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ABSTRACT

A significant challenge in maintaining real-world machine learning models is re-
sponding to the continuous and unpredictable evolution of data. Most practitioners
are faced with the difficult question: when should I retrain or update my machine
learning model? This seemingly straightforward problem is particularly challeng-
ing for three reasons: 1) decisions must be made based on very limited informa-
tion - we usually have access to only a few examples, 2) the nature, extent, and
impact of the distribution shift are unknown, and 3) it involves specifying a cost
ratio between retraining and poor performance, which can be hard to characterize.
Existing works address certain aspects of this problem, but none offer a com-
prehensive solution. Distribution shift detection falls short as it cannot account
for the cost trade-off; the scarcity of the data, paired with its unusual structure,
makes it a poor fit for existing offline reinforcement learning methods, and the
online learning formulation overlooks key practical considerations. To address
this, we present a principled formulation of the retraining problem and propose an
uncertainty-based method that makes decisions by continually forecasting the evo-
lution of model performance evaluated with a bounded metric. Our experiments
addressing classification tasks show that the method consistently outperforms ex-
isting baselines on 7 datasets. We thoroughly assess its robustness to varying cost
trade-off values and mis-specified cost trade-offs.

1 INTRODUCTION

In many industrial machine learning settings, data are continuously arriving and evolving (Gama
et al., 2014). This means that a model, fθ, that was trained on a fixed dataset, D, will become
outdated. This usually translates to a cost in the form of a missed opportunity. However, retraining
a new model, fθ′ , on a more up-to-date dataset, D′, is also costly. Beyond the obvious costs of
computational resources and energy (Strubell et al., 2020), there are human resource costs associated
with assigning experts to deploy and maintain the model, as well as collecting and cleaning data.
Deploying a new model also generally comes with a higher risk. Therefore, the optimal retraining
schedule depends on this comprehensive cost of retraining, on the cost of making mistakes, and on
future model performance. Figure 1 provides a visualization of the task.
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Figure 1: The Retraining Problem: The performance of a model trained on a dataset Di gradually
decreases when evaluated on more recent datasets in the presence of distribution shift. The task is
to determine when retraining is beneficial compared to keeping an older model. We must take into
consideration the trade-off between potential accuracy gains and the costs associated with retraining.
In the training schedule θ shown here, retraining occurs twice, at t = 4 and t = 8.
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Although this retraining problem is ubiquitous in industry (Gama et al., 2014), there are few works in
the machine learning literature that tackle it directly. It has been framed as an application of the dis-
tribution shift detection problem (Bifet & Gavaldà, 2007), where the conventional strategy involves
triggering retraining whenever a substantial shift is detected (Bifet & Gavaldà, 2007; Cerqueira et al.,
2021; Pesaranghader & Viktor, 2016). However, this approach overlooks retraining costs. This can
be particularly problematic when training is expensive, as demonstrated in our experiments. Oth-
ers have reduced the need for retraining by incorporating robustness to distribution shifts (Schwinn
et al., 2022) or adapting to them (Filos et al., 2020), but these methods have limits on the extent of
the shift they can handle. Other related areas are online or adaptive learning (Hoi et al., 2021) and
life-long learning which updates models with a continuous stream of data through gradual gradient
updates, and transfer learning which adapts model from one distribution to another. However, this
differs from our problem, as it focuses on maximizing performance while abstracting the practical
retraining costs involved in production deployment. In practice, the cost of retraining can go beyond
the number of gradient updates or sample complexity, as discussed above. Finally, because this is
a sequential decision problem, it can be framed within the offline reinforcement learning frame-
work (Levine et al., 2020). In theory, offline RL methods should be applicable, but few, if any,
are designed for very low-data settings. They require substantial amounts of data for training and
hyperparameter tuning, and are therefore largely unsuitable to use in this context.

A direct treatment of the cost consideration in the retraining problem is presented by Žliobaitė et al.
(2015) and by Mahadevan & Mathioudakis (2024). The formulation by Mahadevan & Mathioudakis
(2024) accounts for the trade-off between the cost of retraining and the cost of performance. Their
method, CARA, relies on approximating the performance of a model on new data, and the retraining
decision is based on this value. However, this approach makes several limiting assumptions: 1)
the relative cost objective assumes that the “difficulty” of the task remains constant; and 2) the
performance approximation assumes the data distribution is almost stationary.

Instead, we consider a more general objective that combines both the retraining cost and the average
performance over a specified horizon. We detail the relationship between our objective and CARA’s
objective in Appendix 8.10. Our formulation is more general and does not depend on strong as-
sumptions regarding the data distribution and its impact on performance. There is no constraint
on how the ”retrained” model is obtained. It can be obtained through fine-tuning from a previous
model, adapted, trained from scratch, or any other procedure.Additionally, our method can lever-
age new observations of the model’s performance. Our proposed method involves forecasting the
performance of both future and current models and making decisions based on the uncertainty of
our predictions. We show the effectiveness of our approach on five real datasets and two synthetic
datasets. We make the following contributions:

• We introduce a principled formulation of a practical version of the retraining problem. We also
provide its connection to existing formulations and offline reinforcement learning.

• We establish upper limits on the optimal number of retrains based on performance bounds and
show how existing results can be used to determine whether you should retrain or not.

• We propose a novel retraining decision procedure based on performance forecasting. Our pro-
posed algorithm is robust and outperforms existing baselines. It requires minimal performance
data by fully leveraging the problem structure, employing compact regression models, and bal-
ancing the uncertainty caused by data scarcity through an uncertainty-informed decision process.

• We show that accounting for uncertainty in our method improves the performance.

2 RELATED WORK

We discuss related work and fields relevant to the retraining problem. A more detailed literature
review, including connections to other related fields is provided in Appendix 8.1.

Retraining problem Few works explicitly target the retraining problem. Žliobaitė et al. (2015) pro-
pose a return on investment (ROI) framework to monitor and assess the retraining decision process,
but do not introduce a method for actually deciding when to retrain. Mahadevan & Mathioudakis
(2024) develop a retraining decision algorithm, CARA, which integrates the cost of retraining and
introduces a “staleness cost” for persisting with an old model. CARA approximates the staleness
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cost using offline data consisting of several trained models and their historical performance. Three
versions of CARA are proposed: (i) retraining if the estimated staleness exceeds a threshold; (ii) re-
training based on estimated cumulative staleness; or (iii) identifying an optimal retraining frequency.
While providing promising results, CARA requires access to some of the data that will be used for
retraining, and is very computationally intensive, so there is no adaptation to data obtained during
the online decision period.

Distribution shift detection The retraining problem is closely connected to distribution shift detec-
tion and mitigation (Wang et al., 2024a; Hendrycks & Gimpel, 2017; Rabanser et al., 2019). Some
approaches decide to adapt a model after detection of a changed distribution (Sugiyama & Kawan-
abe, 2012; Zhang et al., 2023). Since the signal is designed to adapt a model rather than trigger a
full retraining, these methods are not appropriate as retraining signals. Other approaches, however,
directly treat the detection of a distribution shift as a cue for retraining. ADWIN (Bifet & Gavaldà,
2007) uses statistical testing of the label or feature distribution. Another approach is to directly
monitor the model’s performance. FHDDM (Pesaranghader & Viktor, 2016) employs Hoeffding’s
inequality, while (Raab et al., 2020) relies on a Kolmogorov-Smirnov Windowing test. These ap-
proaches work well with low retraining costs, but perform poorly when retraining costs are high,
as they tend to recommend retraining far too often. Additionally, they lack adaptability to varying
costs, and it is difficult to determine the correct significance level to use for a given retraining-to-
performance cost ratio.

Offline reinforcement learning Lastly, we discuss the connection to the offline reinforcement learn-
ing (ORL) setting, where the agent must learn a policy from a fixed dataset of rewards, actions, and
states. This subset of RL is particularly challenging, as the agent cannot explore and can only rely on
the dataset to infer the underlying dynamics and handle distribution shifts. See (Levine et al., 2020)
for an extensive review. Q-learning and value function methods, which focus on predicting future
action costs, have become the preferred approaches for ORL (Levine et al., 2020; Kalashnikov et al.;
Hejna et al., 2023; Kostrikov et al., 2022). Some methods incorporate epistemic uncertainty into the
Q-function to address distribution shifts of unseen actions (Kumar et al., 2020; Luis et al., 2023).

If we view the states as encoding both time and the model in use, and actions as either retraining
or maintaining the current model, we can frame our problem as ORL. However, most existing RL
approaches focus on scaling to large state or action spaces, employ large models, and assume ac-
cess to abundant data, making them unsuitable for our context. A more detailed discussion on the
connections and limitations of ORL methods is included in Appendix 8.9.

3 PROBLEM SETTING

In this section, we outline our formulation of the retraining problem. We have access to a sequence
of datasets, D−w, . . . ,D0, . . .DT with features and labels xi,t ∼ Xt, yi,t ∼ Yt,Dt = {(xi,t, yi,t)}

∣Dt∣
i=1

, which are assumed to be drawn from a sequence of distributions Dt ∼ pt . In practice, this reflects
the gradual distribution shifts that occur when collecting data over time, so we specifically cannot
assume that pt = pt+1 (this would correspond to a special case of the problem, which we refer to as
the no distribution shift case). The datasets are acquired at discrete times t = [−w, . . . ,0, . . . , T ].
The sequence is split into an offline period that spans t = [−w, . . .0], followed by an online period
[t = 1, . . . T ]. At each time step t of the online period, we are given the option to (re)train a model
ft, using the data acquired up until time t, for a retraining cost of ct. The datasets and trained models
can be formed and obtained through any means depending on the task at hand; for example, f1 could
be fine-tuned from f0 and D1 could contain D0.

The complete sequence of decisions that we make can be encoded as a binary vector θ ∈ {0,1}T ,
where θt = 1 indicates that we retrain the model at time t. We introduce rθ(t) as a mapping function
that returns the last training time at time t: (rθ(t) =maxt′∈{0,t}s.t.θt′=1 t

′, or rθ(t) = 0 if ∣∣θ∣∣1 = 0.).

At each time step t, we are required to generate a certain number of predictions Nt on a test set,
which incurs a loss ℓ(ŷ, y), scaled by a cost et. This would correspond to actually using the model
to make predictions, for example, to detect fraud – failing to detect a fraudulent transaction costs et,
and approximately Nt transactions are verified at time t. To make these predictions at time t, we use
the most recently trained model, which we denote by frθ(t). To ensure that there is always at least
one model available during the online period, we always train the last offline model f0.
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The target cost is a function of the vector θ, which encodes the retraining decisions,
and combines the two opposing costs: the cost associated with model performance,

∑
T
t=1 et∑

Nt

i=1 ℓ(frθ(t)(xi,t), yi,t), and the cost to retrain, θtct:

Cα(θ) = E [
T

∑
t=1

et
Nt

∑
i=1

ℓ(frθ(t)(xi,t), yi,t) + θtct] . (1)

To make the expression more concise, we condense the expected loss into a scalar pei,j where the
two indices denotes the model index, and the timestep, respecvietly:

pei,j = {
EDj [ℓ(fi(Xj), Yj)] , if i ≤ j ,
0 , otherwise .

(2)

We can simplify the problem by assuming a fixed cost of retraining, ct = c, cost of loss, et = e, and
number of predictions, Nt = N . The solutions we develop later in the paper are easily extended to
the case where these are varying, but known, quantities. Introducing the cost-to-performance ratio
parameter α = c

eN
, the online objective can be compactly written as:

Cα(θ) = eN (α∣∣θ∣∣1 +
T

∑
t=1

perθ(t),t) . (3)

3.1 OFFLINE AND ONLINE DATA

The cost Cα(θ) is only evaluated over the online period. We assume that we have access to all the
datasets and trained models during the offline period. In practice, the number of models and datasets
is typically limited to only a few (around 10 to 20 at most), which is why we characterize this
problem as being in a low-data regime. We denote this data as Ioffline = (D−w, . . .D0, f−w, . . . , f0).
In the online mode, each decision at time t can only rely on information available prior to that time,
which we denote by I<t. I<t therefore contains both the offline data Ioffline , and the online data
that was collected up to the timestep t: Ionline<t . The online data is similar to the offline data, but it
only contains the models that were actually trained; Ionline<t = (D1, . . .Dt−1,{fi}i s.t. θi=1)).

Each entry of θ can therefore be modeled by a binary function g(t,I<t) ∈ {0,1}:

θ = [g(1,Ioffline
), . . . , g(T,I<T ))]

⊺. (4)

Given ct, et, and Nt, the task is to determine the g that generates the retraining schedule θ∗ that
minimizes the cost Cα(θ);

θ∗ = argmin
θ∈{0,1}T

Cα(θ) . (5)
3.2 SOME ANALYSIS

Before introducing methods that learn to generate such a schedule θ, we begin by providing some
basic properties of the problem. Specifically, we establish bounds on the number of retraining
actions of the optimal solution. These can be used to determine whether we even need to consider
retraining. We also provide guidance on leveraging existing performance bounds (such as scaling
laws) to compute the relevant quantities in these bounds. These theoretical insights can be used to
derive a practical rule of thumb on a case-by-case basis.

Our upper bound mainly depends on the difference between the expected performance of a model
trained on dataset Di and the performance of a model trained on the subsequent dataset Di+1, eval-
uated on the same dataset from any timestep Dt :

L ≥ ∣pei,t − pei+1,t∣∀t ∈ [T ] (6)
Given this quantity, we derive the following result of an upper bound for the number of retrains of
the optimal solution, which we denote by r∗ = ∣∣θ∗∣∣1:
Proposition 3.1. Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T ], a horizon of T ∈ N, and a relative cost of
retrain α, the number of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
(7)

The proof is provided in Appendix 8.2. Suppose a practitioner has reasonable approximations of L
and α, and a horizon to consider, T . Then if T −

√
(α
L
) < 1, no retraining should be performed. We

demonstrate how this result should be used in practice in Appendix 8.2.1.
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Bounding L General bounds for L are too loose to be helpful; however, in some cases, reason-
able estimates can be derived. For the specific cases of “no distribution shift” IID data, where the
data simply accumulates (Dt ⊂ Dt+1,Dt ∼ p(D)∀t), we can leverage some known theoretical re-
sult, such as Probably Approximately Correct (PAC) learning theory (Valiant, 1984) or Rademacher
Complexity (Bartlett & Mendelson, 2002). Even in real-world applications, where data often ex-
hibit temporal or spatial dependencies, making the non-distribution shift IID assumption unrealistic,
bounds have been derived using stability analysis (Mohri & Rostamizadeh, 2007; 2010) or tailored
Rademacher complexity bounds (Mohri & Rostamizadeh, 2008). For large-scale training settings,
precise empirical scaling laws have been derived (Kaplan et al., 2020; Hoffmann et al., 2024). Ka-
plan et al. (2020) derive that the loss L of the neural network scales with respect to the dataset
size N as L = (N/5.4 ⋅ 1013)

−0.095
. Such scaling laws enable the accurate estimation of expected

performance improvements from expanded datasets L. Thus, they enable informed decisions about
when retraining would yield substantial benefits. For a more detailed discussion see Appendix 8.3.

4 METHODOLOGY

A retraining decision algorithm must specify the decision functions gϕ(t,I<t) ∈ {0,1} (where ϕ
contains the parameters of the algorithm) used to build the decision vector θ. To make perfect
decisions, we would need future performance values, i.e., pei,j∀(i > t or j > t). This is infeasible;
however, we assume that there is an underlying temporal autocorrelation between the performance of
different models trained at different times, which we aim to exploit to build a predictive model. We
therefore propose to 1) model these future values as random variables and learn their distributions;
and 2) base our decisions on the predicted distributions to construct our method, the Uncertainty-
Performance Forecaster (UPF). As our methodology involves forecasting future performance as a
key subtask, we evaluate and quantify the impact of success in this task on the overall performance
of our algorithm, as detailed in Appendix 8.5.
4.1 PERFORMANCE FORECASTER

The first component of our algorithm involves learning a performance predictor to forecast unknown
entries in pe, which are defined as pei,j = EDj [ℓ(fi(Xj), Yj)] for i ≤ j (see Eqn 2). In a classi-
fication setting where we consider the 0-1 loss ℓ(y′, y) = 1[y′ ≠ y], these are 1 − accuracy. We
introduce random variables Aij and model the entries peij as realizations of these.

Since the Ai,j random variables are bounded, we model them (after appropriate scaling) as Beta
distributed with parameters α(ri,j), β(ri,j) that depend on some input feature ri,j . We also define
their associated mean µ(ri,j) and variance σ(ri,j). Given the parameters α(ri,j), β(ri,j), we model
the random variables to be independent of each other:

P (A0,0, . . . ,AT,T ∣{α(ri,j), β(ri,j)}
T
i≤j) =∏

i≤j
P (Ai,j ∣α(ri,j), β(ri,j)) , (8)

=∏
i≤j

Beta(α(ri,j), β(ri,j)). (9)

where Beta() denotes the pdf of a Beta distribution. We choose the input features rij to include the
indices of the training and evaluation datasets (i and j, respectively), along with additional features
that capture the gap between the training and evaluation timesteps (the difference j−i, and summary
statistics of the distribution shift zshift (see Appendix 8.5 for details). The input features are thus
given by ri,j = [i, j, j − i, zshift].

From the offline data, we have access to observations ai,j ∼ Ai,j , and can build a regression dataset
to learn the parameters α(ri,j), β(ri,j). We specify the learning task by constructing (ri,j , ai,j)
pairs:

M<t = {(ri,j , ai,j);∀fi ∈ I<t,∀Dj ∈ I<t} . (10)
Direct learning of the α,β parameters can be unstable. Therefore, we use a Gaussian approximation:

Beta(α(ri,j), β(ri,j)) ≈ N (µ(ri,j), σ(ri,j)), (11)
This allows use to write the likelihood of our dataset as:

L(M<t;ϕ) = ∏
i,j∈M<t

P (ai,j)∣ri,j , ϕ) = ∏
i,j∈M<t

N (ai,j ;µϕ(ri,j), σϕ(ri,j)). (12)
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We parameterize the variance as a constant σϕ(ri,j) = σϕ. Maximizing the likelihood w.r.t. to the
mean parameters µϕ(ri,j) then becomes a standard mean square error objective. Given the expec-
tation of operating in a very low-data regime, we rely on simple inference models, such as linear
regression. Once these parameters are learned, we can recover the corresponding αϕ(ri,j), βϕ(ri,j)
parameters to obtain our predictive distribution (see Appendix 8.5 for additional details) ;

Pϕ(Ai,j) = Beta(αϕ(ri,j), βϕ(ri,j)). (13)

As stated, this parameterization is appropriate for bounded losses. Other distributions can be used
to model different loss domains if needed as we show in Appendix 8.6. As I<t grows at each time
step, our training data increases, so we retrain and obtain a new Pϕ(Ai,j) each time.

4.2 DECISIONS UNDER UNCERTAINTY

Now we describe how we use Pϕ(Ai,j) to decide whether to retrain. We introduce a random variable
C̃ that represents the total cost (Eqn. 3) (given a sequence of decisions θ):

C̃(θ) = eN (α∥θ∥1 +
T

∑
t=1

Arθ(t),t) . (14)

We can therefore define our decision rule based on this random cost using our learned distribution of
performances Pϕ(Āi,j). Given the past decisions θ<t, our next decision θ̃t is obtained by comparing
the δ-level quantiles of the total cost incurred if we retrain, denoted by C̃θ<t ∣retrain, and the cost
incurred if we do not, denoted by C̃θ<t ∣keep. Using F −1X (δ) as the quantile function of a random
variable, our rule is given by:

θ̃t = 1 [F
−1
C̃θ<t ∣retrain

(δ) < F −1
C̃θ<t ∣keep

(δ)] . (15)

The quantile parameter δ allows us to control how conservative we are. Lower values of δ lead to
decisions that prioritize costs with lower variance, while setting δ = 0.5 simply selects the decision
that minimizes the expected total cost. As defined, the retraining decision θ̃t is deterministic.

We begin by giving explicit expressions for the conditional random variables C̃θ<t ∣retrain and
C̃θ<t ∣keep. If we decide to retrain at time step t, the incurred costs include the retraining cost α, the
performance cost of the most recent model At,t, and future costs for the decisions we will make.
Specifically, we incur C̃θ<t+1 ∣retrain if the next decision is to retrain, and C̃θ<t+1 ∣keep if it is not. If
we choose not to retrain and keep the current model, we only incur the performance cost of the old
model, Arθ(t−1),t.

These random variables can therefore be recursively defined as follows:

C̃θ<t ∣retrain = α +At,t + θ̃t+1C̃θ<t+1 ∣retrain + (1 − θ̃t+1)C̃θ<t+1 ∣keep (16)

= α +At,t +
T

∑
t′=t+1

Arθ̃(t′),t′ + αθ̃t′ (17)

C̃θ<t ∣keep = Arθ(t−1),t +
T

∑
t′=t+1

Arθ̃(t′),t′ + αθ̃t′ (18)

As shown, the cost random variables are constructed recursively by summing the distribution of the
cost of performances Ai,j that would be selected by the decision rule θ̃, as θ̃ and the α parameter
are both deterministic.

The decision rule introduced in Eqn. 15 can therefore be written as:

θ̃t = 1 [F
−1
α+At,t+∑T

t′=t+1 Ar
θ̃
(t′),t′+αθ̃t′

(δ) < F −1
Arθ(t−1),t+∑

T
t′=t+1 Ar

θ̃
(t′),t′+αθ̃t′

(δ)] . (19)

We use the learned Beta distributions, introduced in the previous section, plugging them into Eqn. 19
in order to make a retraining decision.
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If the parameterization Pϕ(Ai,j) does not lead to a closed form expression, we use Monte Carlo
methods to obtain quantile estimates:

F −1Cθ<t ∣retrain
(δ) ≈ F̂ −1Cθ<t ∣retrain

(δ) (20)

where F̂ −1Cθ<t ∣retrain
(δ) is obtained through bootstrapping.

Connection to offline reinforcement learning The formulation closely resembles a Q-learning
formulation. The C values defined in Eqns. 16- 18 strongly align with Q functions. Indeed, one pos-
sible approach is to bypass the learning of the pe and directly optimize the decision-making process
using Q-learning approaches. The problem we are considering can be viewed as a corner case of
offline RL, where the state space is finite and enumerable, the training data are extremely limited, the
transition function is deterministic and fully known, and the reward structure is highly structured.
In fact, our methodology can be reinterpreted as an offline variant of a Q-learning approach with
a specific parameterization of the Q function, further justifying the motivation behind our method.
We explore and formalize this connection in Appendix 8.9. However, as we have explained in the
related work section, existing ORL methods are not suitable for this setting. We provide the results
for one ORL baseline in Appendix 8.9 to examplify that point.

5 EXPERIMENTS

Evaluation Metrics The performance of a retraining decision method is evaluated based on both
the average performance and the total retraining cost. The tradeoff between these factors is con-
trolled by α. When using the zero-one loss in classification, α can be seen as the ratio of retraining
cost to the cost of misclassifications. In practice, α is application-dependent and should be set by
the practitioner. The retraining cost would be low (small α) for situations such as fine-tuning small
models. By contrast, when retraining large language models, or in high-stakes settings requiring
extensive validation, the retraining cost is high (large α). The retraining decision method should be
robust across all scenarios. The appropriate value of α can be very difficult to estimate and will likely
be an approximation in practice. Consequently, we present experiments that test the robustness of
the method to inaccuracies in α in Section 6.

In our experiments, we address classification tasks with a zero-one loss, and set eN = 1. We report
an empirical estimate of the target cost Ĉα(θ) (Eqn. 3), obtained from the test set, over varying α:

Cα(θ) ≈ Ĉα(θ) ≜ α∣∣θ∣∣1 +
T

∑
t=1

petestrθ(t),t, (21)

where petesti,j = 1−acc
test with ℓ(y, y′) = 1[y ≠ y′], To summarize the results at multiple α operating

points, we report the area-under-the-curve (AUC) of Ĉα(θ). We compute 10 α operating points and
we allow α to range from 0 (no retrain cost) to αmax (where the cost is too high to justify any
retraining). The upper bound, αmax, is determined by the α value at which the oracle reaches 0
retrains.1 The oracle is obtained by determining the optimal schedule that minimizes the target cost,
assuming exact knowledge of all future peij entries, i.e., θoracle = argminθ Ĉα(θ).

Datasets We present results on synthetic and real datasets. For the real datasets, we use datasets
with a timestamp for each sample and partition the data in time to create a sequence of datasets
D0,D1, . . . . For each trial, we sample a different sequence of length w + T within the complete
dataset sequence available. We report results on: (i) the electricity dataset (Harries et al.), a bi-
nary classification task predicting the rise or fall of electricity prices in New South Wales, Aus-
tralia; (ii) the airplane dataset (Gomes et al., 2017), which records whether a flight is delayed; (iii)
yelpCHI (Dou et al., 2020), which classifies if a user’s review is legitimate; and (iv) epicgames (Oz-
men et al., 2024), where the task is to predict whether an author’s critique of a game was selected as
a top critique. As a base model f , we use XGBoost (Chen & Guestrin, 2016).

1The use of the oracle to define the range of α values for the AUC computation does not bias the performance
assessment via pollution with future knowledge. None of the algorithms makes use of the oracle information.
Using the oracle merely ensures that the performance comparison is conducted over the range of relevant α.
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Table 1: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range
of α values, for all datasets. The bolded entries represent the best, and the underlined entries indi-
cate the second best. The ∗ denotes statistically significant difference with respect to the next best
baseline, evaluated using a Wilcoxon test at the 5% significance level.

electricity Gauss circles airplanes yelpCHI epicgames iWild
ADWIN-5% 2.8099 0.4533 0.0753 2.6353 0.1298 0.3217 3.7371
ADWIN-50% 2.8131 0.4848 0.0753 2.7147 0.1298 0.3238 4.2564
KSWIN-5% 3.8979 0.3975 0.0753 3.2300 0.1322 0.3420 4.4268
KSWIN-50% 4.0521 0.9530 0.0794 3.2042 0.1655 0.3537 4.4268
FHDDM-5% 3.1525 0.3893 0.0753 2.6577 0.1324 0.3298 4.4267
FHDDM-50% 3.4037 0.5918 0.0772 2.7077 0.1450 0.3389 4.4268
CARA cumul. 2.7147 0.3862 0.0731 2.2900 0.1299 0.3228 3.8922
CARA per. 2.8986 0.4678 0.0800 2.4061 0.1318 0.3260 3.7527
CARA 2.7198 0.3841 0.0726 2.2753* 0.1294 0.3202 3.9506

UPF (ours) 2.5782* 0.3829* 0.0668* 2.2865 0.1293* 0.3189* 3.0498*

oracle 2.4217 0.3724 0.0627 2.2298 0.1275 0.3170 2.4973

We also present a larger vision dataset that requires a larger network to process. iWildCam (Beery
et al., 2020) consists of images of animals in the wilderness, captured at various locations, and
the task involves multi-class animals classification. Our approach utilizes a pretrained vision model,
augmented with a linear layer that processes the image representation along with the location domain
to produce the final classification output. We allow for a different pretrained architecture model
at each timestep t, and perform a random search over a set of 188 choices from the Huggingface
library (Wightman, 2019). These encompass a wide variety of networks, including ViT (Dosovitskiy
et al., 2021), ResNeT (He et al., 2015) and convolution based (O’Shea & Nash, 2015). Appendix 8.4
provides additional details on the architecture, training procedure, and hyperparameter search. For
the synthetic dataset, we follow Mahadevan & Mathioudakis (2024) to generate two 2D datasets
with covariate shift (Gauss) and concept drift (circles) (Pesaranghader et al., 2016). Appendix 8.4
contains details on the generation. We report 3 trials for iWild and 10 trials for the other datasets.

Baselines and algorithm settings We set the confidence threshold of our UPF algorithm to
δ = 95%, as it is a standard value used for confidence intervals. For µϕ(ri,j), we use a linear
regression model, ElasticNetCV (Zou & Hastie, 2005), from the scikit-learn library. All other op-
timization parameters are set to default choices from the scikit learn libraries. We report results on
shift detection baselines and the three variants of the CARA baseline, as well as the oracle.

For the distribution shift detection baselines, we set the window size to the size of an individual
dataset ∣D∣, and retrain when the algorithm detects a distribution shift. (Then we reset the algorithm
with the dataset of the last retrained model.) As these methods cannot take into account the cost of
retraining, we vary the significance level threshold δ to obtain different frequencies of retraining.
We include ADWIN-δ (Bifet & Gavaldà, 2007), which is based on statistical testing of the label
distribution, FHDDM-δ (Pesaranghader & Viktor, 2016), which is based on Hoeffding’s inequality,
and KSWIN-δ (Raab et al., 2020), which is based on the Kolmogorov-Smirnov test.

CARA (Mahadevan & Mathioudakis, 2024) searches for the best strategy with fixed parameters
using the offline data. The standard version, CARA, searches for the best threshold of approximate
performance and retrains when it drops below it. The cumulative version, CARA cumul., searches
for the best threshold of the cumulated approximate performance; and the periodic strategy, CARA
per., searches for the best retraining frequency. Appendix 8.10 provides additional details on the
CARA baseline in the context of our experiments.

6 RESULTS

We start by presenting in Table 1 the area-under-the-curve (AUC) of the total cost value Ĉα(θ). The
AUC is computed as the area over a range of α values determined by the oracle performance. Lower
values of AUC are better because we aim to reduce the cost over the operating range. Overall, we
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Table 2: We compare the best performing algorithms for the electricity dataset with the optimal
decisions (the oracle) in both high and low retraining cost settings. For each baseline, we report the
number of retrains and the average accuracy, as well as our primary metric Ĉα(θ) that combines
both factors using α. The results show that the proposed method achieves the best Ĉα(θ) value and
closely approximates the oracle’s behavior in both scenarios, highlighted in bold.

High retrain cost α = 0.9 Low retrain cost α = 0.1
#retrain Average Acc Ĉα(θ) #retrain Average Acc Ĉα(θ)

ADWIN-5% 1.0 ± 0.58 0.7 ± 0.04 3.27 ± 0.4 1.0 ± 0.58 0.7 ± 0.04 2.47 ± 0.25
ADWIN-50% 1.17 ± 0.38 0.72 ± 0.03 3.32 ± 0.32 1.17 ± 0.38 0.72 ± 0.03 2.39 ± 0.26
CARA 0.0 ± 0.0 0.65 ± 0.02 2.78 ± 0.19 0.33 ± 0.75 0.66 ± 0.04 2.73 ± 0.25
CARA cumul. 0.0 ± 0.0 0.65 ± 0.02 2.78 ± 0.19 0.33 ± 0.48 0.67 ± 0.02 2.68 ± 0.18
CARA per. 1.0 ± 0.0 0.69 ± 0.02 3.34 ± 0.14 1.0 ± 0.0 0.69 ± 0.02 2.54 ± 0.14

UPF (ours) 0.1 ± 0.3 0.68 ± 0.04 2.69 ± 0.26 2.5 ± 0.67 0.75 ± 0.03 2.24 ± 0.17

oracle 0.0 ± 0.0 0.66 ± 0.03 2.68 ± 0.26 5.6 ± 1.44 0.83 ± 0.02 1.93 ± 0.06

see that our proposed method achieves the best trade-off between the number of retrains and average
accuracy across all baselines and datasets. To gain better insight into the behavior of the different
algorithms and how they are impacted by varying retraining cost parameters, we provide a detailed
overview for one dataset with two values of α: one where the cost of retraining is low and one where
it is high, as shown in Table 2. Figure 2 depicts how the the total cost Ĉα(θ) and the number of
retrains vary as α is changed. Appendix 8.8 contains the complete set of results and figures. First,
examining the behavior of the optimal solution (oracle), we unsurprisingly observe that in the high
retraining cost scenario, both the number of retrains and the average accuracy are lower, while in the
low retraining cost scenario, the number of retrains and the average accuracy are higher.

Next, we observe that the proposed UPF method follows the oracle more closely than the other
baselines and is more sensitive to the α parameter compared to the cost-aware method (CARA).
This is particularly apparent in Figure 2. The CARA baselines relies heavily on its assumptions
about performance and is therefore not as robust in scenarios where those assumptions do not hold.
The detection shift methods cannot take the varying parameters as input, so the results remain the
same for both values of α. Since these methods do not account for retraining costs, they perform
better when the cost is very low, as they simply retrain whenever a shift is detected. This can be a
good strategy if retraining costs little. Indeed, we observe that all ADWIN and FHDDM variants
are closer to the optimal values in the low range of α in the left of Figure 2. However, as the cost
of retraining increases, these methods become impractical. Varying the threshold can yield better
results—a lower significance requirement (50%) allows for more retraining and therefore works
better when retraining costs are low, while the inverse holds in a high-cost regime, where a more
conservative retraining strategy is preferable. However, it is not possible to know in advance which
significance threshold should be used for a given α, making these methods largely impractical for
such a setting.
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Figure 2: Results on the electricity dataset. Left) Cost Ĉα(θ) vs α. Right) Number of retrains vs
α. In the left figure, we can see that UPF consistently reaches low Ĉα(θ) across different α. In the
right figure, the number of retrainings of UPF follows the optimal baseline more closely.
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Table 3: Ablation study on accounting for uncertainty in our prediction. Targeting the 95% quantile
is better overall than the deterministic approach (equivalent to a 50% quantile). The ∗ denotes
statistically significant difference with respect to the next best baseline, evaluated using a Wilcoxon
test at the 5% significance level.

electricity gauss circles airplanes yelp epicgames

PF 2.5884 ± 0.13* 0.3673 ± 0.03 0.0697 ± 0.01 2.3688 ± 0.35 0.1180 ± 0.00 0.3211 ± 0.01
UPF 2.6056 ± 0.14 0.3643 ± 0.03* 0.0670 ± 0.01* 2.2688 ± 0.26* 0.1175 ± 0.00* 0.3202 ± 0.00*

Ablation study - The importance of uncertainty In our approach, we model the distribution
of future costs and set targets at the 95% quantile to ensure robustness against noisy predictions.
To assess whether this strategy enhances robustness and improves performance, we compare the
proposed UPF algorithm, with the 95% quantile, against a deterministic version, referred to as PF,
which selects the predicted decision that minimizes costs. This corresponds to setting the quantile to
50% in our algorithm (PF = UPF-50%). We observe in Table 3 that relying on conservative quantiles
in our predictions results in better overall outcomes, compared to the deterministic version, PF, with
statistical significance observed across all datasets except for electricity.
Robustness to wrong α In our setting, we assume that the relative cost of performance and re-
training α is known. However, in practice, this tradeoff value can be hard to estimate accurately. It is
therefore of high practical interest to assess the impact of a misspecified α value, and to identify the
settings where misspecification is the most impactful. In Figure 3, we present how wrongly speci-
fied α values impact the performance of our algorithm and the CARA baseline on one dataset. Both
algorithms are reasonably robust, as it requires a large deviation from the true α value (upper right
and bottom left) to start seeing a degradation of performance of more than 1%. UPF is generally
more robust to changes of α. Both algorithms are more susceptible to overestimation of α.
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Figure 3: Impact of wrong α measured by the percentage increase of Ĉα(θ) on the epicgames
dataset. left) CARA right) UPF. Overall, both methods are reasonably robust to a wrong α specifi-
cation, with UPF being the more robust.

7 CONCLUSION AND LIMITATIONS

We have proposed a practical formulation of the important problem of model retraining, which has
been neglected in the literature, and highlighted its complexity. Our method outlines a promis-
ing avenue, as our experiments have shown that even with distribution shift, it is not unreasonable to
expect some patterns in future performance that could be predicted with the help of uncertainty mod-
eling. This data-driven approach is lightweight, practical, and outperforms existing approaches. It is
robust to varying cost settings and has demonstrated resilience to misspecified cost-to-performance
ratios. We have also highlighted the quantities of interest to estimate in order to better understand the
characteristics of a specific problem. While our study demonstrates promising results in predicting
optimal retraining schedules, several aspects warrant further exploration. Our main experiments in-
vestigate a setting where the offline dataset (w = 7) is non-negligible in size. However, we achieved
good performance even with a reduced dataset, which shows that initial training costs can be reduced
(see Appendix 8.11).We evaluated the method individually for each dataset, but future work could
further reduce costs by transferring schedulers across datasets and tasks. Additionally, adapting
techniques from Hyperparameter Optimization could enhance performance forecasting.
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8 APPENDIX

8.1 EXTENDED DISCUSSION OF RELATED WORK

Retraining problem Few works explicitly target the retraining problem. Žliobaitė et al. (2015)
propose a return on investment (ROI) framework to monitor and assess the retraining decision pro-
cess. Mahadevan & Mathioudakis (2024) develop a retraining decision algorithm, CARA, which
integrates the cost of retraining into its formulation. It introduces the concept of a “staleness cost”
which represents the cost of not retraining. The approach involves approximating the staleness cost
and optimizing various strategies to reduce the overall cost, based on some offline data. The offline
data consist of a few trained models, each with an associated dataset that was collected prior to the
retraining decision process. Mahadevan & Mathioudakis (2024) propose three methods: the first
retrains when the estimated staleness cost exceeds a threshold; the second tracks the accumulated
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staleness cost and applies a threshold on that value; and the third searches for the optimal retraining
frequency. The staleness cost approximation for using a model on a dataset relies on the loss of in-
dividual known samples. This loss is scaled by the average similarity between the features of these
known samples and the features of the dataset of interest. Consequently, it assumes access to the
features of some of the samples at a given time before deciding to retrain. Moreover, the search for
the threshold or the period is computationally intensive and therefore can only be done once using
some offline data; it cannot modify the parameters as new information arrives.

Distribution shift detection The retraining problem is closely connected to distribution shift detec-
tion and mitigation (Wang et al., 2024a; Hendrycks & Gimpel, 2017; Scheirer et al., 2013; Cerqueira
et al., 2021; Bar-Shalom et al., 2023; Rabanser et al., 2019). Some methods adapt the model to ad-
just to evolving distributions (Sugiyama & Kawanabe, 2012; Zhang et al., 2023; Fang et al., 2020;
Pesaranghader et al., 2018). Since the signal is designed to adapt a model rather than trigger a
full retraining, these methods are not appropriate as retraining signals. Some approaches, however,
directly treat the detection of a distribution shift as a cue for retraining (Bifet & Gavaldà, 2007;
Pesaranghader & Viktor, 2016; Raab et al., 2020), and can be used as baselines. ADWIN (Bifet
& Gavaldà, 2007) uses statistical testing of the label or feature distribution. Another approach is
to directly monitor the model’s performance. FHDDM (Pesaranghader & Viktor, 2016) employs
Hoeffding’s inequality, while (Raab et al., 2020) relies on a Kolmogorov-Smirnov Windowing test.
These approaches may work well when retraining costs are low, but they become unsuitable when
retraining is expensive – it is not always optimal to retrain after every minor shift. This is tied to a
more general weakness of lacking adaptability to varying costs. While the significance level param-
eteter can be adjusted, the appropriate significance level for a given retraining-to-performance cost
ratio is unknown and difficult to estimate.

Changepoint detection Another closely related field is changepoint detection, which is similar to
the distribution shift problem. Changepoint detection is the task of identifying points in a sequence
where the statistical properties of the data change abruptly. This problem was introduced and pre-
sented by Adams & MacKay (2007), where they aim to infer the most probable distribution of the
most recent changepoint in an online setting. Recent work, such as (Li et al., 2021), has expanded
on this problem in ways closer to our retraining setting, as they incorporate adaptation into the
changepoint detection process,The sensitivity of the detection is controlled by certain sensitivity
parameters.

However, to transform the changepoint detection problem formulated by Li et al. (2021) into the
retraining problem we consider, we would need to introduce a cost for adaptation, a cost for accu-
racy loss, and then formulate an optimization problem to find the appropriate sensitivity parameter
for achieving the optimal number of adaptations. However, since this parameter lacks a specific
physical or practical meaning, it is unclear beforehand how the choice of its value will impact the
adaptation rate. Furthermore, in our setting, the optimal rate of adaptation (or retraining frequency)
is unknown. Determining this optimal retraining frequency is one of the major challenges of the
retraining problem.

Bayesian Optimization Our method is based on forecasting future model performance using his-
torical data. This approach closely aligns with Bayesian Optimization (see (Shahriari et al., 2016)
for a review on this topic), commonly used in the Hyperparameter Optimization (HPO) field. The
Freeze-Thaw method, introduced by Swersky et al. (2014), leverages Gaussian Processes to predict
the trajectory of validation loss, enabling early stopping and optimization of the hyperparameter
search space. It remains a relevant technique (Rakotoarison et al., 2024). Similarly, Dai et al. (2019)
derive a Bayes-optimal stopping rule using a related approach. This method can be extended to pre-
dict the performance of other models and address hyperparameter optimization challenges (Wang
et al., 2024b). In our context, we predict the performance of different models under potential distri-
bution shifts, but the underlying idea is similar.

Label-free performance estimation Similarly, our approach is also related to the general fields of
performance estimation without labels Garg et al. (2020); Guillory et al. (2021); Chen* et al. (2021)
and active testing Kossen et al. (2021). Part of the problem is similar in that the goal is to estimate
performance; however, the similarity ends there, as these methods generally assume access to the
model f for which performance is estimated, as well as access to the features of the dataset Garg
et al. (2020). Our approach involves forecasting performance not only for known models but also
for unknown models. While our approach does not explicitly differentiate strategies, it is true that
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we have access to additional information. Therefore, extensions that leverage existing techniques in
this area could strengthen our method.

This forecasting problem can seem similar to the problem of uncertainty quantification Hendrycks
& Gimpel (2017); Liu et al. (2020), but we are targeting average performance of unknown models,
not the probability of error of a given model at a given input P (f(x) = y∣x).

Offline reinforcement learning Lastly, we discuss the connection to the offline reinforcement learn-
ing (ORL) setting, where the agent must learn a policy from a fixed dataset of rewards, actions, and
states. This subset of RL is particularly challenging, as the agent cannot explore the entire MDP and
can only rely on the dataset to infer the underlying dynamics and handle distribution shifts (Ross
et al., 2011; Levine et al., 2020; Hejna et al., 2023). Policy gradient methods can be adapted to the
offline setting using variants of importance sampling, but they are generally prone to high variance
and require large amounts of data to be effective (Levine et al., 2020). For this reason, Q-learning and
value function methods, where the task is to predict the future costs of actions, have emerged as the
preferred approaches for ORL (Levine et al., 2020; Kalashnikov et al.; Hejna et al., 2023; Kostrikov
et al., 2022). Lagoudakis & Parr (2003) presents a classical method that uses a linear approximation
of the Q-function, while (Kalashnikov et al.) employs convolution-based Q-function architectures
for vision tasks.Others have leveraged advancements in sequential learning, applying transformer-
based architectures to predict rewards(Janner et al., 2021) or Q-functions(Chebotar et al., 2023).
Some methods integrates epistemic uncertainty on Q-function to account for the distribution shift of
unseen actions (Kumar et al., 2020; O’Donoghue et al., 2017; Luis et al., 2023).

If we view the states as time and the model in use, and actions as either retraining or maintaining
the current model, we can frame this problem as an offline reinforcement learning (RL) problem.
The problem would also feature a deterministic transition matrix and a highly structured reward
which unusual in RL. However, most existing approaches focus on scaling to very large state spaces,
employing large models, and assuming access to abundant data, making them unsuitable for our
context. A key requirement for our approach is that it must be highly efficient to train. If the
resources required for making a retraining decision are comparable to those for retraining the model
itself, the approach becomes impractical.

8.2 PROOF OF PROPOSITION 3.1

We provide the proof for our result from Proposition 3.1, which states the following.

Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T ], a horizon of T ∈ N, and a relative cost of retrain α, the
number of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
(22)

We start by defining a function that takes the model index i and the timesteps t as arguments, and
outputs the performance pe(i, t) = pei,t, and rewrite the objective:

Cα(θ) = α∣∣θ∣∣1 +
T

∑
t=1

pe (rθ(t), t) , (23)

θ∗ = argmin
θ∈{0,1}T

Cα(θ), (24)

where we still have that rθ(t) returns the most recent index of retraining at t.

Subproblem with a fixed number of retrains We can break down this optimization problem into
subproblems, where we solve for the optimal retraining schedule for a given fixed number of retrains
r. We define such a subproblem as follows:

Cr(θ) = αr +
T

∑
t=1

pe (rθ(t), t) , (25)

θ∗r = argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

Cr(θ). (26)
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Since we know that we will have r retrains, we can rewrite this subproblem by encoding the re-
training decisions as r timesteps of retrain t1 < ⋅ ⋅ ⋅ < tr. We use a simple index mapping function
I ∶ [T ]r → {0,1}T :

I({t1, . . . , tr}) = θ s.t.{
θt = 1 if t ∈ {t1, . . . , tr}
θt = 0 o.w.

(27)

We can remove the constant αr from the objective as it does not depend on the parameters anymore.
The solution of Eqn 26 is given by:

θ∗r = argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

αr +
T

∑
t=1

pe (rθ(t), t) (28)

= argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

T

∑
t=1

pe (rθ(t), t) since the αr is fixed (29)

= I
⎛

⎝
argmin

t1<⋅⋅⋅<tr∈[T ]r

t1

∑
s=1

pe(0, s) +
r−1
∑
i=1
(
ti+1
∑
s=ti

pe(ti, s)) +
T

∑
s=tr

pe(tr, s)
⎞

⎠
(30)

θ∗r = I
⎛

⎝
argmin

t1<⋅⋅⋅<tr∈[T ]r
Mr({t1, . . . , tr})

⎞

⎠
(31)

where Mr({t1, . . . , tr}) ≜
t1

∑
s=1

pe(0, s) +
r−1
∑
i=1
(
ti+1
∑
s=ti

pe(ti, s)) +
T

∑
s=tr

pe(tr, s) (32)

We therefore can focus on the new objective Mr({t1, . . . , tr}) as minimizing this objective is equiv-
alent to finding θ∗r .

{t1, . . . , tr}
∗
= argmin

t1<⋅⋅⋅<tr∈[T ]r
Mr({t1, . . . , tr}) (33)

M∗
r ≜Mr({t1, . . . , tr}

∗
) (34)

θ∗r = I ({t1, . . . , tr}
∗
) (35)

Lemma 8.1. Given a discrete function pe ∶ [T ]× [T ]→ R with bounded L ≥ ∣pe(i, t)−pe(i+1, t)∣,
a timestep horizon T ∈ N, and a number of retrains r ∈ {1, T − 1}, we can show that:

L(T − r)2 ≥M∗
r −M

∗
r+1 (36)

That is, the relative improvement of performance cost that you can gain by increasing the number
of retrainings from r to r + 1 is upper bounded by L(T − r)2.

This allows us to preemptively determine the maximum number of retains r we have to consider for
solving our initial problem, as we know the cost of adding one more retrain (α). Therefore, once
L(T − r)2 is smaller than α, the optimal solution cannot have higher than r retrains. That is,

L(T − r∗)2 < α Ô⇒ r∗ < T −

√
α

L
(37)

This concludes our proof for Proposition 8.2. We provide the proof for Lemma 8.1 in the following
section.
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Proof Lemma 8.1 To prove this lemma, we decompose the M∗
r+1 quantity into the Mr value we

would obtain with the first r timesteps of the solution {t1, . . . tr+1}∗ and some value:

M∗
r+1 =

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑
s=t∗i

pe(t∗i , s)
⎞

⎠
+

t∗r+1
∑
s=t∗r

pe(t∗r , s) +
T

∑
s=t∗r+1

p(t∗r+1, s) (38)

=

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑
s=t∗i

pe(t∗i , s)
⎞

⎠
+

t∗r+1
∑
s=t∗r

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r , s) (39)

−
T

∑
s=t∗r+1

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r+1, s) adding 0 (40)

=

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑
s=t∗i

pe(t∗i , s)
⎞

⎠
+

T

∑
s=t∗r

pe(t∗r , s) (41)

−
T

∑
s=t∗r+1

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r+1, s) combining the sum over pe(t∗i , s) (42)

M∗
r+1 =Mr({t1, . . . tr+1}

∗
∖ t∗r+1) −

T

∑
s=t∗r+1

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r+1, s) (43)

=Mr({t1, . . . tr+1}
∗
∖ t∗r+1) −

T

∑
s=t∗r+1

(p(t∗r , s) − pe(t
∗
r+1, s)) . (44)

By definition, we know that;

Mr({t1, . . . tr+1}
∗
∖ t∗r+1) ≥M

∗
r . (45)

That is, the M value that we obtain by removing the last timestamp using the solution for the r + 1
problem. Using that inequality in our previous result, we obtain the final result;

M∗
r+1 ≥M

∗
r −

T

∑
s=t∗r+1

(pe(t∗r , s) − pe(t
∗
r+1, s)) (46)

≥M∗
r −

T

∑
s=t∗r+1

L(t∗r+1 − t
∗
r) (47)

≥M∗
r − (T − t

∗
r+1)L(t

∗
r+1 − t

∗
r) (48)

M∗
r+1 ≥M

∗
r −L(T − r)

2. (49)

8.2.1 PROPOSITION 3.1 IN PRACTICE

In this section, we illustrate how to use the result from Proposition 3.1 in practice. To restate,
proposition states the following;

Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T ], a horizon of T ∈ N, and a relative cost of retrain α, the
number of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
. (50)

We present the α values that guarantee various numbers of optimal retrains r∗ = 0,1,2 in our
experiment. Since we can’t provide a true upper bound for the L value, we approximate it using the
empirical maximum value that we observe in a specific dataset for ∣pei,t − pei+1,t∣. In Figure 4, we
can see that the α at which we know for certain that we don’t need to retrain is not too far off the
operational region of the problem. The oracle decides to not retrain around α = 0.5, and the bound
from our result guarantees that we don’t have to retrain if the selected α is larger than 0.96.
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Figure 4: Results on the Gauss dataset, with the α values from Proposition 8.1 providing different
upper bounds on the optimal number of retrain r∗. Left) Cost Ĉα(θ) vs α. Right) Number of
retrains vs α.

8.3 BOUNDING L

In this section, we provide more details on the known results from the literature that can be connected
to the bound L.

Approximating L from known upper bounds For some simple models, explicit bounds on the
expected performance as a function of the number of samples N have been derived. We can use
those upper bounds to approximate L under no distribution shift, where the dataset size is steadily
increasing by a known number of samples ∣D∣.
Theorem 8.2 (Standard generalization in the Gaussian model (from (Schmidt et al., 2018) )). Let
(x1, y1), . . . , (x(i+1)∣D∣, y(i+1)∣D∣) ∈ Rd × {±1} be drawn i.i.d. from a (θ∗, σ)-Gaussian model with

∥θ∗∥2 =
√
d. Let ŵ ∈ Rd be the unit vector in the direction of z = 1

(i+1)∣D∣ ∑
(i+1)∣D∣
i=1 yixi, i.e., ŵ =

z/∥z∥2. Then with probability at least 1−2 exp (− d
8(σ2+1)), the linear classifier fŵ has classification

error at most;

pei,t ≤ exp
⎛

⎝
−
(2
√
(i + 1)∣D∣ − 1)2d

2(2
√
(i + 1)∣D∣ + 4σ)2σ2

⎞

⎠
. (51)

For the proof please refer to (Schmidt et al., 2018). An L bound value can therefore be loosely
approximated to match the gap of the upper bound;

∣pei,t − pei+1,t∣ < L ≈ exp
⎛

⎝
−
(2
√
(i + 1)∣D∣ − 1)2d

2(2
√
(i + 1)∣D∣ + 4σ)2σ2

⎞

⎠
− exp

⎛

⎝
−
(2
√
(i + 2)∣D∣ − 1)2d

2(2
√
(i + 2)∣D∣ + 4σ)2σ2

⎞

⎠
.

(52)

Beyond IID data. In real-world applications, data often exhibits temporal or spatial dependencies,
making the non-distribution shift i.i.d. assumption unrealistic. For non-i.i.d. processes, stability
analysis (Mohri & Rostamizadeh, 2007; 2010) or bounds based on Rademacher complexity (Mohri
& Rostamizadeh, 2008) can be used to analyze generalization performance and thus to derive re-
training schedules in more complex scenarios.

In the context, of the proposed retraining framework, bounds like this theoretically allow us to
make precise statements about the benefit of retraining L to derive optimal retraining schedules. In
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practice, deriving a retraining schedule from these bounds would provide a loose and non-sufficient
estimate. Thus, we introduce a data-driven algorithm to estimate optimal retraining schedules in our
work.

Empirical knowledge on the scaling law of L on N for LLMs Kaplan et al. (2020) derive scaling
laws for large language models (LLMs) concerning the dependency of the final cross-entropy loss
depending on model size, dataset size and compute budget used for training. They find a power-law
for all of the aforementioned parameters. For example, they find that the lossL of the neural network
scales with respect to the dataset size N as L = (N/5.4 ⋅ 1013)

−0.095
. This empirical relationship

provides valuable insights for determining optimal retraining schedules. By quantifying how loss
decreases with increasing dataset size, it enables researchers to estimate the expected performance
improvements from expanded datasets L and to make informed decisions about when retraining
would yield substantial benefits.

8.4 DATASET

Dataset statistics can be viewed in Table 4.

Table 4: Dataset description. w denotes the number of timestep of the offline phase, T denotes the
number of timestep of the online phase. The Model describes the architecture used for each ft.

Dataset Model αmax w ∣M<0∣ T Dataset size (∣D∣) Num. features Task Total N
Gauss XGBoost 0.5 7 21 8 5000 2 Binary - (Synthetic)
circles XGBoost 0.25 7 21 8 5000 2 Binary - (Synthetic)

electricity XGBoost 1 7 21 8 2000 6 Binary 4,5312
yelpCHI XGBoost 0.1 7 21 8 4000 25 Binary 67,395
epicgames XGBoost 0.1 7 21 8 1000 400 Binary 17,584
airplanes XGBoost 0.7 7 21 8 3000 7 Binary ..
iWild Vision Model (see 8.4.1) 1 7 21 8 40,605 224x224+1 100 539,383

In this section, we provide a more detailed overview of each retraining datasets. Except for the
iWild experiment, each individual dataset Dt is constructed with distinct samples, with no overlap
between Dt and Dt−1. For the electricity, airplanes, yelpCHI, and epicgames datasets, the partitions
are determined based on the timestamp of each sample (i.e., the datasets are divided in temporal
sequence).

• electricity (Harries et al.) is a binary classification where the task is to predict the rise
or fall of electricity prices in New South Wales, Australia. The distribution evolve due to
change in consumption patterns.

• airplanes (Gomes et al., 2017) is also a binary task where the task is to predict if a flight will
be delayed. We follow Mahadevan & Mathioudakis (2024) and use the Sklearn Multiflow
library version (Montiel et al., 2018) of the airplane dataset.

• yelpCHI (Dou et al., 2020) is a spam dataset. The dataset contains users, hotels and restau-
rants. An interaction occurs when a user submits a review for one of these hotels or restau-
rants. Reviews are categorized as either filtered (indicating spam) or recommended (indi-
cating legitimate content).

• epicgames (Ozmen et al., 2024) includes critiques from authors on games released on the
epicgames platform. Interaction features are created by vectorizing the critiques using TF-
IDF and incorporating the author’s overall rating. The interaction label indicates whether
the critique was chosen as a top critique.

• Gauss is a 2 dimensional synthetic dataset. The input features as generated as Xt ∼

N (µ1(t), µ2(t), σ1) where µ1(t) =
(t+1)
100

, µ2(t) = 0.5 − (t+1)
100

, σ = 0.1. The label is
generated using a fixed rule y = 1[4 ∗ r1 − 0.5) ∗ ∗2 > r2].

• circles is a 2 dimensional synthetic dataset. The input features as uniformly generated as
Xt ∼ U[0,1] The label is generated using a moving rule yt = 1[(r1 − (0.2 + 0.02t))

2 +

(r2 − (0.2 + 0.02t))
2 ≤ 0.5 ∈].
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• iWild (Beery et al., 2020) is a multiclass dataset featuring images of animals captured in the
wild at various locations. Originally used as a domain transfer benchmark, we adapted it
into a standard classification dataset by including the location ID as a feature for the model.
To obtain a long enough sequence of datasetsD0,D1, . . . , we create the individual datasets
Di using overlapping windows on the timeframe, i.e., half of the most recent images in Di

are contained in Di+1. We avoid data leakage by ensuring that the train/val/test splits are
maintained.

8.4.1 BASE MODEL OF THE IWILD DATASET

To motivate our cost considerations, we present an experiment where the base model architecture
is not fixed and is searched for across a list of potential model architectures. This could happen in
practice for important applications; nothing forces a practitioner to use the same base model f at
each timestep.

Our architecture involves using a pretrained vision model, with a new output layer added to match
the correct number of classes for our task, which is then fine-tuned for up to 20 epochs. The fine-
tuning process uses the Adam optimizer with a fixed learning rate of 10−4 and a weight decay
parameter of 10−5. Training was conducted using 4 H100 GPUs for 2 days.

At each timestep ft, we perform a random search over the pretrained vision models made available
from timm, which includes 188 vision models of varying configuration and base architecture. We
include the list in Appendix 8.13. We also include in our search the option to early stop or not, using
the validation set. The model used for ft is the one that obtains the best validation accuracy.

8.5 PERFORMANCE FORECASTER

In this section, we provide additional details on the proposed algorithm to forecast the performance.

To restate, instead of learning the α(ri,j), β(ri,j parameters, we learn the mean and variance pa-
rameters;

µ(ri,j) (53)
σ(ri,j). (54)

And convert the learned parameters to the parameters of a beta distribution using the following
relation (with appropriate clipping if needed):

α = µ(
µ(1 − µ)

σ2
− 1) (55)

β = (1 − µ)(
µ(1 − µ)

σ2
− 1) (56)

Inputs ri,j As stated, the input of our performance forecaster model contains the model index i,
the timesteps j, the time since retrain j−i and summary statistics of the distribution shift zshift . zshift
is constructed by taking the average feature shift between the features of the most recently available
subsequent datasetsDt andDt−1 (where t denotes the time step of the most recent available dataset).
We compute the mean features of each dimension for a given dataset; x̄ = 1

∣Dt∣ ∑
∣Dt∣
i=1 xi and compute

the ℓ1 distance between the mean feature vector of the two subsequent datasets;

zshift = ∣∣x̄t − x̄t−1∣∣1 (57)

The input features are thus given by concatenating ri,j = [i, j, j − i, zshift].

Since our methodology involves forecasting the performance of future models and on future datasets
to be used by our decision algorithm, we assess the regression performance of our forecasting models
and analyze how it impacts the overall performance of our UPF algorithm.

To do so, we construct two versions of our forecaster module µϕ(ri,j) that are designed to be less
performant than our proposed method.
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• UPF overfit: A baseline designed to overfit the training data. We use a Gaussian
Process-based µϕ(ri,j) with no white noise kernel, using a single dot product kernel from
scikit-learn.

• UPF overfit+noise: This variant further decreases performance by using the same overfit-
ting model and adding random noise to the target values.

We report two metrics, the average mean absolute error of our prediction µ and the average bias of
our prediction µϕ(ri,j) − ai,j on the test set. We start by reporting the retraining performance of
each baseline w.r.t. our base retraining metric, the AUC of cost values evaluated at different α in
Table 5. As expected, the best performing method is the method with our proposed UPF baseline
which is expected to reach the best MAE error on it’s performance prediction, on all datasets.

Table 5: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range
of α values, for all datasets. The bolded entries represent the best, and the underlined entries indi-
cate the second best. The ∗ denotes statistical significance with respect to the next best baseline,
evaluated using a Wilcoxon test at the 5% significance level.

Gauss circles epicgames electricity yelp airplanes

UPF overfit+noise 0.3845 0.0722 0.3253 2.6389 0.1194 2.3767
UPF overfit 0.3849 0.0663 0.3224 2.6001 0.1194 2.3352
UPF 0.3836* 0.0662* 0.3203* 2.5910* 0.1175* 2.3094*

We then visualize the effect of the performance forecasting precision (measured with MAE and bias)
on the decision algorithm’s performance (measured by Ĉα(θ)) in the following figures.

Overall, we observe that the impact of poor performance depends on the difficulty of the underlying
dataset.

For the airplane dataset, which is of standard difficulty, we can observe a gradual impact of the
degradation in forecasting performance on the overall retraining metric in Figure 5. The best MAE
leads to the best cost metric Ĉα(θ), and the performance gradually decreases as the MAE and bias
worsen.

The Epicgame dataset 6, which is more challenging due to its less regular performance trends, shows
a different behavior. Here, the overall forecasting performance is worse (the best achievable MAE
is higher), and we observe a less regular pattern where poorer MAE does not always result in a
proportional increase in cost, as shown in terms of scale. Similarly, when turning to the synthetic
datasets, the circle dataset, which is constructed with concept drift (changing p(Y ∣X)), is more
challenging than the Gauss dataset, which only exhibits feature drift (where p(X) changes, but
p(Y ∣X) remains constant). This impacts the effect of poor forecasting performance. In Figure 7,
for the circle dataset, we observe that a small decrease in MAE paired with stronger bias can have a
more sudden and drastic effect on the decision policy. Conversely, in the Gauss dataset (Figure 8),
the effect of poorer forecasting performance is less pronounced.
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Figure 5: Airplanes. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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Figure 6: Epicgames. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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Figure 7: Circles. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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Figure 8: Gauss. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).
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8.6 EXTENSION TO NON-BOUNDED METRICS

In this section, we show how we can extend our methodology to model non-bounded metrics often
used in regression tasks, such as the root mean square error (RMSE) or mean absolute error (MAE).

To do so, we replace the use of a Beta distribution to a log Normal distribution to model our perfor-
mance metric r.v. Ai,j .

A log normal distribution is parameterized with location m and scale parameter v. We can learn the
mean and variance parameters using the same Gaussian approximation;

LogNorm(m(ri,j), v(ri,j)) ≈ N (µ(ri,j), σ(ri,j)), (58)

and recover the location and scale parameters using the relation;

v =

√

ln(1 +
µ

σ2
) (59)

m = ln(v) −
v2

2
. (60)

8.6.1 IMPACT OF THE NORMAL APPROXIMATION

In our method, we approximate the Beta distribution with a Normal distribution to ease the learning
process;

Beta(α(ri,j), β(ri,j)) ≈ N (µ(ri,j), σ(ri,j)). (61)

We verify here that this approximation doesn’t have too big an effect on the end performance. We
compare the UPF method, which uses Ai,j ∼ Beta(α(ri,j), β(ri,j)), with a UPF (Gaussian), which
doesn’t use the Beta distribution and instead uses a Gaussian with learned parameters to model the
performance metric: Ai,j ∼ N (µ(ri,j), σ(ri,j)). In Figures 9, 10, 11 and 12, we can see that this
does not have too big an effect on the overall behavior and performance.
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Figure 9: Gauss
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Figure 10: Electricity
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Figure 11: Circles
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Figure 12: Airplanes

8.7 TRAINING COMPLEXITY

In this section, we compare the training complexity of each baseline. We report the average time
required for the offline training process, online inference and discuss runtime complexity.

The CARA baseline comprises two computationally intensive components. First, it constructs the C
matrix, representing its performance estimation. This algorithm involves inferring, with a modified
model, each point of the new dataset and reweighting each, which scales withO(∣Dnew∣). This needs
to be done in both offline and online phases. Then, in the offline phase, it performs an annealing
search over parameters to find the best value that minimizes this cost approximation, taking into
account the retraining cost associated with each decision. In Table 6, we can see that this result in
the highest runtime for both online and offline phases.

Table 6: Average runtime of the baselines on the circles dataset.

CARA cum. CARA CARA per. UPF ADWIN FHDDM KSWIN
Offline ms 8.4871 8.6608 7.8461 0.0947 0.0274 0.0122 0.3392
Online (one step)ms 1.5604 1.5046 1.5940 0.0247 0.0351 0.0103 0.3438

In comparison, our approach consists of fitting a linear model on a small dataset. The shift distribu-
tion features must be obtained, but they involve comparing two histograms, scaling as O(w2∣Dt∣)

rather than exponentially with ∣Dt∣.

The distribution shift baselines do not have an offline phase, as they monitor shifts in the underlying
distribution continuously. Their runtime complexity is therefore very low, at O(∣Dt∣), as reflected
in Table 6

8.8 ADDITIONAL RESULTS

In this section, we include additional figures to visualize our results in Figures 13, 14, 15, 16, 17, 18,
and Figures 19. Overall, the results are generally consistent and exhibit a similar trend. The
EpicGames dataset, however, is more challenging and presents greater difficulties for all baselines.
In particular, UPF performs worse than other baselines at low values of the retraining cost ratio α.
For those operating points, UPF does reach the correct retraining frequency; however, it is unable to
pinpoint the optimal moments to retrain, resulting in worse performance than baselines that retrain
more frequently, as shown in the right panel of Figure 19.
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Figure 13: Result on the electricity dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 14: Result on the yelp dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 15: Result on the epicgames dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs
α.
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Figure 16: Result on the Gauss dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 17: Result on the circles dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.
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Figure 18: Result on the airplanes dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

We additionally include results with the oracle baselines in Figures 19. We can see that the UPF
baseline is reasonably close to the optimal algorithm in two of the datasets (circles and electricity),
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but struggles for the more challenging dataset, epicgames. Looking at the number of retrains, we
can see that UPF more closely follows the retraining frequency of the oracle for all datasets.
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Figure 19: Result on the circles (left), electricity (middle) and epicgames (right) datasets. Top)
Cost Ĉα(θ) vs α. Bottom) Number of retrains vs α.

8.9 METHODOLOGY AS OFFLINE RL

We can frame the retraining problem as an offline RL task (Levine et al., 2020). We define a state
space where each state is described by the index of the trained model and the timestep; S ∈ {T} ×
{T}. The action space is to either retrain or not, so A = {0,1}. The state transitions are deterministic
and known:

T (St+1∣St = (i, t),A) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if A = 0, St+1 = (i, t + 1)

1 if A = 1, St+1 = (t + 1, t + 1)

0 o.w.
. (62)

Figure 20 provides a visualization of the MDP. Since the state transitions are deterministic, we can
define the deterministic transition function:

st+1 = t(at, st). (63)

The reward function only depends on the end state (which describes the performance of a model i
evaluated at timestep t) and on the action. Using peS to denote the performance at a state S and
reusing of tradeoff parameter α, we have the reward function:

r(at, st+1) = −αat − pest+1 . (64)

To match our setting, the discount factor has to be set to one γ = 1.
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Figure 20: Visualization of the MDP

The goal is to learn a policy π on offline data to generalize to the online period. The offline dataset
is given by: Doffline = {sn, an, rn}

N
n=1.

The objective is defined as:

J(π) = Eτ∼pπ(τ)[
T+w
∑
t=w

r(st, at)], (65)

which is the same objective as we defined, with the added option of defining a random policy to
make decisions pπ(θ):

J(π) = Eθ∼pπ(θ)[
T+w
∑
t=w

r(st, at)] (66)

= −Eθ∼pπ(θ)[
T+w
∑
t=w

αat + pest+1] (67)

= Eθ∼pπ(θ)[Cα(θ)]. (68)

Q-learning (approximate dynamic methods) The basic idea of Q-learning is to define a Q function
and to derive a deterministic policy π from it. The Q function is defined as follows;

Qπ
(st, at) = Eτ∼pτ ∣st,at

[
T+w
∑
t′=t

r(st′ , at′)] (69)

and the policy is set to:

π(at∣st) = δ(at = argmaxQ(st, at)). (70)

Since the optimal policy π∗ should satisfy

Q∗(st, at) = r(st, at) +Est∼T (st+1∣st,at)[max
at+1

Q∗(st+1, at+1)] , (71)

one algorithm is to train Qϕ until that equation is satisfied.

In our case, the transition is deterministic, so we can define st+1 = t(st, at) and have

Q∗(st, at) = r(st, at) +maxat+1Q
∗
(t(st, at), at+1) . (72)

The idea is then to parameterize Qϕ, and minimize the following for all samples in the dataset using
the Bellman update:

∑
n

(Qϕ(sn, an) − [r(sn, an) +max
a′

Qϕ(s
′, a′)])2 . (73)
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First we set the target:

yn = r(sn, an) +max
a′

Qϕ(s
′, a′) (74)

then we optimize

∂

∂ϕ
∑
n

(Qϕ(sn, an) − yn)
2. (75)

and the algorithm iterates between those two steps. We can therefore apply any Q-learning method
to our problem, provided that it uses a standard Qϕ parameterization.

Connecting Q-learning to our UPF algorithm

In our setting, we have special knowledge of the structure of Q. First, there is no randomness on the
transition state, so we know that:

yn = r(sn, an) +max
an+1

Qϕ(t(sn, an), an+1) (76)

By definition, we have that:

Qϕ(st, at) = −atα − pes,t +max
at+1

Qϕ(t(st, at), at+1) (77)

While computing the Bellman update and setting the target, we can see that the Q function of one
of the last states Qϕ(sT,x, ⋅) will have to predict the end performance:

Qϕ(sT,x, ⋅) = −pesT,x
, (78)

= −fϕ(sT,x) . (79)

By the DAG structure of the transition function, and since the α value is known, we can parameterize
recursively all the Qϕ functions with shareable components:

Qϕ(sT−1,x, aT−1,x) = −αaT−1,x − fϕ(sT−1,x) +max(−α − fϕ(sT,T ),−fϕ(sT,x)), (80)

where each fϕ(sT−1,x) is modeling the performance pesT,x
at that given state.

The MSE objective that is traditionally applied (Eqn. 75) can then be decomposed into 2 terms,
where one of the terms corresponds to our objective:

L =∑
n

(Qϕ(sn, an) − yn)
2 (81)

= ( − αan,x − fϕ(sn) +max(−α − fϕ(sT,T ),−fϕ(sT,x)) (82)

− (anα + pesn +max
an+1

Qϕ(t(sn, an), an+1)))
2

(83)

= (fϕ(sn) − pesn +max(−α − fϕ(sT,T ),−fϕ(sT,x)) +max
an+1

Qϕ(t(sn, an), an+1)))
2

(84)

L =∑
n

(fϕ(sn) − pesn)
2

+C. (85)

The term (fϕ(sn) − pesn)
2

in the loss function aligns with our objective, as Ai,j represents our
model’s approximation of the performance metric pei,j . Therefore, with this specific parameteriza-
tion, we can establish a connection between Q-learning and our learning method.

However, as noted in the main text, applying existing ORL methods to this problem would not be
effective. The problem involves a deterministic transition matrix and a highly structured reward, both
of which are uncommon in typical RL settings. Additionally, most RL methods prioritize scalability
to large state or action spaces, use complex models, and assume access to plentiful data, making
them ill-suited for our scenario. A key requirement for our approach is training efficiency, given our
limited performance data and the need for online adaptation as more information becomes available.
If the computational cost of deciding when to retrain is comparable to the retraining process itself,
the approach becomes impractical.
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8.9.1 OFFLINE RL BASELINES

In this section, we present results using an offline RL baseline that is appropriate for low-data set-
tings: Least-Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003). We follow the detailed RL
formulation as previously presented. To implement LSPI, we use the model index i and timesteps
t as states (following the formulation from the previous section). In LSPI, various approximation
methods are introduced to solve the linear equation, but these are unnecessary in our case, as we can
solve it exactly due to the small size of our problem. We present various versions of this baseline
by changing the λ parameter. In Table 7, we can see that this proposed baseline is not competitive.
These initial results for this basic formulation of the offline RL problem indicate that more care and
design should be taken to appropriately solve this problem using offline RL, supporting that existing
RL methods, as they are, may not be well-suited to solve the problem.

Table 7: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of
α values, for all datasets. The bolded entries represent the best, and the underlined entries indicate
the second best. The ∗ The ∗ denotes statistically significant difference with respect to the next best
baseline, evaluated using a Wilcoxon test at the 5% significance level.

electricity Gauss circles airplanes yelpCHI epicgames iWild
ADWIN-5% 2.8099 0.4533 0.0753 2.6353 0.1298 0.3217 3.7371
ADWIN-50% 2.8131 0.4848 0.0753 2.7147 0.1298 0.3238 4.2564
KSWIN-5% 3.8979 0.3975 0.0753 3.2300 0.1322 0.3420 4.4268
KSWIN-50% 4.0521 0.9530 0.0794 3.2042 0.1655 0.3537 4.4268
FHDDM-5% 3.1525 0.3893 0.0753 2.6577 0.1324 0.3298 4.4267
FHDDM-50% 3.4037 0.5918 0.0772 2.7077 0.1450 0.3389 4.4268
CARA cumul. 2.7147 0.3862 0.0731 2.2900 0.1299 0.3228 3.8922
CARA per. 2.8986 0.4678 0.0800 2.4061 0.1318 0.3260 3.7527
CARA 2.7198 0.3841 0.0726 2.2753* 0.1294 0.3202 3.9506

LSPI λ = 1 4.3820 1.0530 0.2412 3.7140 0.1493 0.3523 -
LSPI λ = 0.5 4.5260 1.0837 0.2455 3.6924 0.1442 0.3566 -
LSPI λ = 0.0 4.5317 1.0933 0.2478 3.5862 0.1378 0.3573 -

UPF (ours) 2.5782* 0.3829* 0.0668* 2.2865 0.1293* 0.3189* 3.0498*

oracle 2.4217 0.3724 0.0627 2.2298 0.1275 0.3170 2.4973

8.10 RELATING OUR OBJECTIVE TO THE CARA FORMULATION

In (Mahadevan & Mathioudakis, 2024), even though they are also tackling the retraining problem,
they are formulating the problem differently.

Instead of using a binary vector to model the retraining decisions, they use a sequence of model
indices S = [s1, . . . , sT ] with the constraint that st ∈ {0, . . . , t}. If st = t, it signifies a retrain.

The cost objective they consider is similar to ours; they sum over the timesteps to get the cumulative
total cost. The cost per timestep is encoded in an upper triangular matrix C:

C[t′, t] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ψ̄t,t′ if t′ < t
κ if t′ = t (cost of retraining)
∞ o.w.

(86)

where Ψ̄t,t′ is defined as some “relative staleness cost”. The total cost is defined as:

Ccara
(S) =

T

∑
t=1

C[st, t]. (87)

The staleness cost is defined as the cost of using a model f1 to classify data from Q2, approximated
by dataset D3:

Ψ(Q2,D3, f1) ≜ ∑
q∼Q2

1

∣D3∣
∑

x,y∼D3

sim(q, x)ℓ(f1, x, y) (88)
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The aim of this metric is to predict the performance of f1 on the query points in Q2 by computing
the loss on a reference dataset D3. The idea is to weight the loss at each sample of D3 by how
similar they are to the query samples in Q2 (this is the role of sim(q, x)).

ℓ(f3(q), yq) ≈
1

∣D3∣
∑

x,y∼D3

sim(q, x)ℓ(f1, x, y) (89)

Ψ(Q2,D3, f1) ≈ NeEQ2[ℓ(f3(X), Y )] (90)
≈ Nepet3,t2 (91)

The relative staleness cost is defined as the difference between staleness costs:
Ψ̄t,t′ = Ψ(Qt,Dt, ft′) −Ψ(Qt,Dt′ , ft′) . (92)

This is intended to approximate the relative gap of performance:
Ψ̄t,t′ ≈ Ne(pet′,t − pet,t) (93)

In our experiment, we directly use Ψ(Qt,Dt, ft′) as an approximation of pet′,t and apply the CARA
algorithm directly on the staleness costs instead of using the relative staleness cost.

Relating it to our formulation Our objective is given by;

C(θ) = c∣∣θ∣∣1 + eN
T

∑
t=1

perθ,t. (94)

To understand the connection with our formulation, we start by rewriting the CARA cost as:

Ccara
(S) =

T

∑
t=1

1[st = t]κ + 1[st < t]Ψ̄t,st (95)

=
T

∑
t=1

1[st = t]κ + 1[st < t]Ψ̄t,st (96)

≈
T

∑
t=1

1[st = t]κ +Ne1[st < t](pest,t − pet,t) from equation 93 (97)

Ccara
(θ) = κ∣∣θ∣∣1 +Ne

T

∑
t=1
(perθ,t − pet,t) switching to our notation with θ. (98)

This reveals the assumptions that are required for both solutions to coincide. First, this approxima-
tion for the loss of a future model ft should hold:

ℓ(ft(xq), yq) ≈
1

∣Dt∣
∑

x,y∼Dt

sim(xq, x)ℓ(f1, x, y) (99)

Second, in order to have:
C(θ) = Ccara

(θ) (100)
we need

κ = c +
Ne∑

T
t=1 pet,t
∣∣θ∣∣1

. (101)

Proof: We require that:

c∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t = κ∣∣θ∣∣1 +Ne
T

∑
t=1
(perθ,t − pet,t) . (102)

This implies that:

c∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t = κ∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t −Ne
T

∑
t=1

pet,t , (103)

and hence that:

κ = c +
Ne∑

T
t=1 pet,t
∣∣θ∣∣1

. (104)

The cost of retraining κ in the CARA formulation must thus scale with the minimum performance
cost that can be obtained by always using the most recent model Ne∑

T
t=1 pet,t, divided by the

number of retrains that have been made. It is of course not possible to set κ to this value, as it
depends on θ, but it gives insight into how the formulations relate to each other.
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8.11 VARYING TRAINING DATA SIZE

In this section, we provide experimental results where we assume that we have access to fewer of-
fline time steps and analyze how it impacts the results. We display the relative improvement of
the best baseline vs. the competing baselines by reporting normalized AUC values in Tables 8,9,
and10. Overall, our method remains effective in scenarios with reduced training data. It demon-
strates greater robustness compared to the CARA baselines, which can be explained by the fact that
it can adapt to new information received during the online process, which CARA cannot do. With
very few training steps (w = 2), the CARA baselines suffer the most, reaching more than twice the
error for some datasets. With more data (w = 4), the relative performance is more in line with larger
datasets (w = 7), with UPF remaining the best.

Table 8: w = 2. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ),
computed over a range of α values, for all datasets. We normalize by dividing by the best value
for each dataset. The bolded entries represent the best. The ∗ denotes statistical significance with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 2 electricity airplanes yelpCHI epicgames Gauss circles
CARA 1.0000 1.0101 1.0100 1.0282 2.6519 1.4792
CARA c. 1.0669 1.0680 0.0544 2.7437 4.0150 1.6872
CARA per. 2.1971 1.6703 0.0661 2.9131 10.6965 1.8901

UPF 1.0258 1.0000* 1.0000* 1.0000 1.0000* 1.0000*

Table 9: w = 4. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ),
computed over a range of α values, for all datasets. We normalize by dividing by the best value
for each dataset. The bolded entries represent the best. The ∗ denotes statistical significance with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 4 electricity airplanes yelpCHI epicgames Gauss circles
CARA 1.0093 1.0024 1.0000 1.0063 1.0049 1.0653
CARA per. 1.1029 1.0721 1.0017 1.0168 1.0984 1.0045
CARA c. 1.0153 1.0060 1.0025 1.0220 1.0042 1.0501
UPF 1.0000* 1.0000* 1.0008 1.0000* 1.0000* 1.0000*

Table 10: w = 7. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ),
computed over a range of α values, for all datasets. We normalize by dividing by the best value
for each dataset. The bolded entries represent the best. The ∗ denotes statistical significance with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 7 electricity airplanes yelpCHI epicgames Gauss circles
CARA c. 1.0530 1.0065 1.0046 1.0122 1.0086 1.0944
CARA per. 1.1244 1.0575 1.0193 1.0223 1.2219 1.1976
CARA 1.0549 1.0000* 1.0008 1.0041 1.0031 1.0868
UPF (ours) 1.0000* 1.0050 1.0000* 1.0000* 1.0000* 1.0000*

8.12 PRELIMINARY RESULTS ON THE WILD TEMPORAL DATASET

In this section, we present preliminary results on one dataset from the suite of temporal datasets
from Yao et al. (2022). Specifically, we present preliminray results from the yearbook dataset.
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To construct our sequence of datasets Dt, . . . , we follow the construction from (Yao et al., 2022).
For training, we iteratively add more samples from each year, spanning from 1930 to 2012. For
testing, we evaluate only on samples from the most recent year. As for the model ft, we use the
ERM model from (Yao et al., 2022), and follow the training procedure fromYao et al. (2022). We
use a similar setup to the one followed in our experiment, setting the offline window size w = 7,
evaluating over an online phase of T = 8 steps, and presenting results over 10 trials (See table 11).
Preliminary results for this dataset which can be seen in Table 12 are inline with the results from the
main paper.

Table 11: Dataset description. w denotes the number of timestep of the offline phase, T denotes the
number of timestep of the online phase. The Model describes the architecture used for each ft.

Dataset Model αmax w ∣M<0∣ T Dataset size (∣D∣) Num. features Task
yearbook ERM 0.5 7 21 8 (varies) 32X32X3 Binary

Table 12: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range
of α values, for all datasets. The bolded entries represent the best, and the underlined entries indicate
the second best. The ∗ The ∗ denotes statistically significant difference with respect to the next best
baseline, evaluated using a Wilcoxon test at the 5% significance level.

yearbook
CARA cumul 0.0351
CARA per. 0.0195
CARA 0.0322
UPF 0.0120*

Oracle 0.0105

8.13 LIST OF TIMM PRETRAINED VISION MODELS

’ b e i t b a s e p a t c h 1 6 2 2 4 ’ ,
’ b e i t v 2 b a s e p a t c h 1 6 2 2 4 ’ ,
’ c a f o r m e r s 1 8 ’ ,
’ c a i t s 2 4 2 2 4 ’ ,
’ c a i t x x s 2 4 2 2 4 ’ ,
’ c a i t x x s 3 6 2 2 4 ’ ,
’ c o a t l i t e m i n i ’ ,
’ c o a t l i t e s m a l l ’ ,
’ c o a t l i t e t i n y ’ ,
’ c o a t m i n i ’ ,
’ c o a t t i n y ’ ,
’ c o a t n e t 0 r w 2 2 4 ’ ,
’ c o a t n e t b n 0 r w 2 2 4 ’ ,
’ c o a t n e t n a n o r w 2 2 4 ’ ,
’ c o a t n e t r m l p 1 r w 2 2 4 ’ ,
’ c o a t n e t r m l p n a n o r w 2 2 4 ’ ,
’ c o a t n e x t n a n o r w 2 2 4 ’ ,
’ c o n v f o r m e r s 1 8 ’ ,
’ c o n v i t b a s e ’ ,
’ c o n v i t s m a l l ’ ,
’ c o n v i t t i n y ’ ,
’ c o n v m i x e r 1 0 2 4 2 0 k s 9 p 1 4 ’ ,
’ c o n v n e x t a t t o ’ ,
’ c o n v n e x t a t t o o l s ’ ,
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’ c o n v n e x t b a s e ’ ,
’ c o n v n e x t f e m t o ’ ,
’ c o n v n e x t f e m t o o l s ’ ,
’ c o n v n e x t n a n o ’ ,
’ c o n v n e x t n a n o o l s ’ ,
’ c o n v n e x t p i c o ’ ,
’ c o n v n e x t p i c o o l s ’ ,
’ c o n v n e x t s m a l l ’ ,
’ c o n v n e x t t i n y ’ ,
’ c o n v n e x t t i n y h n f ’ ,
’ c o n v n e x t v 2 a t t o ’ ,
’ c o n v n e x t v 2 f e m t o ’ ,
’ c o n v n e x t v 2 n a n o ’ ,
’ c o n v n e x t v 2 p i c o ’ ,
’ c o n v n e x t v 2 t i n y ’ ,
’ c r o s s v i t 1 5 2 4 0 ’ ,
’ c r o s s v i t 1 5 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t 1 5 d a g g e r 4 0 8 ’ ,
’ c r o s s v i t 1 8 2 4 0 ’ ,
’ c r o s s v i t 1 8 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t 9 2 4 0 ’ ,
’ c r o s s v i t 9 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t b a s e 2 4 0 ’ ,
’ c r o s s v i t s m a l l 2 4 0 ’ ,
’ c r o s s v i t t i n y 2 4 0 ’ ,
’ c s 3 d a r k n e t f o c u s l ’ ,
’ c s 3 d a r k n e t f o c u s m ’ ,
’ c s 3 d a r k n e t l ’ ,
’ c s 3 d a r k n e t m ’ ,
’ c s 3 d a r k n e t x ’ ,
’ c s 3 e d g e n e t x ’ ,
’ c s 3 s e e d g e n e t x ’ ,
’ c s 3 s e d a r k n e t l ’ ,
’ c s 3 s e d a r k n e t x ’ ,
’ c s p d a r k n e t 5 3 ’ ,
’ c s p r e s n e t 5 0 ’ ,
’ c s p r e s n e x t 5 0 ’ ,
’ d a r k n e t 5 3 ’ ,
’ d a r k n e t a a 5 3 ’ ,
’ d a v i t b a s e ’ ,
’ d a v i t s m a l l ’ ,
’ d a v i t t i n y ’ ,
’ d e i t 3 b a s e p a t c h 1 6 2 2 4 ’ ,
’ d e i t 3 m e d i u m p a t c h 1 6 2 2 4 ’ ,
’ d e i t 3 s m a l l p a t c h 1 6 2 2 4 ’ ,
’ d e i t b a s e d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t b a s e p a t c h 1 6 2 2 4 ’ ,
’ d e i t s m a l l d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t s m a l l p a t c h 1 6 2 2 4 ’ ,
’ d e i t t i n y d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t t i n y p a t c h 1 6 2 2 4 ’ ,
’ d e n s e n e t 1 2 1 ’ ,
’ d e n s e n e t 1 6 1 ’ ,
’ d e n s e n e t 1 6 9 ’ ,
’ d e n s e n e t 2 0 1 ’ ,
’ d e n s e n e t b l u r 1 2 1 d ’ ,
’ d l a 10 2 ’ ,
’ d l a102x ’ ,
’ d l a102x2 ’ ,
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’ d l a 16 9 ’ ,
’ d l a 3 4 ’ ,
’ d l a 4 6 c ’ ,
’ d l a 4 6 x c ’ ,
’ d l a 6 0 ’ ,
’ d l a 6 0 r e s 2 n e t ’ ,
’ d l a 6 0 r e s 2 n e x t ’ ,
’ d l a 60 x ’ ,
’ d l a 6 0 x c ’ ,
’ d m n f n e t f 0 ’ ,
’ d m n f n e t f 1 ’ ,
’ dpn68 ’ ,
’ dpn68b ’ ,
’ dpn92 ’ ,
’ dpn98 ’ ,
’ e c a n f n e t l 0 ’ ,
’ e c a n f n e t l 1 ’ ,
’ e c a n f n e t l 2 ’ ,
’ e c a r e s n e t 3 3 t s ’ ,
’ e c a r e s n e x t 2 6 t s ’
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