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ABSTRACT

This paper presents a novel perspective on finding Nash Equilibria (NE) in non-
cooperative games, arguing that cyclical strategies are not chaotic anomalies but
orderly sequences integral to an equilibrium. We establish the theoretical equiva-
lency between a complete set of cyclical strategies and the support set of a Mixed
Strategy NE (MSNE). Our proof demonstrates that cyclical strategies must form
a circular counter, implying that a complete set is necessary to support a MSNE
due to the intrinsic counterbalancing dynamic. This insight enables a novel graph
search learning representation of self-play that finds an NE as a graph search. We
empirically validate our approach by demonstrating improved self-play efficiency
in discovering both a Pure Strategy NE (PSNE) and a MSNE in noncooperative
games such as Connect4 and Naruto Mobile. Our findings offer a more efficient al-
ternative to existing methods like Policy Space Response Oracles (PSRO), which
can be computationally demanding due to the expanding population of opponents.
This research contributes to the fundamental challenge of finding NE in game the-
ory and artificial intelligence, offering a more efficient and theoretically grounded
approach.

1 INTRODUCTION

In 1951, Nash proved that every finite noncooperative game has at least one equilibrium point,
known as Nash Equilibrium (NE) (Nash, 1951). A NE is a situation where no player can benefit
from changing their strategy unilaterally. This makes NE a desirable solution concept for various
fields, such as game theory, economics, and artificial intelligence. NE can help resolve conflicts
among rational agents by ensuring that no one has an incentive to deviate from their agreed strategy.
However, finding the NE for a given game is not trivial. In some complex games, such as Go and
Poker, the optimal strategy may involve randomization and uncertainty. In these cases, we may need
to use self-play to simulate and discover the NE.

There are two main approaches to self-play: Policy Space Response Oracles (PSRO) (Lanctot et al.,
2017) and AlphaZero (Silver et al., 2017). PSRO is a general framework that can find both deter-
ministic Pure Strategy Nash Equilibrium (PSNE) and probabilistic Mixed Strategy Nash Equilibrium
(MSNE). AlphaZero is a more efficient method, but it only works for games with PSNE.

As shown in Figure 1, PSRO finds a NE by increasing the number of opponents in self-play. The
Double Oracle (DO) method (McAleer et al., 2021) ensures that the self-play does not encounter
cycles, where policies keep countering each other endlessly. Instead, by learning the best response
against all policies in the self-play sequence, the self-play converges to a NE.

However, as the number of policies grows, the agents face a larger and larger pool of opponents.
For example, in the OpenAIFive project (OpenAI et al., 2019), the agents had to deal with up to
14,000 opponent policies. This means that to find the next best response, an agent has to sample and
calculate the best response over all 14,000 policies. This is computationally expensive and time-
consuming, especially when the sampling has to be repeated many times to adjust the distribution of
the policies. Therefore, there is a need for more efficient methods to handle cyclical and probabilistic
strategies.
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Figure 1: An illustration of PSRO - PSRO finds a NE by letting agents learn better policies through
self-play. In each round, an agent improves its current policy by learning the best response against a
probabilistic sample of all previous policies in the self-play sequence. The new policy is then added
to the set of previous policies for the next round.

In contrast, the AlphaZero project (Silver et al., 2017) has shown that in games where randomness
does not influence the outcome, it is possible to develop a self-play algorithm that maintains a
consistent compute complexity.

AlphaZero is particularly effective in deterministic games like Go, Chess, and Shogi, where the
gameplay is not affected by randomness. In these games, all NE are deterministic PSNE, which
means players can make optimal decisions based on perfect information. AlphaZero incorporates
this determinism into its self-play mechanism, resulting in a more efficient algorithm. As illustrated
in Figure 2, AlphaZero allows game agents to self-play deterministically against only the latest
policy, a method known as Myopic BR. This approach encourages agents to learn myopically to
minimize their immediate strategy’s maximum loss. However, this method may not be effective in
all games. For example, in a game like Rock, Paper, Scissors, self-play may cycle myopically and
not ensure a NE strategy interaction.

Figure 2: An illustration of Myopic BR - AlphaZero allows game agents to self-play deterministi-
cally against only the latest policy, a method known as Myopic Best Response (Myopic BR).

This dichotomy between theoretical guarantee of convergence and efficiency of training presents
a gap in the current understanding of self-play algorithms. Our study aims to bridge this gap by
understanding how cycles of strategy interactions relate to a NE, and whether we can find a Nash
equilibrium more efficiently, regardless of the presence or absence of cycles. We establish the the-
oretical equivalency between a complete set of cyclical best response strategies and the support set
of a MSNE. Our proof shows that the cyclical best response strategies must form a circular counter,
implying that a complete set is necessary to support an MSNE due to the intrinsic counterbalancing
dynamic. This means that AlphaZero’s efficient Myopic BR self-play will either transitively con-
verge to a PSNE or find a sequence of cyclical policies that has an intrinsically counterbalance as the
support set of an MSNE. This allows us to represent the learning representation of an equilibrium
point in noncooperative games as a directed graph search.
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We introduce Graph-based Nash Equilibrium Search (GraphNES), a novel self-play algorithm that
enhances Myopic BR by identifying if and when the self-play sequence has developed a cycle that
repeats over prior strategy interactions. GraphNES allows agents to calculate BR over fewer oppo-
nent strategies, thereby more efficiently identifying a PSNE or the supports of a MSNE in noncoop-
erative games. We empirically evaluate our approach on various noncooperative games, including
Connect4 and Naruto Mobile. Our results show that our graph-based learning representation sig-
nificantly improves the efficiency of finding an equilibrium point in self-play compared to previous
methods.

2 BACKGROUND

In this section, we review the previous works on finding NE in noncooperative games and their
underlying assumptions and methods.

Game Theory Basics: A noncooperative game can be represented as a normal-form matrix game of
tuple (n,M,U), where n is the number of players, psid is the set of pure strategies for player id ∈ n,
M = (ps1×, . . . , psn) is the matrix of all possible strategy combinations, and U := M → Rn is
the payoff function that maps each combination to a vector of payoffs for each player. The players
aim to maximize their expected utility by choosing either a pure strategy or a mixed strategy, which
is a probability distribution over psid, σid = ((p1 × psid1 ), . . . , (pN × psidN )), where N is the size
of the strategy set and pc is the probability of each strategy with

∑N
c=1 pc = 1. The support set of

a MSNE is the set of pure strategies that are played by the players with positive probability in the
equilibrium. It ensures that each player’s mixed strategy is optimal and cannot be improved upon by
playing a different pure strategy. For games with known payoff values and small matrix size, linear
programming (LP) can be used to solve for support set of NE. However, LP is not applicable for
games with unknown or large payoff matrices, such as Go (Silver et al., 2016).

Deep Reinforcement Learning (DRL): To deal with the unknown payoff values, DRL (Sutton &
Barto, 2018) is used to learn and estimate the expected return of each agent’s policy. The agent
updates its policy based on the experience tuple (Oid, Aid, Rid), where Oid, Aid and Rid are the
agent’s observation space, action space and accumulated return respectively. The discounted return
at time step t is defined as Rid

t =
∑∞

τ=t γ
τrτ , where γ is the discount factor for all agents in the

range [0, 1).

Fictitious Self-Play (FSP): FSP (Heinrich et al., 2015) extends the return estimation to the oppo-
nent’s action sequence in alternating turns of self-play. DRL and FSP together enable the agents to
learn from unknown payoff values in noncooperative games.

Iterated Best Response (IBR): To handle the large matrix size, IBR divides the matrix game into
subgames mk ∈ M for k ∈ K self-play rounds. The agents start with a subset of policies and
iteratively add new best response (BR) policies {Πid

k }nid=1 = (π1
k, . . . , π

n
k ) against their previous

policies in each subgame. This makes the NE computation tractable over a large matrix game.

Best Response Dynamics: IBR can be learned with respect to all previous opponent policies, which
is called best response dynamics, or with respect to only the latest opponent policy, which is called
Myopic BR. Myopic BR is more efficient and effective in finding improved counter policies, as it
only considers the most updated opponent policy. However, Myopic BR may result in a cycle of
policies that keep switching without reaching a NE. This is called a cyclical strategy.

Cyclical Strategy: In simultaneous move or imperfect information games, the learning process
under Myopic BR may cycle back to a previous policy in the self-play sequence, resulting in repeated
self-play and potentially failing to converge to a NE. This phenomenon, known as cyclical strategy,
is discussed in (Balduzzi et al., 2019). For example, in the game of Rock, Paper, Scissors, the
strategies may cycle as Rock ⇒ Paper ⇒ Scissors ⇒ Rock, and so on. To prevent this, existing
approaches encourage players to learn the best response against all previous sequences of policies
(Π[0:1],Π[0:2], . . . ,Π[0:k−1]) for k ∈ K self-play rounds.

Current Research Methods: Current research methods, such as PSRO, OpenAIFive, and Simplex-
NeuPL (Liu et al., 2022), prioritize the sample distribution of the opponent population (e.g., softmax,
Dirichlet sampling distribution on opponents’ win rates). This allows an agent to learn against the
optimal probabilistic play of the opponent mixed strategy (σ[0:1], σ[0:2], . . . , σ[0:k−1]). The effec-
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tiveness of these methods is guaranteed by the Double Oracle method and (Roughgarden, 2010),
which state that the best response dynamics of self-play sequence must converge to a NE in any
finite noncooperative game. These advancements have significantly improved our ability to find NE
in complex games, but at the cost of intensive compute.

3 LITERATURE REVIEW

The study of noncooperative games, particularly their representation as graphs and the identifica-
tion of Nash equilibria on such graphs, has been a significant area of study in academic literature.
However, the existing body of work presents a dichotomy.

We begin with the foundational work of Nash (1951), which asserts that every finite game has at
least one Nash equilibrium, potentially in mixed strategies, using Kakutani’s fixed point theorem
(Nash Jr, 1950). This theorem, based on set-valued functions where one input can map to a set of
outputs, ensures the existence of a fixed point. This suggests that even if one strategy has a set of
best responses, a Nash equilibrium can still exist.

Building on this, Vlatakis-Gkaragkounis et al. (2020) examined the relationship between no-regret
learning and MSNE (Vlatakis-Gkaragkounis et al., 2020). They established that any Nash equi-
librium that is not strict (where every player has a unique best response) cannot be stable under
no-regret learning. This finding contradicts Nash’s classical result.

In response to this contradiction, Milionis et al. (2022) demonstrated that certain games exist where
any continuous or discrete time dynamics fail to converge to a Nash equilibrium (Milionis et al.,
2022). They argued that the Nash equilibrium concept is affected by a form of incompleteness
that allows cycling, and suggested that the problem is intractable, advocating for the exploration of
alternative equilibrium concepts.

Further exploring the concept of cycles, Mertikopoulos et al. (2018) scrutinized the cycling behavior
of adversarial regularized learning (Mertikopoulos et al., 2018). They revealed that rapid regret
minimization does not necessarily lead to swift equilibration, and that cycles can emerge even in
straightforward two-player games. However, they did not propose a method to identify a Nash
equilibrium when a cycle is encountered.

Contrary to these views, there are works that argue that cycles can, in fact, aid in finding a Nash
equilibrium. One of the earliest works that discussed the role of cycles in finding a Nash equilibrium
is by E. Akin, who showed that the set of strongly connected components of the best response graph
contains the support of a mixed Nash equilibrium (Akin, 1980).

Another work that explored the connection between cycles and Nash equilibria is by Biggar and
Shames, who introduced the concept of chain components and the response graph (Biggar &
Shames, 2023). They proved that every chain component is a strongly connected component of the
best response graph, and that every Nash equilibrium corresponds to a fixed point of the response
graph.

Finally, we discuss Daskalakis et al.’s End of the Line argument, which highlights the PPAD hard-
ness (Daskalakis et al., 2009). The primary argument of End of the Line is to represent a noncoop-
erative game as a directed graph, thereby equating the discovery of a Nash Equilibrium to finding a
fixed point of a graph’s leaf or a cycle.

However, these works have yet to show how many set of strongly connected components are needed
to support a MSNE, or if any MSNE of any finite game as indicated by Nash’s original proof in
1951 are strongly connected components on a graph. To make such a strong claim, we must prove
an ’equivalence’ relation between the support set of a mixed strategy Nash equilibrium and the
complete set of cyclical strategy. This is the motivation and contribution of our paper. We aim to
bridge this gap in the literature by providing a robust method for managing cycles and identifying
Nash equilibria in such scenarios.
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4 PROOF OF EQUIVALENCY

To address these challenges, we need to understand the relationship between cyclical strategies and
NE. In the following, we show that a complete set of cyclical BR strategies is equivalent to the
support set of a MSNE.

Theorem 4.1. A complete set of cyclical BR strategies is equivalent to the support set of a MSNE.

Before we delve into the proof, let’s clarify some definitions and notations:

• A MSNE is a state of strategic interaction where no player can unilaterally deviate from
their probabilistic play of their support strategies to increase their expected payoff. This is
in contrast to a PSNE, where players choose their strategies deterministically such that the
strategy interactions form a NE.

• The expected payoff of player id using pure strategy psid1 against pure strategy ps−id
2 of

the opponent is denoted as U(psid1 , ps−id
2 ).

• A pure strategy psi is a BR to another pure strategy psj if it maximizes the payoff among
all possible pure strategies, i.e., U(psi, psj) ≥ U(psî, psj) for all î.

• A cyclical set is a collection of strategies where each strategy is a BR to the previous
strategy in the set.

• A cyclical set C is complete if adding any other pure strategy to it does not improve the
payoff of any mixed strategy with support in C. Formally, if σid

∗ is the optimal mixed
strategy for player id with support in C, and σid

∗̂ is the optimal mixed strategy that includes
the pure strategy of psidc with support in C ′ = C∪psidc , then U(σid

∗ , σ−id
∗ ) ≥ U(σid

∗̂ , σ−id
∗ ),

where σ−id
∗ is the optimal mixed strategy of the opponent.

With these definitions and notations in mind, we can now proceed to the proof of the theorem.

Proof. Individual player’s support strategies of a MSNE together as an union set is a complete set of
cyclical BR strategies.

We first show players’ probabilistic play of their individual support strategies must union together
that forms a complete set of cyclical BR strategies. The union of the support strategies helps to il-
lustrate why players must play their support strategies probabilistically rather than deterministically.

1. Definitions: Let σid
∗ = (p1 × psid1 , . . . , ps × psids ) denote the MSNE mixed strategy for player

id, where {psidc }sc=1 is the support set of pure strategies with
∑s

c=1 pc = 1. Let SS represent the
union support set for a MSNE for all players.

2. Assumption: Suppose that there exists a modification of σid
∗ of player id’s mixed strategy such

that a probability of a support strategy pj for some j ∈ s is decreased to deviate from a MSNE, and
that no opponent −id may play more of their pure strategy in SS to increase their payoff. That is,
let σid

ˆ be the modified mixed strategy that is not a MSNE such that U(σid
ˆ , σ−id

∗ ) ¡ U(σid
∗ , σ−id

∗ ) for
player id, and U(σ−id

∗̂ , σid
‘ ) ≤ U(σ−id

∗ , σid
ˆ ) for any σ−id

∗̂ with the support set in SS.

3. Contradiction: If the decrease of pj for some j ∈ s does not lead to an increase of an opponent’s
BR strategy in SS, then player id must be able to increase pj to increase their payoff. However, this
contradict that σid

∗ is a MSNE for player id. Moreover, an opponent −id must be able to increase
the probability of one of its support strategies in SS to exploit the decreased probability of pj for the
support strategy psidj . This is because the opponent’s mixed strategy is also optimal and has a BR
to every strategy in SS. Otherwise, the strategy psidj is not a BR to any opponent’s strategy that is
currently in play. This contradicts our assumption that U(σ−id

∗̂ , σid
‘ ) ≤ U(σ−id

∗ , σid
ˆ ) for any σ−id

∗̂
with the support set in SS. Therefore, every player’s support strategy must have a BR counter by an
opponent that is in the set SS.

4. Assumption: Next, suppose that it is not possible to order SS into a sequence of cyclical BR.

5. Contradiction: However, this contradicts what we have proved that every player’s support strat-
egy must have a BR counter that is in the set SS.
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6. Conclusion: Since the contradiction apply to all players’ mixed strategy of a MSNE, and by
the definition of MSNE SS must be a complete set. Hence, we conclude that if SS is the union of
support strategies of a MSNE then it must be cyclical and complete.

Proof. A complete set of cyclical BR strategies is also players’ union support strategies of a MSNE.

1. Definitions: Let CS = (psid1 , ps−id
2 , . . . , ps−id

k ) denote a sequence of Cyclical BR Strategies of
the participating players, and let CS be a complete set based on the defined definition. Players may
use their pure strategies in CS to compose a mixed strategy.

2. Assumption: Suppose that it is not possible for player id to play a mixed strategy σid
∗ with with

its pure strategies from CS to support a MSNE. This means that there exists a mixed strategy σid
∗̂

with a different union support set of CS′ than σid
∗ ’s union support set of CS such that the expected

payoff of σid
∗̂ is strictly higher than σid

∗ when played against the opponents’ optimal mixed strategy
σ−id
∗ . i.e., U(σid

∗̂ , σ−id
∗ ) > U(σid

∗ , σ−id
∗ ).

3. Contradiction: Given that CS is a complete set, a higher payoff of σid
∗̂ must have an equal or

smaller support set size than σid
∗ . This means σid

∗̂ ’s corresponding union support set of CS′ must
has a equal or smaller union support set than CS. However, since CS is cyclical, each strategy in
CS is BR to the preceding strategy in the set. Removing any support strategy psidi from CS would
result in player of id of mixed strategy σid

∗ in an equal or lower payoff. This means CS′ must have
equal size of union support set to CS.

Suppose CS′ has the same size of union support set to CS, changing any player’s mixed strategy
support of a pure strategy from psidi to psidj would not increase player id’s payoff since strategy psidi
is already a BR payoff of ps−id

i−1. This contradicts our assumption that σid
∗̂ has a strictly higher payoff

than σid
∗ .

4. Conclusion: Since the contradiction of assumption may be applied to every player and their
support strategies, our assumption that CS is not a union support set of a MSNE must be false and
we conclude that a complete set of cyclical strategies must support a MSNE.

Thus, we have shown that if SS supports a MSNE then it must be equivalent to CS, and vice versa.

This completes our proof. We show an example of (Rock,Paper,Scissors,Lizard,Spock) to illustrate
why complete set is a necessary condition in Appendix [A.1]

5 METHODOLOGY

In this section, we introduce Graph based Nash Equilibrium Search (GraphNES), a novel self-play
algorithm that uses a directed graph representation to find a PSNE or a MSNE in noncooperative
games. Based on Theorem 4.1, the Myopic BR self-play will either converge to a PSNE, or identify
a cycle of BR policies that form the SS of a MSNE. In both cases, finding a PSNE or the SS of
MSNE can be reduced to a graph cycle detection problem. We first explain the graph representation
in Figure 3.

Myopic BR Self-play Sequence: We explore G(V,E) by starting with an initial vertex v0 repre-
senting an agent’s initial policy, and perform Myopic BR self-play as one step of depth first search to
expand the latest vertex v−id

0 to v−id
0 ⇒ vid1 . Similarly, the iterative Myopic BR self-play sequence

continues to expand the latest vertex v−id
k−1 to find a neighboring vertex vidk with a BR payoff gain for

the next agent of id.

Myopic BR’s self-play sequence either converges with vidk that cannot expand further as a PSNE, or
an ongoing sequence of BR policies [v−id

0 ⇒ . . . ⇒ vidk ]nid=1 with potential of cycle.

Identify Cycle and Support Set: To identify if the current vertex vidk has formed a cycle with a
prior vertex in (vid0 , . . . , vidk−1), we compare their strategy similarities. We record agents’ policies
πθ[0:k]

(·|ot, id)nid=1
and their distinct Myopic BR action sequence of [A0, . . . , Ak] during self-play.

We let [A0, . . . , Ak] denote the ’colors’ of each vertex. We query Aid
k to search for similar color

characteristic in the set of (Aid
0 , . . . , Aid

k−1) with a vector database search.

6



Under review as a conference paper at ICLR 2024

Figure 3: Graph Representation: We construct a directed graph G(V,E) for a noncooperative
game. Each vertex v ∈ V represents a unique pure strategy of a player. Each edge e ∈ E represents
a BR policy of another player with a positive payoff gain. Formally, vk−1 ⇒ vk means vk is a
BR policy of vk−1 with a positive payoff gain. Since E are defined by BR policies with positive
payoff gain, G(V,E) has no self-loop. Finding a NE is equivalent to finding either a vertex with no
outgoing edge PSNE, or a set of vertices that form a complete cycle (support set, SS, of a MSNE).

Def identifyCycle(memoryInteract):
1: DB.build(memoryInteract[0:-2]) *Build a vector database
2: (x, dist)← DB.query(memoryInteract[-1])
3: if (dist ¡ distLow) Then then
4: distLow = Dist
5: DC = EV AL(v−id

x+1, vidk ) *Double Check
6: if (DC) Then then
7: cycleDetect← True
8: supportPolicy← v((x:k])
9: end if

10: end if
11: Output cycleDetect, supportPolicy

For Aid
x ∈ Aid

[0:k−1] such that Aid
x is the most similar match of Aid

k , we mark the potential vidk = vidx

as a repeat of policy due to cycle. Observe if vidk = vidx , then v−id
x+1 must be a BR to vidk such that

vidk ⇒ v−id
x+1. Thus, we may verify the color match by evaluating v−id

x+1 against the current policy
vidk . If v−id

x+1 is a BR against vidk , πθ(x:k]
(·|ot, id)nid=1

is a sequence of cyclical BR policies CS0.
Otherwise, continue Myopic BR to expand the self-play sequence.

Def GraphNES(πθ, cycleDetect, supportPolicy, v−id
k−1, k):

1: if (not cycleDetect) then
2: Ak = MyopicBR(πθ, v−id

k−1)
3: memoryInteract = memoryInteract U Ak

4: cycleDetect, supportPolicy← identifyCycle(memoryInteract)
5: k = k + 1
6: v−id

k−1 = πθ

7: else
8: PSRO(πθ, {supportPolicy}nid=1)
9: supportPolicy = supportPolicy U πθ

10: end if
11: Output (πθ, cycleDetect, supportPolicy, v−id

k−1, k)

Completing the Set: To evaluate and complete the set CS0, we utilize PSRO to find higher payoff
BR policy outside of CS0. If CS0 is already a complete set, PSRO immediately find the probabilistic
mixtures and converge to the MSNE policies for each agent. Else, PSRO iteratively adds new BR
policies to CSi to complete the set. Let CSi = CSi−1 U πθ[k+1]

(·|ot, id)nid=1
. Note that due to

neural net policies are approximate functions, the support found may be approximation. We denote
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the result of self-play convergence as ϵ− NE, where ϵ is the difference of payoff from the found
players’ strategies to the actual NE of the game.

6 EXPERIMENT

In this section, we conduct empirical studies on two types of noncooperative games to evaluate our
method. We use Connect4 as an example of a two-player, turn-based, perfect-information game that
illustrates a purely transitive game. We use Naruto Mobile as an example of a simultaneous move
game, where finding a NE involves GraphNES mapping the self-play sequence to both transitive
and cyclical policies. We compare our method with PSRO and Simplex-NeuPL. We use identical
settings, such as hyperparameters, model architecture, and so on. The only difference between the
methods is the self-play algorithm employed.

6.1 CONNECT4

Connect4 is a game played on a 6x7 grid where two players compete to be the first to align four of
their colored pieces in a straight line, either vertically, horizontally, or diagonally. Players take turns
placing their pieces until the game ends. Connect4 has approximately 4.5 trillion possible move
positions, which is less complex than Go but still challenging.

Figure 4: We trained two agents using GraphNES and PSRO to learn Connect4, as shown in the
left figure. We terminated each training round once an agent found a BR policy against its self-play
opponents. This design measures the efficiency of each method in finding a BR with the same com-
putation time per round. We then evaluated 20 policy models as agents’ strategies in a competition.
We also studied the convergence of GraphNES’s self-play sequence, as shown in the right figure.
All win rates displayed are for the row players.

Figure 4 shows that both methods performed similarly in the first three rounds of policy optimization.
However, GraphNES improved its policy performance faster than PSRO as the self-play sequence
continued. In another experiment, GraphNES showed a transitive policy improvement with no BR
cycle, as shown in the right figure.

These experiments suggest that an agent can learn better by using Myopic BR to improve its latest
policy, allowing it to find and fix errors until reaching a PSNE. This is consistent with Zermelo’s The-
orem (Zermelo, 1913), that Connect4 shares four common properties with Go, Chess, and Shogi:
they are two-player, turn-based, perfect-information games with a finite number of moves. Ac-
cording to Zermelo’s Theorem, such deterministic games have deterministic equilibrium strategy
interactions, i.e., PSNE. This further supports the effectiveness of the Myopic BR approach in these
deterministic games.

6.2 NARUTO MOBILE

Naruto Mobile is a popular Fighting Game that features simultaneous-turn gameplay, similar to
Street Fighter. In this game, players compete to maintain higher health points (HP) than their op-
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ponents within a limited time. The game offers a variety of characters, each with unique skills and
attributes such as movement speed and body size. Players aim to maximize their win rate by strate-
gically using these skills, which can be used for attack, evasion, area of effect, or status change.
Since players act at the same time, this game poses a challenge for finding cyclical strategies and
MSNE.

Figure 5: Simplex-NeuPL follows a best response dynamic training, where agents’ self-play se-
quence learns to develop new policies to best respond against a symmetric Dirichlet distribution
of previous policies. The learning converges approximately at round 13. In contrast, GraphNES’s
Myopic BR does not encounter a cycle of BR until the 9th round, and detects the cycle on the 10th.

In Figure 5, Simplex-NeuPL performed a total count of 1 + 2 + ... + 12 = 78 best responses against
GraphNES’s 9 Myopic BR, and a PSRO of the three colored trio of strategies of 3 on the 11th round.
The total self-play opponent count of GraphNES is only 9 + 3 = 12 over the self-play sequence. The
self-play simulation efficiency demonstrates a gain from 78 to 12 with a 6.5x improvement. The
more efficient self-play also translate to a more optimal approximation of MSNE with GraphNES
outperforms Simplex-NeuPL’s round k by 7.3 %, round k+1 by 4.8 % and round k + 2 by 1.5 % of
win rates. The experiment suggests that self-play against more diverse but weak opponents is less
efficient than self-play against the support set of an approximate MSNE.

7 CONCLUSION

In this study, we investigated the relationship between probabilistic behaviors, cycles, and equilib-
rium in agents. We found that players’ strategy interactions in any finite noncooperative game either
converge to a deterministic PSNE through transitive improvement, or form a cycle(s) of an MSNE
that requires probabilistic play.

Our findings help improve the computational efficiency of self-play algorithms and connect the
noncooperative game learning representation to a directed graph search. This representation helps
identify cycles in a potentially large set of strategy interactions and explains why agents benefit from
having memory that can recognize recurring patterns of interactions.

Limitation: One limitation of our approach that prevents scaling to more complex environments
such as StarCraft or the real world dynamics is the vector database storage and query. When a single
strategy is very long, the vector that represents it can become too sparse to be retrieved accurately.
In future research, it may be possible to use algorithms such as Dynamic Time Warping to handle
long-term temporal strategy interactions. We discuss this challenge in Appendix [A.3]
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