.,
2023) was learned to approximates human preference. We calculate the average ImageReward score
over images generated with sampled 10K MSCOCO (Lin et al., 2014) prompts. More evaluation
metrics can be found in Appendix D.

3.2 SCALING PIXART-α

Previous study (Li et al., 2024a) scales PixArt-α (Chen et al., 2024b) from 0.5B to 1.1B to compare
with similar sized U-Nets. They find that similar sized PixArt-α performs worse than U-Net. We
followed their setting and further scaled PixArt-α upto 3.0B from both depth and width dimensions.
For depth scaling, we fix h at 1024 and 1536 while changing d from 28 to 80. For width scaling,
we fix d to 28 and 42 while changing h from 1152 to 2048. Fig. 3 shows how TIFA score scales
along depth and width dimensions. All PixArt-α variants yield lower TIFA and ImageReward scores
in comparison with SD2 U-Net trained in same steps, e.g., SD2 U-Net reaches 0.80 TIFA at 250K
steps while the 0.9B PixArt-α variant gets 0.78. Chen et al. (2024b) also report that training without
ImageNet pre-training tends to generate distorted images in comparison to models initialized from
pre-trained DiT weights, which is trained 7M steps on ImageNet. Though Chen et al. (2024b)
proves that U-Net is not a must for diffusion models, PixArt-α variants do take longer iterations and
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more compute to achieve similar performance as U-Net. The 3B PixArt-α model still cannot match
SD2-U-Net within same training steps.
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Figure 3: Scaling PixArt-α on the depth and width dimensions.

3.3 SCALING LARGEDIT

We further employ LargeDiT (Gao et al., 2024) as the denoising backbone and explore its scaled
version. The original LargeDiT comes with 0.6B, 3B1, and 7B pre-trained versions. We ablate
LargeDiT in the dimension of depth, hidden dimension, and number of heads. As shown in Fig. 4,
the 1.7B LargeDiT-h1536-d42-n32 is on par with SD2 U-Net with 0.80 TIFA. The LargeDiT models
start to surpass SD2 U-Net since the 2.9B model (h2048-d42-n32). The 4.4B variants shows close
metrics to SDXL TD4-4 U-Net at 600K steps. However, further enlarging the model does not improve
the performance. The 7.6B model variant gets similar performance as the 4.4B version, and there is
still a gap with SDXL U-Net.
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Figure 4: Scaling LargeDiT variants from 1.7B to 7.6B.

3.4 SCALING U-VITS

Scaling the hidden dimension and layer depth We train scaled U-ViT variants to see whether we
can get better performance than U-Net. We start from the original 0.6B version (h1152-d28-n16)
and scale along both depth and width dimensions to get the 1.3B version (h1536-d42-n16). As
shown in Fig. 5, further increasing hidden dimension h to 2048 results in the 2.3B U-ViT model
(h2048-d42-n16), which shows significantly better performance than SD2 U-Net and matches SDXL
U-Net in both TIFA and ImageReward after 500K steps. To further scale the backbone, we increased
h to 2560 and d to 56 on top of the 2.3B model, resulted in the 3.1B and 3.7B model. However, we
did not observe significantly improved performance. Table. 1 shows detailed configurations. We can
see that the 2.3B U-ViT’s inference latency is 75% and 66% less than SDXL U-Net at 256 and 512
resolution respectively, though its thoretical GMACs is 3× more.

Comparison with PixArt-α and LargeDiT at Different Scales The major difference among
different DiT variants lie in the block design and the integration of text conditioning. Here we

1We find it occupies 4.4B in our setting, and aligns with LuminaT2X’s 5B setting.
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Table 1: Sampling space for scaling U-ViT and their inference cost at different resolutions. The
latency is end-to-end inference time (s) with DDIM 50 steps on H100 GPUs, the relative latency (%)
is compared with SDXL. All models use the same VAE, text encoder and patch size 2.

Model h d n Params (B) 256x256 512x512 1024x1024
TMACs Latency % TMACs Latency % TMACs Latency %

SD2 (Rombach et al., 2021) 0.9 0.09 1.81 0.34 1.35 3.31 0.60 1.35 3.22 0.53
SDXL-TD4-4 (Li et al., 2024a) 1.3 0.14 3.28 0.62 0.55 3.7 0.67 2.18 4.12 0.67
SDXL (Podell et al., 2023) 2.4 0.20 5.30 1.00 0.75 5.52 1.00 2.98 6.12 1.00
PixArt-α (Chen et al., 2024b) 1152 28 16 0.6 0.14 1.76 0.33 0.54 1.77 0.32 2.14 4.32 0.71
LargeDiT-5B (Gao et al., 2024) 3072 32 32 4.4 0.11 2.24 0.42 3.84 2.85 0.52 15.09 10.97 1.79
LargeDiT-7B (Gao et al., 2024) 4096 32 32 7.6 1.90 2.23 0.42 6.86 4.17 0.76 26.96 16.22 2.65
U-ViT-Large (Bao et al., 2023) 1024 20 16 0.3 0.10 0.68 0.13 0.31 0.76 0.14 1.19 2.26 0.37
U-ViT-Huge (Bao et al., 2023) 1152 28 16 0.5 0.17 0.99 0.19 0.55 1.02 0.18 2.08 4.17 0.68

Scaled U-ViTs

1536 42 16 1.30 0.44 1.25 0.24 1.45 1.35 0.24 5.50 6.76 1.10
2048 32 16 1.8 0.60 0.98 0.18 1.98 1.44 0.26 7.49 6.78 1.11
2048 42 16 2.3 0.78 1.31 0.25 2.58 1.85 0.34 9.77 8.60 1.41
2048 64 16 3.6 1.18 1.89 0.36 3.90 2.79 0.51 14.78 13.20 2.16
3072 32 32 4.0 1.35 1.11 0.21 4.45 2.72 0.49 16.86 15.40 2.52
3072 42 32 5.3 1.76 1.3 0.25 5.80 3.53 0.64 21.98 20.32 3.32
3072 48 32 6.0 2.00 1.49 0.28 6.61 4.01 0.73 25.00 22.80 3.73
3072 64 32 8.0 2.66 1.98 0.37 8.78 5.30 0.96 33.25 30.00 4.90
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Figure 5: Scaling U-ViT along hidden dimension h, depth d and combined dimensions on LensArt.

compare PixArt-α, LargeDiT and U-ViT in similar architecture settings. Specifically, we compare
them in the configurations of original DiT-XL (0.6B) and their scaled versions at the 2B level. Fig. 6
(a) shows that at small architecture scales (0.6B), the U-ViT model converges slower but still results
in competitive or better results at later stage. When the model scales both hidden dimension and depth
to parameter size at 2B level, the U-ViT model converges faster than LargeDiT and PixArt-α models.
We conjecture the difference lies in how the textual information is processed by the diffusion models.
For DiT models the textual condition is passed at all layers and is processed by a cross-attention
layer. However, for U-ViT, the textual information is only passed once in the first layer along with the
image patches, and is then processed by the transformer. We observe in Fig. 6 that for larger latent
dimension, the refinement of textual information by the U-ViT is essential for scaling as it enables
the model to outperform PixArt-α and LargeDiT. We will verify this conjecture in Sec 4.2.

100000 200000 300000 400000 500000 600000
Training Steps

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

TI
FA

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

PixArt- -h1152-d28 (0.61B)
LargeDiT-h1152-d28-n16 (0.72B)
UViT-h1152-d28-n16 (0.50B)

100000 200000 300000 400000 500000 600000
Training Steps

0.65

0.70

0.75

0.80

0.85

TI
FA

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

PixArt- -h2048-d42 (2.9B)
LargeDiT-2048-d42-n16 (2.9B)
U-ViT-h2048-d42-n16 (2.3B)

Figure 6: Comparing different DiT designs in similar architecture hyperparameters at different scales.
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4 ABLATING U-VITS

To understand why scaled U-ViT outperforms U-Net, PixArt-α and LargeDiT variants, we first
analyze the design of U-Net and U-ViT, and then ablate the effect of text encoder fine-tuning.

4.1 COMPARING U-NET AND U-VIT

The major difference between U-Net and U-ViT lies at that: 1) U-Net has down/up sampling layers,
the text embedding is sent to every spatial Transformer blocks; there are skip connections connecting
input and output blocks. 2) U-ViT has no down/up sampling layers. The condition tokens are
contacted with timestep embedding at the beginning of the input. Bao et al. (2023) show that the long
skip connection is crucial, while the downsampling and up-sampling operation in CNN-based U-Net
are not always necessary.
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Figure 7: (a) The effect of removing downsampling and using fixed channels in U-Net. (b) The effect
of skip connection in U-Net. (c) The effect of skip connection in U-ViT.

The Effect of Down/Up sampling in U-Net To make U-Net more like transformers, we remove the
down/up sampling layers in U-Net and fix the numer of channels per layer. As shown in Fig. 7(a), the
consistent channel size (320) without down/up sampling results in a much smaller model (162M) and
worse performance. Further increasing the initial channels (from 320 to 640) significantly improves
the performance, which indicates the importance of channel number (width) for U-Net.

Skip Connections in U-Net and U-ViT We ablate the effect of skip connections in a smaller version
of SDXL with 1.3B parameters (SDXL-TD4_4 (Li et al., 2024a)). As shown in Fig. 7(b), removing
residual connection has slower convergence than original U-Net, which implies the importance of
skip connection in U-Net. To ablate the effect of skip connections in U-ViT, we first train a small
U-ViT with depth 28 as PixArt-α with hidden dimension 1024. We also train the same U-ViT but
with the skip connection disabled. Fig. 7(c) verifies that the importance of skip connections in U-ViT.
Note that the in-context conditioning scheme in DiT (Peebles & Xie (2023)) is similar to the self-
attention in U-ViT. While Peebles & Xie (2023) show inferior performance of in-context conditioning
comparising with the cross-attention design, the success of U-ViT indicates the importance of skip
connection to make in-context conditioning working.

4.2 SELF-ATTENTION AS FINE-TUNING TEXT ENCODERS

In this section, we explore how fine-tuning text encoder impacts the performance for cross-attention
and self-attention based models. Currently all T2I models (Podell et al., 2023; Ramesh et al.,
2022; Saharia et al., 2022; Bao et al., 2023; Chen et al., 2024b) keep the text encoder frozen during
training. And cross-attention based backbones like UNet, PixArt-α and LargeDiT cross-attend the
text embeddings with the latent visual tokens, where the text tokens are fixed in each transformer
block. U-ViT concatenates the text tokens with image tokens and passes them through a sequence of
transformer blocks, where the text conditioning tokens are modified after each transformer block.
The transformer blocks in U-ViT can therefore be implicitly considered as part of text encoder which
is being fine-tuned.

We empirically test the hypothesis by training cross-attention based models and self-attention based
models on LensArt with frozen and non-frozen text encoder. We also ablate the effect of different
text encoders when fine-tuning is enabled. We train the denoising backbone using a learning rate
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Figure 8: (a) Comprising fine-tuning and freezing text encoder during training for cross-attention
based models including UNet, PixArt-α and LargeDiT. (b) Fine-tuning and freezing text encoder with
0.6B and 2.3B U-ViT. (c) Training the 0.6B U-ViT with fixed/trainable OpenCLIP-H and stronger
text-encoders including T5XL and T5XXL. Fine-tuning OpenCLIP-H achieves similar performance
as using fixed T5XXL.

of 8e-5, and fine-tune the text encoder with a lower learning rate of 8e-6 and weight decay of 1e-4
to prevent from overfitting and diverging too much from the original weights. Fig. 8(a) shows that
fine-tuning text encoder results in better performance for all cross-attention based models compared
to their frozen variants. For self-attention based U-ViT, we see in Fig. 8(b) that smaller U-ViT can
still benefit from fine-tuning the text encoder, while larger U-ViT with frozen text encoder performs
the same as fine-tuning the text encoder with a smaller U-ViT. Further fine-tuning the text encoder
with large U-ViT does not improve much for large U-ViT models. Fig. 8(c) shows that fine-tuning a
weak text encoder (OpenCLIP-H) can achieve similar performance with using a frozen stronger text
encoder (T5XXL).

5 SCALING THE NUMBER OF TOKENS

5.1 SCALING THE NUMBER OF TOKENS FOR HIGH-RESOLUTION TRAINING

With patch size 2, the number of latent image tokens is 1024 for generating 5122 images, and it
increases to 4096 for 10242 images. As shown in Table 1, the 2.3B U-ViT 1K model having 3.2×
more theoretical computation cost than SDXL U-Net but only yields 41% higher end-to-end latency.
We find it is critical to adjust the noise scheduling for the 1K resolution training of U-ViT. Using the
same noise scheduling as 256 and 512 resolution training leads to background and concept forgetting
as well as color issues. This aligns with previous findings on training high-resolution diffusion models
(Chen, 2023; Hoogeboom et al., 2023; Esser et al., 2024b). We show examples of high-resolution
images in different aspect ratios generated by the 2.3B U-ViT 1K model in Fig 1.

5.2 SCALING CONDITION TOKENS FOR IMAGE EDITING

In image generation, conditioning can be applied using both global (e.g., text embeddings, CLIP
image embeddings) and local factors (e.g., edge maps, masks). Recent works (Zhao et al., 2024;
Ye et al., 2023) have trained models that handle multiple conditions simultaneously; however, these
models differentiate between global and local conditions in their handling. Global conditions are
typically cross-attended by the noise latents, while local conditions are concatenated with them. This
distinction is often a result of the limitations imposed by widely used diffusion backbones like UNet
and DiTs. In this section, we show that we can adapt U-ViT to any new condition by just scaling up
the tokens - we tokenize the condition and concatenate it with noise and text tokens, without having
to incorporate any specialized logic to handle different types of conditions. In contrast to methods
that concatenate the condition with noise latents along the channel dimension, our approach does
not require the local condition to have the same resolution as the noise latents. We use 2.3B U-ViT
pretrained on 1K resolution data for all experiments in this section.

Image Inpainting via Scaling Condition Tokens: In text-conditioned image generation, U-ViT
concatenates noise latents and text embeddings along the token dimension, enabling self-attention.
For adapting U-ViT to the inpainting task, there are two approaches, as shown in Fig 9. The model
is trained in the standard manner, optimizing the L2 loss. We use the same datasets as those for
text-to-image training, generating masks randomly. We train inpainting models using both methods
and evaluate them on ImageReward (for image fidelity) and a modified version of TIFA metric (for
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U-ViT

(b) Token concatenation(a) Channel concatenation

C Xtt X

U-ViT

C

couple horses 
standing in a grassy 

field

couple horses 
standing in a grassy 

field

Figure 9: Channel and token concatenation for extending U-ViT to image inpainting. (a) Concatenat-
ing the condition image with the noise image along the channel dimension and then tokenizing. This
approach maintains the same number of tokens as in T2I generation but requires special handling
of the new condition. (b) Tokenizing the new condition (input image + mask), adding positional
embedding to it, and concatenating text embeddings along the token dimension.

Masked Image Prompt Token concat  
output

Channel concat  
output

Canny map Token concat 
 output

Prompt

A smoothie with 
fruits and nuts 
on the table

Two cats playing 
with each other 
on the ground

A woman 
walking on the 
beach holding a 
fan

a) Image Inpainting b) Canny Map Conditioning

Two parrots 
sitting on a 
metal stand with 
food

A small house 
on a small island 
in the middle of 
a lake

A living room 
with blue walls 
and a large 
painting

Figure 10: a) Comparison of token and channel concatenation approaches for image inpainting on
top of 2.3B 1K resolution pretrained U-ViT: The token concatenation approach demonstrates superior
prompt adherence and produces outputs that blend more seamlessly with the surrounding image
compared to the channel concatenation method. In row 1, channel concatenation generates more
smoothies than the prompt requests. In row 2, channel concatenation does not generate the second
cat. In row 3, channel concatenation generates a cluttered output. b) Canny conditioning using token
concatenation on top of 2.3B 1K resolution pretrained U-ViT: Qualitative samples showing that the
token concatenation approach can handle different types of conditions like canny map.

image-text alignment) which we call TIFA-COCO 2. The token concatenation method achieves a
TIFA-COCO score of 0.887 and an ImageReward of 1.30, outperforming the channel concatenation
approach, which achieves a TIFA-COCO score of 0.881 and an ImageReward of 1.24. Token
concat scheme allows more fine-grained relationship to be established between noise latent and
image condition across transformer blocks through self-attention, ensuring that the network does not
lose access to the condition like in channel concat approach. We quantitatively compare our token
concatenation approach with current state-of-the-art inpainting method BrushNet (Ju et al., 2024) in
Appendix C and find that our approach outperforms BrushNet on TIFA-COCO metric as well as on
multiple metrics in BrushBench benchmark (Ju et al., 2024). We show some qualitative outputs on
BrushBench dataset in Fig 10 (a).

Canny Conditioning via Scaling Condition Tokens: Although Fig 9 illustrates the token and
channel concatenation schemes for inpainting, this approach is generalizable to various conditions,
such as canny edge maps or segmentation maps. For instance, given a canny edge map, we can
adapt U-ViT to condition on it by tokenizing the map, concatenating it with noise and text tokens,
and training the model using the standard L2 loss. Unlike methods like ControlNet (Zhang et al.,
2023), which require specialized adaptors for processing different conditions, our approach allows for

2The TIFA and ImageReward scores here are different from the base model. Details in the Appendix C.
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conditioning on diverse inputs in a uniform manner. To fine-tune U-ViT efficiently, parameter-efficient
fine-tuning (PEFT) methods like LoRA (Hu et al., 2021) can be employed. However, as PEFT is
not the focus of our work, we do not explore it further here. We show some qualitative results on
canny conditioning using token concatenation in Fig 10 (b). We observe that our proposed approach
outperforms Canny ControlNet trained on SD3-Medium (Esser et al., 2024a) on TIFA-COCO and all
metrics in BrushBench. We provide this comparison in Appendix C.

6 DATA SCALING

6.1 CAPTION SCALING: ORIGINAL CAPTION VS. LONG CAPTION

Generating Long Synthetic Captions LensArt is curated from web images with alt-text as captions.
Thus, the original captions are short, noisy, and often not well-aligned with the image. Inspired
by recent works (Chen et al., 2024b; Betker et al., 2023), we use multi-modal LLM to generate
long synthetic captions. Concretely, following (Chen et al., 2024b), we use Describe this image
and its style in a very detailed manner as the prompt to generate long synthetic image captions.
Different from (Chen et al., 2024b), we use LLaVA-v1.6-Mistral-7B (Liu et al., 2024b;a; Jiang et al.,
2023) to generate long captions on LensArt due to its better long captioning performance and lower
hallucination compared to other LLaVA variants as benchmarked in THRONE (Kaul et al., 2024),
a recent long image caption and hallucination benchmark. We plot the histogram of caption length
of original caption and long synthetic caption in Fig. 11, which shows that long synthetic captions
contains much more number of tokens compared to original captions.

Training with Long Captions Scales Better To study the scaling from short to long captions,
we train 0.6B U-ViT on three different datasets: (1) LensArt, which uses original captions and (2)
LensArt-Long, which samples original and long captions with equal probability. (3) SSTK with
original captions. The results in Fig. 12 show that LensArt augmented with long captions provides
better results than using original captions as well as SSTK dataset, demonstrating that T2I models
scale better with long captions.
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Figure 11: The distribution of caption length
(number of tokens) of LensArt original caption,
LensArt long caption, and SSTK caption.
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Figure 12: TIFA convergence for models trained
on LensArt original captions, LensArt long cap-
tions, and SSTK captions.

6.2 DATA SIZE SCALING

To study the effect of scaling up training data size, we add SSTK upon LensArt as the training data.
As a result, the training data size is scaled from 250M (LensArt only) to 600M (LensArt+SSTK).
Note that we do not use long captions for studying data size scaling. In Fig. 13, we show that
the performance in TIFA and Image Reward can be improved as long as the data size is scaled up
regardless of the choice of architecture. While previously we show that long captions improve the
T2I performance in Sec. 6.1, we find that the distribution of caption length between LensArt and
SSTK are very close as shown in Fig. 11. Thus, we conclude that the performance improvement
mainly originates from data size scaling.

U-ViT scales better than UNet with larger data size Here we compare the data scalability of
U-ViT against SDXL. We scale up data size from LensArt (250M) to LensArt + SSTK (600M). The
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Figure 13: The scalability of U-ViT and SD models trained with larger datasets. Solid lines are on
LensArt and dashed lines are on the combination of LensArt and SSTK dataset.
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Figure 14: Percentage of captions with matched TIFA element phrases in each TIFA element type.
Both LensArt long caption and SSTK caption have higher percentage than LensArt original caption,
indicating both of them improve information density compared to LensArt original caption.

results are shown in Fig. 13. While U-ViT performs similar to SDXL on LensArt, U-ViT achieves
much larger relative performance gain from LensArt to LensArt+SSTK compared to SDXL. From
another perspective, larger scale of data helps U-ViT scale faster compared to SDXL—while U-ViT
does not match performance of SDXL until 400K or 500K training steps (c.f. red solid line vs. green
solid line in Fig. 13), U-ViT start to surpasses SDXL in 150K steps when data size is scaled up.
Overall, the results demonstrate that U-ViT scales better than UNet with larger training data size.

6.3 LONG CAPTION AND DATA SCALING INCREASES INFORMATION DENSITY

Since both scaling up long caption and data size can improve text-image alignment, we aspire to
unertand the common factor contributing to the improvement. We hypothesize that both LensArt-long
and SSTK captions provide more information that can be measured by TIFA. TIFA leverages VQA
to answer questions on generated images and measures answer accuracy. Specifically, given an image
caption, several pairs of question and answers are generated. Each question corresponds to one
element in the caption. Each element belongs to a type (e.g., surfer belongs to the animal/human
element type). TIFA comprehensively evaluates the following element types: animal/human, object,
location, activity, color, spatial, attribute, food, counting, material, shape, other. Based on element
phrases (note that each element can contain more than one English word) in TIFA, we do phrase
matching for (1) LensArt original caption, (2) LensArt long caption, and (3) SSTK captions. In
Fig. 14, we show the percentage of captions with matched element phrases in each element type.
The results show that both LensArt long captions and SSTK have higher percentage of captions with
matched TIFA element phrases compared to LensArt caption in almost all TIFA element types, which
explains the relative performance difference in Fig. 12. Thus, we conclude that captions with higher
information density (i.e., not necessarily long caption length) is key to improve text-image alignment.

7 CONCLUSION

We performed large-scale ablation of DiT variants and showed the potential scaling ability of different
backbone designs. We observe that the architecture like U-ViT that self attends on both condition
tokens and image tokens scales more effectively than the cross-attention based DiT variants as
measured by TIFA and ImageReward. The design of U-ViT that self attains on all tokens allows
straightforward extension for image editing by just expanding condition tokens. It also allows for
naive extension to other modality generation, such as text-to-video generation.
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A DATASET DETAILS

We use two proprietary datasets named LensArt and SSTK (Li et al., 2024a). LensArt consists of
250 million image-text pairs, carefully selected from an initial pool of 1 billion noisy web image-text
pairs. SSTK contains approximately 350 million cleaned data points. To ensure high quality and
reduce bias and toxicity, we have applied a series of automatic filters to the sources of both datasets.
These filters include, but are not limited to, the removal of NSFW content, low aesthetic images,
duplicate images, and small images. In addition, to generate dense captions for ablation experiments,
we used LLaVA-v1.6-Mistral-7B (Liu et al., 2024b;a; Jiang et al., 2023).

B MORE ABLATIONS ON PIXART-α

The Effect of pretrained weights as initialization We compare the initialization strategy by train-
ing the original PixArt-α with T5-XXL (Chung et al., 2022) on LensArt with different initializations:
(1) train from scratch and (2) initialize from PixArt-256 checkpoints. Better initialization indeed helps.
We see more structural output after 10K steps with the PixArt-α-256 checkpoint as initialization
in comparison with training from scratch. Initializing with pre-trained PixArt-256 checkpoint has
0.82 TIFA score and 0.49 ImageReward average score at the beginning. However, the scores do not
improve much during training, which implies its upper limit to be close to 0.82 for TIFA.
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Figure 15: TIFA and ImageReward metrics of models with different initialization weights.

The role of text encoders We compared the impact of T5XXL and OpenCLIP-H on the convergence
speed in Fig. 16. We find T5XXL (4096 token dim) takes longer time to train in comparison with
OpenCLIP-H (1024 token dim), which implies longer token dimension needs more iterations to learn.

Figure 16: TIFA and ImageReward metrics of models with different text encoders.

C QUANTITATIVE EVALUATION OF IMAGE INPAINTING AND CANNY EDGE
CONDITIONING MODELS

We compare our image inpainting and canny edge conditioned models, trained using token concate-
nation on top of 2.3B 1K resolution U-ViT model, with BrushNet (Ju et al., 2024) and SD3-Medium-
Canny-ControlNet (Esser et al., 2024a) respectively.

C.1 BENCHMARKS

We outline the evaluation benchmarks used to assess the performance of our image inpainting and
canny edge conditioning models.

TIFA TIFA benchmark has a set of prompts, and a set of question-answer pairs associated with
each prompt. Given a prompt, the generated image is processed by a VQA model and the answers
generated by it are matched against GT answers to assign a score. The scores for 4,081 prompts are
averaged to obtain the final score.

• TIFA for image inpainting: Unlike text-to-image (T2I), the image inpainting task requires
a ground truth image, a mask, and a text prompt as input. Out of the 4,081 text prompts in
TIFA benchmark, 2000 are taken from the MSCOCO dataset (Lin et al., 2014), and have
a corresponding image and bounding boxes associated with it. We evaluate the inpainting
model on this subset of TIFA benchmark. We will refer to this modified metric as TIFA-
COCO. For each prompt, we select the bounding box with largest area and convert it to a
mask. Given this input, image inpainting model generates an output which is processed
by the VQA to get a TIFA score. An inpainting model that can keep the unmasked details
preserved while generating the masked details reliably will have a higher TIFA score, since
the images generated by it will answer most questions correctly. From our findings, we
observe that TIFA is a good metric for text-image alignment for image inpainting.
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• TIFA for canny edge conditioned generation: Similar to inpainting, we evaluate canny
edge conditioned model on the 2000 MSCOCO images part of the TIFA benchmark. We
extract the edges from these images, and generate outputs, which are then processed by
VQA to get a TIFA score. We will refer to this modified metric as TIFA-COCO.

BrushBench BrushBench has 600 images with corresponding inside-inpainting and outside-
inpainting masks. The authors of BreshBench propose evaluating image inpainting on following
metrics:

• Image Generation Quality: ImageReward (IR) (Xu et al., 2023), HPS v2 (HPS) (Wu
et al., 2023), and Aesthetic Score (AS) (Schuhmann et al., 2022) as they align with human
perception.

• Masked Region Preservation: Peak Signal-to-Noise Ratio (PSNR) (contributors, 2024),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and Mean Squared
Error (MSE) (Wikipedia contributors, 2024) in the unmasked region among the generated
image and the original image.

• Text Alignment: CLIP Similarity (CLIP Sim) (Wu et al., 2021) to evaluate text-image
consistency between the generated images and corresponding text prompts.

C.2 TOKEN CONCATENATION INPAINTING VS BRUSHNET

We compare our 2.3B U-ViT token concatenation inpainting approach with BrushNet in Tables 2
and 3. Our approach outperforms BrushNet on all metrics except Aesthetic Score, where we achieve
comparable performance.

Model Image generation quality Masked Region Preservation Text Alignment

IR x 10↑ HPSv2 x 100↑ AS↑ PSNR↑ LPIPS x 1000↓ MSE x 1000↓ CLIP Sim↑ TIFA-COCO↑

Ours 12.82 27.83 6.47 32.13 0.72 18.21 26.50 89.8
BrushNet 12.64 27.78 6.51 31.94 0.80 18.67 26.39 88.5

Table 2: Performance comparison of models across various metrics on inside-inpainting masks. ↑
indicates higher is better, and ↓ indicates lower is better.

Model Image generation quality Masked Region Preservation Text Alignment

IR x 10↑ HPSv2 x 100↑ AS↑ PSNR↑ LPIPS x 1000↓ MSE x 1000↓ CLIP Sim↑

Ours 11.01 29.75 6.55 29.20 2.13 4.40 27.30
BrushNet 10.88 28.09 6.64 27.82 2.25 4.63 27.22

Table 3: Performance comparison of models across various metrics on outside-inpainting masks. ↑
indicates higher is better, and ↓ indicates lower is better.

C.3 TOKEN CONCATENATION CANNY EDGE CONDITIONING VS SD3-MEDIUM CANNY
CONTROLNET

We compare our 2.3B U-ViT token concatenation canny edge conditioned generation approach with
SD3-Medium-Canny-ControlNet on BrushBench evaluation set in Table 4 and on TIFA-COCO
evaluation set in Table 5. Our approach outperforms SD3-Medium-Canny-ControlNet on all metrics.

Model Image generation quality Text Alignment

IR x 10↑ HPSv2 x 100↑ AS↑ CLIP Sim↑

Ours 14.8 29.93 6.45 27.69
SD3-Medium-ControlNet 14.2 28.88 6.22 27.61

Table 4: Performance comparison of models across various metrics on BrushBench evaluation set.
Higher values (↑) indicate better performance.
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Model FID↓ TIFA-COCO↑

Ours 5.78 91.9
SD3-Medium-ControlNet 5.95 91.1

Table 5: Performance comparison of models across various metrics on TIFA-COCO evaluation set.
Lower FID (↓) and higher TIFA-COCO (↑) values indicate better performance.

D MORE EVALUATION METRICS

We use two prompt sets for evaluation of text image alignment and image quality: 1) 4081 prompts
from TIFA (Hu et al., 2023) benchmark. The benchmark contains questions about 4,550 distinct
elements in 12 categories, including object, animal/human, attribute, activity, spatial, location, color,
counting, food, material, shape, and other. 2) randomly sampled 10K prompts from MSCOCO (Lin
et al., 2014) 2014 validation set, we name it MSCOCO-10K.

In addition to TIFA and ImageReward, we also provide the FID score, which measures the fidelity or
similarity of the generated images to the groundtruth images. The score is calculated based on the
MSCOCO-10K prompts and their corresponding images.

Fig 17, Fig 18, Fig 19 and Fig 20 are updated Figures for Fig 3, Fig 4, Fig 5 and Fig 6 with addition
of FID scores.
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Figure 17: Scaling PixArt-α on the depth and width dimensions in terms of TIFA, ImageReward and
FID. The first row is scaling along
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Figure 18: Scaling LargeDiT variants from 1.7B to 8B and their performance in TIFA, ImageReward
and FID.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

100000 200000 300000 400000 500000 600000
Training Steps

0.60

0.65

0.70

0.75

0.80

0.85

TI
FA

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

SD2-UNet (0.87B)
SDXL-UNet-TD4_4 (1.3B)
SDXL-UNet (2.4B)
U-ViT-h1152-d28-n16 (0.6B)
U-ViT-h1536-d42-n16 (1.3B)
U-ViT-h2048-d42-n16 (2.3B)
U-ViT-h2048-d56-n16 (3.1B)
U-ViT-h2560-d42-n16 (3.7B)

100000 200000 300000 400000 500000 600000
Training Steps

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Im
ag

e 
Re

wa
rd

 A
vg

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

SD2-UNet (0.87B)
SDXL-UNet-TD4_4 (1.3B)
SDXL-UNet (2.4B)
UViT-h1152-d28-n16 (0.6B)
U-ViT-h1536-d42-n16 (1.3B)
U-ViT-h2048-d42-n16 (2.3B)
U-ViT-h2048-d56-n16 (3.1B)
U-ViT-h2560-d42-n16 (3.7B)

100000 200000 300000 400000 500000 600000
Training Steps

18

20

22

24

26

28

30

32

M
SC

OC
O-

10
K 

FI
D

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048
SD2-UNet (0.87B)
SDXL-UNet-TD4_4 (1.3B)
SDXL-UNet (2.4B)
LargeDiT-h1152-d28-n16 (0.7B)
LargeDiT-h1536-d42-n32 (1.7B)
LargeDiT-h2048-d32-n32 (2.3B)
LargeDiT-h2048-d42-n16 (2.9B)
LargeDiT-h2048-d42-n32 (2.9B)
LargeDiT-h3072-d32-n32 (4.4B)
LargeDiT-h4096-d32-n32 (7.6B)

Figure 19: Scaling U-ViT along width h, depth d and combined dimensions in terms of TIFA,
ImageReward and FID.

100000 200000 300000 400000 500000 600000
Training Steps

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

TI
FA

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

PixArt- -h1152-d28 (0.61B)
LargeDiT-h1152-d28-n16 (0.72B)
UViT-h1152-d28-n16 (0.50B)

100000 200000 300000 400000 500000 600000
Training Steps

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Im
ag

e 
Re

wa
rd

 A
vg

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

PixArt- -h1152-d28 (0.61B)
LargeDiT-h1152-d28-n16 (0.72B)
UViT-h1152-d28-n16 (0.50B)

100000 200000 300000 400000 500000 600000
Training Steps

20

22

24

26

28

30

32

34

M
SC

OC
O-

10
K 

FI
D

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048
PixArt- -h1152-d28 (0.61B)
LargeDiT-h1152-d28-n16 (0.72B)
UViT-h1152-d28-n16 (0.50B)

100000 200000 300000 400000 500000 600000
Training Steps

0.65

0.70

0.75

0.80

0.85

TI
FA

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

PixArt- -h2048-d42 (2.9B)
LargeDiT-2048-d42-n16 (2.9B)
U-ViT-h2048-d42-n16 (2.3B)

100000 200000 300000 400000 500000 600000
Training Steps

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Im
ag

e 
Re

wa
rd

 A
vg

 S
co

re

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048

PixArt- -h2048-d42 (2.9B)
LargeDiT-2048-d42-n16 (2.9B)
U-ViT-h2048-d42-n16 (2.3B)

100000 200000 300000 400000 500000 600000
Training Steps

22

24

26

28

30

M
SC

OC
O-

10
K 

FI
D

LensArt, 256, SDXL-AE, CFG 7.5, BS=2048
PixArt- -h2048-d42 (2.9B)
LargeDiT-2048-d42-n16 (2.9B)
U-ViT-h2048-d42-n16 (2.3B)

Figure 20: Comparing different DiT designs in similar architecture hyperparameters at different
scales in terms of TIFA, ImageReward and FID.
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