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a b s t r a c t

We consider the multivariate independence testing problem between pairs of random
vectors for high-dimensional data and develop three high-dimensional nonparametric
independence tests based on spatial sign and spatial rank, which have greater power
than many existing popular tests, especially for heavy-tailed distributions. Under the
elliptically symmetric distributions, which are much more general than the widely
studied multivariate normal distributions, we establish asymptotic properties of the
proposed tests and demonstrate their power superiority via frequently used numerical
experiments. To explore the correlation between different financial markets, we first
apply the proposed methods to test the dependence between the return rate data of
the stocks from US S&P500 index and China CSI300 index, and then apply them to test
the dependence between the return rate data of the stocks from the Shanghai Stock
Exchange and the Shenzhen Stock Exchange in China.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

With the deepening of economic globalization and financial integration, the fluctuation of one country’s financial
market is usually not only affected by internal factors, but also by the fluctuation of other countries’ financial markets.
Hence, more and more attention has been paid to the relationships between major international financial markets [7,12],
in order to identify linkages between them and to construct a reasonable portfolio for global investment [18]. A test
of independence between the return rate vectors of the assets from two financial markets can help investigate their
relationship, which can be considered as the basis of follow-up analysis.

In multivariate data analysis, it is important to determine whether two sets of variables are related [16]. Let (X,Y) be
a random sample of size n from a (p + q)-variable distribution, where X = (X1, . . . ,Xn)⊤ with X i ∈ Rp is an n × p data
matrix of the return rates of p assets from one financial market and Y = (Y 1, . . . ,Y n)⊤ with Y j ∈ Rq is an n × q data
matrix of the return rates of q assets from another financial market. We consider the null hypothesis of the independence
of the X- and Y -variables, written as

H0 : X and Y are independently distributed. (1)

The classical parametric test for (1) is the likelihood ratio test based on the multivariate normal model [26], whose
statistic is W = |A|/(|AXX ||AYY |), where AXX , AYY are the sample covariance matrices of X , Y respectively, and A is the
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sample covariance matrix of (X⊤,Y⊤)⊤. It is optimal under the multivariate normal model when the dimensions p, q are
fixed and smaller than the sample size n. However, it fails in the high-dimensional situation when p, q are larger than n.

In recent years, researchers have paid more and more attention to the independence test of high-dimensional data.
For example, Srivastava and Reid [20] proposed a test based on the Frobenius norm of sample covariance and correlation
matrices between X and Y . Jiang et al. [10] proposed the corrected likelihood ratio test and large-dimensional trace
criterion to test the independence of two large sets of multivariate variables. Yang and Pan [27] extended the classic
canonical correlation analysis to high-dimensional cases. Yata and Aoshima [28] modified Srivastava and Reid [20]’s test
by using the extended cross-data-matrix methodology. In addition, Bodnar et al. [2] proposed alternative tests that are
motivated from a classical multivariate analysis of variance and were defined as linear spectral statistics of a Fisher matrix.
Despite the progress in this pursuit, there are many problems, one of which is that these tests are normal or similar-to-
normal theory methods. Thus, they may fail to deal with data from heavy-tailed distributions, such as the multivariate
t-distribution and the mixture of multivariate normal distribution.

To find robust and efficient alternatives to the multivariate normal theory methods, a large number of nonparametric
methods, including multivariate sign or rank-based methods, are being developed. For example, Chen and Qin [3] proposed
a two-sample test for the means of high-dimensional data, as the data dimension is much larger than the sample size,
which does not require explicit conditions on the relationship between the data dimension and sample size. Li et al.
[14] proposed two tests for the equality of covariance matrices between two high-dimensional populations, which do
not require parametric distribution assumptions for the two populations. Wang et al. [25] proposed a high-dimensional
nonparametric test for the population mean vector for a general class of multivariate distributions for non-normal high-
dimensional multivariate data. Leung and Drton [13] considered the problem of testing mutual independence between
variables and presented some rank-based tests, constructed as sums or sums of squares of pairwise rank correlations,
which have power advantages in the case of non-normal distributions even when the data dimension is larger than
the available sample size. Guo and Chen [6] considered testing regression coefficients in high-dimensional generalized
linear models and proposed a test applicable for diverging dimensions, which is robust enough to accommodate a wide
range of link functions. Feng et al. [5] concerned tests for the two-sample location problem when the data dimension
is larger than the sample size, which is scalar-invariant and useful when different components have different scales in
high-dimensional data. Zou et al. [29] concerned sign-based tests for sphericity in cases in which the data dimension is
larger than the sample size, which is robust with respect to high dimensionality. Feng and Liu [4] proposed two rank-based
tests inspired by Spearman’s rho and Kendall’s tau for testing sphericity in case of high-dimensional data.

For tests of independence between two multivariate random vectors, Taskinen et al. [22] proposed an affine invariant
extension of the quadrant test statistics based on spatial signs. Taskinen et al. [23] proposed multivariate extensions
of Kendall’s tau and Spearman’s rho statistics. These statistics performed very well in low-dimensional cases, but are
not available in high-dimensional cases, since the sample spatial sign or rank covariance matrices to be inverted in
the construction of the statistics are singular. To solve the high-dimensional problem, Paindaveine and Verdebout [17]
proposed a high-dimensional sign test for some very special distribution types. To make this more general, in this paper,
we propose a more extensive high-dimensional multivariate sign test for independence between two random vectors. In
addition, we propose two high-dimensional multivariate rank-based tests for independence between two random vectors.
The main difference between the proposed rank-based tests and those in [13] is that we test independence between
two groups of variables, while Leung and Drton [13] tested mutual independence between all the involved variables.
The common feature of all these rank-based tests is the advantage of power in non-normal situations. The theoretical
contribution of this paper is its establishment of asymptotic theories of the three proposed nonparametric tests under
the family of elliptically symmetric distributions, which is a very large distribution family, including a large number of
well-known heavy tailed distributions, such as t distribution, mixed normal distribution, and power law distribution. We
construct the corresponding testing procedures based on asymptotic theories such as these and demonstrate the power
gain of the proposed testing procedures in comparison with existing tests through numerical results as well as two real
data analyses. In particular, the power gain is especially clear in high-dimensional and heavy-tailed situations.

The remainder of the paper is organized as follows. In Sections 2 and 3, we propose a spatial sign test and two spatial
rank tests for the high-dimensional independence testing problem and establish their asymptotic properties, respectively.
The simulation performance of the three proposed tests are demonstrated in Section 4, followed by the two empirical
applications of the proposed methods in correlation analysis between different financial markets in Section 5. Finally, we
conclude the paper with some discussions in Section 6 and relegate the technical proofs to Appendix.

2. High-dimensional multivariate sign test

Let X1, . . . ,Xn be a sequence of independent and identically distributed (iid) observations of a p-dimensional vector
X with an elliptically symmetric density

det(ΩX )−1/2gX {∥Ω
−1/2
X (x − θX )∥}, (2)

where ∥z∥ = (z⊤z)1/2 denotes the Euclidean length of a vector z, θX is the center of symmetry, andΩX is a positive definite
symmetric p × p scatter matrix. Similarly, let Y 1, . . . ,Y n be a sequence of independent and identically distributed (iid)
observations of a q-dimensional vector Y with an elliptically symmetric density

det(ΩY )−1/2gY {∥Ω
−1/2
Y (y − θY )∥}, (3)
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where θY is the center of symmetry and ΩY is a positive definite symmetric q × q scatter matrix. Note that elliptically
symmetric distributions are second-order distributions with probability densities whose contours of equal height are
ellipses. This class is very general and includes the multivariate normal and sine-wave distributions and others that can
be generated from certain first-order distributions. The spatial sign function is defined as U(z) = ∥z∥−1zI(z ̸= 0). Let
εX
i

.
= Ω

−1/2
X (X i − θX ) for each i ∈ {1, . . . , n}, where ‘‘ .=’’ denotes ‘‘is defined as’’. Then, (1) the modulus ∥εX

i ∥ and the
direction uX

i
.
= U(εX

i ) are independent; (2) the direction vector uX
i is uniformly distributed on the p-dimensional unit

sphere; (3) E(uX
i ) = 0 and cov(uX

i ) = p−1Ip, where Ip denotes the p×p identity matrix. Similar conclusions can be derived
for εY

i
.
= Ω

−1/2
Y (Y i − θY ) and uY

i
.
= U(εY

i ).
In a traditional fixed-dimension case, to test the independence between two random vectors, the so-called ‘‘inner

centering and inner standardization’’ sign-based statistics as follows is commonly used (see Section 10.3 of [16]): QS =

npqtr(Ã⊤Ã), where Ã = n−1∑n
i=1 Ũ

X
i (Ũ

Y
i )

⊤, ŨX
i = U(S−1/2

X (X i − θ̃X )), ŨY
i = U(S−1/2

Y (Y i − θ̃Y )) and tr(·) denotes the trace
function of a matrix. Here θ̃X and SX are the HRE’s of the location vector and the scatter matrix for X [9], which satisfy
the following conditions:

∑n
i=1 Ũ

X
i = 0 and pn−1∑n

i=1 Ũ
X
i (Ũ

X
i )

⊤
= Ip. Similarly, the HRE’s θ̃Y and SY for Y can be

obtained. As mentioned in [22], under H0, QS
d

→ χ2
pq. However, in case of p, q > n, QS fails because SX and SY are singular,

which cannot be inverted in the construction of QS. A common strategy used to resolve this problem is to replace the
scatter matrices SX and SY in QS with Ip and Iq, respectively. Moreover, as SX is not available, θ̃X is correspondingly not
available; hence, we replace θ̃X with a rotation equivariant spatial median θ̂X inspired by Möttönen and Oja [15], which
is a minimizer of the criterion function of L(θ) =

∑n
i=1 ∥X i − θ∥. Similarly, we replace θ̃Y with θ̂Y .

Based on the above replacement, we rewrite QS as follows Q ′

S = npqtr(Â⊤Â) = 2pqn−1∑
1≤i<j≤n(Û

X
i )

⊤ÛX
j (Û

Y
i )

⊤ÛY
j +pq,

where Â = n−1∑n
i=1 Û

X
i (Û

Y
i )

⊤, ÛX
i = U(X i − θ̂X ), ÛY

i = U(Y i − θ̂Y ). We can see that
∑

1≤i<j≤n(Û
X
i )

⊤ÛX
j (Û

Y
i )

⊤ÛY
j

is the leading role of Q ′

S. Because var(ÛX
i ) ̸= Ip/p and var(ÛY

i ) ̸= Iq/q, we consider using the standardization of∑
1≤i<j≤n(Û

X
i )

⊤ÛX
j (Û

Y
i )

⊤ÛY
j and hence propose the following high-dimensional multivariate sign test (abbreviated as HS)

for testing independence between vectors X and Y :

THS =
n
∑

1≤i<j≤n(Û
X
i )

⊤ÛX
j (Û

Y
i )

⊤ÛY
j√

2
∑

1≤i<j≤n((Û
X
i )⊤Û

X
j )2

∑
1≤i<j≤n((Û

Y
i )⊤Û

Y
j )2

. (4)

Let ΣX = var(X) = p−1E(∥εX
i ∥

2)ΩX , ΣY = var(Y ) = q−1E(∥εY
i ∥

2)ΩY , for any i ∈ {1, . . . , n}. Let λmax(·) denote the
largest eigenvalue of a matrix. In deriving the asymptotic properties of THS, we impose the following two commonly used
conditions, which were previously used by [25].

(C1) tr(Σ 4
X )tr(Σ

4
Y ) = o(tr2(Σ 2

X )tr
2(Σ 2

Y )) as max{p, q} → ∞;
(C2) If p → ∞, then tr4(ΣX )

tr2(Σ2
X )

exp
{
−

tr2(ΣX )
128pλ2max(ΣX )

}
= o(1); and if q → ∞, then tr4(ΣY )

tr2(Σ2
Y )

exp
{
−

tr2(ΣY )
128qλ2max(ΣY )

}
= o(1).

As mentioned by [25], these two conditions are quite relaxed. In particular, condition (C1) holds trivially if all
eigenvalues of ΣX and ΣY are bounded away from 0 and ∞. In fact, the bounded eigenvalues assumption is commonly
adopted in the literature of estimating high-dimensional covariance matrices (see [1]). It has also been shown that
condition (C1) holds under some general conditions if some of the eigenvalues are unbounded (see [3]).

Condition (C2) was first imposed by [25], which also holds if all eigenvalues of ΣX and ΣY are bounded away from 0
and ∞. This permits the eigenvalues to be unbounded, as the exponential term is expected to converge to zero quickly
if tr(ΣX )/{

√
pλmax(ΣX )} and tr(ΣY )/{

√
qλmax(ΣY )} diverge to ∞. In particular, as mentioned in [25], if p → ∞, let

λ1 ≤ λ2 ≤ · · · ≤ λp be ordered eigenvalues of ΣX . Assume that as p → ∞, k1 eigenvalues converge to 0; k2 eigenvalues
diverge to ∞, and p − k1 − k2 eigenvalues remain bounded with lower bound c1 > 0 and upper bound c2 < ∞. Then,

tr(ΣX )
√
pλmax(ΣX )

≥
k1λ1 + c1 (p − k1 − k2) + k2λp−k2+1

√
pλp

,
tr2(ΣX )
tr
(
Σ 2

X
) ≤

k22λ
2
p + (p − k2)2 c22 + 2k2 (p − k2) c2λp

k1λ2
1 + (p − k1) c21

.

Assume λ1 = p−b1 and λp = pb2 for b1 > 0, b2 > 0. If k1 and k2 are bounded, then

tr4(ΣX )
tr2(Σ 2

X )
exp

{
−

tr2(ΣX )
128pλ2

max(ΣX )

}
= o(1)

in condition (C2) is satisfied if b2 < 1
2 .

Now, under the above two conditions, we present the asymptotic normality of THS in (4) under H0 in (1).

Theorem 1. Under conditions (C1), (C2) and H0 in (1), if (p, q) = O(n2), THS
d

→ N (0, 1), where THs is given in (4).

To illustrate and compare the efficiencies of different test statistics for independence, we derive the limiting distribu-
tion of the test statistic under specific contiguous alternative sequences (see Section 10.4 in [16]). Let(

X i − θX
Y i − θY

)
=

(
Ip M1
M2 Iq

)(
X∗

i − θX∗

Y ∗

i − θY∗

)
,
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where M1 ∈ Rp×q, M2 ∈ Rq×p, X∗

i and Y ∗

i are independent, with density functions (2) and (3), respectively. Define

A∗

X =E(U(X∗

i − θX∗ )U(X∗

i − θX∗ )⊤), A∗

Y = E(U(Y ∗

i − θY∗ )U(Y ∗

i − θY∗ )⊤), (5)

Λ =E((rX
∗

i )−1rY
∗

i )M1A∗

Y + E((rY
∗

i )−1rX
∗

i )A∗

XM
⊤

2 , (6)

where rX
∗

i = ∥X∗

i − θX∗∥, rY
∗

i = ∥Y ∗

i − θY∗∥. Define the covariance matrix of X∗

i and Y ∗

i as Σ ∗

X and Σ ∗

Y , respectively. We
impose the following conditions for an alternative hypothesis:

(C1′) tr(Σ ∗4
X )tr(Σ ∗4

Y ) = o(tr2(Σ ∗2
X )tr2(Σ ∗2

Y )) as max{p, q} → ∞;
(C2′) If p → ∞, then tr4(Σ∗

X )

tr2(Σ∗2
X )

exp
{
−

tr2(Σ∗

X )

128pλ2max(Σ
∗

X )

}
= o(1); and if q → ∞, then tr4(Σ∗

Y )

tr2(Σ∗2
Y )

exp
{
−

tr2(Σ∗

Y )

128qλ2max(Σ
∗

Y )

}
= o(1);

(C3′) ntr(Λ⊤Λ) = O(σ ∗

1 ), {E((rX
∗

i )−1rY
∗

i )}2tr(M1A2
YM

⊤

1 AX ) = o(σ ∗2
1 ), {E((rY

∗

i )−1rX
∗

i )}2tr(M2A2
XM

⊤

2 AY ) = o(σ ∗2
1 ), where

σ ∗2
1 = n(2(n − 1))−1tr(A∗2

X )tr(A∗2
Y ).

Under the above sequence of alternatives, we obtain the following limiting distribution of THS in (4).

Theorem 2. Under conditions (C1′)-(C3′), if (p, q) = O(n2), THS
d

→ N
(
ntr(Λ⊤Λ)/

√
2tr(A∗2

X )tr(A∗2
Y ), 1

)
, where THS is given

in (4), A∗

X , A
∗

Y are given in (5) and Λ is given in (6).

3. High-dimensional multivariate rank test

Next, we propose two spatial rank tests for independence that are essentially high-dimensional multivariate extensions
of Spearman’s rho and Kendall’s tau tests for independence testing problems.

3.1. High-dimensional Spearman’s rho test

For the independence testing problem in the traditional fixed dimension case, the multivariate Spearman’s rho test
statistic is proposed [23]: QR = npqtr

(
(Σ̃

R
XY )

⊤Σ̃
R
XY
)
/{tr

(
(Σ̃

R
X )

2
)
tr
(
(Σ̃

R
Y )

2
)
}, where

Σ̃
R
XY = n−1

n∑
i=1

R̃X
i (R̃

Y
i )

⊤, Σ̃
R
X = n−1

n∑
i=1

R̃X
i (R̃

X
i )

⊤, Σ̃
R
Y = n−1

n∑
i=1

R̃Y
i (R̃

Y
i )

⊤,

R̃X
i = n−1

n∑
j=1

U
(
(SRX )

−1/2(X i − X j)
)
, R̃Y

i = n−1
n∑

j=1

U
(
(SRY )

−1/2(Y i − Y j)
)
.

SRX and SRY are full-rank transformation matrices that satisfy Σ̃
R
X ∝ Ip and Σ̃

R
Y ∝ Iq, respectively. Recall that under the null

hypothesis as well as some general assumptions, it can be concluded that QR
d

→ χ2
pq [23]. However, in high-dimensional

cases when p > n, QR is not available, as the matrices SRX and SRY are singular, which cannot be inverted in the construction
of QR. To tackle this problem, we can use a similar strategy to that used in the previous section. We can simply replace SRX
and SRY with Ip and Iq in QR, respectively. The resulting test statistic is Q ′

R = npqtr
(
(Σ̂

R
XY )

⊤Σ̂
R
XY
)
/{tr

(
(Σ̂

R
X )

2
)
tr
(
(Σ̂

R
Y )

2
)
},

where

Σ̂
R
XY = n−1

n∑
i=1

R̂X
i (R̂

Y
i )

⊤, Σ̂
R
X = n−1

n∑
i=1

R̂X
i (R̂

X
i )

⊤, Σ̂
R
Y = n−1

n∑
i=1

R̂Y
i (R̂

Y
i )

⊤,

R̂X
i = n−1

n∑
j=1

U(X i − X j), R̂Y
i = n−1

n∑
j=1

U(Y i − Y j).

By using the commonly used leave-out strategy for Q ′

R, we develop a high-dimensional version of Spearman’s rho test
(abbreviated as HR) for testing the independence between X and Y :

THR =

√
2n
∑

∗ U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y ℓ)⊤U(Y k − Y j)√∑
∗
[U(X i − X j)⊤U(X k − Xℓ)]2

∑
∗
[U(Y i − Y j)⊤U(Y k − Y ℓ)]2

, (7)

where
∑

∗ denotes summation over distinct indices. Here ‘‘leave-out’’ means that we remove the items with some
common indices, U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y ℓ)⊤U(Y k − Y j)’s, whose indices i, j, k, l are not mutually different, from∑

i,j,k,l U(X i −X j)⊤U(X k −Xℓ)U(Y i −Y ℓ)⊤U(Y k −Y j). As mentioned in [3], such items with common indices will generally
lead to additional bias and stronger demands on the dimensionality.

Below, we present the asymptotic normality of THR. Define

B∗

X = E
(
V X∗

i (V X∗

i )
⊤)

, B∗

Y = E
(
V Y∗

i (V Y∗

i )
⊤)

, (8)
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where V X∗

i = E
(
U(X∗

i − X∗

j )|X
∗

i

)
, V Y∗

i = E
(
U(Y ∗

i − Y ∗

j )|Y
∗

i

)
; and then define

Λ̃ = E
(
(r̃X

∗

ij )−1 r̃Y
∗

ij

)
M1B∗

Y + E
(
(r̃Y

∗

ij )−1 r̃X
∗

ij

)
B∗

XM
⊤

2 , (9)

where r̃X
∗

ij = ∥X∗

i −X∗

j ∥ and r̃Y
∗

ij = ∥Y ∗

i −Y ∗

j ∥. To derive the limiting distribution of THR under the alternative hypothesis,
we impose the following condition to replace condition (C3′):

(C4′) ntr(Λ̃
⊤

Λ̃) = O(σ ∗

2 ),
{
E
(
(rX

∗

ij )−1 r̃Y
∗

ij

)}2
tr(M1B∗2

Y M⊤

1 B
∗

X ) = o(σ ∗2
2 ),

{
E
(
(rY

∗

ij )−1 r̃X
∗

ij

)}2
tr(M2B∗2

X M⊤

2 B
∗

Y ) = o(σ ∗2
2 ), where

σ ∗2
2 = n{2(n − 1)}−1tr(B∗2

X )tr(B∗2
Y ).

Theorem 3.

(i) Under conditions (C1), (C2) and H0 in (1), THR
d

→ N (0, 1), where THR is given in (7).

(ii) Under conditions (C1′), (C2′) and (C4′), THR
d

→ N
(
ntr(Λ̃

⊤

Λ̃)/
√
2tr(B∗2

X )tr(B∗2
Y ), 1

)
, where THR is given in (7), B∗2

X , B∗2
Y

are given in (8) and Λ̃ is given in (9).

3.2. High-dimensional Kendall’s tau test

Taskinen et al. [23] also proposed the multivariate Kendall’s tau test statistic for the independence problem in
traditional fixed-dimension cases: QT = npqtr

(
(Σ̃

T
XY )

⊤Σ̃
T
XY
)
/{4(n − 1)2tr

(
(Σ̃

R
X )

2
)
tr
(
(Σ̃

R
Y )

2
)
}, where

Σ̃
T
XY =

1
n2

n∑
i=1

n∑
j=1

U
(
(SRX )

−1/2(X i − X j)
)
U
(
(SRY )

−1/2(Y i − Y j)
)⊤

.

QT is also asymptotically chi-square distributed with pq degrees of freedom, under the null distribution and some
general assumptions. Like QR, QT is also not available in the high-dimensional case; hence, in QT, we can similarly
replace the scatter matrix SRX and SRY with Ip and Iq respectively, and accordingly consider the following statistics Q ′

T =

npqtr
(
(Σ̂

T
XY )

⊤Σ̂
T
XY
)
/{tr

(
(Σ̂

R
X )

2
)
tr
(
(Σ̂

R
Y )

2
)
}, where Σ̂

T
XY = n−2∑n

i=1
∑n

j=1 U(X i − X j)U(Y i − Y j)⊤. By using the leave-
out strategy for Q ′

T, we develop a high-dimensional version of Kendall’s tau test (abbreviated as HT) for testing the
independence between X and Y :

THT =
n
∑

∗ U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y j)⊤U(Y k − Y ℓ)√
2
∑

∗
[U(X i − X j)⊤U(X k − Xℓ)]2

∑
∗
[U(Y i − Y j)⊤U(Y k − Y ℓ)]2

. (10)

Theorem 4.

(i) Under conditions (C1), (C2) and H0 in (1), THT
d

→ N (0, 1), where THT is given in (10).

(ii) Under conditions (C1′), (C2′) and (C4′), THT
d

→ N
(
ntr(Λ̃

⊤

Λ̃)/
√
2tr(B∗2

X )tr(B∗2
Y ), 1

)
, where THT is given in (10), B∗2

X ,

B∗2
Y are given in (8) and Λ̃ is given in (9).

3.3. Power comparison

According to Theorems 1–4, the power functions of THS, THR, THT in (4), (7), (10), are

βHS(M1,M2) =Φ

⎛⎝−zα +
ntr(Λ⊤Λ)√

2tr(A∗2
X )tr(A∗2

Y )

⎞⎠ , βHR(M1,M2) = Φ

⎛⎝−zα +
ntr(Λ̃

⊤

Λ̃)√
2tr(B∗2

X )tr(B∗2
Y )

⎞⎠ ,

βHT(M1,M2) =Φ

⎛⎝−zα +
ntr(Λ̃

⊤

Λ̃)√
2tr(B∗2

X )tr(B∗2
Y )

⎞⎠ ,

respectively, where zα is α-quantile of the standard normal distribution. In addition, the power function of the testing
method proposed in [28] (abbreviated as EC) is

βEC(M1,M2) = Φ

⎛⎝−zα +
ntr(Σ⊤

XYΣXY )√
2tr(Σ ∗2

X )tr(Σ ∗2
Y )

⎞⎠ ,
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where ΣXY is the covariance matrix between X and Y . Therefore, the asymptotic relative efficiencies (AREs) of the
proposed tests with respect to EC are

ARE(HS, EC) =
tr(Λ⊤Λ)

tr(Σ⊤

XYΣXY )

√
tr(Σ ∗2

X )tr(Σ ∗2
Y )

tr(A∗2
X )tr(A∗2

Y )
, ARE(HR, EC) = ARE(HT, EC) =

tr(Λ̃
⊤

Λ̃)
tr(Σ⊤

XYΣXY )

√
tr(Σ ∗2

X )tr(Σ ∗2
Y )

tr(B∗2
X )tr(B∗2

Y )
,

and

ARE(HS, HR) =
tr(Λ⊤Λ)

tr(Λ̃
⊤

Λ̃)

√
tr(B∗2

X )tr(B∗2
Y )

tr(A∗2
X )tr(A∗2

Y )
, ARE(HT, HR) = 1.

To clearly show the relations among HS, HR, HT, and EC, we consider the special case of X and Y : p = q, gX∗ = gY∗ ,
ΩX∗ = Ip, ΩY∗ = Iq. Now, the power function of THS, THR, THT and TEC becomes

βHS(M1,M2) =Φ

(
−zα +

n{E((rX
∗

i )−1)E(rX
∗

i )}2tr{(M1 + M⊤

2 )
⊤(M1 + M⊤

2 )}
√
2p

)
,

βHR(M1,M2) =Φ

(
−zα +

n{E((r̃X
∗

i )−1)E(r̃X
∗

i )}2tr{(M1 + M⊤

2 )
⊤(M1 + M⊤

2 )}
√
2p

)
,

βHT(M1,M2) =Φ

(
−zα +

n{E((r̃X
∗

i )−1)E(r̃X
∗

i )}2tr{(M1 + M⊤

2 )
⊤(M1 + M⊤

2 )}
√
2p

)
,

βEC(M1,M2) =Φ

(
−zα +

ntr{(M1 + M⊤

2 )
⊤(M1 + M⊤

2 )}
√
2p

)
.

Accordingly,

ARE(HS, EC) ={E((rX
∗

i )−1)E(rX
∗

i )}2 ≥ 1, ARE(HR, EC) = {E((r̃X
∗

ij )−1)E(r̃X
∗

ij )}2 ≥ 1,

ARE(HT, EC) ={E((r̃X
∗

ij )−1)E(r̃X
∗

ij )}2 ≥ 1,

ARE(HS, HR) ={E((rX
∗

i )−1)E(rX
∗

i )}2{E((r̃X
∗

ij )−1)E(r̃X
∗

ij )}−2
→ 1, ARE(HT, HR) = 1,

where the three inequalities are followed by the Cauchy inequality and the convergence is followed by Lemma 1 in [4].

4. Simulation study

We now present simulation results to demonstrate the performance of the proposed tests HS, HR, HT, and compare
them with four existing tests proposed by [2,10,20,28], abbreviated as CS, EC, TJ, LH, respectively. Note that all simulation
results are obtained based on 2500 replications. We consider the following three commonly studied simulation settings:

(I) Multivariate normal distribution, X∗
∼ N (0,ΣX∗ ) and Y ∼ N (0,ΣY );

(II) Multivariate t-distribution, X∗
∼ tp(0,ΣX∗ , 3) and Y ∼ tq(0,ΣY , 3);

(III) Multivariate mixture normal distribution, X∗

i ’s are generated from MN p,γ ,9(0,ΣX∗ ) .
= γN (0,ΣX∗ ) + (1 −

γ )N (0, 9ΣX∗ ), where γ is chosen to be 0.8. Similarly, Y i’s are generated from MN q,γ ,9(0,ΣY ).

For these three settings, X∗ and Y are independent, ΣX∗ = (0.5|i−j|)1≤i,j≤p and ΣY = (0.5|i−j|)1≤i,j≤q.
First, we consider the low-dimension case in which p ≤ q < n. Let n = 100 and p = q ∈ {10, 20}. For power

comparison, we consider four alternative settings. The first is as follows.

(i) X i = X∗

i + n−1/2νW i, where W i is composed of the first few p variables of Y i. When X∗ and Y are generated from
settings (I)-(III), we labeled these settings under the alternative hypothesis as (I-i), (II-i), and (III-i), respectively.

If ν = 0, then X i is independent of Y i, while if ν is large, X i would be strongly correlated with Y i. Let ν ∈ {0, 1.5, 2}.
Table 1 reports the empirical sizes and power of these seven methods for testing independence between X and Y . For
setting (I), under the normal model, all seven methods have similar performances. For settings (II) and (III), as non-normal
models are used to generate data, HS, HR, HT, and EC have better performance in controlling the empirical sizes.

Let (p, q) ∈ {(80, 100), (160, 200), (320, 400), (640, 800), (800, 1000)} and n ∈ {30, 50, 100}. Then, we consider a high-
dimension case in which n < p ≤ q. Data for this case are generated in a manner similar to that described above. Since
LH is not designed for data with particularly large dimensions and TJ fails to control the size in non-normal situations, we
exclude them from comparison. Tables 2–4 summarize the empirical sizes and power of the methods for settings (I)-(III),
respectively. These tables suggest that for setting (I), under high-dimensional normal models, all five methods have similar
performance; for non-normal settings (II) and (III), HS, HR, HT and EC perform better in controlling the empirical sizes
than CS. Furthermore, HS, HR and HT outperform EC in the power comparison.
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Table 1
The empirical sizes and power of the involved tests for independence between X and Y in low dimensional cases, where the data are generated via
setting (i) of the alternative and settings (I), (II), (III) of the distribution. n = 100, p = q ∈ {10, 20} and ν ∈ {0, 1.5, 2}.
(p, q) (p, q) = (10, 10) (p, q) = (20, 20)

HR HT HS CS EC LH TJ HR HT HS CS EC LH TJ

(I) Multivariate normal distribution, n = 100

v = 0 4.7 5.3 6.7 5.4 7.2 5.6 4.1 5.8 4.6 6.1 6.2 4.8 7.1 4.8
v = 1.5 38 37 35 38 42 41 28 39 40 39 42 44 36 25
v = 2 65 66 62 68 80 74 63 68 69 68 73 80 66 55

(II) Multivariate t-distribution, n = 100

v = 0 5.8 5.4 6.5 12 6.1 15 16 4.3 4.5 5.5 14 5.5 25 22
v = 1.5 54 52 53 43 48 54 49 57 56 57 43 43 65 54
v = 2 81 82 82 66 77 85 76 88 87 88 63 75 87 77

(III) Multivariate mixture normal distribution, n = 100

v = 0 6.2 6.1 6.7 11 5.0 13 100 5.8 4.2 5.5 16 6.0 26 100
v = 1.5 51 51 50 42 44 54 100 57 56 56 45 48 62 100
v = 2 79 79 80 69 78 79 100 86 87 87 69 78 82 100

Table 2
The empirical sizes and power of the involved tests for testing independence between X and Y in high dimensional cases, where the data are
generated via setting (i) of the alternative and setting (I) of the distribution. n ∈ {30, 50, 100}, (p, q) ∈ {(80, 100), . . . , (800, 1000)} and ν ∈ {0, 1.5, 2}.
(p, q) v = 0 v = 1.5 v = 2

HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

n = 30

(80,100) 6.2 6.0 5.8 5.9 6.1 37 37 37 37 38 70 70 67 68 70
(160,200) 4.8 4.9 5.2 3.8 5.2 33 33 33 34 36 68 67 62 67 71
(320,400) 5.4 5.1 7.5 6.6 5.8 37 37 28 35 38 72 72 48 65 68
(640,800) 5.3 5.6 9.2 6.7 5.1 35 35 29 34 37 71 71 50 64 67
(800,1000) 5.2 5.4 9.8 5.7 5.4 35 35 30 33 36 72 71 51 65 66

n = 50

(80,100) 5.7 5.4 5.3 5.2 4.8 38 38 38 38 40 71 72 71 73 71
(160,200) 5.3 4.9 5.0 4.7 5.7 37 37 38 36 36 73 72 73 73 76
(320,400) 5.7 5.4 5.1 5.6 5.3 43 42 43 43 38 72 73 73 73 77
(640,800) 5.3 5.8 6.3 5.7 5.1 42 42 42 41 37 72 72 72 71 76
(800,1000) 5.4 5.6 6.8 5.4 5.3 43 42 43 41 38 72 73 72 71 77

n = 100

(80,100) 5.4 5.2 4.9 5.4 4.9 39 40 40 40 41 74 74 74 74 76
(160,200) 4.9 5.1 5.2 5.1 6.2 43 43 44 43 36 75 75 75 76 76
(320,400) 6.3 5.8 5.7 4.9 6.8 41 40 40 41 40 82 81 82 82 78
(640,800) 5.8 5.7 5.9 4.8 6.3 40 40 40 40 39 81 81 81 82 79
(800,1000) 5.7 5.8 6.3 4.9 6.3 42 40 41 41 39 83 81 82 82 80

Furthermore, we investigate the performance of the proposed tests in a situation in which one of the two sets of
variables has a low dimension while the other has a high dimension. Specifically, we let p = 5 and q ∈ {100, 200, 400}
with n = 100. The corresponding results are summarized in Table 5, where the proposed tests have similar performance
to the EC test and the size of the CS test is also out of control in non-normal situations.

Next, we consider the second setting of the alternative.

(ii) This setting is the same as setting (i) except for the construction of X i. Specifically, X i = X∗

i +n−1/2νW i, where W i is
composed of the first few p/2 variables of Y i. When X∗ and Y are generated from settings (I)-(III), we labeled these
settings under the alternative hypothesis as (I-ii), (II-ii), (III-ii), respectively.

For this setting, we let n = 100 and (p, q) ∈ {(80, 100), (160, 200), (320, 400), (640, 800), (800, 1000)}. As suggested by
the above results of setting (i), the size of the CS test is often out of control, especially for non-normal distributions, and
the size performance of the remaining tests are very similar. Hence, we exclude the CS test and the size results in the
following comparison. The corresponding results are summarized in Table 6, which are very similar to the above results
for setting (i).

Finally, we consider the remaining two settings of the alternative as follows.

(iii) Multivariate t-distribution, Z i = (X⊤

i ,Y⊤

i )
⊤, where Z i ∼ tp+q(0,Σ Z , 3).

(iv) Multivariate mixture normal distribution, Z i = (X⊤

i ,Y⊤

i )
⊤, where Z i ∼ MN p+q,γ ,9(0,Σ Z ).
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Table 3
The empirical sizes and power of the involved tests for testing independence between X and Y in high dimensional cases, where the data are generated
via setting (i) of the alternative and setting (II) of the distribution. n ∈ {30, 50, 100}, (p, q) ∈ {(80, 100), . . . , (800, 1000)} and ν ∈ {0, 1.5, 2}.
(p, q) v = 0 v = 1.5 v = 2

HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

n = 30

(80,100) 5.2 5.4 5.4 22 6.8 53 54 54 46 45 83 82 82 62 67
(160,200) 4.9 4.9 4.2 22 8.1 54 54 54 48 37 81 82 82 62 67
(320,400) 5.2 5.0 8.6 22 5.8 55 55 57 45 41 80 80 82 61 65
(640,800) 4.9 5.1 9.7 22 5.9 55 55 56 43 40 81 80 82 62 64
(800,1000) 5.6 5.4 10 23 5.8 55 56 57 43 40 80 82 81 64 63

n = 50

(80,100) 5.6 6.4 5.3 20 5.8 59 59 58 43 39 87 88 87 58 65
(160,200) 5.3 5.3 5.0 21 6.8 62 62 61 43 39 87 87 87 59 69
(320,400) 5.8 5.2 7.8 21 5.7 67 67 66 44 44 87 88 86 58 67
(640,800) 5.7 5.1 8.3 21 5.2 66 66 66 43 40 87 88 85 57 68
(800,1000) 5.4 5.4 8.9 22 5.4 67 66 67 42 41 88 88 86 58 68

n = 100

(80,100) 5.2 4.5 4.9 23 5.0 62 62 61 43 46 90 90 91 59 71
(160,200) 4.8 5.8 5.2 25 5.1 63 64 64 42 44 92 93 92 54 72
(320,400) 6.0 4.8 5.7 24 4.8 66 67 66 38 44 97 98 97 50 71
(640,800) 5.8 5.1 5.4 24 5.3 66 66 66 39 44 96 96 96 51 70
(800,1000) 5.9 5.5 5.5 25 5.2 65 65 66 39 43 96 96 97 50 70

Table 4
The empirical sizes and power of the involved tests for testing independence between X and Y in high dimensional cases, where the data are generated
via setting (i) of the alternative and setting (III) of the distribution. n ∈ {30, 50, 100}, (p, q) ∈ {(80, 100), . . . , (800, 1000)} and ν ∈ {0, 1.5, 2}.
(p, q) v = 0 v = 1.5 v = 2

HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

n = 30

(80,100) 5.7 5.0 6.3 26 7.3 54 55 55 46 40 82 82 82 60 68
(160,200) 4.3 4.4 5.6 31 7.5 57 58 57 45 41 87 86 86 61 68
(320,400) 5.8 4.9 6.5 34 8.0 61 61 60 49 39 83 83 82 61 66
(640,800) 5.4 5.1 7.3 34 8.2 60 61 60 48 40 82 82 83 60 65
(800,1000) 5.3 5.4 7.6 33 8.1 60 60 60 47 41 83 82 82 61 66

n = 50

(80,100) 4.7 4.7 5.9 29 5.8 58 57 57 46 45 87 88 86 62 69
(160,200) 5.4 5.9 4.4 30 4.5 59 59 59 45 40 90 90 89 58 72
(320,400) 4.7 5.4 6.5 32 5.1 66 65 65 44 40 92 91 92 57 72
(640,800) 5.5 5.3 6.9 31 4.9 65 65 65 43 41 91 91 92 56 70
(800,1000) 5.1 5.6 7.1 31 5.8 66 65 67 43 42 90 90 91 57 71

n = 100

(80,100) 6.1 4.9 4.9 29 5.3 60 60 59 44 37 93 93 92 58 75
(160,200) 4.9 5.3 6.4 35 5.4 62 62 63 45 42 94 93 92 54 77
(320,400) 5.3 4.8 6.0 36 6.8 67 67 66 44 45 92 94 93 54 75
(640,800) 5.1 4.9 5.7 35 6.2 66 66 65 45 45 93 93 93 53 76
(800,1000) 5.0 5.6 5.4 33 5.9 65 65 65 44 46 92 92 94 53 75

Here, Σ Z = (aij)1≤i,j≤p+q, aii = 1, aij = ρ = n−1 for i ̸= j. The difference between settings (iii), (iv) and settings (i), (ii) is
whether the joint distribution of X i and Y i is considered. In particular, in settings (iii) and (iv), the joint distributions of
X i and Y i are set to be multivariate t-distribution and multivariate mixture normal distribution, respectively, which are
members of the family of elliptically symmetric distributions. The corresponding results are summarized in Table 7 and
suggest that HS is the most powerful of these involved tests. On the other hand, HR and HT still perform similarly to each
other and outperform EC in most cases.

In summary, the simulation results show that the three proposed methods are more powerful than existing popular
testing procedures, especially for high-dimensional and heavy-tailed data.

5. Empirical application

5.1. Dependence between US and Chinese stock markets

Much research has analyzed correlations between global financial markets, especially in some special periods such
as financial crisis. For example, Sunil and Nivedita [21] used correlation and network methods to investigate the effect
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Table 5
The empirical sizes and power of the involved tests for testing independence between X and Y in cases of low p with large q, where the data are
generated via setting (i) of the alternative and settings (I), (II), (III) of the distribution. n = 100, (p, q) ∈ {(5, 100), (5, 200), (5, 400)} and ν ∈ {0, 3, 6}.
(p, q) v = 0 v = 3 v = 6

HR HT HS CS EC HR HT HS CS EC HR HT HS CS EC

Multivariate normal distribution, setting (I-i)

(5,100) 5.3 5.6 5.0 3.8 6.6 29 28 30 33 36 92 90 93 97 97
(5,200) 5.2 5.7 5.0 5.0 4.8 18 18 19 21 25 75 75 77 83 85
(5,400) 4.7 5.3 5.4 3.8 8.1 14 15 15 15 16 60 60 62 58 66

Multivariate t distribution, setting (II-i)

(5,100) 4.9 5.8 5.6 13 5.3 38 38 40 54 38 93 94 95 93 86
(5,200) 5.3 4.6 4.8 14 6.0 26 26 27 52 30 79 80 80 92 68
(5,400) 5.6 5.4 4.6 14 6.2 21 20 22 50 24 57 56 58 87 54

Multivariate mixture normal distribution, setting (III-i)

(5,100) 5.9 5.8 5.4 14 5.7 37 38 39 48 39 94 94 95 98 90
(5,200) 4.2 5.6 5.2 16 5.5 25 25 26 41 26 78 76 78 96 76
(5,400) 5.6 4.6 4.8 15 5.6 20 20 21 38 20 57 58 58 94 60

Table 6
The empirical power of the involved tests for testing independence
between X and Y , where the data are generated via setting (ii) of the
alternative and settings (I), (II), (III) of the distribution. n = 100, (p, q) ∈

{(80, 100), (160, 200), (320, 400)} and ν ∈ {2, 3}.
(p, q) ν = 2 ν = 3

HR HT HS EC HR HT HS EC

setting (I-ii)

(80,100) 33 33 33 37 81 81 81 82
(160,200) 34 34 35 37 84 84 85 81
(320,400) 34 34 35 35 85 84 85 85

setting (II-ii)

(80,100) 55 55 56 35 92 93 94 76
(160,200) 55 56 57 39 95 95 96 78
(320,400) 57 58 60 35 95 96 96 78

setting (III-ii)

(80,100) 50 50 51 35 93 94 94 79
(160,200) 53 53 54 33 96 95 96 81
(320,400) 56 56 57 35 97 96 97 81

Table 7
The empirical power of the involved tests for testing independence between X and Y , where the data
are generated via settings (iii) and (iv). n = 100 and (p, q) ∈ {(160, 200), (320, 400), (640, 800)}.
(p, q) n = 30 n = 50 n = 100

HR HT HS EC HR HT HS EC HR HT HS EC

(iii)
(160,200) 78 77 100 49 60 60 100 58 36 36 93 60
(320,400) 96 95 100 51 89 88 100 58 73 72 100 57
(640,800) 100 100 100 52 100 100 95 56 98 98 100 59

(iv)
(160,200) 81 82 95 50 60 60 100 57 35 34 72 60
(320,400) 96 96 83 51 91 90 98 61 70 70 99 62
(640,800) 100 100 80 49 100 100 98 58 99 99 100 62

of important financial indices on the organization structure; Vodenska et al. [24] used network theory and community
analysis to understand the structure of the coupled financial network formed by global stock market indices and
currencies; Junior and Franca [11] and Sensoy et al. [19] analyzed the cross-correlation matrix of index returns of the
main financial markets after the 2007–2009 crisis using random matrix theory methods.

In this section, we conduct a correlation study of the stocks from the S&P500 index and the CSI 300 index as an example
to investigate the relationship between US and Chinese financial markets. Specifically, we use the proposed HS method to
test independence between the weekly return rate vector of the stocks from the S&P500 index, denoted as X , and that of
the stocks from the CSI300 index, denoted as Y , where the weekly return rate vectors of the stocks from the two indices
at different weeks are considered to be iid observations of X and Y , respectively.
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Fig. 1. p-value series of sliding annual independence test between return rates of two groups of stocks in CSI500 index and the S&P500 index,
respectively.

Fig. 2. Time series of the prices of the CSI300 index and the S&P500 index, respectively.

We test the independence between X and Y using observations from January 2005 to November 2018. Considering
the timeliness of stock analysis, we use one consecutive year as a sliding window, take one week as a step, and then
successively test the independence between X and Y using the observations within the sliding window.

In Fig. 1, we present the resulting p-value sequence of the independence test between X and Y for all the sliding
windows, where each p-value in the sequence at week t corresponds to a one-consecutive-year sliding window from
week t − 52 to week t . From Fig. 1, it can be seen that for most of the time, X and Y are judged as independent under
both significance levels of 0.01 and 0.05.

In Fig. 2, we present two time series of the prices of the CSI300 index and the S&P500 index, respectively. To build the
connection between Figs. 1 and 2, we draw a vertical red line at each week that corresponds to a p-value smaller than
0.01, that is, the p-value of the independence test between X and Y using observations during the week as well as in the
first 52 weeks. The vertical red lines are mainly divided into three parts: 2010–2012, 2016–2017, and 2018–present. In
the first part, the two indices show similar trends within some sub-parts; in the second part, they grew simultaneously;
and in the last part, their trends are just the opposite. Figs. 3 and 4 suggest that in the above three parts with p-values
smaller than 0.01, the time series of the return rates of the two indices as well as the differences between the two time
series have relatively small fluctuations.

Based on the above results, the stock markets of the two countries are considered independent for most of the time,
except for some special periods. With the financial crisis in 2007–2009, the global economic recovery brought about the
growth of both the US and Chinese stock markets. At that time, the financial markets of the two countries showed a
strong correlation. This may be the reason for the correlation in 2010–2012. On the other hand, after the establishment
of the Shanghai-Hong Kong Stock Exchange in 2015, international capital was able to enter China’s stock market in large
quantities, which will had a significant impact on the Chinese stock market. This may be the reason for the correlation in
2016–2017 and 2018–present.

Finally, as the remaining two testing methods proposed in this paper obtain very similar conclusions, they are not
presented in this paper. Moreover, we use a nonparametric method in this study to analyze the stock return rate data
because most of the stocks involved have non-normal distributions for their weekly return rates, especially for the stocks
from CSI300 index, which is suggested by Fig. 5.
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Fig. 3. Time series of the return rates of the CSI300 index and the S&P500 index, respectively.

Fig. 4. Time series of the difference of the return rates of the CSI300 index and the S&P500 index, respectively.

Fig. 5. Q–Q plots of the CSI300 index, the S&P500 index and the first three stocks (arranged in alphabetical order) in each index respectively, which
suggest that most stocks have heavy-tailed distributions for their weekly return rates, especially for stocks from the CSI300 index.
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Table 8
Empirical power comparison at the 5% level for independence between the
Shanghai Stock Exchange and the Shenzhen Stock Exchange.
(p, q) n = 12 n = 15 n = 20

HS EC HS EC HS EC

(200,160) 66 61 81 76 94 89
(240,200) 74 69 88 84 98 94
(280,240) 81 77 91 85 99 96

5.2. Dependence between the Shanghai and Shenzhen stock exchanges

We compiled monthly returns on all the securities in Chinese stock markets that have been listed from June 2005
to May 2019. Because the securities listed in Chinese stock markets change over time, we only consider p + q = 1340
securities that were listed throughout the entire period. There are p = 559 securities in the Shenzhen Stock Market
and q = 781 securities in the Shanghai Stock Exchange. From June 2005 to May 2019, a total of n = 144 consecutive
observations were obtained.

First, we test whether the stocks in the Shenzhen Stock Exchange are independent from the stocks in the Shanghai
Stock Exchange. Since HS, HT and HR have very similar performance, below, we only compare EC with HS for this real
data analysis. The obtained test statistics of EC and HS are 100.46 and 98.56, respectively, based on which both methods
reject the null hypothesis. Thus, we believe that the stock return vectors of the two markets are deeply dependent on
each other.

It is well-known that the stocks are correlated because they have many common factors. Hence, to remove the influence
of these common factors, we consider the following Fama–French three-factor model

Zij = rij − rfi = αj + βj1(rmi − rfi) + βj2SMBi + βj3HMLi + ϵij,

for j ∈ {1, . . . , p + q} and i ∈ {1, . . . , n}, where {1, . . . , p} corresponds to the stocks in the Shenzhen Stock Market and
{p + 1, . . . , p + q} corresponds to the stocks in the Shanghai Stock Exchange. The rate of 10-year Chinese Treasuries
is chosen as the risk-free rate (rfj) for each stock j. The value-weighted return on all the stocks of the Shanghai Stock
Exchange and the Shenzhen Stock Exchange is used as a proxy for the market return (rmi). The average return on the
three small portfolios minus the average return on the three big portfolios (SMBi), and the average return on two value
portfolios minus the average return on two growth portfolios (HMLi) are calculated based on the stocks listed on the
Shanghai Stock Exchange and the Shenzhen Stock Exchange. We use rij to denote the return rate of security j on time i.
All data are measured in percent per month.

We remove the common factors as follows. Let

Xij
.
= Zij −

(
α̂j + β̂j1(rmi − rfi) + β̂j2SMBi + β̂j3HMLi

)
for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}; and for i ∈ {1, . . . , n} and j′ ∈ {1, . . . , q}, let

Yij′
.
= Zi,j′+p −

(
α̂j′+p + β̂j′+p,1(rmi − rfi) + β̂j′+p,2SMBi + β̂j′+p,3HMLi

)
.

Here α̂j, β̂j1, β̂j2 and β̂j3 are the estimations of αj, βj1, βj2 and βj3 under the Fama–French three-factor model. We then
consider the null hypothesis of the independence of the X- and Y -variables: the stocks in the Shenzhen stock market are
independent from the stocks in the Shanghai Stock Exchange.

We apply EC and HS to the data of Xij’s and Yij′ ’s, and the test statistics are 56.64 and 52.90, respectively, based on
which the null hypothesis is still rejected. Thus, we still believe that the two markets are deeply dependent on each other.
To make the advantage of HS explicit, we adopt a random sampling procedure. In particular, we randomly select n′ months
from the total n = 144 months, p′ stocks from the p = 559 stocks in the Shenzhen Stock Exchange, and q′ stocks from
the q = 781 stocks in the Shanghai Stock Exchange. Table 8 reports the power of these two tests in a different setting
of n′, p′ and q′, where for each setting of n′, p′ and q′ we perform random sampling 1,000 times. We observe that HS is
more powerful than EC for each setting, which may be due to the heavy-tailed distributions of the return data, presented
in Fig. 6, as well as the high dimensionality.

6. Conclusions

We have proposed three high-dimensional nonparametric independence tests based on the spatial sign and ranks that
provide more powerful alternatives to the widely studied multivariate normal theory methods. The power superiority
of the three proposed tests in comparison with existing test procedures is especially clear for high-dimensional and
heavy-tailed data, as shown by numerical evidence as well as two real data analyses on stock return rate data.

Choosing the appropriate test in practical applications depends on the distribution of the practical data and the
dependence between the two high-dimensional random vectors. The proposed tests are advantageous in non-normal
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Fig. 6. Q–Q plots for four stocks used for demonstration: 000001.SZ and 000002.SZ in the Shenzhen Stock Exchange, 600000.SH and 600004.SH in
the Shanghai Stock Exchange, which suggest that most stocks in the two markets have heavy-tailed distributions for their monthly return rates.

situations when testing whether linear dependence exists between two high-dimensional random vectors. In comparing
these proposed tests, when the dimension is larger than the square of sample sizes, the spatial rank-based tests generally
have better performance in controlling the size than the spatial sign-based tests, which are, however, much more time
consuming due to the more complex statistics. Hence, the spatial sign-based test is preferable unless the dimensionality
is very large.
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Appendix

Proof of Theorem 1. Let UX
i = U(X i−θX ), UY

i = U(Y i−θY ), rXi = ∥X i− θ̂X∥, rYi = ∥Y i− θ̂Y∥, µ̂X = θ̂X −θX , µ̂Y = θ̂Y −θY ,
AX = E(UX

i (U
X
i )

⊤) and AY = E(UY
i (U

Y
i )

⊤). Before presenting the proof of the main theorems, we propose some necessary
lemmas. First, we recall Lemma 1 in [25] as follows.

Lemma 1. Under conditions (C1) and (C2) given in Section 2, E
(
(UX

i )
⊤UX

j

)4
= O(1)

[
E((UX

i )
⊤UX

j )
2
]2, E((UX

i )
⊤AXUX

i )
2

=

O(1)
[
E((UX

i )
⊤AXUX

i )
]2 and E((UX

i )
⊤AXUX

j )
2

= O(1)
[
E((UX

i )
⊤AXUX

j )
]2.

Let Tr = (n − 1)−1∑
1≤i<j≤n(Û

X
i )

⊤ÛX
j (Û

Y
i )

⊤ÛY
j and σ̂ 2

1 = 2{n2(n − 1)2}−1∑
1≤i<j≤n((Û

X
i )

⊤ÛX
j )

2∑
1≤i<j≤n((Û

Y
i )

⊤ÛY
j )

2.
Then THS = Tr/σ̂1. Let σ 2

1 = n{2(n − 1)}−1tr(A2
X )tr(A

2
Y ). To prove Theorem 1, we only need to prove the following two

propositions.

Proposition 1. Under conditions (C1), (C2) given in Section 2 and H0 in (1), Tr/σ1
d

→ N (0, 1).

Proposition 2. Under conditions (C1) and (C2) given in Section 2, as n → ∞, σ̂1/σ1
p

→ 1.

Lemma 2.

U(X i − θ̂X ) = U(X i − θX ) −
1
rXi

(Ip − U(X i − θX )U(X i − θX )⊤)(θ̂X − θX ) −
1

2(rXi )2
∥(θ̂X − θX )∥2U(X i − θX ) + op(n−1).

Note that the proof of Lemma 2 can be found in Lemma 2 in Appendix of [29].

Lemma 3. µ̂X admits the following asymptotic representation: µ̂X = (ncX )−1∑n
i=1 U(X i − θX ) + op(bn,p), where cX =

E((rXi )
−1) and bn,p = c−1

X n−1/2.

Note that the proof of Lemma 3 can be found in Lemma 1 in Appendix of [29].

Lemma 4. Suppose all the conditions imposed in Theorem 1 hold. Let T1 = (n − 1)−1∑
1≤i<j≤n(U

X
i )

⊤UX
j (U

Y
i )

⊤UY
j , then

Tr = T1 + op(σ1).
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Proof. Using the Taylor expansion, Tr can be written as

n
n(n − 1)

∑
1≤i<j≤n

{U(X i − θ̂X )⊤U(X j − θ̂X )U(Y i − θ̂Y )⊤U(Y j − θ̂Y )}

=
1

(n − 1)

∑
1≤i<j≤n

(UX
i )

⊤UX
j (U

Y
i )

⊤UY
j −

1
(n − 1)

∑
1≤i<j≤n

{
1
rXi

µ̂
⊤

X [Ip − UX
i (U

X
i )

⊤
]UX

j (U
Y
i )

⊤UY
j

+
1
rXj

µ̂
⊤

X [Ip − UX
j (U

X
j )

⊤
]UX

i (U
Y
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⊤UY
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1
rYi

µ̂
⊤

Y [Iq − UY
i (U

Y
i )

⊤
]UY

j (U
X
i )

⊤UX
j

+
1
rYj
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⊤

Y [Iq − UY
j (U

Y
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⊤
]UY

i (U
X
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⊤UX
j } +

1
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Y
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1
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Y
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Y
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1
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Y
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]UX
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1
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Y
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X
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]UX
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× (UY
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⊤
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1
rXi r

X
j
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X [Ip − UX
i (U

X
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⊤
][Ip − UX

j (U
X
j )

⊤
]µ̂X

× U(Y i − θ̂Y )⊤U(Y j − θ̂Y ) +
1

rYi r
Y
j

µ̂
⊤

Y [Iq − UY
i (U

Y
i )

⊤
][Iq − UY

j (U
Y
j )

⊤
]µ̂Y

× U(X i − θ̂X )⊤U(X j − θ̂X )} −
1

(n − 1)

∑
1≤i<j≤n

{
1

rXi r
X
j r

Y
i

µ̂
⊤

X [Ip − UX
i (U

X
i )

⊤
]

× [Ip − UX
j (U

X
j )

⊤
]µ̂X µ̂Y [Iq − UY

i (U
Y
i )

⊤
]UY

j +
1

rXi r
X
j r

Y
j

µ̂
⊤

X [Ip − UX
i (U

X
i )

⊤
]

× [Ip − UX
j (U

X
j )

⊤
]µ̂X µ̂Y [Iq − UY

j (U
Y
j )

⊤
]UY

i +
1

rXi r
Y
i r

Y
j

µ̂
⊤

X [Ip − UX
i (U

X
i )

⊤
]

× UX
j µ̂

⊤

Y [Iq − UY
i (U

Y
i )

⊤
][Iq − UY

j (U
Y
j )

⊤
]µ̂Y +

1
rXj r

Y
i r

Y
j

µ̂
⊤

X [Ip − UX
j (U

X
j )

⊤
]

× UX
i µ̂

⊤

Y [Iq − UY
i (U

Y
i )

⊤
][Iq − UY

j (U
Y
j )

⊤
]µ̂Y } + R0 + op(n−4)

=
1

(n − 1)

∑
1≤i<j≤n

(UX
i )

⊤UX
j (U

Y
i )

⊤UY
j + op(σ1),

where R0 denote the rest part of Tr . For simplicity, we only show (n−1)−1∑
1≤i<j≤n(r

X
i )

−1µ̂
⊤

X [Ip−UX
i (U

X
i )

⊤
]UX

j (U
Y
i )

⊤UY
j =

op(σ1), while we can similarly know that the other parts in Tr are all op(σ1). Let G1 = (n−1)−1∑
1≤i<j≤n r

X
i µ̂

⊤

XUX
j (U

Y
i )

⊤UY
j ,

then E(G2
1) = op(σ 2

1 ), because

E(G2
1) =

1
n2(n − 1)2

∑
1≤i<j≤n

E{
1

rXi cX
(UX

i )
⊤UX

j (U
Y
i )

⊤UY
j }

2

=
1

2n(n − 1)
E((UX

i )
⊤UX

j )
2E((UY

i )
⊤UY

j )
2

=
1

2n(n − 1)
tr(A2

X )tr(A
2
Y ) = op(σ 2

1 ).

Then, we conclude that Tr = T1 + op(σ1). □

Lemma 5. Suppose that all the conditions imposed in Theorem 1 hold, then T1/σ1
d

→ N (0, 1).

Proof. Let Zj = (n − 1)−1∑j−1
i=1(U

X
i )

⊤UX
j (U

Y
i )

⊤UY
j , for j = 2, . . . , n. Let Sm =

∑m
j=2 Zj, V i = (X⊤

i ,Y⊤

i )
⊤ and Fm =

σ {V 1, . . .Vm}, which is the σ -algebra generated by {V 1, . . .Vm}. Hence T1 =
∑n

j=2 Zj. We can verify that for each n,
{Sm,Fm}

n
m=2 is a sequence of zero mean and square integrable martingale. In order to prove the normality of T1, according

to [8], it suffices to show the following two results:∑n
j=2 E[Z

2
j |Fj−1]

σ 2
1

p
→ 1,
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and for any ϵ > 0,

σ−2
1

n∑
j=2

E[Z2
j I(|Zj| > ϵσ1|)|Fj−1]

p
→ 0.

Below, we will prove the first result. We see that

n∑
j=2

E[Z2
j |Fj−1] =

1
(n − 1)2

n∑
j=2

E[(
j−1∑
i=1

(UX
i )

⊤UX
j (U

Y
i )

⊤UY
j )

2
|Fj−1]

=
1

(n − 1)2

n∑
j=2

E[(
j−1∑

i1,i2=1

(UX
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⊤UX
j (U

X
j )

⊤UX
i2 (U

Y
i1 )

⊤UY
j (U

Y
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⊤UY
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=
1
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⊤E[UX
j (U

X
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⊤
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i2 (U
Y
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⊤E[UY
j (U
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1

(n − 1)2
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j=2
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(UX
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⊤AXUX
i2 (U

Y
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1
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j=2

j−1∑
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(UX
i )

⊤AXUX
i (U

Y
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⊤AYUY
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1
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i1 ̸=i2

(UX
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⊤AXUX
i2 (U

Y
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⊤AYUY
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.
= C1 + C2.

By using simple algebra, we can obtain that E(C1) = σ 2
1 , E(C2) = 0 and

var(C1) =
1

(n − 1)4

n∑
j=2

j2{E((UX
i )

⊤AXUX
i )

2E((UY
i )

⊤AYUY
i )

2
− tr2(A2

X )tr
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Y )},
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1
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j=3
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2

tr(A4
X )tr(A
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By Lemma 1, we can see that E((UX
i )

⊤AXUX
i )

2
= O(1)E2((UX

i )
⊤AXUX

i ) = O(tr2(A2
X )) and E((UY

i )
⊤AYUY

i )
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Y )). Hence
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1 ) and C1/σ

2
1

p
→ 1. By using condition C(1), we have var(C2) = op(σ 4

1 ), which implies that C2 = op(σ 2
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Next, we will prove the second result. Note that σ−2
1
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j=2 E[Z
2
j I(|Zj| > ϵσ1|)|Fj−1] ≤ σ−4
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Accordingly, the assertion of this lemma is true if we can show E
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X ))
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√
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d
→ N (0, 1), where var(T1) =

n{2(n − 1)}−1tr(A2
X )tr(A

2
Y ). This completes the proof of Lemma 5. □

Proof of Proposition 1. Using Lemmas 3 and 4, proof of Proposition 1 can be directly obtained.
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Proof of Proposition 2. Taking the same procedure as in the proof of Lemma 4, we can see that
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⊤ÛY
j )

2
=

2
n2(n − 1)2

∑
1≤i<j≤n

((UX
i )

⊤UX
j )

2
∑

1≤i<j≤n

((UY
i )

⊤UY
j )

2
+ op(σ 2

1 ).

Obviously, E( 2
n2(n−1)2

∑
1≤i<j≤n((U

X
i )

⊤UX
j )

2∑
1≤i<j≤n((U

Y
i )

⊤UY
j )

2) = σ 2
1 , which implies that

var
( 2
n2(n − 1)2

∑
1≤i<j≤n

((UX
i )

⊤UX
j )

2
∑

1≤i<j≤n

((UY
i )

⊤UY
j )

2)
=O(n−4)E((UX

i )
⊤UX

j )
4E((UY

i )
⊤UY

j )
4
+ O(n−2)E{((UX

i )
⊤UX

j )
2((UX

i )
⊤UX

l )
2
}E{((UY

i )
⊤UY

j )
2((UY

i )
⊤UY

l )
2
}

=O(n−4tr2(A2
X )tr

2(A2
Y )) + O(n−2tr2(A2

X )tr
2(A2

Y )) = op(σ 4
1 ).

Thus, σ̂ 2
1 = σ 2

1 (1 + op(1)). □

Proof of Theorem 2. By the Taylor Expansion, we have

U(X i − θ̂X ) =U(X∗
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Then, taking the same procedure as in Lemma 3, under conditions (C1′)-(C3′), we have
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By condition (C3′), we have

E

⎧⎨⎩ 1
n − 1

∑
1≤i<j≤n

(rY
∗

i )−1rX
∗

i (UX∗

i )⊤UX∗

j (UY∗

i )⊤M2UX∗

j

⎫⎬⎭
2

= O[{E((rY
∗

i )−1rX
∗

i )}2tr(M2A2
XM

⊤

2 AY )] = o(σ 2
1 ),

E

⎧⎨⎩ 1
n − 1

∑
1≤i<j≤n

(rX
∗

i )−1rY
∗

i (UY∗

i )⊤M⊤

1 U
X∗

j (UY∗

i )⊤UY∗

j

⎫⎬⎭
2

= O[{E((rX
∗

i )−1rY
∗

i )}2tr(M1A2
YM

⊤

1 AX )] = o(σ 2
1 ),

1
n − 1

∑
1≤i<j≤n

(rY
∗

i )−1rX
∗

i (rY
∗

j )−1rX
∗

j (UX∗

i )⊤M⊤

2 M2UX∗

j (UX∗

i )⊤UX∗

j =
n
2
{E((rY

∗

i )−1rX
∗

i )}2tr(M2A∗2
X M⊤

2 ) + op(σ1),

1
n − 1

∑
1≤i<j≤n

(rX
∗

i )−1rY
∗

i (rX
∗

j )−1rY
∗

j (UY∗

i )⊤M⊤

1 M1UY∗

j (UY∗

i )⊤UY∗

j =
n
2
{E((rX

∗

i )−1rY
∗

i )}2tr(M1A∗2
Y M⊤

1 ) + op(σ1),

1
n − 1

∑
1≤i<j≤n

(rX
∗

i )−1rY
∗

i (rY
∗

j )−1rX
∗

j (UY∗

i )⊤M⊤

1 U
X∗

j (UY∗

i )⊤M2UX∗

j

=
n
2
{E((rX

∗

i )−1rY
∗

i )E((rY
∗

i )−1rX
∗

i )}tr(M1A∗

YM2A∗

X ) + op(σ1),

1
n − 1

∑
1≤i<j≤n

(rY
∗

i )−1rX
∗

i (rX
∗

j )−1rY
∗

j (UX∗

i )⊤M⊤

2 U
Y∗

j (UX∗

i )⊤M1UY∗

j

=
n
2
{E((rX

∗

i )−1rY
∗

i )E((rY
∗

i )−1rX
∗

i )}tr(M2A∗

XM1A∗

Y ) + op(σ1).

Thus, Tr = T1 + ntr(Λ⊤Λ)/2 + op(σ1), where Λ = E((rX
∗

i )−1rY
∗

i )M1A∗

Y + E((rY
∗

i )−1rX
∗

i )A∗

XM
⊤

2 . According to the results of
Theorem 1, we can easily obtain the result. Here we complete the proof.

Proof of Theorem 3. Define V X
i = E(U(X i − X j)|X i), V X

j = −E(U(X i − X j)|X j), V Y
i = E(U(Y i − Y j)|Y i), V Y

j =

−E(U(Y i − Y j)|Y j), U(Y i − Y j) = V Y
i + V Y

j + W Y
ij , U(Y k − Y ℓ) = V Y

k + V Y
ℓ + W Y

kℓ, U(X i − X j) = V X
i + V X

j + W X
ij ,

U(X k − Xℓ) = V X
k + V X

ℓ + W X
kℓ, BX = E(V X

i (V
X
i )

⊤) and BY = E(V Y
i (V

Y
i )

⊤).
Define

Tρ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y ℓ)⊤U(Y k − Y j)},

σ̂ 2
2 =

1
2n2(n − 1)2(n − 2)2(n − 3)2

∗∑
(U(X i − X j)⊤U(X k − Xℓ))2 ×

∗∑
(U(Y i − Y j)⊤U(Y k − Y ℓ))2.

Hence, THR = Tρ/σ̂2. To prove Theorem 3, we only need to prove the following proposition.

Proposition 3. Under conditions (C1), (C2) given in Section 2 and H0 in (1), as n → ∞, Tρ/σ2
d

→ N (0, 1).

Here σ 2
2 =

8n
n−1 tr(B

2
X )tr(B

2
Y ).

Proposition 4. Under conditions (C1′), (C2′) and (C4′) given in Section 2, as n → ∞, σ̂ 2
2 /σ 2

2
p

→ 1.

Lemma 6. As n → ∞, (σ̃2)−1
{
(n − 1)−1∑∗(V X

i )
⊤V X

k (V
Y
i )

⊤V Y
k

} d
→ N (0, 1), where σ̃ 2

2 = 2n(n − 1)−1tr(B2
X )tr(B

2
Y ).

Proof. Define T2 = (n − 1)−1∑∗(V X
i )

⊤V X
k (V

Y
i )

⊤V Y
k . Obviously, E(T2) = 0 and

var(T2) =
1

(n − 1)2
E

{
∗∑

(V X
i )

⊤V X
k (V

Y
i )

⊤V Y
k

}2

=
2n

n − 1
E((V X

i )
⊤V X

k )
2E((V Y

i )
⊤V Y

k )
2

=
2n

n − 1
tr(B2

X )tr(B
2
Y ).

We only need to show the asymptotic normality of T2. For each i ∈ {2, . . . , n}, define Z̃i = (n−1)−1∑i−1
k=1(V

X
i )

⊤V X
k (V

Y
i )

⊤V Y
k

and V i = (X⊤

i ,Y⊤

i )
⊤. Then, for each m ∈ {2, . . . , n}, define S̃m =

∑m
i=2 Z̃i and F̃m = σ {V 1, . . .Vm}, where σ {V 1, . . .Vm}

is the σ -algebra generated by {V 1, . . .Vm}. Now T2 =
∑n

i=2 Z̃i. We can verify that for each n, {S̃m, F̃m}
n
m=2 is a sequence

of zero mean and square integrable martingale. In order to prove the normality of Z̃2, according to [8], it suffices to show
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the following two results:∑n
i=2 E[Z̃

2
i |F̃i−1]

σ̃ 2
2

p
→ 1

and for any ϵ > 0,

σ̃−2
2

n∑
i=2

E[Z̃2
i I(|Z̃i| > ϵσ̃2|)|F̃i−1]

p
→ 0.

Below we will prove the first result. Note that
n∑

i=2

E[Z̃2
i |F̃i−1] =

1
(n − 1)2

n∑
i=2

E[(
i−1∑
k=1

(V X
i )

⊤V X
k (V

Y
i )

⊤V Y
k )

2
|F̃i−1]

=
1

(n − 1)2

n∑
i=2

E[(
i−1∑

k1,k2=1

(V X
k1 )

⊤V X
i (V

X
i )

⊤V X
k2 (V

Y
k1 )

⊤V Y
i (V

Y
i )

⊤V Y
k2 )|F̃i−1]

=
1

(n − 1)2

n∑
i=2

i−1∑
k1,k2=1

(V X
k1 )

⊤E[V X
i (V

X
i )

⊤
|F̃i−1]V X

k2 (V
Y
k1 )

⊤E[V Y
i (R

Y
i )

⊤
|F̃i−1]V Y

k2

=
1

(n − 1)2

n∑
i=2

i−1∑
k=1

(V X
k )

⊤BXV X
k (V

Y
k )

⊤BYV Y
k +

1
(n − 1)2

n∑
i=2

i−1∑
k1 ̸=k2

(V X
k1 )

⊤BXV X
k2 (V

Y
k1 )

⊤BYV Y
k2

.
= C3 + C4.

By simple algebra, we can obtain that E(C3) = σ̃ 2
2 , E(C4) = 0 and

var(C3) =
1

(n − 1)4

n∑
i=2

j2{E((V X
k )

⊤BXV X
k (V

Y
k )

⊤BYV Y
k )

2
− tr2(B2

X )tr
2(B2

Y )};

var(C2) =
1

(n − 1)4

n∑
i=3

i(n − i + 1)(i − 1)
2

tr(B4
X )tr(B

4
Y ) = op(σ̃ 4

2 ).

By Lemma 1 we can easily get E((V X
k )

⊤BXV X
k )

2
= O(1)E2((V X

k )
⊤BXV X

k ) = O(tr2(B2
X )), and similarly, we get E((V Y

k )
⊤BYV Y

k )
2

= O(tr2(B2
Y )). Hence var(C3) = op(σ̃ 4

2 ) and C3/σ̃
2
2

p
→ 1. By using condition (C4′), we have var(C4) = op(σ̃ 4

2 ), which implies
that C4 = op(σ̃ 2

2 ).
Next, we will prove the second result. Note that

σ̃−2
2

n∑
i=2

E[Z̃2
i I(|Z̃i| > ϵσ̃2|)|F̃i−1] ≤ σ̃−4

2 ϵ−2
n∑

i=2

E[Z̃4
i |F̃i−1].

Accordingly, the assertion of this lemma is true if we can show E
{∑n

i=2 E[Z̃
4
i |F̃i−1]

}
= o(σ̃ 4

2 ). Note that

E

{
n∑

i=2

E[Z̃4
i |F̃i−1]

}
=

n∑
i=2

E(Z̃4
i ) = O(n−4)

n∑
i=2

E(
i−1∑
k=1

(V X
k )

⊤BXV X
k (V

Y
k )

⊤BYV Y
k )

4,

which can be decomposed as 3Q̃ + P̃ . Here

Q̃ =O(n−4)
n∑

i=2

i−1∑ i−1∑
s<t

E((V X
i )

⊤BXV X
s (V

X
s )

⊤BXV X
i (V

X
i )

⊤BXV X
t (V

X
t )

⊤BXV X
i

× (V Y
i )

⊤BYV Y
s (V

Y
s )

⊤BYV Y
i (V

Y
i )

⊤BYBYV Y
t (V

Y
t )

⊤BYV Y
i ),

P̃ =O(n−4)
n∑

j=2

j−1∑
i=1

E((V X
i )

⊤BXV X
k )

4E((V Y
i )

⊤BYV Y
k )

4.

Obviously, Q̃ = O(n−1)E((V X
i )

⊤BXV X
s (V

X
s )

⊤BXV X
i )

2E((V Y
i )

⊤BYV Y
s (V

Y
s )

⊤BYV Y
i )

2. By Lemma 1,we have

E((V X
i )

⊤BXV X
s (V

X
s )

⊤BXV X
i )

2
= O(1)E2((V X

i )
⊤BXV X

s (V
X
s )

⊤BXV X
i ) = O(tr4(B2

X ))

and E((V X
i )

⊤BXV X
k )

4
= O(tr4(V 2

X )). Then we can obtain that Q̃ = o(σ̃ 4
2 ), P̃ = o(σ̃ 4

2 ) and T2/
√
var(T2)

d
→ N (0, 1), where

var(T2) = 2n(n − 1)−1tr(B2
X )tr(B

2
Y ). □
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Proof of Proposition 3. Under H0, we can decompose Tρ as follows,

Tρ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y ℓ)⊤U(Y k − Y j)}

=
1

(n − 1)(n − 2)(n − 3)

∗∑
(V X

i + V X
j + W X

ij )
⊤(V X

k + V X
ℓ + W X

kℓ) × (V Y
i + V Y

ℓ + W Y
iℓ)

⊤(V Y
k + V Y

j + W Y
kj)

=
2

n − 1

∗∑
{(V X

i )
⊤V X

k (V
Y
i )

⊤V Y
k } +

12
(n − 1)(n − 2)

∗∑
{(V X

i )
⊤V X

k (V
Y
i )

⊤V Y
ℓ }

+
4

(n − 1)(n − 2)(n − 3)

∗∑
{(V X

i )
⊤V X

k (V
Y
j )

⊤V Y
ℓ }

+ Op(n−3)
∗∑[

(W X
ij )

⊤V X
k (V

Y
j )

⊤V Y
ℓ + (W X

ij )
⊤W X

kℓU(Y i − Y j)⊤U(Y k − Y ℓ)

+ (W X
ij )

⊤V X
k (V

Y
i )

⊤V Y
ℓ + (W X

ij )
⊤V X

k (W
Y
iℓ)

⊤V Y
k + (W X

ij )
⊤W X

kℓ(W
Y
iℓ)

⊤W Y
kj

+ U(X i − X j)⊤U(X k − Xℓ)(W Y
iℓ)

⊤W Y
kj + (W X

ij )
⊤W X

kℓ(W
Y
iℓ)

⊤V Y
k

]
.
= J1 + J2 + J3 + J4.

Based on Lemma 6, it can be concluded that J1/σ2
d

→ N (0, 1), where σ 2
2 = 8n(n − 1)−1tr(B2

X )tr(B
2
Y ). Thus we only need

to show the other parts are all op(σ2). In fact,

E(J22 ) = O(n−1)E((V X
i )

⊤V X
k (V

Y
i )

⊤V Y
ℓ )

2
= O(n−1)tr(B2

X )tr(B
2
Y ) = op(σ 2

2 ),

E(J23 ) = O(n−2)E((V X
i )

⊤V X
k (V

Y
j )

⊤V Y
ℓ )

2
= O(n−2)tr(B2

X )tr(B
2
Y ) = op(σ 2

2 ).

For J4, we just consider the first part in J4, and rest part can be handled in the similar way.

E
(
O(n−6)

∗∑
(W X

ij )
⊤V X

k (V
Y
j )

⊤V Y
ℓ

)2
=O(n−3)E

(
(W X

ij )
⊤V X

k (V
Y
j )

⊤V Y
ℓ

)2
=O(n−3)E((W X

ij )
⊤V X

k (V
X
k )

⊤W X
ij )E((V

Y
j )

⊤V Y
ℓ )

2
= O(n−3)E((W X

ij )
⊤BXW X

ij )tr(B
2
Y ).

Next, we will show E((W X
ij )

⊤BXW X
ij ) = Op(tr(B2

X )). In fact, E
(
U(X i − X j)⊤BXU(X i − X j)

)
= Op(tr(B2

X )), because

E
(
U(X i − X j)⊤BXU(X i − X j)

)
=U(X i − X j)⊤BXU(X i − X j) = {

X i − X j

∥X i − X j∥
}
⊤BXU(X i − X j)

={
X i − X0 + X0 − X j

∥X i − X j∥
}
⊤BXU(X i − X j)

={
X i − X0

∥X i − X j∥
}
⊤BXU(X i − X j) + {

X0 − X j

∥X i − X j∥
}
⊤BXU(X i − X j)

=U(X i − X0)⊤BXU(X i − X j)
∥X i − X0∥

∥X i − X j∥
+ U(X0 − X j)⊤BXU(X i − X j)

∥X0 − X j∥

∥X i − X j∥
.

Additionally,

E(U(X i − X0)⊤BXU(X i − X j)
∥X i − X0∥

∥X i − X j∥
) =E(E(U(X i − X0)⊤BXU(X i − X j)

∥X i − X0∥

∥X i − X j∥
|X i))

=E((V X
i )

⊤BXV X
i )E(

∥X i − X0∥

∥X i − X j∥
) = Op(tr(B2

X )).

So, we have E(O(n−6)
∑

∗(W X
ij )

⊤V X
k (V

Y
j )

⊤V Y
ℓ )

2
= O(n−3)tr(B2

X )tr(B
2
Y ) = op(σ 2

2 ), which completes this proof. □

Proof of Proposition 4.

σ̂ 2
2 =

1
2n2(n − 1)2(n − 2)2(n − 3)2

∗∑
(U(X i − X j)⊤U(X k − Xℓ))2 ×

∗∑
(U(Y i − Y j)⊤U(Y k − Y ℓ))2

=
8

n2(n − 1)2

∗∑
((V X

i )
⊤V X

j )
2

∗∑
((V Y

i )
⊤V Y

j )
2
+ op(σ 2

2 ).
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Obviously, E
(
8{n2(n− 1)2}−1∑∗((V X

i )
⊤V X

j )
2∑∗((V Y

i )
⊤V Y

j )
2
)

= 8n(n− 1)−1tr(B2
X )tr(B

2
Y ). Then E(σ̂ 2

2 ) = σ 2
2 (1+ op(1)) and

var
( 8
n2(n − 1)2

∗∑
((V X

i )
⊤V X

j )
2

∗∑
((V Y

i )
⊤V Y

j )
2)2

=O(n−4)E((V X
i )

⊤V X
j )

4E((V Y
i )

⊤V Y
j )

4
+ O(n−2)E{((V X

i )
⊤V X

j )
2((V X

i )
⊤V X

ℓ )
2
}E{((V Y

i )
⊤V Y

j )
2((V Y

i )
⊤V Y

ℓ )
2
}

=O(n−4tr2(B2
X )tr

2(B2
Y )) + O(n−2tr2(B2

X )tr
2(B2

Y )) = op(σ 4
2 ).

Thus, σ̂ 2
2 = σ 2

2 (1 + op(1)). □

Next, we will prove the corresponding results under the alternative hypothesis. Let V X∗

i = E(U(X∗

i − X∗

j )|X
∗

i ),
V X∗

j = −E(U(X∗

i − X∗

j )|X
∗

j ), V
Y∗

i = E(U(Y ∗

i − Y ∗

j )|Y
∗

i ), V
Y∗

j = −E(U(Y ∗

i − Y ∗

j )|Y
∗

j ), U(Y
∗

i − Y ∗

j ) = V Y∗

i + V Y∗

j + W Y∗

ij ,
U(Y ∗

k − Y ∗

ℓ) = V Y∗

k + V Y∗

ℓ +W Y∗

kℓ , U(X
∗

i − X∗

j ) = V X∗

i + V X∗

j +W X∗

ij , U(X∗

k − X∗

ℓ) = V X∗

k + V X∗

ℓ +W X∗

kℓ , B∗

X = E(V X∗

i (V X∗

i )⊤)
and B∗

Y = E(V Y∗

i (V Y∗

i )⊤).
Taking the same procedure as in Proposition 3, under conditions (C1′), (C2′) and (C4′), we have

Tρ/2 =T2 +
1

n − 1

∑
1≤i<j≤n

(r̃X
∗

ij )−1 r̃Y
∗

ij (r̃X
∗

ij )−1 r̃Y
∗

ij (V Y∗

i )⊤M⊤

1 M1V Y∗

j (V Y∗

i )⊤V Y∗

j

+
1

n − 1

∑
1≤i<j≤n

(r̃Y
∗

ij )−1 r̃X
∗

ij (r̃Y
∗

ij )−1 r̃X
∗

ij (V X∗

i )⊤M⊤

2 M2V X∗

j (V X∗

i )⊤V X∗

j

+
1

n − 1

∑
1≤i<j≤n

(r̃X
∗

ij )−1 r̃Y
∗

ij (r̃Y
∗

ij )−1 r̃X
∗

ij (V Y∗

i )⊤M⊤

1 V
X∗

j (V Y∗

i )⊤M2V X∗

j

+
1

n − 1

∑
1≤i<j≤n

(r̃Y
∗

ij )−1 r̃X
∗

ij (r̃X
∗

ij )−1 r̃Y
∗

ij (V X∗

i )⊤M⊤

2 V
Y∗

j (V X∗

i )⊤M1V Y∗

j

+
1

n − 1

∑
1≤i<j≤n

(r̃Y
∗

ij )−1 r̃X
∗

ij (V X∗

i )⊤V X∗

j (V Y∗

i )⊤M2V X∗

j

+
1

n − 1

∑
1≤i<j≤n

(r̃X
∗

ij )−1 r̃Y
∗

ij (V Y∗

i )⊤M⊤

1 V
X∗

j (V Y∗

i )⊤V Y∗

j + op(σ2).

By condition (C4′), we have

E

⎧⎨⎩ 1
n − 1

∑
1≤i<j≤n

(r̃Y
∗

ij )−1 r̃X
∗

ij (V X∗

i )⊤V X∗

j (V Y∗

i )⊤M2V X∗

j

⎫⎬⎭
2

=O[{E((r̃Y
∗

ij )−1 r̃X
∗

ij )}2tr(M2B2
XM

⊤

2 BY )] = o(σ 2
2 ),

E

⎧⎨⎩ 1
n − 1

∑
1≤i<j≤n

(r̃X
∗

ij )−1 r̃Y
∗

ij (V Y∗

i )⊤M⊤

1 V
X∗

j (V Y∗

i )⊤V Y∗

j

⎫⎬⎭
2

=O[{E((r̃X
∗

ij )−1 r̃Y
∗

ij )}2tr(M1B2
YM

⊤

1 BX )] = o(σ 2
2 ),

1
n − 1

∑
1≤i<j≤n

(r̃Y
∗

ij )−1 r̃X
∗

ij (r̃Y
∗

ij )−1 r̃X
∗

ij (V X∗

i )⊤M⊤

2 M2V X∗

j (V X∗

i )⊤V X∗

j =
n
2
{E((r̃Y

∗

ij )−1 r̃X
∗

ij )}2tr(M2B∗2
X M⊤

2 ) + op(σ2),

1
n − 1

∑
1≤i<j≤n

(r̃X
∗

ij )−1 r̃Y
∗

ij (r̃X
∗

ij )−1 r̃Y
∗

ij (V Y∗

i )⊤M⊤

1 M1V Y∗

j (V Y∗

i )⊤V Y∗

j =
n
2
{E((r̃X

∗

ij )−1 r̃Y
∗

ij )}2tr(M1B∗2
Y M⊤

1 ) + op(σ2),

1
n − 1

∑
1≤i<j≤n

(r̃X
∗

ij )−1 r̃Y
∗

ij (r̃Y
∗

ij )−1 r̃X
∗

ij (V Y∗

i )⊤M⊤

1 V
X∗

j (V Y∗

i )⊤M2V X∗

j =
n
2
{E((r̃X

∗

ij )−1 r̃Y
∗

ij )E((r̃Y
∗

ij )−1 r̃X
∗

ij )}tr(M1B∗

YM2B∗

X )

+ op(σ2),
1

n − 1

∑
1≤i<j≤n

, (r̃Y
∗

ij )−1 r̃X
∗

ij (r̃X
∗

ij )−1 r̃Y
∗

ij (V X∗

i )⊤M⊤

2 V
Y∗

j (V X∗

i )⊤M1V Y∗

j =
n
2
{E((r̃X

∗

ij )−1 r̃Y
∗

ij )E((r̃Y
∗

ij )−1 r̃X
∗

ij )}tr(M2B∗

XM1B∗

Y )

+ op(σ2).

Thus, Tρ/2 = T2 + ntr(Λ̃
⊤

Λ̃)/2 + op(σ2). According to the results of Theorem 3-(i), we can easily obtain the result. Here
we complete the proof.
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Proof of Theorem 4. First, we will prove the results under the null hypothesis. Define

Tτ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y j)⊤U(Y k − Y ℓ)},

σ̂ 2
3 =

2
n2(n − 1)2(n − 2)2(n − 3)2

∗∑
(U(X i − X j)⊤U(X k − Xℓ))2 ×

∗∑
(U(Y i − Y j)⊤U(Y k − Y ℓ))2.

Hence THT = Tτ/σ̂3. To prove Theorem 4-(i), we only need to prove the following propositions.

Proposition 5. Under conditions (C1), (C2) given in Section 2 and H0 in (1), as n → ∞, Tτ/σ3
d

→ N (0, 1), where
σ 2
3 = 32n(n − 1)−1tr(B2

X )tr(B
2
Y ).

Proposition 6. Under conditions (C1) and (C2) given in Section 2, as n → ∞, σ̂ 2
3 /σ 2

3
p

→ 1.

Proof of Proposition 5. Under H0, similar to Tρ , we can decompose Tτ as follows:

Tτ =
1

(n − 1)(n − 2)(n − 3)

∗∑
{U(X i − X j)⊤U(X k − Xℓ)U(Y i − Y j)⊤U(Y k − Y ℓ)}

=
4

n − 1

∗∑
{(V X

i )
⊤V X

k (V
Y
i )

⊤V Y
k } +

8
(n − 1)(n − 2)

∗∑
{(V X

i )
⊤V X

k (V
Y
i )

⊤V Y
ℓ }

+
4

(n − 1)(n − 2)(n − 3)

∗∑
{(V X

i )
⊤V X

k (V
Y
j )

⊤V Y
ℓ } + Op(n−3)

∗∑[
(W X

ij )
⊤V X

k (V
Y
j )

⊤V Y
ℓ

+ (W X
ij )

⊤V X
k (V

Y
i )

⊤V Y
ℓ + (W X

ij )
⊤V X

k (W
Y
ij )

⊤V Y
k + (W X

ij )
⊤W X

kℓU(Y i − Y j)⊤U(Y k − Y ℓ)

+ U(X i − X j)⊤U(X k − Xℓ)(W Y
ij )

⊤W Y
kℓ + (W X

ij )
⊤W X

kℓ(W
Y
ij )

⊤V Y
k + (W X

ij )
⊤W X

kℓ(W
Y
ij )

⊤W Y
kℓ

]
=

4
n − 1

∗∑
{(V X

i )
⊤V X

k (V
Y
i )

⊤V Y
k } + op(σ3).

Based on Lemma 6, it can be concluded that Tτ/σ3
d

→ N (0, 1). □

Proof of Proposition 6.

σ̂ 2
3 =

2
n2(n − 1)2(n − 2)2(n − 3)2

∗∑(
U(X i − X j)⊤U(X k − Xℓ)

)2
×

∗∑(
U(Y i − Y j)⊤U(Y k − Y ℓ)

)2
=

32
n2(n − 1)2

∗∑(
(V X

i )
⊤V X

j

)2 ∗∑(
(V Y

i )
⊤V Y

j

)2
+ op(σ 2

3 ).

E
(
32{n2(n − 1)2}−1∑∗((V X

i )
⊤V X

j )
2∑∗((V Y

i )
⊤V Y

j )
2
)

= σ 2
3 . Since

var

{
2

n2(n − 1)2

∗∑(
U(X i − X j)⊤U(X k − Xℓ)

)2 ∗∑(
U(Y i − Y j)⊤U(Y k − Y ℓ)

)2}
=O(n−4)E

(
(V X

i )
⊤V X

j

)4E((V Y
i )

⊤V Y
j

)4
+ O(n−2)E

{(
(V X

i )
⊤V X

j

)2((V X
i )

⊤V X
ℓ

)2}E{((V Y
i )

⊤V Y
j

)2((V Y
i )

⊤V Y
ℓ

)2}
=O(n−4tr2(B2

X )tr
2(B2

Y )) + O(n−2tr2(B2
X )tr

2(B2
Y )) = op(σ 4

3 ),

we can see that σ̂ 2
3 = σ 2

3 (1 + op(1)). □

The proof of Theorem 4-(ii) is very similar to the proof of Theorem 3-(ii), hence we omit the details here.
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