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Abstract
Joint entity and relation extraction is a process001
that identifies entity pairs and their relations002
using a single model. We focus on the prob-003
lem of joint extraction in distantly-labeled data,004
whose labels are generated by aligning entity005
mentions with corresponding entity and rela-006
tion tags using a Knowledge Base (KB). One007
key challenge is the presence of noisy labels008
arising from both incorrect entity and relation009
annotations, which significantly impairs the010
quality of supervised learning. Existing ap-011
proaches, either considering only one source012
of noise or making decisions using external013
knowledge, cannot well-utilize significant in-014
formation in the training data. We propose015
DENRL, a generalizable framework that 1) in-016
corporates a lightweight transformer backbone017
into a sequence labeling scheme for joint tag-018
ging, and 2) employs a noise-robust framework019
that regularizes the tagging model with signifi-020
cant relation patterns and entity-relation depen-021
dencies, then iteratively self-adapts to instances022
with less noise from both sources. Surprisingly,023
experiments on two benchmark datasets show024
that DENRL, using merely its own parametric025
distribution and simple data-driven heuristics,026
outperforms strong baselines by a large margin027
with better interpretability.028

1 Introduction029

Joint extraction aims to detect entities along with030

their relations using a single model (see Figure 1),031

which is a critical step in automatic knowledge base032

construction (Yu et al., 2020). In order to cheaply033

acquire a large amount of labeled joint training data,034

distant supervision (DS) (Mintz et al., 2009) was035

proposed to automatically generate training data by036

aligning knowledge base (KB) with an unlabeled037

corpus. It assumes that if an entity pair have a038

relationship in a KB, all sentences that contain this039

pair express the corresponding relation.040

Nevertheless, DS brings plenty of noisy labels041

which significantly degrade the performance of the042
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Joint Extraction Examples

[Bill Gates] and [Allen] founded the [Microsoft] in [Albuquerque], [New Mexico]. 

1Founder_of

2Founder_of

4Located_in

3Located_in 5Contains

Extracted Quadruplets
1 {Bill Gates, PERSON, Microsoft, Founder_of}
2 {Allen, PERSON, Microsoft, Founder_of}

4 {Microsoft, ORGANIZATION, New Mexico, Located_in}
3 {Microsoft, ORGANIZATION, Albuquerque, Located_in}

5 {New Mexico, LOCATION, Albuquerque, Contains}

Figure 1: An example of joint extraction on a sentence
with multiple relations that share the same entity, e.g.,
“Microsoft” in both the third and the forth relations.

joint extraction models. For example, given a sen- 043

tence “Bill Gates lived in Albuquerque” and the 044

sentence in Figure 1, DS may assign the relation 045

type between “Bill Gates” and “Albuquerque” as 046

Place_lived for both sentences. The words “lived 047

in” in the first sentence is the pattern that explains 048

the relation type, thus it is correctly labeled. While 049

the second sentence is noisy due to the lack of 050

corresponding relation pattern. Moreover, due to 051

the ambiguity and limited coverage over entities in 052

open-domain KBs, DS also generates noisy and in- 053

complete entity labels. In some cases, DS may lead 054

to over 30% noisy instances (Mintz et al., 2009), 055

making it impossible to learn useful features. 056

Previous studies for handling such noisy 057

labels consider either weakly-labeled entities, 058

i.e., distantly-supervised named entity recogni- 059

tion (NER) (Shaalan, 2014), or noisy relation 060

labels, i.e., distantly-supervised relation extrac- 061

tion (RE) (Rink and Harabagiu, 2010), where 062

they focus on designing novel hand-crafted rela- 063

tion features (Yu et al., 2020), neural architec- 064

tures (Chen et al., 2020), and tagging scheme (Dai 065

et al., 2019) to improve relation extraction perfor- 066

mance. Additionally, In-Context Learning (ICL) 067

using external knowledge of Large Language Mod- 068

els (LLMs) (Pang et al., 2023) is popular. However, 069

they are resource demanding, sensitive to prompt 070

design, and may struggle with complex tasks. 071
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To cheaply mitigate both noise sources,072

we propose DENRL—Distantly-supervised joint073

Extraction with Noise-Robust Learning. DENRL074

assumes that 1) reliable relation labels, whose re-075

lation patterns significantly indicate the relation-076

ship between entity pairs, should be explained by077

a model, and 2) reliable relation labels also im-078

plicitly indicate reliable entity tags of the corre-079

sponding entity pairs. Specifically, DENRL ap-080

plies Bag-of-word Regularization (BR) to guide081

a model to attend to significant relation patterns082

which explain correct relation labels, and Ontology-083

based Logic Fusion (OLF) that teaches underly-084

ing entity-relation dependencies with Probabilistic085

Soft Logic (PSL) (Bach et al., 2017). These two086

information sources are integrated to form a noise-087

robust loss, which regularizes a tagging model to088

learn from instances with correct entity and rela-089

tion labels. Next, if a learned model clearly lo-090

cates the relation patterns and understands entity-091

relation logic of candidate instances, they are se-092

lected for subsequent adaptive learning. We further093

sample negative instances that contain correspond-094

ing head or tail entities of recognized patterns in095

those candidates to reduce entity noise. We itera-096

tively learn an interpretable model and select high-097

quality instances. These two-fold steps are mutu-098

ally reinforced—a more interpretable model helps099

select a higher quality subset, and vice versa.100

Given the superiority of unified joint extraction101

methods, we introduce a sequence labeling (Zheng102

et al., 2017) method to tag entities and their rela-103

tions simultaneously as token classification. We104

incorporate a GPT-2 (Radford et al., 2019) back-105

bone that learns rich feature representations into106

the tagging scheme to benefit the information prop-107

agation between relations and entities. The trans-108

former attention mechanism builds direct connec-109

tion between words and contributes to extracting110

long-range relations (Li et al., 2022, 2023a). Its111

multi-head attention weights indicate interactions112

between each pair of words, which is further lever-113

aged by self-matching to produce position-aware114

representations. These representations are finally115

used to decode different tagging results and extract116

all entities together with their relations.117

2 Joint Extraction Architecture118

We incorporate a pre-trained GPT-2 backbone into119

our sequence tagging scheme to jointly extract en-120

tities and their relations (see Figure 3).121
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Tagging Examples

Bill

Bill Gates Allen founded the Microsoft in Albuquerque , New Mexico

I-PER B-F_O

and

Allen

Microsoft B-L_I B-L_I I-L_I

…
…

…

New B-Contains B-LOC

…

B-PER

B-PER B-F_O

B-ORG

I-LOC

{Bill Gates, PER, Microsoft, F_O}

{Allen, PER, Microsoft, F_O}

{Microsoft, ORG, Albuquerque, L_I}
{Microsoft, ORG, New Mexico, L_I}

{New Mexico, LOC, Albuquerque, Contains}

Figure 2: A example of our tagging scheme. For each
head entity, we fill a T -tag sequence to represent cor-
responding relations. PER, ORG, LOC are abbrevi-
ations for entity PERSON, ORGANIZATION, LOCA-
TION; F_O, L_I for relation Founder_of, Located_in.

2.1 Tagging Scheme 122

To extract both entities (mention and type) and re- 123

lations, we tag quadruplets {e1, tag1, e2, re} for 124

each start position p and define “BIO” signs to 125

encode positions (see Figure 2). Here, e1 is the 126

detected entity at p (head entity), tag1 is the entity 127

type of e1, e2 is other detected entity that has rela- 128

tionship with e1 (tail entity), and re is the predicted 129

relation type between e1 and e2. For a T -token 130

sentence, we annotate T different tag sequences 131

according to different start positions. 132

For each tag sequence, if p is the start of an en- 133

tity (this sequence is an instance), the entity type is 134

labeled at p, other entities which have relationship 135

to the entity at p are labeled with relation types. 136

The rest of tokens are labeled “O” (Outside), mean- 137

ing they do not correspond to the head entity. In 138

this way, each tag sequence will produce a relation 139

quadruplet. For example, if p is 7, the head entity is 140

“Microsoft” and its tag is ORG. Other entities, such 141

as “Albuquerque” and “New Mexico”, are labeled 142

as L_I and L_I indicating their (unidirectional) re- 143

lations with “Microsoft”. If p is 9, the head entity 144

“Albuquerque” has no relationship with other enti- 145

ties, thus only the entity type LOC is labeled. If p 146

is 13, all tokens are labeled as “O” because there is 147

no entity at the head position to attend to. 148

We define instances that contain at least one re- 149

lation as positive instances (e.g., p is 7), and those 150

without relations as negative instances (e.g., p is 9). 151

“BIO” (Begin, Inside, Outside) signs are used to 152

indicate the position information of tokens in each 153

entity for both entity and relation type annotation 154

to extract multi-word entities. Note that we do not 155

need the tail entity type, because every entity will 156

be queried and we are able to obtain all entity types 157

as well as their relations from the T tag sequences. 158
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Figure 3: An overview of DENRL framework. The left part is our position-attentive joint tagging model, which
receives a sentence input and different start position p to extract all entities and relations. at are position-attention
weights and zt are sequence scores. The right part is our noise-robust learning mechanism, which employs BR (on
at) and OLF (on zt) to guide the model to attend to significant patterns and entity-relation dependencies. Then,
a fitness score u for each training instance is calculated to select and build new distributed training set as well as
confident pattern set. These two steps are run iteratively as self-adaptive learning.

2.2 Tagging Model159

GPT-2 with Self-Matching We follow GPT-160

2 (Radford et al., 2019) to use a multilayer trans-161

former (Vaswani et al., 2017) that takes an in-162

put sequence S = {w1, ...wT } and converts it163

into token-level representations h0 = {ht}Tt=1,164

where ht ∈ Rd is a d-dimensional vector corre-165

sponding to the t-th token in S. The model ap-166

plies L transformer layers over the hidden vec-167

tors to produce contextual representations: hl =168

TRANSFORMER(l)(hl−1), l ∈ [1, L]. Each layer169

contains a Multi-Head Self-Attention (MHSA)170

layer followed by a Feed-Forward Network (FFN)171

over previous hidden state hl−1. The final represen-172

tations hL ∈ RT×d integrate the contextual infor-173

mation of all previous tokens but are inadequate for174

decoding a T -tag sequence, since for each position175

p we still need to encode e1 and its overlapping176

relations re with other entities e2.177

We define Self-Matching (Tan et al., 2018) that178

calculates position-attention at between tokens at179

start position p as well as each target position t:180

at = softmax(
{
atj
}T

j=1
)

s.t. atj = w⊤(hL
p + hL

t + hL
j )

(1)181

where w ∈ Rd is a parameter to be learned, hp,182

ht, hj ∈ Rd are hidden states at position p, t, j, re-183

spectively. atj is the score computed by comparing184

hp and ht with each hidden state hj . at ∈ RT is185

the softmax attention produced by normalizing atj .186

The start hidden state hp serves as comparing with187

the sentence representations to encode position in- 188

formation, and ht matches the sentence represen- 189

tations against itself to collect context information. 190

The position-aware representation mt ∈ RT×d is 191

an attention-weighted sentence vector: 192

mt = a⊤
t h

L (2) 193

We concatenate ht and mt to generate position- 194

aware and context-aware representations {xt}Tt=1: 195

xt = [ht;mt] (3) 196

For each start position, self-matching produces 197

different sentence representations and thus can 198

model different tag sequences of a sentence. 199

CRF Decoder CRF (Lafferty et al., 2001) con- 200

siders the correlations between labels in neighbor- 201

hoods and jointly decodes the best chain of la- 202

bels, which benefits sequence labeling models. For 203

each position-aware representation xt, the input 204

sequence scores Z = {zt}Tt=1 is generated by: 205

zt = W xxt (4) 206

where zt ∈ RV is tag score of the t-th token, V 207

is the number of distinct tags, and zjt is the score 208

of the j-th tag at position t. 209

For a sequence of labels y = {y1, ..., yT }, the 210

decoding score score(Z,y) is the sum of transi- 211

tion score from tag yt to tag yt+1, plus the input 212

score zytt for each token position t. The conditional 213

probability p(y|Z) is the softmax of score(Z,y) 214
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over all possible label sequences y′ for Z. We max-215

imize the log-likelihood of correct tag sequences216

during training:217

Lc =
∑

i
log p(y|Z) (5)218

Decoding searches for the tag sequence y∗ that219

maximizes the decoding score. The best tag se-220

quence y∗ is computed using the Viterbi algorithm.221

3 Noise-Robust Learning222

To reduce the impact of noisy labels on tagging per-223

formance, we introduce Bow Regularization (BR)224

to attend to confident relation patterns for reduc-225

ing relation noise and Ontology-based Logic Fu-226

sion (OLF) to increase entity-relation coherence227

for reducing entity noise. Finally, we employ Self-228

Adaptive Learning (SAL) to iteratively train on229

instances that can be explained by the model.230

3.1 Bag-of-word Regularization (BR)231

Assuming reliable relation patterns are explainable232

to a model itself, we propose average BoW233

frequency as an instance-level pattern oracle to234

guide the model’s position-attention for joint235

tagging. For an input sentence S, an entity pair236

(e1, e2) in S, a relation label re, and a relation237

pattern p that explains the relation re of e1 and e2,238

we define BoW frequency as the corresponding239

guidance score ap, i.e., Pattern Significance,240

conditional on pattern p. Take the relation241

Contains as an example, its BoW is a set of tokens242

{“capital”, “section”, “of”, “areas”, “in”, ...}243

which appear in a corresponding pattern set244

{“capital of”, “section in”, “areas of”, ...}. The245

motivation is to guide the model to explore new246

high-quality patterns such as “section of ”, “areas247

in”, etc. The guidance aI for an instance I248

is the average of ap regarding all patterns m249

corresponding to each relation re in S:250

ap = softmax({BoWt}Tt=1)

aI = AvgPooling (ap1 , · · · ,ap|RI|)
(6)251

where BoWt represents the BoW frequency252

of wt under relation re if wt belongs to entity253

words or corresponding relation pattern words, e.g.,254

f(“of”|Contains) = 2. |RI | is the number of dis-255

tinct relation types in instance I.256

We expect a joint tagger to approximate257

its position-attention aS to aI , where aS =258

AvgPooling (a1, . . . ,aT ) is the average pooling 259

of model’s position-attention at defined in Equa- 260

tion (1) for each position j in S. We apply Mean 261

Squared Error (MSE) as the optimized function: 262

LBR = MSE(aI ,aS) =
∑

(aI − aS)2 (7) 263

3.2 Ontology-Based Logic Fusion (OLF) 264

Probabilistic Soft Logic (PSL) (Bach et al., 2017) 265

uses soft truth values for predicates in an interval 266

between [0, 1], which represents our token classifi- 267

cation probability p(yt|wt) as a convex optimiza- 268

tion problem. We adapt PSL to entity-relation de- 269

pendency rules according to data ontology. For ex- 270

ample, if the predicted relation type is Founder_of, 271

the head entity type is expected to be PERSON. 272

Training instances that violate any of these rules 273

are penalized to enhance comprehension of entity- 274

relation coherence. Suppose BR guides a model 275

to recognize confident relations, OLF further helps 276

explore instances with reliable entity labels, espe- 277

cially when no relations exist in them. 278

Particularly, we define Logic Distance based on 279

a model’s softmax scores over the head entity given 280

its predicted relation type to measure how severely 281

it violates logic rules. For a training instance, we 282

define an atom l as each tag and the interpretation 283

I(l) as soft truth value for the atom. For each 284

rule r : RELATION → ENTITY, the distance to 285

satisfaction dr(I) under the interpretation I is: 286

dr(I) = max {0, I(lre)− I(lent)} (8) 287

PSL determines a rule r as satisfied when the 288

truth value of I(lre) − I(lent) ≥ 0. For each in- 289

stance I, we set lent as (head) entity type and lre 290

as relation type. This equation indicates that the 291

smaller I(lent) is, the larger penalty it has. We 292

compute the distance to satisfaction for each rule r 293

and use the smallest one as penalty because at least 294

one rule needs to be satisfied. 295

We learn a distance function D(·, ·) that mini- 296

mizes all possible PSL rule grounding results, as 297

described in Algorithm 1. D(·, ·) should return 0 298

if at least one PSL rule is satisfied. The prediction 299

probability p(y|e1) over head entity e1 is regarded 300

as the interpretation I(lent) of ground atom lent, so 301

as p(y|e2) over tail entity e2 for I(lre) of lre. If no 302

rules is satisfied, the distance is set as 0. We formu- 303

late the distance to satisfaction as a regularization 304

term to penalize inconsistent predictions: 305
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Algorithm 1 Logic Distance Calculation D
Input: Softmax p(y|ei), Prediction ŷi, i ∈ {1, 2},

PSL rulesR w.r.t. ontology;
Output: Distance d;

1: Initialize d← 1; Satisfied← False;
2: for each r : lre → lent ∈ R ∧ ŷ2 == lre do
3: y1 ← lent;
4: d′ ← max {p(ŷ2|e2)− p(y1|e1), 0};
5: d← min {d′, d};
6: Satisfied← True;
7: if Satisfied == False then
8: d← 0.

LOLF =
∑
D(R; {(p(y|ei), ŷi)}) (9)306

where p(y|ei) is the softmax probability of zti307

in Equation (4) for position ti of ei in S , and LOLF308

is the sum of D(·, ·) over all entity-relation pairs309

(e1, e2) in instance I. We finalize a noise-robust310

loss function by summing up (5), (7) and (9):311

L = Lc + αLBR + βLOLF (10)312

where α, β are two balancing hyper-parameters.313

3.3 Self-Adaptive Learning (SAL)314

Self-adaptive learning aims to iteratively select315

high-quality instances with informative relation316

patterns p and entity tags. In each training epoch,317

more precisely-labeled instance are needed to guide318

a model to attend to informative evidence for joint319

extraction. For instance selection, more versatile320

patterns are required to select trustable data and to321

discover more confident relation patterns. Accord-322

ing to the attention mechanism and entity-relation323

logic, a trained tagger can tell the importance of324

each word for identifying the entity pair along with325

their relationship, and predict reasonable entity-326

relation label pairs. For an instance I, if 1) the327

model’s attention weights do not match the target328

attention that explains the relation types in I, or 2)329

its confidence distribution over entity and relation330

tags violates the logic dependencies, this instance331

is likely a false alarm. We add up both BR and332

OLF loss for an instance I to measure its fitness333

u(I), i.e., how likely it is correctly labeled:334

u = σ(MSE(aI ,aS)−D(R; I)) (11)335

where σ is the sigmoid function that bounds u in336

the range [0, 1]. The higher u is, the more confident337

an instance I is. We compute fitness scores for all 338

training instances and select those whose score is 339

larger than a predefined threshold τ . 340

Because trustable relation labels also indicate 341

trustable entity tags, we further consider Entity Se- 342

lection (ES), i.e., selecting negative instances con- 343

taining either the head or tail entity corresponding 344

to each relation pattern in the selected positive can- 345

didates. Specifically, we consider relation pattern p 346

as the text between two entities in an instance. We 347

build an initial trustable pattern set P by counting 348

all patterns up and selecting the top 10% frequent 349

patterns for each relation type. Next, we redis- 350

tribute the training dataset D based on P , where all 351

positive instances that match patterns in P as well 352

as negative instances that contain the head entity or 353

tail entity of these patterns are retained to train the 354

model for a few epochs. Finally, we select more 355

reliable instances according to fitness scores over 356

D, from which we extract new trustable patterns 357

to enrich P . These new confident instances are 358

learned in the subsequent iteration. We repeat the 359

above procedure until the validation F1 converges. 360

4 Experiments 361

4.1 Datasets and Evaluation 362

We evaluate the performance of DENRL on two 363

public datasets: (1) NYT (Riedel et al., 2010). We 364

use the human-annotated test dataset (Jia et al., 365

2019) including 1,024 sentences with 3,280 in- 366

stances and 3,880 quadruplets. The training data 367

is automatically generated by DS (aligning entity 368

pairs from Freebase with handcrafted rules), includ- 369

ing 235k sentences with 692k instances and 353k 370

quadruplets. (2) Wiki-KBP (Ling and Weld, 2012). 371

Its test set is manually annotated in 2013 KBP 372

slot filling assessment results (Ellis et al., 2013) 373

containing 289 sentences with 919 instances and 374

1092 quadruplets. The training data is generated by 375

DS (Liu et al., 2017) including 75k sentences with 376

145k instances and 115k quadruplets. 377

We evaluate the extracted quadruplets for each 378

sentence in terms of Precision (Prec.), Recall 379

(Rec.), and F1. A quadruplet {e1, tag1, e2, re} is 380

marked correct if the relation type re, two entities 381

e1, e2, and head entity type tag1 are all matched. 382

Note that negative quadruplets with “None” rela- 383

tion are also considered for evaluating prediction 384

accuracy. We build a validation set by randomly 385

sampling 10% sentences from the test set. 386
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Method NYT Wiki-KBP
Prec. Rec. F1 Prec. Rec. F1

LSTM-CRF (Zheng et al., 2017) 66.73 35.02 45.93 40.14 35.27 37.55
PA-LSTM-CRF (Dai et al., 2019) 37.90 76.25 50.63 35.82 45.06 39.91
OneIE (Lin et al., 2020) 52.33 64.40 57.74 36.25 46.51 40.74
PURE (Zhong and Chen, 2021) 53.11 65.84 58.79 38.20 44.89 41.28
CoType (Ren et al., 2017) 51.17 55.92 53.44 35.68 46.39 40.34
CNN+RL (Feng et al., 2018) 40.72 58.39 47.98 36.20 44.57 39.95
ARNOR (Jia et al., 2019) 59.64 60.78 60.20 39.37 47.13 42.90
FAN (Hao et al., 2021) 58.22 64.16 61.05 38.81 47.14 42.57
SENT (Ma et al., 2021) 63.88 62.12 62.99 41.37 46.72 43.88
LLM-ICL (Pang et al., 2023) 61.81 58.79 60.26 40.52 45.60 42.91
DENRL (triplet) 70.72±0.49 66.49±0.50 68.60±0.49 42.57±0.32 50.81±0.28 46.29±0.30

DENRL 70.02±0.45 65.84±0.32 67.87±0.38 41.89±0.27 50.14±0.31 45.65±0.29

Table 1: Evaluation results on NYT and Wiki-KBP datasets. Baselines include normal RE methods (the 1st part),
DS RE methods (the 2nd part), and ICL method (the 3rd part). We run the model 5 times to get the average results.

4.2 Baselines387

We compare DENRL with the following baselines:388

LSTM-CRF (Zheng et al., 2017) that converts389

joint extraction to a sequence labeling problem390

based on a novel tagging scheme.391

PA-LSTM-CRF (Dai et al., 2019), which uses392

sequence tagging to jointly extract entities and over-393

lapping relations.394

OneIE (Lin et al., 2020), a table filling approach395

that uses an RNN table encoder to learn sequence396

features for NER and a pre-trained BERT sequence397

encoder to learn table features for RE.398

PURE (Zhong and Chen, 2021), a pipeline ap-399

proach that uses pre-trained BERT entity model to400

first recognize entities and then employs a relation401

model to detect underlying relations.402

CoType (Ren et al., 2017), a feature-based403

method that handles noisy labels based on multi-404

instance learning, assuming at least one mention is405

correct.406

CNN+RL (Feng et al., 2018) that trains an in-407

stance selector and a CNN classifier using rein-408

forcement learning.409

ARNOR (Jia et al., 2019) which uses atten-410

tion regularization and bootstrap learning to reduce411

noise for distantly-supervised RE.412

FAN (Hao et al., 2021), an adversarial method413

including a BERT encoder to reduce noise for414

distantly-supervised RE.415

SENT (Ma et al., 2021), a negative training416

method that selects complementary labels and re-417

labels the noisy instances with BERT for distantly-418

supervised RE.419

LLM-ICL (Pang et al., 2023), we follow the420

basic prompt with two demonstration examples,421

each as a pair of input text and extracted triplets. 422

4.3 Implementation Details 423

For DENRL, we use the gpt2-medium as the sen- 424

tence decoder. For baselines using LSTM, we 425

consider a single layer with a hidden size of 256. 426

For baselines using pre-trained BERT, we use the 427

bert-large-cased. For LLM-ICL, we use Llama2- 428

7B (Touvron et al., 2023). We tune hyperparame- 429

ters on the validation set via grid search. Specif- 430

ically in regularization training, we find optimal 431

parameters α and β as 1 and 0.5 for our considered 432

datasets. We implement DENRL and all baselines 433

in PyTorch, using the AdamW (Loshchilov and 434

Hutter, 2019) optimizer with a learning rate of 5e- 435

4, a dropout rate of 0.2, and a batch size of 8. For 436

instance selection, an empirical fitness threshold 437

is set to 0.5 with the best validation F1. We take 438

a maximum of 5 new patterns in a loop for each 439

relation type. In the SAL stage, we run 5 epochs in 440

the first loop, and 1 epoch in every rest loop until 441

the validation performance converges. 442

4.4 Overall Results 443

As shown in Table 1, DENRL (triplet) denotes 444

ignoring head entity type tag1 when computing 445

correctness, because all baselines only extract 446

triplets {e1, e2, re}. The results of triplet and 447

quadruplet have little difference, indicating that 448

DENRL predicts precise entity types. DENRL sig- 449

nificantly outperforms all baselines in precision 450

and F1 metric. Specifically, it achieves roughly 451

5∼20% F1 improvement on NYT (3∼6% on Wiki- 452

KBP) over the other denoising methods—CoType, 453

CNN+RL, ARNOR, FAN, SENT. Compared to 454

LSTM-CRF that also trains on selected subsets, 455
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Component Prec. Rec. F1
GPT-2+FC 44.28 72.80 55.07
GPT-2+CRF 45.11 75.19 56.40
+IDR 73.12 48.86 58.58
+BR 69.24 53.67 60.47
+OLF 71.37 55.80 62.63
+SAL (DENRL) 70.72 66.49 68.60

Table 2: Evaluation of components in DENRL. GPT-
2+FC and GPT-2+CRF are two backbone models. IDR
denotes initial data redistributing using initial pattern
set. BR and OLF (in this case) are only for the first loop,
SAL stands for self-adaptive learning.

DENRL achieves 31% recall improvements on456

NYT (15% on Wiki-KBP) with still better pre-457

cision, suggesting that we explore more diverse458

entity and relation patterns. Compared to the se-459

quence tagging approach PA-LSTM-CRF, DENRL460

achieves improvements of 32% in precision and461

over 18% F1 improvement. DENRL also out-462

performs baselines using pre-trained transformers463

(OneIE, PURE, FAN, SENT) or LLMs (LLM-ICL),464

showing our noise-robust learning effectively re-465

duces the impact of mislabeled instances on joint466

extraction performance.467

4.5 Ablation Study468

We investigate the effectiveness of several com-469

ponents of DENRL on NYT dataset, as shown in470

Table 2. Before noise reduction, we first evaluate471

the impact of CRF layer by substituting it with a FC472

layer. We found it improves the final performance473

by over 1% F1. We then build an initial redis-474

tributed dataset (via IDR), which helps joint model475

earn over 2% improvement in F1 and a sharp 28%476

precision increase compared to GPT-2+CRF. This477

suggests the original DS dataset contains plenty of478

noise, thus a simple filtering method would effec-479

tively improve the performance.480

However, this initial data induces poor recall481

performance, which means a large proportion of482

true positives with long-tail patterns are mistak-483

enly regarded as false negatives. Assuming that484

some relation patterns in the training data are too485

rare to guide the model learn to attend them, we486

employ BR to training and achieves 5% recall in-487

creases with a slight decline in precision, inducing488

another 2% F1 improvement. This shows the ef-489

fect of guiding the model to understand important490

feature words for identifying relations.491

After we introduce OLF to training, both pre-492

cision and recall improves about 2%, leading to493

another 2% F1 improvement, proving that logic494

Method Prec. Rec. F1
w/o ES 67.82 67.45 67.63
DENRL 70.72 66.49 68.60

Table 3: Comparison of Precision, Recall, and F1 after
using Entity Selection (ES) during SAL.

RELATION: Contains (left: u, right: pattern)
0.749 e2, section of e1
0.692 e2, the capital of e1
... ...
0.548 e2, district of e1
0.554 e2 and other areas of e1
0.539 e2 and elsewhere in the e1
RELATION: Company_worked (left: u, right: pattern)
0.667 e1, the chief executive of e1
0.673 e2 attorney general, e1
... ...
0.595 e1, the president of the e2
0.513 e1, an economist at the e2
0.526 e1, the chairman and chief executive of e2

Table 4: Pattern examples including high-frequency and
top long-tail patterns (right) and corresponding average
fitness scores (left).

rules guide a model to learn the entity-relation de- 495

pendencies and further reduce entity labeling noise. 496

After we obtain an initial model trained by BR 497

and OLF, we continue SAL where DENRL collects 498

more confident long-tail patterns to mitigate false 499

negatives and finally achieves 6% F1 improvement. 500

4.6 Interpretability Study 501

To understand the effect of attention and logic guid- 502

ance, we select some instances from the test set 503

and visualize their attention weights, as well as the 504

model’s softmax probability distribution over all la- 505

bels. As shown in Figure 4, GPT-2+CRF, which is 506

trained on original noisy data without BR or OLF, 507

only focuses on entity pairs and makes wrong pre- 508

dictions. Its logic distance for r : Founder_of → 509

PERSON is dr(I) = max {0, 0.7− 0.4} = 0.3. 510

While DENRL precisely captures important words 511

and correctly predicts the relation. The logic dis- 512

tance for r : Company_worked → PERSON is 513

dr(I) = max {0, 0.8− 0.8} = 0 < 0.3, suggest- 514

ing the effect of OLF. 515

To show that BR explores versatile patterns to 516

enrich pattern set P , we summarize both high- 517

frequency patterns obtained by IDR and meaning- 518

ful long-tail patterns discovered during SAL, and 519

statistic their average fitness (see Table 4). Some 520

long-tail patterns are not similar syntactically but 521

still have over 0.5 average fitness scores, mean- 522

ing the model learns useful semantic correlations 523

between related feature words. 524
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Attention & SoftMax Distribution (GPT-2+PA+CRF)

Entity 1: Lyor Cohen Entity 2: Warner Music Group Relation: Company_worked

start position p

… Anatolia quoted Lyor Cohen, the chief executive of the Warner Music Group, …
0.10 0.27 0.24 0.16 0.12 0.11

PERSON

ORGANIZATION

LOCATION
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Nationality_of

Capital_of

Place_lived
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Place_of_birth

Place_of_death
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Children_of

O
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0.7

(a) GPT-2+CRF
NEC Group Internal Use Only© NEC Laboratories America 202114

Attention & SoftMax Distribution (TAILOR)

Entity 1: Lyor Cohen Entity 2: Warner Music Group Relation: Company_worked

start position p

PERSON

ORGANIZATION

LOCATION

Contains

Nationality_of

Capital_of

Place_lived

Company_worked

Neighborhood_of

Place_of_birth

Place_of_death

Founder_of

Children_of

O

… Anatolia quoted Lyor Cohen, the chief executive of the Warner Music Group, …
0.14 0.12 0.13 0.16 0.11 0.10 0.140.10

0.8

0.8

(b) DENRL

Figure 4: Attention heat maps (top) and softmax probability heat maps (bottom). In this case, e1: Lyor Cohen, e2:
Warner Music Group, and re: Company_worked. GPT-2+CRF misclassifies the relation as Founder_of, because it
only attends to entities. DENRL is able to locate relation indicators and make correct predictions.

We further check the performance of DENRL525

on negative test cases that do not contain relations526

from NYT dataset. After selecting confident candi-527

dates in each epoch, we further choose additional528

trustable negative instances that contain either the529

head or tail entity corresponding to each relation530

pattern in the selected positive candidates during531

bootstrap. We compare the results between meth-532

ods with and without entity selection, as shown533

in Table 3. The improved performance with ES534

demonstrates that a trustable relation pattern also535

indicates reliable entity labels, and partially ex-536

plains the overall superiority of DENRL.537

5 Related Work538

Entities and relations extraction is important to con-539

struct a KB. Traditional methods treat this problem540

as two separated tasks, i.e., NER and RE. Joint541

extraction detects entities and their relations using542

a single model which effectively integrates the in-543

formation of entities and relations, and therefore544

achieve better results in both subtasks (Zheng et al.,545

2017). Among them, unified methods tag enti-546

ties and relation simultaneously, e.g., (Zheng et al.,547

2017) proposes a novel tagging scheme which con-548

verts joint extraction to a sequence labeling prob-549

lem; (Dai et al., 2019) introduces query position550

and sequential tagging to extract overlapping rela-551

tions. These methods avoid producing redundant in-552

formation compared to the parameter-sharing neu-553

ral models (Gupta et al., 2016), and require no554

hand-crafted features that are used in the structured555

systems (Yu et al., 2020; Ren et al., 2017).556

Previous studies on distantly-supervised NER557

rely on simple tricks such as early stopping (Liang558

et al., 2020) and multi-type entity labeling (Shang559

et al., 2018; Meng et al., 2021). For distantly-560

supervised RE, existing methods include multi- 561

instance learning (Lin et al., 2016) that models 562

noise problem on a bag of instances, reinforce- 563

ment learning (RL) (Nooralahzadeh et al., 2019; 564

Hu et al., 2021), adversarial (Chen et al., 2021; Hao 565

et al., 2021) or probabilistic learning (Liu et al., 566

2022; Li et al., 2023b) that selects trustable in- 567

stances, and pattern-based methods (Ratner et al., 568

2016; Shang et al., 2022) that directly model the DS 569

labeling process to find noise patterns, e.g., (Feng 570

et al., 2018) proposes a pattern extractor based on 571

RL and use extracted patterns as features for RE. 572

In recent years, PSL rules have been applied 573

to machine learning topics, including model inter- 574

pretability (Hu et al., 2016), probability reason- 575

ing (Dellert, 2020), sentiment analysis (Gridach, 576

2020), and temporal relation extraction (Zhou et al., 577

2021). We are the first to model entity-relation de- 578

pendencies by designing ontology-based PSL. 579

6 Conclusions 580

We propose DENRL, a noise-robust learning 581

framework for distantly-supervised joint extrac- 582

tion, which consists of a transformer backbone, a 583

new loss function and a self-adaptive learning step. 584

Specifically, we use Bag-of-word regularization 585

and logic fusion to learn important relation patterns 586

and entity-relation dependencies. The regularized 587

model is able to select trustable instances and build 588

a versatile relation pattern set. A self-adaptive 589

learning procedure then iteratively improves the 590

model and dynamically maintains trustable pattern 591

set to reduce both entity and relation noise. In the 592

future, we aim to explore more complex patterns 593

when configuring pattern sets. We will also eval- 594

uate our framework on other tasks such as event 595

extraction and open information extraction. 596
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Limitations597

In this work we incorporate a GPT-2 backbone into598

a sequence tagging scheme for distantly-supervised599

joint extraction. While our current framework con-600

siders GPT-2, it’s designed with flexibility in mind.601

It can be easily adapted to other transformers such602

as BERT, XLNet, and even LLMs like Llama2, as603

the only difference is the computation of the trans-604

former final representations, which is the very first605

step before our architecture designs.606

Though achieving state-of-the-art performance607

compared to other DS methods, DENRL can be608

computation-costly due to the position-attentive609

loss computed on multiple start positions. We fur-610

ther conduct an efficiency analysis in Appendix A,611

demonstrating a relatively small training overhead612

of DENRL compared to other DS methods using613

transformers.614

On the other hand, we focus on relations within615

a sentence and regard words between an entity pair616

as relation patterns. In our future work, we aim to617

consider relations beyond the sentence boundary618

for DS joint extraction to better adapt to real-world619

information extraction scenarios.620

Furthermore, although our OLF is a one-time621

effort and can benefit future training, it is still hand-622

crafted based on ontology, and we aim to design a623

probabilistic method such as model uncertainty to624

quantify more comprehensive underlying relation-625

entity dependencies in the future.626
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A Efficiency Analysis 903

DENRL considers the position-attentive loss cal- 904

culated through traversing transformer logits on 905

different start positions. However, it’s crucial to 906

underscore that our method does not significantly 907

inflate the training time. For a sentence of n to- 908

kens, the computationally-intensive transformer 909

self-attention operations, which typically have an 910

O(n2) complexity, are executed just once per sen- 911

tence. The resultant hidden outputs are then used 912

to perform self-matching and CRF decoding re- 913

garding each start token, which also has an O(n2) 914

complexity but with only few extra trainable param- 915

eters introduced. This layered approach ensures 916

that the overall computational overhead remains 917

manageable. 918

Table 5 reports the average GPU hours per train- 919

ing epoch for each method on the NVIDIA A6000 920

Ada server. We observe that DS methods consume 921

more time compared to their normal counterpart, 922

for example, ARNOR takes up to ×1.6 the over- 923

head of LSTM-CRF. DENRL, although requires 924

more time training the joint model compared to 925
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Method NYT Wiki-KBP
BERT+CRF 0.78 0.70

T5+CRF 0.89 0.82
GPT-2+CRF 0.94 0.88
LSTM-CRF 0.27 0.21

PA-LSTM-CRF 0.35 0.33
OneIE 0.32 0.28
PURE 0.85 0.79

ARNOR 0.43 0.39
FAN 1.62 1.59

SENT 1.43 1.36
DENRL 1.39 1.07

Table 5: Comparison of training overhead (GPU hours)
between baselines and SAL training of DENRL with
different backbones. Bold and underline denote most
efficient and time-consuming methods.

GPT-2+CRF, is more efficient than DS methods926

using transformers (e.g., FAN, SENT).927
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