
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WHEN TO RETRAIN A MACHINE LEARNING MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

A significant challenge in maintaining real-world machine learning models is re-
sponding to the continuous and unpredictable evolution of data. Most practitioners
are faced with the difficult question: when should I retrain or update my machine
learning model? This seemingly straightforward problem is particularly challeng-
ing for three reasons: 1) decisions must be made based on very limited informa-
tion - we usually have access to only a few examples, 2) the nature, extent, and
impact of the distribution shift are unknown, and 3) it involves specifying a cost
ratio between retraining and poor performance, which can be hard to characterize.
Existing works address certain aspects of this problem, but none offer a com-
prehensive solution. Distribution shift detection falls short as it cannot account
for the cost trade-off; the scarcity of the data, paired with its unusual structure,
makes it a poor fit for existing offline reinforcement learning methods, and the
online learning formulation overlooks key practical considerations. To address
this, we present a principled formulation of the retraining problem and propose an
uncertainty-based method that makes decisions by continually forecasting the evo-
lution of model performance evaluated with a bounded metric. Our experiments
addressing classification tasks show that the method consistently outperforms ex-
isting baselines on 7 datasets. We thoroughly assess its robustness to varying cost
trade-off values and mis-specified cost trade-offs.

1 INTRODUCTION

In many industrial machine learning settings, data are continuously arriving and evolving (Gama
et al., 2014). This means that a model, fθ, that was trained on a fixed dataset, D, will become
outdated. This usually translates to a cost in the form of a missed opportunity. However, retraining
a new model, fθ′ , on a more up-to-date dataset, D′, is also costly. Beyond the obvious costs of
computational resources and energy (Strubell et al., 2020), there are human resource costs associated
with assigning experts to deploy and maintain the model, as well as collecting and cleaning data.
Deploying a new model also generally comes with a higher risk. Therefore, the optimal retraining
schedule depends on this comprehensive cost of retraining, on the cost of making mistakes, and on
future model performance. Figure 1 provides a visualization of the task.

0 1 2 3 4 5 6 7 8 9 10
Evaluated on dataset

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

retrain retrain

model f trained on dataset:
0
1
2

3
4
5

6
7
8

9
10

retraining schedule

Figure 1: The Retraining Problem: The performance of a model trained on a dataset Di gradually
decreases when evaluated on more recent datasets in the presence of distribution shift. The task is
to determine when retraining is beneficial compared to keeping an older model. We must take into
consideration the trade-off between potential accuracy gains and the costs associated with retraining.
In the training schedule θ shown here, retraining occurs twice, at t = 4 and t = 8.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Although this retraining problem is ubiquitous in industry (Gama et al., 2014), there are few works in
the machine learning literature that tackle it directly. It has been framed as an application of the dis-
tribution shift detection problem (Bifet & Gavaldà, 2007), where the conventional strategy involves
triggering retraining whenever a substantial shift is detected (Bifet & Gavaldà, 2007; Cerqueira et al.,
2021; Pesaranghader & Viktor, 2016). However, this approach overlooks retraining costs. This can
be particularly problematic when training is expensive, as demonstrated in our experiments. Oth-
ers have reduced the need for retraining by incorporating robustness to distribution shifts (Schwinn
et al., 2022) or adapting to them (Filos et al., 2020), but these methods have limits on the extent of
the shift they can handle. Other related areas are online or adaptive learning (Hoi et al., 2021) and
life-long learning which updates models with a continuous stream of data through gradual gradient
updates, and transfer learning which adapts model from one distribution to another. However, this
differs from our problem, as it focuses on maximizing performance while abstracting the practical
retraining costs involved in production deployment. In practice, the cost of retraining can go beyond
the number of gradient updates or sample complexity, as discussed above. Finally, because this is
a sequential decision problem, it can be framed within the offline reinforcement learning frame-
work (Levine et al., 2020). In theory, offline RL methods should be applicable, but few, if any,
are designed for very low-data settings. They require substantial amounts of data for training and
hyperparameter tuning, and are therefore largely unsuitable to use in this context.

A direct treatment of the cost consideration in the retraining problem is presented by Žliobaitė et al.
(2015) and by Mahadevan & Mathioudakis (2024). The formulation by Mahadevan & Mathioudakis
(2024) accounts for the trade-off between the cost of retraining and the cost of performance. Their
method, CARA, relies on approximating the performance of a model on new data, and the retraining
decision is based on this value. However, this approach makes several limiting assumptions: 1)
the relative cost objective assumes that the “difficulty” of the task remains constant; and 2) the
performance approximation assumes the data distribution is almost stationary.

Instead, we consider a more general objective that combines both the retraining cost and the average
performance over a specified horizon. We detail the relationship between our objective and CARA’s
objective in Appendix 8.10. Our formulation is more general and does not depend on strong as-
sumptions regarding the data distribution and its impact on performance. There is no constraint
on how the ”retrained” model is obtained. It can be obtained through fine-tuning from a previous
model, adapted, trained from scratch, or any other procedure.Additionally, our method can lever-
age new observations of the model’s performance. Our proposed method involves forecasting the
performance of both future and current models and making decisions based on the uncertainty of
our predictions. We show the effectiveness of our approach on five real datasets and two synthetic
datasets. We make the following contributions:

• We introduce a principled formulation of a practical version of the retraining problem. We also
provide its connection to existing formulations and offline reinforcement learning.

• We establish upper limits on the optimal number of retrains based on performance bounds and
show how existing results can be used to determine whether you should retrain or not.

• We propose a novel retraining decision procedure based on performance forecasting. Our pro-
posed algorithm is robust and outperforms existing baselines. It requires minimal performance
data by fully leveraging the problem structure, employing compact regression models, and bal-
ancing the uncertainty caused by data scarcity through an uncertainty-informed decision process.

• We show that accounting for uncertainty in our method improves the performance.

2 RELATED WORK

We discuss related work and fields relevant to the retraining problem. A more detailed literature
review, including connections to other related fields is provided in Appendix 8.1.

Retraining problem Few works explicitly target the retraining problem. Žliobaitė et al. (2015) pro-
pose a return on investment (ROI) framework to monitor and assess the retraining decision process,
but do not introduce a method for actually deciding when to retrain. Mahadevan & Mathioudakis
(2024) develop a retraining decision algorithm, CARA, which integrates the cost of retraining and
introduces a “staleness cost” for persisting with an old model. CARA approximates the staleness

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

cost using offline data consisting of several trained models and their historical performance. Three
versions of CARA are proposed: (i) retraining if the estimated staleness exceeds a threshold; (ii) re-
training based on estimated cumulative staleness; or (iii) identifying an optimal retraining frequency.
While providing promising results, CARA requires access to some of the data that will be used for
retraining, and is very computationally intensive, so there is no adaptation to data obtained during
the online decision period.

Distribution shift detection The retraining problem is closely connected to distribution shift detec-
tion and mitigation (Wang et al., 2024a; Hendrycks & Gimpel, 2017; Rabanser et al., 2019). Some
approaches decide to adapt a model after detection of a changed distribution (Sugiyama & Kawan-
abe, 2012; Zhang et al., 2023). Since the signal is designed to adapt a model rather than trigger a
full retraining, these methods are not appropriate as retraining signals. Other approaches, however,
directly treat the detection of a distribution shift as a cue for retraining. ADWIN (Bifet & Gavaldà,
2007) uses statistical testing of the label or feature distribution. Another approach is to directly
monitor the model’s performance. FHDDM (Pesaranghader & Viktor, 2016) employs Hoeffding’s
inequality, while (Raab et al., 2020) relies on a Kolmogorov-Smirnov Windowing test. These ap-
proaches work well with low retraining costs, but perform poorly when retraining costs are high,
as they tend to recommend retraining far too often. Additionally, they lack adaptability to varying
costs, and it is difficult to determine the correct significance level to use for a given retraining-to-
performance cost ratio.

Offline reinforcement learning Lastly, we discuss the connection to the offline reinforcement learn-
ing (ORL) setting, where the agent must learn a policy from a fixed dataset of rewards, actions, and
states. This subset of RL is particularly challenging, as the agent cannot explore and can only rely on
the dataset to infer the underlying dynamics and handle distribution shifts. See (Levine et al., 2020)
for an extensive review. Q-learning and value function methods, which focus on predicting future
action costs, have become the preferred approaches for ORL (Levine et al., 2020; Kalashnikov et al.;
Hejna et al., 2023; Kostrikov et al., 2022). Some methods incorporate epistemic uncertainty into the
Q-function to address distribution shifts of unseen actions (Kumar et al., 2020; Luis et al., 2023).

If we view the states as encoding both time and the model in use, and actions as either retraining
or maintaining the current model, we can frame our problem as ORL. However, most existing RL
approaches focus on scaling to large state or action spaces, employ large models, and assume ac-
cess to abundant data, making them unsuitable for our context. A more detailed discussion on the
connections and limitations of ORL methods is included in Appendix 8.9.

3 PROBLEM SETTING

In this section, we outline our formulation of the retraining problem. We have access to a sequence
of datasets, D−w, . . . ,D0, . . .DT with features and labels xi,t ∼ Xt, yi,t ∼ Yt,Dt = {(xi,t, yi,t)}

∣Dt∣
i=1

, which are assumed to be drawn from a sequence of distributions Dt ∼ pt . In practice, this reflects
the gradual distribution shifts that occur when collecting data over time, so we specifically cannot
assume that pt = pt+1 (this would correspond to a special case of the problem, which we refer to as
the no distribution shift case). The datasets are acquired at discrete times t = [−w, . . . ,0, . . . , T].
The sequence is split into an offline period that spans t = [−w, . . .0], followed by an online period
[t = 1, . . . T]. At each time step t of the online period, we are given the option to (re)train a model
ft, using the data acquired up until time t, for a retraining cost of ct. The datasets and trained models
can be formed and obtained through any means depending on the task at hand; for example, f1 could
be fine-tuned from f0 and D1 could contain D0.

The complete sequence of decisions that we make can be encoded as a binary vector θ ∈ {0,1}T ,
where θt = 1 indicates that we retrain the model at time t. We introduce rθ(t) as a mapping function
that returns the last training time at time t: (rθ(t) =maxt′∈{0,t}s.t.θt′=1 t

′, or rθ(t) = 0 if ∣∣θ∣∣1 = 0.).

At each time step t, we are required to generate a certain number of predictions Nt on a test set,
which incurs a loss ℓ(ŷ, y), scaled by a cost et. This would correspond to actually using the model
to make predictions, for example, to detect fraud – failing to detect a fraudulent transaction costs et,
and approximately Nt transactions are verified at time t. To make these predictions at time t, we use
the most recently trained model, which we denote by frθ(t). To ensure that there is always at least
one model available during the online period, we always train the last offline model f0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The target cost is a function of the vector θ, which encodes the retraining decisions,
and combines the two opposing costs: the cost associated with model performance,

∑
T
t=1 et∑

Nt

i=1 ℓ(frθ(t)(xi,t), yi,t), and the cost to retrain, θtct:

Cα(θ) = E [
T

∑
t=1

et
Nt

∑
i=1

ℓ(frθ(t)(xi,t), yi,t) + θtct] . (1)

To make the expression more concise, we condense the expected loss into a scalar pei,j where the
two indices denotes the model index, and the timestep, respecvietly:

pei,j = {
EDj [ℓ(fi(Xj), Yj)] , if i ≤ j ,
0 , otherwise .

(2)

We can simplify the problem by assuming a fixed cost of retraining, ct = c, cost of loss, et = e, and
number of predictions, Nt = N . The solutions we develop later in the paper are easily extended to
the case where these are varying, but known, quantities. Introducing the cost-to-performance ratio
parameter α = c

eN
, the online objective can be compactly written as:

Cα(θ) = eN (α∣∣θ∣∣1 +
T

∑
t=1

perθ(t),t) . (3)

3.1 OFFLINE AND ONLINE DATA

The cost Cα(θ) is only evaluated over the online period. We assume that we have access to all the
datasets and trained models during the offline period. In practice, the number of models and datasets
is typically limited to only a few (around 10 to 20 at most), which is why we characterize this
problem as being in a low-data regime. We denote this data as Ioffline = (D−w, . . .D0, f−w, . . . , f0).
In the online mode, each decision at time t can only rely on information available prior to that time,
which we denote by I<t. I<t therefore contains both the offline data Ioffline , and the online data
that was collected up to the timestep t: Ionline<t . The online data is similar to the offline data, but it
only contains the models that were actually trained; Ionline<t = (D1, . . .Dt−1,{fi}i s.t. θi=1)).

Each entry of θ can therefore be modeled by a binary function g(t,I<t) ∈ {0,1}:

θ = [g(1,Ioffline
), . . . , g(T,I<T))]

⊺. (4)

Given ct, et, and Nt, the task is to determine the g that generates the retraining schedule θ∗ that
minimizes the cost Cα(θ);

θ∗ = argmin
θ∈{0,1}T

Cα(θ) . (5)
3.2 SOME ANALYSIS

Before introducing methods that learn to generate such a schedule θ, we begin by providing some
basic properties of the problem. Specifically, we establish bounds on the number of retraining
actions of the optimal solution. These can be used to determine whether we even need to consider
retraining. We also provide guidance on leveraging existing performance bounds (such as scaling
laws) to compute the relevant quantities in these bounds. These theoretical insights can be used to
derive a practical rule of thumb on a case-by-case basis.

Our upper bound mainly depends on the difference between the expected performance of a model
trained on dataset Di and the performance of a model trained on the subsequent dataset Di+1, eval-
uated on the same dataset from any timestep Dt :

L ≥ ∣pei,t − pei+1,t∣∀t ∈ [T] (6)
Given this quantity, we derive the following result of an upper bound for the number of retrains of
the optimal solution, which we denote by r∗ = ∣∣θ∗∣∣1:
Proposition 3.1. Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T], a horizon of T ∈ N, and a relative cost of
retrain α, the number of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
(7)

The proof is provided in Appendix 8.2. Suppose a practitioner has reasonable approximations of L
and α, and a horizon to consider, T . Then if T −

√
(α
L
) < 1, no retraining should be performed. We

demonstrate how this result should be used in practice in Appendix 8.2.1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Bounding L General bounds for L are too loose to be helpful; however, in some cases, reason-
able estimates can be derived. For the specific cases of “no distribution shift” IID data, where the
data simply accumulates (Dt ⊂ Dt+1,Dt ∼ p(D)∀t), we can leverage some known theoretical re-
sult, such as Probably Approximately Correct (PAC) learning theory (Valiant, 1984) or Rademacher
Complexity (Bartlett & Mendelson, 2002). Even in real-world applications, where data often ex-
hibit temporal or spatial dependencies, making the non-distribution shift IID assumption unrealistic,
bounds have been derived using stability analysis (Mohri & Rostamizadeh, 2007; 2010) or tailored
Rademacher complexity bounds (Mohri & Rostamizadeh, 2008). For large-scale training settings,
precise empirical scaling laws have been derived (Kaplan et al., 2020; Hoffmann et al., 2024). Ka-
plan et al. (2020) derive that the loss L of the neural network scales with respect to the dataset
size N as L = (N/5.4 ⋅ 1013)

−0.095
. Such scaling laws enable the accurate estimation of expected

performance improvements from expanded datasets L. Thus, they enable informed decisions about
when retraining would yield substantial benefits. For a more detailed discussion see Appendix 8.3.

4 METHODOLOGY

A retraining decision algorithm must specify the decision functions gϕ(t,I<t) ∈ {0,1} (where ϕ
contains the parameters of the algorithm) used to build the decision vector θ. To make perfect
decisions, we would need future performance values, i.e., pei,j∀(i > t or j > t). This is infeasible;
however, we assume that there is an underlying temporal autocorrelation between the performance of
different models trained at different times, which we aim to exploit to build a predictive model. We
therefore propose to 1) model these future values as random variables and learn their distributions;
and 2) base our decisions on the predicted distributions to construct our method, the Uncertainty-
Performance Forecaster (UPF). As our methodology involves forecasting future performance as a
key subtask, we evaluate and quantify the impact of success in this task on the overall performance
of our algorithm, as detailed in Appendix 8.5.
4.1 PERFORMANCE FORECASTER

The first component of our algorithm involves learning a performance predictor to forecast unknown
entries in pe, which are defined as pei,j = EDj [ℓ(fi(Xj), Yj)] for i ≤ j (see Eqn 2). In a classi-
fication setting where we consider the 0-1 loss ℓ(y′, y) = 1[y′ ≠ y], these are 1 − accuracy. We
introduce random variables Aij and model the entries peij as realizations of these.

Since the Ai,j random variables are bounded, we model them (after appropriate scaling) as Beta
distributed with parameters α(ri,j), β(ri,j) that depend on some input feature ri,j . We also define
their associated mean µ(ri,j) and variance σ(ri,j). Given the parameters α(ri,j), β(ri,j), we model
the random variables to be independent of each other:

P (A0,0, . . . ,AT,T ∣{α(ri,j), β(ri,j)}
T
i≤j) =∏

i≤j
P (Ai,j ∣α(ri,j), β(ri,j)) , (8)

=∏
i≤j

Beta(α(ri,j), β(ri,j)). (9)

where Beta() denotes the pdf of a Beta distribution. We choose the input features rij to include the
indices of the training and evaluation datasets (i and j, respectively), along with additional features
that capture the gap between the training and evaluation timesteps (the difference j−i, and summary
statistics of the distribution shift zshift (see Appendix 8.5 for details). The input features are thus
given by ri,j = [i, j, j − i, zshift].

From the offline data, we have access to observations ai,j ∼ Ai,j , and can build a regression dataset
to learn the parameters α(ri,j), β(ri,j). We specify the learning task by constructing (ri,j , ai,j)
pairs:

M<t = {(ri,j , ai,j);∀fi ∈ I<t,∀Dj ∈ I<t} . (10)
Direct learning of the α,β parameters can be unstable. Therefore, we use a Gaussian approximation:

Beta(α(ri,j), β(ri,j)) ≈ N (µ(ri,j), σ(ri,j)), (11)
This allows use to write the likelihood of our dataset as:

L(M<t;ϕ) = ∏
i,j∈M<t

P (ai,j)∣ri,j , ϕ) = ∏
i,j∈M<t

N (ai,j ;µϕ(ri,j), σϕ(ri,j)). (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We parameterize the variance as a constant σϕ(ri,j) = σϕ. Maximizing the likelihood w.r.t. to the
mean parameters µϕ(ri,j) then becomes a standard mean square error objective. Given the expec-
tation of operating in a very low-data regime, we rely on simple inference models, such as linear
regression. Once these parameters are learned, we can recover the corresponding αϕ(ri,j), βϕ(ri,j)
parameters to obtain our predictive distribution (see Appendix 8.5 for additional details) ;

Pϕ(Ai,j) = Beta(αϕ(ri,j), βϕ(ri,j)). (13)

As stated, this parameterization is appropriate for bounded losses. Other distributions can be used
to model different loss domains if needed as we show in Appendix 8.6. As I<t grows at each time
step, our training data increases, so we retrain and obtain a new Pϕ(Ai,j) each time.

4.2 DECISIONS UNDER UNCERTAINTY

Now we describe how we use Pϕ(Ai,j) to decide whether to retrain. We introduce a random variable
C̃ that represents the total cost (Eqn. 3) (given a sequence of decisions θ):

C̃(θ) = eN (α∥θ∥1 +
T

∑
t=1

Arθ(t),t) . (14)

We can therefore define our decision rule based on this random cost using our learned distribution of
performances Pϕ(Āi,j). Given the past decisions θ<t, our next decision θ̃t is obtained by comparing
the δ-level quantiles of the total cost incurred if we retrain, denoted by C̃θ<t ∣retrain, and the cost
incurred if we do not, denoted by C̃θ<t ∣keep. Using F −1X (δ) as the quantile function of a random
variable, our rule is given by:

θ̃t = 1 [F
−1
C̃θ<t ∣retrain

(δ) < F −1
C̃θ<t ∣keep

(δ)] . (15)

The quantile parameter δ allows us to control how conservative we are. Lower values of δ lead to
decisions that prioritize costs with lower variance, while setting δ = 0.5 simply selects the decision
that minimizes the expected total cost. As defined, the retraining decision θ̃t is deterministic.

We begin by giving explicit expressions for the conditional random variables C̃θ<t ∣retrain and
C̃θ<t ∣keep. If we decide to retrain at time step t, the incurred costs include the retraining cost α, the
performance cost of the most recent model At,t, and future costs for the decisions we will make.
Specifically, we incur C̃θ<t+1 ∣retrain if the next decision is to retrain, and C̃θ<t+1 ∣keep if it is not. If
we choose not to retrain and keep the current model, we only incur the performance cost of the old
model, Arθ(t−1),t.

These random variables can therefore be recursively defined as follows:

C̃θ<t ∣retrain = α +At,t + θ̃t+1C̃θ<t+1 ∣retrain + (1 − θ̃t+1)C̃θ<t+1 ∣keep (16)

= α +At,t +
T

∑
t′=t+1

Arθ̃(t′),t′ + αθ̃t′ (17)

C̃θ<t ∣keep = Arθ(t−1),t +
T

∑
t′=t+1

Arθ̃(t′),t′ + αθ̃t′ (18)

As shown, the cost random variables are constructed recursively by summing the distribution of the
cost of performances Ai,j that would be selected by the decision rule θ̃, as θ̃ and the α parameter
are both deterministic.

The decision rule introduced in Eqn. 15 can therefore be written as:

θ̃t = 1 [F
−1
α+At,t+∑T

t′=t+1 Ar
θ̃
(t′),t′+αθ̃t′

(δ) < F −1
Arθ(t−1),t+∑

T
t′=t+1 Ar

θ̃
(t′),t′+αθ̃t′

(δ)] . (19)

We use the learned Beta distributions, introduced in the previous section, plugging them into Eqn. 19
in order to make a retraining decision.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

If the parameterization Pϕ(Ai,j) does not lead to a closed form expression, we use Monte Carlo
methods to obtain quantile estimates:

F −1Cθ<t ∣retrain
(δ) ≈ F̂ −1Cθ<t ∣retrain

(δ) (20)

where F̂ −1Cθ<t ∣retrain
(δ) is obtained through bootstrapping.

Connection to offline reinforcement learning The formulation closely resembles a Q-learning
formulation. The C values defined in Eqns. 16- 18 strongly align with Q functions. Indeed, one pos-
sible approach is to bypass the learning of the pe and directly optimize the decision-making process
using Q-learning approaches. The problem we are considering can be viewed as a corner case of
offline RL, where the state space is finite and enumerable, the training data are extremely limited, the
transition function is deterministic and fully known, and the reward structure is highly structured.
In fact, our methodology can be reinterpreted as an offline variant of a Q-learning approach with
a specific parameterization of the Q function, further justifying the motivation behind our method.
We explore and formalize this connection in Appendix 8.9. However, as we have explained in the
related work section, existing ORL methods are not suitable for this setting. We provide the results
for one ORL baseline in Appendix 8.9 to examplify that point.

5 EXPERIMENTS

Evaluation Metrics The performance of a retraining decision method is evaluated based on both
the average performance and the total retraining cost. The tradeoff between these factors is con-
trolled by α. When using the zero-one loss in classification, α can be seen as the ratio of retraining
cost to the cost of misclassifications. In practice, α is application-dependent and should be set by
the practitioner. The retraining cost would be low (small α) for situations such as fine-tuning small
models. By contrast, when retraining large language models, or in high-stakes settings requiring
extensive validation, the retraining cost is high (large α). The retraining decision method should be
robust across all scenarios. The appropriate value of α can be very difficult to estimate and will likely
be an approximation in practice. Consequently, we present experiments that test the robustness of
the method to inaccuracies in α in Section 6.

In our experiments, we address classification tasks with a zero-one loss, and set eN = 1. We report
an empirical estimate of the target cost Ĉα(θ) (Eqn. 3), obtained from the test set, over varying α:

Cα(θ) ≈ Ĉα(θ) ≜ α∣∣θ∣∣1 +
T

∑
t=1

petestrθ(t),t, (21)

where petesti,j = 1−acc
test with ℓ(y, y′) = 1[y ≠ y′], To summarize the results at multiple α operating

points, we report the area-under-the-curve (AUC) of Ĉα(θ). We compute 10 α operating points and
we allow α to range from 0 (no retrain cost) to αmax (where the cost is too high to justify any
retraining). The upper bound, αmax, is determined by the α value at which the oracle reaches 0
retrains.1 The oracle is obtained by determining the optimal schedule that minimizes the target cost,
assuming exact knowledge of all future peij entries, i.e., θoracle = argminθ Ĉα(θ).

Datasets We present results on synthetic and real datasets. For the real datasets, we use datasets
with a timestamp for each sample and partition the data in time to create a sequence of datasets
D0,D1, For each trial, we sample a different sequence of length w + T within the complete
dataset sequence available. We report results on: (i) the electricity dataset (Harries et al.), a bi-
nary classification task predicting the rise or fall of electricity prices in New South Wales, Aus-
tralia; (ii) the airplane dataset (Gomes et al., 2017), which records whether a flight is delayed; (iii)
yelpCHI (Dou et al., 2020), which classifies if a user’s review is legitimate; and (iv) epicgames (Oz-
men et al., 2024), where the task is to predict whether an author’s critique of a game was selected as
a top critique. As a base model f , we use XGBoost (Chen & Guestrin, 2016).

1The use of the oracle to define the range of α values for the AUC computation does not bias the performance
assessment via pollution with future knowledge. None of the algorithms makes use of the oracle information.
Using the oracle merely ensures that the performance comparison is conducted over the range of relevant α.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range
of α values, for all datasets. The bolded entries represent the best, and the underlined entries indi-
cate the second best. The ∗ denotes statistically significant difference with respect to the next best
baseline, evaluated using a Wilcoxon test at the 5% significance level.

electricity Gauss circles airplanes yelpCHI epicgames iWild
ADWIN-5% 2.8099 0.4533 0.0753 2.6353 0.1298 0.3217 3.7371
ADWIN-50% 2.8131 0.4848 0.0753 2.7147 0.1298 0.3238 4.2564
KSWIN-5% 3.8979 0.3975 0.0753 3.2300 0.1322 0.3420 4.4268
KSWIN-50% 4.0521 0.9530 0.0794 3.2042 0.1655 0.3537 4.4268
FHDDM-5% 3.1525 0.3893 0.0753 2.6577 0.1324 0.3298 4.4267
FHDDM-50% 3.4037 0.5918 0.0772 2.7077 0.1450 0.3389 4.4268
CARA cumul. 2.7147 0.3862 0.0731 2.2900 0.1299 0.3228 3.8922
CARA per. 2.8986 0.4678 0.0800 2.4061 0.1318 0.3260 3.7527
CARA 2.7198 0.3841 0.0726 2.2753* 0.1294 0.3202 3.9506

UPF (ours) 2.5782* 0.3829* 0.0668* 2.2865 0.1293* 0.3189* 3.0498*

oracle 2.4217 0.3724 0.0627 2.2298 0.1275 0.3170 2.4973

We also present a larger vision dataset that requires a larger network to process. iWildCam (Beery
et al., 2020) consists of images of animals in the wilderness, captured at various locations, and
the task involves multi-class animals classification. Our approach utilizes a pretrained vision model,
augmented with a linear layer that processes the image representation along with the location domain
to produce the final classification output. We allow for a different pretrained architecture model
at each timestep t, and perform a random search over a set of 188 choices from the Huggingface
library (Wightman, 2019). These encompass a wide variety of networks, including ViT (Dosovitskiy
et al., 2021), ResNeT (He et al., 2015) and convolution based (O’Shea & Nash, 2015). Appendix 8.4
provides additional details on the architecture, training procedure, and hyperparameter search. For
the synthetic dataset, we follow Mahadevan & Mathioudakis (2024) to generate two 2D datasets
with covariate shift (Gauss) and concept drift (circles) (Pesaranghader et al., 2016). Appendix 8.4
contains details on the generation. We report 3 trials for iWild and 10 trials for the other datasets.

Baselines and algorithm settings We set the confidence threshold of our UPF algorithm to
δ = 95%, as it is a standard value used for confidence intervals. For µϕ(ri,j), we use a linear
regression model, ElasticNetCV (Zou & Hastie, 2005), from the scikit-learn library. All other op-
timization parameters are set to default choices from the scikit learn libraries. We report results on
shift detection baselines and the three variants of the CARA baseline, as well as the oracle.

For the distribution shift detection baselines, we set the window size to the size of an individual
dataset ∣D∣, and retrain when the algorithm detects a distribution shift. (Then we reset the algorithm
with the dataset of the last retrained model.) As these methods cannot take into account the cost of
retraining, we vary the significance level threshold δ to obtain different frequencies of retraining.
We include ADWIN-δ (Bifet & Gavaldà, 2007), which is based on statistical testing of the label
distribution, FHDDM-δ (Pesaranghader & Viktor, 2016), which is based on Hoeffding’s inequality,
and KSWIN-δ (Raab et al., 2020), which is based on the Kolmogorov-Smirnov test.

CARA (Mahadevan & Mathioudakis, 2024) searches for the best strategy with fixed parameters
using the offline data. The standard version, CARA, searches for the best threshold of approximate
performance and retrains when it drops below it. The cumulative version, CARA cumul., searches
for the best threshold of the cumulated approximate performance; and the periodic strategy, CARA
per., searches for the best retraining frequency. Appendix 8.10 provides additional details on the
CARA baseline in the context of our experiments.

6 RESULTS

We start by presenting in Table 1 the area-under-the-curve (AUC) of the total cost value Ĉα(θ). The
AUC is computed as the area over a range of α values determined by the oracle performance. Lower
values of AUC are better because we aim to reduce the cost over the operating range. Overall, we

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: We compare the best performing algorithms for the electricity dataset with the optimal
decisions (the oracle) in both high and low retraining cost settings. For each baseline, we report the
number of retrains and the average accuracy, as well as our primary metric Ĉα(θ) that combines
both factors using α. The results show that the proposed method achieves the best Ĉα(θ) value and
closely approximates the oracle’s behavior in both scenarios, highlighted in bold.

High retrain cost α = 0.9 Low retrain cost α = 0.1
#retrain Average Acc Ĉα(θ) #retrain Average Acc Ĉα(θ)

ADWIN-5% 1.0 ± 0.58 0.7 ± 0.04 3.27 ± 0.4 1.0 ± 0.58 0.7 ± 0.04 2.47 ± 0.25
ADWIN-50% 1.17 ± 0.38 0.72 ± 0.03 3.32 ± 0.32 1.17 ± 0.38 0.72 ± 0.03 2.39 ± 0.26
CARA 0.0 ± 0.0 0.65 ± 0.02 2.78 ± 0.19 0.33 ± 0.75 0.66 ± 0.04 2.73 ± 0.25
CARA cumul. 0.0 ± 0.0 0.65 ± 0.02 2.78 ± 0.19 0.33 ± 0.48 0.67 ± 0.02 2.68 ± 0.18
CARA per. 1.0 ± 0.0 0.69 ± 0.02 3.34 ± 0.14 1.0 ± 0.0 0.69 ± 0.02 2.54 ± 0.14

UPF (ours) 0.1 ± 0.3 0.68 ± 0.04 2.69 ± 0.26 2.5 ± 0.67 0.75 ± 0.03 2.24 ± 0.17

oracle 0.0 ± 0.0 0.66 ± 0.03 2.68 ± 0.26 5.6 ± 1.44 0.83 ± 0.02 1.93 ± 0.06

see that our proposed method achieves the best trade-off between the number of retrains and average
accuracy across all baselines and datasets. To gain better insight into the behavior of the different
algorithms and how they are impacted by varying retraining cost parameters, we provide a detailed
overview for one dataset with two values of α: one where the cost of retraining is low and one where
it is high, as shown in Table 2. Figure 2 depicts how the the total cost Ĉα(θ) and the number of
retrains vary as α is changed. Appendix 8.8 contains the complete set of results and figures. First,
examining the behavior of the optimal solution (oracle), we unsurprisingly observe that in the high
retraining cost scenario, both the number of retrains and the average accuracy are lower, while in the
low retraining cost scenario, the number of retrains and the average accuracy are higher.

Next, we observe that the proposed UPF method follows the oracle more closely than the other
baselines and is more sensitive to the α parameter compared to the cost-aware method (CARA).
This is particularly apparent in Figure 2. The CARA baselines relies heavily on its assumptions
about performance and is therefore not as robust in scenarios where those assumptions do not hold.
The detection shift methods cannot take the varying parameters as input, so the results remain the
same for both values of α. Since these methods do not account for retraining costs, they perform
better when the cost is very low, as they simply retrain whenever a shift is detected. This can be a
good strategy if retraining costs little. Indeed, we observe that all ADWIN and FHDDM variants
are closer to the optimal values in the low range of α in the left of Figure 2. However, as the cost
of retraining increases, these methods become impractical. Varying the threshold can yield better
results—a lower significance requirement (50%) allows for more retraining and therefore works
better when retraining costs are low, while the inverse holds in a high-cost regime, where a more
conservative retraining strategy is preferable. However, it is not possible to know in advance which
significance threshold should be used for a given α, making these methods largely impractical for
such a setting.

0.0 0.2 0.4 0.6 0.8 1.0
1.5

2.0

2.5

3.0

3.5

C(
)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

nu
m

. r
et

ra
in

s

strategy
UPF
CARA cumul.
ADWIN-5%
ADWIN-50%
oracle

Figure 2: Results on the electricity dataset. Left) Cost Ĉα(θ) vs α. Right) Number of retrains vs
α. In the left figure, we can see that UPF consistently reaches low Ĉα(θ) across different α. In the
right figure, the number of retrainings of UPF follows the optimal baseline more closely.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation study on accounting for uncertainty in our prediction. Targeting the 95% quantile
is better overall than the deterministic approach (equivalent to a 50% quantile). The ∗ denotes
statistically significant difference with respect to the next best baseline, evaluated using a Wilcoxon
test at the 5% significance level.

electricity gauss circles airplanes yelp epicgames

PF 2.5884 ± 0.13* 0.3673 ± 0.03 0.0697 ± 0.01 2.3688 ± 0.35 0.1180 ± 0.00 0.3211 ± 0.01
UPF 2.6056 ± 0.14 0.3643 ± 0.03* 0.0670 ± 0.01* 2.2688 ± 0.26* 0.1175 ± 0.00* 0.3202 ± 0.00*

Ablation study - The importance of uncertainty In our approach, we model the distribution
of future costs and set targets at the 95% quantile to ensure robustness against noisy predictions.
To assess whether this strategy enhances robustness and improves performance, we compare the
proposed UPF algorithm, with the 95% quantile, against a deterministic version, referred to as PF,
which selects the predicted decision that minimizes costs. This corresponds to setting the quantile to
50% in our algorithm (PF = UPF-50%). We observe in Table 3 that relying on conservative quantiles
in our predictions results in better overall outcomes, compared to the deterministic version, PF, with
statistical significance observed across all datasets except for electricity.
Robustness to wrong α In our setting, we assume that the relative cost of performance and re-
training α is known. However, in practice, this tradeoff value can be hard to estimate accurately. It is
therefore of high practical interest to assess the impact of a misspecified α value, and to identify the
settings where misspecification is the most impactful. In Figure 3, we present how wrongly speci-
fied α values impact the performance of our algorithm and the CARA baseline on one dataset. Both
algorithms are reasonably robust, as it requires a large deviation from the true α value (upper right
and bottom left) to start seeing a degradation of performance of more than 1%. UPF is generally
more robust to changes of α. Both algorithms are more susceptible to overestimation of α.

0.
0

0.
02

0.
04

0.
06

0.
08 m
ax

real

0.0
0.02
0.04
0.06
0.08
max

pr
ov

id
ed

% increase C()

0

10

0.
0

0.
02

0.
04

0.
06

0.
08 m
ax

real

0.0
0.02
0.04
0.06
0.08
max

pr
ov

id
ed

% increase C()

0

5

Figure 3: Impact of wrong α measured by the percentage increase of Ĉα(θ) on the epicgames
dataset. left) CARA right) UPF. Overall, both methods are reasonably robust to a wrong α specifi-
cation, with UPF being the more robust.

7 CONCLUSION AND LIMITATIONS

We have proposed a practical formulation of the important problem of model retraining, which has
been neglected in the literature, and highlighted its complexity. Our method outlines a promis-
ing avenue, as our experiments have shown that even with distribution shift, it is not unreasonable to
expect some patterns in future performance that could be predicted with the help of uncertainty mod-
eling. This data-driven approach is lightweight, practical, and outperforms existing approaches. It is
robust to varying cost settings and has demonstrated resilience to misspecified cost-to-performance
ratios. We have also highlighted the quantities of interest to estimate in order to better understand the
characteristics of a specific problem. While our study demonstrates promising results in predicting
optimal retraining schedules, several aspects warrant further exploration. Our main experiments in-
vestigate a setting where the offline dataset (w = 7) is non-negligible in size. However, we achieved
good performance even with a reduced dataset, which shows that initial training costs can be reduced
(see Appendix 8.11).We evaluated the method individually for each dataset, but future work could
further reduce costs by transferring schedulers across datasets and tasks. Additionally, adapting
techniques from Hyperparameter Optimization could enhance performance forecasting.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ryan Prescott Adams and David J. C. MacKay. Bayesian online changepoint detection, 2007. URL
https://arxiv.org/abs/0710.3742.

Guy Bar-Shalom, Yonatan Geifman, and Ran El-Yaniv. Window-based distribution shift detec-
tion for deep neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002.

Sara Beery, Elijah Cole, and Arvi Gjoka. The iwildcam 2020 competition dataset. arXiv preprint
arXiv:2004.10340, 2020.

Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adaptive windowing. In
Proc. SIAM Int. Conf. on Data Mining (SDM), 2007.

Vı́tor Cerqueira, Heitor Murilo Gomes, Albert Bifet, and Luı́s Torgo. Studd: a student–teacher
method for unsupervised concept drift detection. Machine Learning, 112:4351–4378, 2021.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Anand Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deek-
sha Manjunath, Jaspiar Singh, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn,
and Sergey Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive
q-functions. In 7th Annual Conference on Robot Learning, 2023.

Mayee Chen*, Karan Goel*, Nimit Sohoni*, Fait Poms, Kayvon Fatahalian, and Christopher Re.
Mandoline: Model evaluation under distribution shift. International Conference of Machine
Learning (ICML), 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342322. doi: 10.1145/2939672.2939785.

Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, and Patrick Jaillet. Bayesian optimization
meets Bayesian optimal stopping. In Proc. Int. Conf. on Machine Learning (ICML), pp. 1496–
1506, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proc. ACM Int. Conf.
Information and Knowledge Management, 2020.

Tongtong Fang, Nan Lu, Gang Niu, and Masashi Sugiyama. Rethinking importance weighting for
deep learning under distribution shift. In Proc. Int. Conf. on Neural Information Process. Systems
(NeurIPS), 2020.

Angelos Filos, Panagiotis Tigkas, Rowan Mcallister, Nicholas Rhinehart, Sergey Levine, and Yarin
Gal. Can autonomous vehicles identify, recover from, and adapt to distribution shifts? In Proc.
Int. Conf. Machine Learning (ICML), 2020.

João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. 46(4), 2014.

Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary Lipton. A unified view of label shift
estimation. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, pp. 3290–3300, 2020.

11

https://arxiv.org/abs/0710.3742

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrı́cio Enembreck, Bernhard
Pfahringer, Geoff Holmes, and Talel Abdessalem. Adaptive random forests for evolving data
stream classification. Machine Learning, 106:1469 – 1495, 2017.

Devin Guillory, Vaishaal Shankar, Sayna Ebrahimi, Trevor Darrell, and Ludwig Schmidt. Predict-
ing with confidence on unseen distributions. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1114–1124, 2021.

Michael Harries et al. Splice-2 comparative evaluation: Electricity pricing.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Joey Hejna, Jensen Gao, and Dorsa Sadigh. Distance weighted supervised learning for offline inter-
action data, 2023.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution ex-
amples in neural networks. Proceedings of International Conference on Learning Representations,
2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Henni-
gan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre. Train-
ing compute-optimal large language models. In Proc. Int. Conf. on Neural Information Process.
Systems (NeurIPS), Red Hook, NY, USA, 2024.

Steven C.H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. Online learning: A comprehensive survey.
Neurocomputing, 459:249–289, 2021.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 1273–1286.
Curran Associates, Inc., 2021.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable
deep reinforcement learning for vision-based robotic manipulation. In Proceedings of The 2nd
Conference on Robot Learning.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020.

Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active Testing: Sample-Efficient
Model Evaluation. arXiv:2103.05331, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
1179–1191, 2020.

Michail G. Lagoudakis and Ronald E. Parr. Least-squares policy iteration. J. Mach. Learn. Res., 4:
1107–1149, 2003.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv, 2020.

Aodong Li, Alex James Boyd, Padhraic Smyth, and Stephan Mandt. Detecting and adapting to
irregular distribution shifts in bayesian online learning. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in Neural Information Processing Systems, 2020.

Carlos E. Luis, Alessandro G. Bottero, Julia Vinogradska, Felix Berkenkamp, and Jan Peters.
Model-based uncertainty in value functions. In Francisco Ruiz, Jennifer Dy, and Jan-Willem
van de Meent (eds.), Proceedings of The 26th International Conference on Artificial Intelligence
and Statistics, volume 206 of Proceedings of Machine Learning Research, pp. 8029–8052, 25–27
Apr 2023.

Ananth Mahadevan and Michael Mathioudakis. Cost-aware retraining for machine learning.
Knowledge-Based Systems, 293:111610, 2024.

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for non-iid processes. Proc. Int. Conf.
on Neural Information Process. Systems (NeurIPS), 2007.

Mehryar Mohri and Afshin Rostamizadeh. Rademacher complexity bounds for non-iid processes.
Proc. Int. Conf. on Neural Information Process. Systems (NeurIPS), 2008.

Mehryar Mohri and Afshin Rostamizadeh. Stability bounds for stationary φ-mixing and β-mixing
processes. Journal of Machine Learning Research, 11(2), 2010.

Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikit-multiflow: A multi-output
streaming framework. Journal of Machine Learning Research, 19(72):1–5, 2018.

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In International Conference on Machine Learning, 2017.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. 2015.

Muberra Ozmen, , Florence Regol, and Thomas Markovich. Benchmarking edge regression on
temporal networks. J. Data-centric Machine Learning Research (DMLR), 2024.

Ali Pesaranghader and Herna L. Viktor. Fast hoeffding drift detection method for evolving data
streams. In Machine Learning and Knowledge Discovery in Databases, 2016.

Ali Pesaranghader, Herna L. Viktor, and Eric Paquet. A framework for classification in data streams
using multi-strategy learning. In Toon Calders, Michelangelo Ceci, and Donato Malerba (eds.),
Discovery Science, pp. 341–355, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-46307-0.

Ali Pesaranghader, Herna Viktor, and Eric Paquet. Reservoir of diverse adaptive learners and
stacking fast hoeffding drift detection methods for evolving data streams. Mach. Learn., 107:
1711–1743, November 2018.

Christoph Raab, Moritz Heusinger, and Frank-Michael Schleif. Reactive soft prototype computing
for concept drift streams. Neurocomputing, 416:340–351, 2020.

Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. Failing loudly: An empirical study
of methods for detecting dataset shift. In Advances in Neural Information Processing Systems,
2019.

Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Eddie Bergman,
and Frank Hutter. In-context freeze-thaw bayesian optimization for hyperparameter optimization.
In Proc. Int. Conf. on Machine Learning (ICML), 2024.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, pp. 627–635, 2011.

Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E. Boult. Toward
open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):
1757–1772, 2013.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adver-
sarially robust generalization requires more data. Proc. Int. Conf. on Neural Information Process.
Systems (NeurIPS), 2018.

Leo Schwinn, Leon Bungert, An Nguyen, René Raab, Falk Pulsmeyer, Doina Precup, Bjoern Es-
kofier, and Dario Zanca. Improving robustness against real-world and worst-case distribution
shifts through decision region quantification. In Proc. Int. Conf. on Machine Learning (ICML),
2022.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
modern deep learning research. Proceedings of the AAAI Conference on Artificial Intelligence,
34(09):13693–13696, Apr. 2020.

Masashi Sugiyama and Motoaki Kawanabe. Machine Learning in Non-Stationary Environments:
Introduction to Covariate Shift Adaptation. The MIT Press, 2012.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization, 2014.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Hongjun Wang, Sagar Vaze, and Kai Han. Dissecting out-of-distribution detection and open-set
recognition: A critical analysis of methods and benchmarks. International Journal of Computer
Vision (IJCV), 2024a.

Wenyu Wang, Zheyi Fan, and Szu Hui Ng. Trajectory-based multi-objective hyperparameter opti-
mization for model retraining, 2024b.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Huaxiu Yao, Caroline Choi, Bochuan Cao, Yoonho Lee, Pang Wei W Koh, and Chelsea Finn. Wild-
time: A benchmark of in-the-wild distribution shift over time. In Advances in Neural Information
Processing Systems, volume 35, pp. 10309–10324. Curran Associates, Inc., 2022.

Yu-Jie Zhang, Zhen-Yu Zhang, Peng Zhao, and Masashi Sugiyama. Adapting to continuous covari-
ate shift via online density ratio estimation. In Proc. Int. Conf. on Neural Information Process.
Systems (NeurIPS), 2023.

Hui Zou and Trevor Hastie. Regularization and Variable Selection Via the Elastic Net. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 03 2005. ISSN
1369-7412. doi: 10.1111/j.1467-9868.2005.00503.x.

Indrė Žliobaitė, Marcin Budka, and Frederic T. Stahl. Towards cost-sensitive adaptation: When is it
worth updating your predictive model? Neurocomputing, 150:240–249, 2015.

8 APPENDIX

8.1 EXTENDED DISCUSSION OF RELATED WORK

Retraining problem Few works explicitly target the retraining problem. Žliobaitė et al. (2015)
propose a return on investment (ROI) framework to monitor and assess the retraining decision pro-
cess. Mahadevan & Mathioudakis (2024) develop a retraining decision algorithm, CARA, which
integrates the cost of retraining into its formulation. It introduces the concept of a “staleness cost”
which represents the cost of not retraining. The approach involves approximating the staleness cost
and optimizing various strategies to reduce the overall cost, based on some offline data. The offline
data consist of a few trained models, each with an associated dataset that was collected prior to the
retraining decision process. Mahadevan & Mathioudakis (2024) propose three methods: the first
retrains when the estimated staleness cost exceeds a threshold; the second tracks the accumulated

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

staleness cost and applies a threshold on that value; and the third searches for the optimal retraining
frequency. The staleness cost approximation for using a model on a dataset relies on the loss of in-
dividual known samples. This loss is scaled by the average similarity between the features of these
known samples and the features of the dataset of interest. Consequently, it assumes access to the
features of some of the samples at a given time before deciding to retrain. Moreover, the search for
the threshold or the period is computationally intensive and therefore can only be done once using
some offline data; it cannot modify the parameters as new information arrives.

Distribution shift detection The retraining problem is closely connected to distribution shift detec-
tion and mitigation (Wang et al., 2024a; Hendrycks & Gimpel, 2017; Scheirer et al., 2013; Cerqueira
et al., 2021; Bar-Shalom et al., 2023; Rabanser et al., 2019). Some methods adapt the model to ad-
just to evolving distributions (Sugiyama & Kawanabe, 2012; Zhang et al., 2023; Fang et al., 2020;
Pesaranghader et al., 2018). Since the signal is designed to adapt a model rather than trigger a
full retraining, these methods are not appropriate as retraining signals. Some approaches, however,
directly treat the detection of a distribution shift as a cue for retraining (Bifet & Gavaldà, 2007;
Pesaranghader & Viktor, 2016; Raab et al., 2020), and can be used as baselines. ADWIN (Bifet
& Gavaldà, 2007) uses statistical testing of the label or feature distribution. Another approach is
to directly monitor the model’s performance. FHDDM (Pesaranghader & Viktor, 2016) employs
Hoeffding’s inequality, while (Raab et al., 2020) relies on a Kolmogorov-Smirnov Windowing test.
These approaches may work well when retraining costs are low, but they become unsuitable when
retraining is expensive – it is not always optimal to retrain after every minor shift. This is tied to a
more general weakness of lacking adaptability to varying costs. While the significance level param-
eteter can be adjusted, the appropriate significance level for a given retraining-to-performance cost
ratio is unknown and difficult to estimate.

Changepoint detection Another closely related field is changepoint detection, which is similar to
the distribution shift problem. Changepoint detection is the task of identifying points in a sequence
where the statistical properties of the data change abruptly. This problem was introduced and pre-
sented by Adams & MacKay (2007), where they aim to infer the most probable distribution of the
most recent changepoint in an online setting. Recent work, such as (Li et al., 2021), has expanded
on this problem in ways closer to our retraining setting, as they incorporate adaptation into the
changepoint detection process,The sensitivity of the detection is controlled by certain sensitivity
parameters.

However, to transform the changepoint detection problem formulated by Li et al. (2021) into the
retraining problem we consider, we would need to introduce a cost for adaptation, a cost for accu-
racy loss, and then formulate an optimization problem to find the appropriate sensitivity parameter
for achieving the optimal number of adaptations. However, since this parameter lacks a specific
physical or practical meaning, it is unclear beforehand how the choice of its value will impact the
adaptation rate. Furthermore, in our setting, the optimal rate of adaptation (or retraining frequency)
is unknown. Determining this optimal retraining frequency is one of the major challenges of the
retraining problem.

Bayesian Optimization Our method is based on forecasting future model performance using his-
torical data. This approach closely aligns with Bayesian Optimization (see (Shahriari et al., 2016)
for a review on this topic), commonly used in the Hyperparameter Optimization (HPO) field. The
Freeze-Thaw method, introduced by Swersky et al. (2014), leverages Gaussian Processes to predict
the trajectory of validation loss, enabling early stopping and optimization of the hyperparameter
search space. It remains a relevant technique (Rakotoarison et al., 2024). Similarly, Dai et al. (2019)
derive a Bayes-optimal stopping rule using a related approach. This method can be extended to pre-
dict the performance of other models and address hyperparameter optimization challenges (Wang
et al., 2024b). In our context, we predict the performance of different models under potential distri-
bution shifts, but the underlying idea is similar.

Label-free performance estimation Similarly, our approach is also related to the general fields of
performance estimation without labels Garg et al. (2020); Guillory et al. (2021); Chen* et al. (2021)
and active testing Kossen et al. (2021). Part of the problem is similar in that the goal is to estimate
performance; however, the similarity ends there, as these methods generally assume access to the
model f for which performance is estimated, as well as access to the features of the dataset Garg
et al. (2020). Our approach involves forecasting performance not only for known models but also
for unknown models. While our approach does not explicitly differentiate strategies, it is true that

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

we have access to additional information. Therefore, extensions that leverage existing techniques in
this area could strengthen our method.

This forecasting problem can seem similar to the problem of uncertainty quantification Hendrycks
& Gimpel (2017); Liu et al. (2020), but we are targeting average performance of unknown models,
not the probability of error of a given model at a given input P (f(x) = y∣x).

Offline reinforcement learning Lastly, we discuss the connection to the offline reinforcement learn-
ing (ORL) setting, where the agent must learn a policy from a fixed dataset of rewards, actions, and
states. This subset of RL is particularly challenging, as the agent cannot explore the entire MDP and
can only rely on the dataset to infer the underlying dynamics and handle distribution shifts (Ross
et al., 2011; Levine et al., 2020; Hejna et al., 2023). Policy gradient methods can be adapted to the
offline setting using variants of importance sampling, but they are generally prone to high variance
and require large amounts of data to be effective (Levine et al., 2020). For this reason, Q-learning and
value function methods, where the task is to predict the future costs of actions, have emerged as the
preferred approaches for ORL (Levine et al., 2020; Kalashnikov et al.; Hejna et al., 2023; Kostrikov
et al., 2022). Lagoudakis & Parr (2003) presents a classical method that uses a linear approximation
of the Q-function, while (Kalashnikov et al.) employs convolution-based Q-function architectures
for vision tasks.Others have leveraged advancements in sequential learning, applying transformer-
based architectures to predict rewards(Janner et al., 2021) or Q-functions(Chebotar et al., 2023).
Some methods integrates epistemic uncertainty on Q-function to account for the distribution shift of
unseen actions (Kumar et al., 2020; O’Donoghue et al., 2017; Luis et al., 2023).

If we view the states as time and the model in use, and actions as either retraining or maintaining
the current model, we can frame this problem as an offline reinforcement learning (RL) problem.
The problem would also feature a deterministic transition matrix and a highly structured reward
which unusual in RL. However, most existing approaches focus on scaling to very large state spaces,
employing large models, and assuming access to abundant data, making them unsuitable for our
context. A key requirement for our approach is that it must be highly efficient to train. If the
resources required for making a retraining decision are comparable to those for retraining the model
itself, the approach becomes impractical.

8.2 PROOF OF PROPOSITION 3.1

We provide the proof for our result from Proposition 3.1, which states the following.

Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T], a horizon of T ∈ N, and a relative cost of retrain α, the
number of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
(22)

We start by defining a function that takes the model index i and the timesteps t as arguments, and
outputs the performance pe(i, t) = pei,t, and rewrite the objective:

Cα(θ) = α∣∣θ∣∣1 +
T

∑
t=1

pe (rθ(t), t) , (23)

θ∗ = argmin
θ∈{0,1}T

Cα(θ), (24)

where we still have that rθ(t) returns the most recent index of retraining at t.

Subproblem with a fixed number of retrains We can break down this optimization problem into
subproblems, where we solve for the optimal retraining schedule for a given fixed number of retrains
r. We define such a subproblem as follows:

Cr(θ) = αr +
T

∑
t=1

pe (rθ(t), t) , (25)

θ∗r = argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

Cr(θ). (26)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Since we know that we will have r retrains, we can rewrite this subproblem by encoding the re-
training decisions as r timesteps of retrain t1 < ⋅ ⋅ ⋅ < tr. We use a simple index mapping function
I ∶ [T]r → {0,1}T :

I({t1, . . . , tr}) = θ s.t.{
θt = 1 if t ∈ {t1, . . . , tr}
θt = 0 o.w.

(27)

We can remove the constant αr from the objective as it does not depend on the parameters anymore.
The solution of Eqn 26 is given by:

θ∗r = argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

αr +
T

∑
t=1

pe (rθ(t), t) (28)

= argmin
θ∈{0,1}T s.t. ∣∣θ∣∣=r

T

∑
t=1

pe (rθ(t), t) since the αr is fixed (29)

= I
⎛

⎝
argmin

t1<⋅⋅⋅<tr∈[T]r

t1

∑
s=1

pe(0, s) +
r−1
∑
i=1
(
ti+1
∑
s=ti

pe(ti, s)) +
T

∑
s=tr

pe(tr, s)
⎞

⎠
(30)

θ∗r = I
⎛

⎝
argmin

t1<⋅⋅⋅<tr∈[T]r
Mr({t1, . . . , tr})

⎞

⎠
(31)

where Mr({t1, . . . , tr}) ≜
t1

∑
s=1

pe(0, s) +
r−1
∑
i=1
(
ti+1
∑
s=ti

pe(ti, s)) +
T

∑
s=tr

pe(tr, s) (32)

We therefore can focus on the new objective Mr({t1, . . . , tr}) as minimizing this objective is equiv-
alent to finding θ∗r .

{t1, . . . , tr}
∗
= argmin

t1<⋅⋅⋅<tr∈[T]r
Mr({t1, . . . , tr}) (33)

M∗
r ≜Mr({t1, . . . , tr}

∗
) (34)

θ∗r = I ({t1, . . . , tr}
∗
) (35)

Lemma 8.1. Given a discrete function pe ∶ [T]× [T]→ R with bounded L ≥ ∣pe(i, t)−pe(i+1, t)∣,
a timestep horizon T ∈ N, and a number of retrains r ∈ {1, T − 1}, we can show that:

L(T − r)2 ≥M∗
r −M

∗
r+1 (36)

That is, the relative improvement of performance cost that you can gain by increasing the number
of retrainings from r to r + 1 is upper bounded by L(T − r)2.

This allows us to preemptively determine the maximum number of retains r we have to consider for
solving our initial problem, as we know the cost of adding one more retrain (α). Therefore, once
L(T − r)2 is smaller than α, the optimal solution cannot have higher than r retrains. That is,

L(T − r∗)2 < α Ô⇒ r∗ < T −

√
α

L
(37)

This concludes our proof for Proposition 8.2. We provide the proof for Lemma 8.1 in the following
section.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof Lemma 8.1 To prove this lemma, we decompose the M∗
r+1 quantity into the Mr value we

would obtain with the first r timesteps of the solution {t1, . . . tr+1}∗ and some value:

M∗
r+1 =

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑
s=t∗i

pe(t∗i , s)
⎞

⎠
+

t∗r+1
∑
s=t∗r

pe(t∗r , s) +
T

∑
s=t∗r+1

p(t∗r+1, s) (38)

=

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑
s=t∗i

pe(t∗i , s)
⎞

⎠
+

t∗r+1
∑
s=t∗r

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r , s) (39)

−
T

∑
s=t∗r+1

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r+1, s) adding 0 (40)

=

t∗1
∑
s=1

pe(0, s) +
r−1
∑
i=1

⎛

⎝

t∗i+1
∑
s=t∗i

pe(t∗i , s)
⎞

⎠
+

T

∑
s=t∗r

pe(t∗r , s) (41)

−
T

∑
s=t∗r+1

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r+1, s) combining the sum over pe(t∗i , s) (42)

M∗
r+1 =Mr({t1, . . . tr+1}

∗
∖ t∗r+1) −

T

∑
s=t∗r+1

pe(t∗r , s) +
T

∑
s=t∗r+1

pe(t∗r+1, s) (43)

=Mr({t1, . . . tr+1}
∗
∖ t∗r+1) −

T

∑
s=t∗r+1

(p(t∗r , s) − pe(t
∗
r+1, s)) . (44)

By definition, we know that;

Mr({t1, . . . tr+1}
∗
∖ t∗r+1) ≥M

∗
r . (45)

That is, the M value that we obtain by removing the last timestamp using the solution for the r + 1
problem. Using that inequality in our previous result, we obtain the final result;

M∗
r+1 ≥M

∗
r −

T

∑
s=t∗r+1

(pe(t∗r , s) − pe(t
∗
r+1, s)) (46)

≥M∗
r −

T

∑
s=t∗r+1

L(t∗r+1 − t
∗
r) (47)

≥M∗
r − (T − t

∗
r+1)L(t

∗
r+1 − t

∗
r) (48)

M∗
r+1 ≥M

∗
r −L(T − r)

2. (49)

8.2.1 PROPOSITION 3.1 IN PRACTICE

In this section, we illustrate how to use the result from Proposition 3.1 in practice. To restate,
proposition states the following;

Given that L ≥ ∣pei,t − pei+1,t∣ ∀t ∈ [T], a horizon of T ∈ N, and a relative cost of retrain α, the
number of retrains of the solution to Equation 5 r∗ ≜ ∣∣θ∗∣∣1 satisfies:

r∗ ≤ T −

√
α

L
. (50)

We present the α values that guarantee various numbers of optimal retrains r∗ = 0,1,2 in our
experiment. Since we can’t provide a true upper bound for the L value, we approximate it using the
empirical maximum value that we observe in a specific dataset for ∣pei,t − pei+1,t∣. In Figure 4, we
can see that the α at which we know for certain that we don’t need to retrain is not too far off the
operational region of the problem. The oracle decides to not retrain around α = 0.5, and the bound
from our result guarantees that we don’t have to retrain if the selected α is larger than 0.96.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0

0.55

0.60

0.65

0.70

0.75

0.80

C(
)

0.00 0.25 0.50 0.75 1.00

0

2

4

6

nu
m

. r
et

ra
in

s

UPF
Oracle
r * 0
r * 1
r * 2

Figure 4: Results on the Gauss dataset, with the α values from Proposition 8.1 providing different
upper bounds on the optimal number of retrain r∗. Left) Cost Ĉα(θ) vs α. Right) Number of
retrains vs α.

8.3 BOUNDING L

In this section, we provide more details on the known results from the literature that can be connected
to the bound L.

Approximating L from known upper bounds For some simple models, explicit bounds on the
expected performance as a function of the number of samples N have been derived. We can use
those upper bounds to approximate L under no distribution shift, where the dataset size is steadily
increasing by a known number of samples ∣D∣.
Theorem 8.2 (Standard generalization in the Gaussian model (from (Schmidt et al., 2018))). Let
(x1, y1), . . . , (x(i+1)∣D∣, y(i+1)∣D∣) ∈ Rd × {±1} be drawn i.i.d. from a (θ∗, σ)-Gaussian model with

∥θ∗∥2 =
√
d. Let ŵ ∈ Rd be the unit vector in the direction of z = 1

(i+1)∣D∣ ∑
(i+1)∣D∣
i=1 yixi, i.e., ŵ =

z/∥z∥2. Then with probability at least 1−2 exp (− d
8(σ2+1)), the linear classifier fŵ has classification

error at most;

pei,t ≤ exp
⎛

⎝
−
(2
√
(i + 1)∣D∣ − 1)2d

2(2
√
(i + 1)∣D∣ + 4σ)2σ2

⎞

⎠
. (51)

For the proof please refer to (Schmidt et al., 2018). An L bound value can therefore be loosely
approximated to match the gap of the upper bound;

∣pei,t − pei+1,t∣ < L ≈ exp
⎛

⎝
−
(2
√
(i + 1)∣D∣ − 1)2d

2(2
√
(i + 1)∣D∣ + 4σ)2σ2

⎞

⎠
− exp

⎛

⎝
−
(2
√
(i + 2)∣D∣ − 1)2d

2(2
√
(i + 2)∣D∣ + 4σ)2σ2

⎞

⎠
.

(52)

Beyond IID data. In real-world applications, data often exhibits temporal or spatial dependencies,
making the non-distribution shift i.i.d. assumption unrealistic. For non-i.i.d. processes, stability
analysis (Mohri & Rostamizadeh, 2007; 2010) or bounds based on Rademacher complexity (Mohri
& Rostamizadeh, 2008) can be used to analyze generalization performance and thus to derive re-
training schedules in more complex scenarios.

In the context, of the proposed retraining framework, bounds like this theoretically allow us to
make precise statements about the benefit of retraining L to derive optimal retraining schedules. In

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

practice, deriving a retraining schedule from these bounds would provide a loose and non-sufficient
estimate. Thus, we introduce a data-driven algorithm to estimate optimal retraining schedules in our
work.

Empirical knowledge on the scaling law of L on N for LLMs Kaplan et al. (2020) derive scaling
laws for large language models (LLMs) concerning the dependency of the final cross-entropy loss
depending on model size, dataset size and compute budget used for training. They find a power-law
for all of the aforementioned parameters. For example, they find that the lossL of the neural network
scales with respect to the dataset size N as L = (N/5.4 ⋅ 1013)

−0.095
. This empirical relationship

provides valuable insights for determining optimal retraining schedules. By quantifying how loss
decreases with increasing dataset size, it enables researchers to estimate the expected performance
improvements from expanded datasets L and to make informed decisions about when retraining
would yield substantial benefits.

8.4 DATASET

Dataset statistics can be viewed in Table 4.

Table 4: Dataset description. w denotes the number of timestep of the offline phase, T denotes the
number of timestep of the online phase. The Model describes the architecture used for each ft.

Dataset Model αmax w ∣M<0∣ T Dataset size (∣D∣) Num. features Task Total N
Gauss XGBoost 0.5 7 21 8 5000 2 Binary - (Synthetic)
circles XGBoost 0.25 7 21 8 5000 2 Binary - (Synthetic)

electricity XGBoost 1 7 21 8 2000 6 Binary 4,5312
yelpCHI XGBoost 0.1 7 21 8 4000 25 Binary 67,395
epicgames XGBoost 0.1 7 21 8 1000 400 Binary 17,584
airplanes XGBoost 0.7 7 21 8 3000 7 Binary ..
iWild Vision Model (see 8.4.1) 1 7 21 8 40,605 224x224+1 100 539,383

In this section, we provide a more detailed overview of each retraining datasets. Except for the
iWild experiment, each individual dataset Dt is constructed with distinct samples, with no overlap
between Dt and Dt−1. For the electricity, airplanes, yelpCHI, and epicgames datasets, the partitions
are determined based on the timestamp of each sample (i.e., the datasets are divided in temporal
sequence).

• electricity (Harries et al.) is a binary classification where the task is to predict the rise
or fall of electricity prices in New South Wales, Australia. The distribution evolve due to
change in consumption patterns.

• airplanes (Gomes et al., 2017) is also a binary task where the task is to predict if a flight will
be delayed. We follow Mahadevan & Mathioudakis (2024) and use the Sklearn Multiflow
library version (Montiel et al., 2018) of the airplane dataset.

• yelpCHI (Dou et al., 2020) is a spam dataset. The dataset contains users, hotels and restau-
rants. An interaction occurs when a user submits a review for one of these hotels or restau-
rants. Reviews are categorized as either filtered (indicating spam) or recommended (indi-
cating legitimate content).

• epicgames (Ozmen et al., 2024) includes critiques from authors on games released on the
epicgames platform. Interaction features are created by vectorizing the critiques using TF-
IDF and incorporating the author’s overall rating. The interaction label indicates whether
the critique was chosen as a top critique.

• Gauss is a 2 dimensional synthetic dataset. The input features as generated as Xt ∼

N (µ1(t), µ2(t), σ1) where µ1(t) =
(t+1)
100

, µ2(t) = 0.5 − (t+1)
100

, σ = 0.1. The label is
generated using a fixed rule y = 1[4 ∗ r1 − 0.5) ∗ ∗2 > r2].

• circles is a 2 dimensional synthetic dataset. The input features as uniformly generated as
Xt ∼ U[0,1] The label is generated using a moving rule yt = 1[(r1 − (0.2 + 0.02t))

2 +

(r2 − (0.2 + 0.02t))
2 ≤ 0.5 ∈].

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• iWild (Beery et al., 2020) is a multiclass dataset featuring images of animals captured in the
wild at various locations. Originally used as a domain transfer benchmark, we adapted it
into a standard classification dataset by including the location ID as a feature for the model.
To obtain a long enough sequence of datasetsD0,D1, . . . , we create the individual datasets
Di using overlapping windows on the timeframe, i.e., half of the most recent images in Di

are contained in Di+1. We avoid data leakage by ensuring that the train/val/test splits are
maintained.

8.4.1 BASE MODEL OF THE IWILD DATASET

To motivate our cost considerations, we present an experiment where the base model architecture
is not fixed and is searched for across a list of potential model architectures. This could happen in
practice for important applications; nothing forces a practitioner to use the same base model f at
each timestep.

Our architecture involves using a pretrained vision model, with a new output layer added to match
the correct number of classes for our task, which is then fine-tuned for up to 20 epochs. The fine-
tuning process uses the Adam optimizer with a fixed learning rate of 10−4 and a weight decay
parameter of 10−5. Training was conducted using 4 H100 GPUs for 2 days.

At each timestep ft, we perform a random search over the pretrained vision models made available
from timm, which includes 188 vision models of varying configuration and base architecture. We
include the list in Appendix 8.13. We also include in our search the option to early stop or not, using
the validation set. The model used for ft is the one that obtains the best validation accuracy.

8.5 PERFORMANCE FORECASTER

In this section, we provide additional details on the proposed algorithm to forecast the performance.

To restate, instead of learning the α(ri,j), β(ri,j parameters, we learn the mean and variance pa-
rameters;

µ(ri,j) (53)
σ(ri,j). (54)

And convert the learned parameters to the parameters of a beta distribution using the following
relation (with appropriate clipping if needed):

α = µ(
µ(1 − µ)

σ2
− 1) (55)

β = (1 − µ)(
µ(1 − µ)

σ2
− 1) (56)

Inputs ri,j As stated, the input of our performance forecaster model contains the model index i,
the timesteps j, the time since retrain j−i and summary statistics of the distribution shift zshift . zshift
is constructed by taking the average feature shift between the features of the most recently available
subsequent datasetsDt andDt−1 (where t denotes the time step of the most recent available dataset).
We compute the mean features of each dimension for a given dataset; x̄ = 1

∣Dt∣ ∑
∣Dt∣
i=1 xi and compute

the ℓ1 distance between the mean feature vector of the two subsequent datasets;

zshift = ∣∣x̄t − x̄t−1∣∣1 (57)

The input features are thus given by concatenating ri,j = [i, j, j − i, zshift].

Since our methodology involves forecasting the performance of future models and on future datasets
to be used by our decision algorithm, we assess the regression performance of our forecasting models
and analyze how it impacts the overall performance of our UPF algorithm.

To do so, we construct two versions of our forecaster module µϕ(ri,j) that are designed to be less
performant than our proposed method.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• UPF overfit: A baseline designed to overfit the training data. We use a Gaussian
Process-based µϕ(ri,j) with no white noise kernel, using a single dot product kernel from
scikit-learn.

• UPF overfit+noise: This variant further decreases performance by using the same overfit-
ting model and adding random noise to the target values.

We report two metrics, the average mean absolute error of our prediction µ and the average bias of
our prediction µϕ(ri,j) − ai,j on the test set. We start by reporting the retraining performance of
each baseline w.r.t. our base retraining metric, the AUC of cost values evaluated at different α in
Table 5. As expected, the best performing method is the method with our proposed UPF baseline
which is expected to reach the best MAE error on it’s performance prediction, on all datasets.

Table 5: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range
of α values, for all datasets. The bolded entries represent the best, and the underlined entries indi-
cate the second best. The ∗ denotes statistical significance with respect to the next best baseline,
evaluated using a Wilcoxon test at the 5% significance level.

Gauss circles epicgames electricity yelp airplanes

UPF overfit+noise 0.3845 0.0722 0.3253 2.6389 0.1194 2.3767
UPF overfit 0.3849 0.0663 0.3224 2.6001 0.1194 2.3352
UPF 0.3836* 0.0662* 0.3203* 2.5910* 0.1175* 2.3094*

We then visualize the effect of the performance forecasting precision (measured with MAE and bias)
on the decision algorithm’s performance (measured by Ĉα(θ)) in the following figures.

Overall, we observe that the impact of poor performance depends on the difficulty of the underlying
dataset.

For the airplane dataset, which is of standard difficulty, we can observe a gradual impact of the
degradation in forecasting performance on the overall retraining metric in Figure 5. The best MAE
leads to the best cost metric Ĉα(θ), and the performance gradually decreases as the MAE and bias
worsen.

The Epicgame dataset 6, which is more challenging due to its less regular performance trends, shows
a different behavior. Here, the overall forecasting performance is worse (the best achievable MAE
is higher), and we observe a less regular pattern where poorer MAE does not always result in a
proportional increase in cost, as shown in terms of scale. Similarly, when turning to the synthetic
datasets, the circle dataset, which is constructed with concept drift (changing p(Y ∣X)), is more
challenging than the Gauss dataset, which only exhibits feature drift (where p(X) changes, but
p(Y ∣X) remains constant). This impacts the effect of poor forecasting performance. In Figure 7,
for the circle dataset, we observe that a small decrease in MAE paired with stronger bias can have a
more sudden and drastic effect on the decision policy. Conversely, in the Gauss dataset (Figure 8),
the effect of poorer forecasting performance is less pronounced.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6

2.8

3.0

3.2

3.4

C(
)

test mae
0.1207
0.2785
0.3243

0.0 0.2 0.4 0.6

2.8

3.0

3.2

3.4

C(
)

test bias
-0.0191
0.1297
0.2831

Figure 5: Airplanes. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).

0.00 0.02 0.04 0.06 0.08 0.10

3.20

3.22

3.24

3.26

3.28

C(
)

test mae
0.2446
0.3103
0.3326

0.00 0.02 0.04 0.06 0.08 0.10

3.20

3.22

3.24

3.26

3.28

C(
)

test bias
0.2393
0.31
0.3326

Figure 6: Epicgames. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).

0.00 0.05 0.10 0.15 0.20 0.25

0.10

0.15

0.20

0.25

0.30

C(
)

test mae
0.021
0.0216
0.0234

0.00 0.05 0.10 0.15 0.20 0.25

0.10

0.15

0.20

0.25

0.30

C(
)

test bias
-0.0177
-0.0169
0.0234

Figure 7: Circles. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).

0.0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

C(
)

test mae
0.045
0.0649
0.0805

0.0 0.1 0.2 0.3 0.4 0.5

0.6

0.7

0.8

C(
)

test bias
-0.0416
-0.02
0.0805

Figure 8: Gauss. Cost Ĉα(θ) vs α with the forecasting performance metrics (mae and bias).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

8.6 EXTENSION TO NON-BOUNDED METRICS

In this section, we show how we can extend our methodology to model non-bounded metrics often
used in regression tasks, such as the root mean square error (RMSE) or mean absolute error (MAE).

To do so, we replace the use of a Beta distribution to a log Normal distribution to model our perfor-
mance metric r.v. Ai,j .

A log normal distribution is parameterized with location m and scale parameter v. We can learn the
mean and variance parameters using the same Gaussian approximation;

LogNorm(m(ri,j), v(ri,j)) ≈ N (µ(ri,j), σ(ri,j)), (58)

and recover the location and scale parameters using the relation;

v =

√

ln(1 +
µ

σ2
) (59)

m = ln(v) −
v2

2
. (60)

8.6.1 IMPACT OF THE NORMAL APPROXIMATION

In our method, we approximate the Beta distribution with a Normal distribution to ease the learning
process;

Beta(α(ri,j), β(ri,j)) ≈ N (µ(ri,j), σ(ri,j)). (61)

We verify here that this approximation doesn’t have too big an effect on the end performance. We
compare the UPF method, which uses Ai,j ∼ Beta(α(ri,j), β(ri,j)), with a UPF (Gaussian), which
doesn’t use the Beta distribution and instead uses a Gaussian with learned parameters to model the
performance metric: Ai,j ∼ N (µ(ri,j), σ(ri,j)). In Figures 9, 10, 11 and 12, we can see that this
does not have too big an effect on the overall behavior and performance.

0.0 0.2 0.4

0.55

0.60

0.65

0.70

0.75

0.80

C(
)

strategy
UPF
UPF (Gaussian)

Figure 9: Gauss

0.00 0.25 0.50 0.75 1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

C(
)

strategy
UPF
UPF (Gaussian)

Figure 10: Electricity

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2

0.10

0.15

0.20

0.25

0.30

C(
)

strategy
UPF
UPF (Gaussian)

Figure 11: Circles

0.0 0.2 0.4 0.6

2.8

3.0

3.2

3.4

C(
)

strategy
UPF
UPF (Gaussian)

Figure 12: Airplanes

8.7 TRAINING COMPLEXITY

In this section, we compare the training complexity of each baseline. We report the average time
required for the offline training process, online inference and discuss runtime complexity.

The CARA baseline comprises two computationally intensive components. First, it constructs the C
matrix, representing its performance estimation. This algorithm involves inferring, with a modified
model, each point of the new dataset and reweighting each, which scales withO(∣Dnew∣). This needs
to be done in both offline and online phases. Then, in the offline phase, it performs an annealing
search over parameters to find the best value that minimizes this cost approximation, taking into
account the retraining cost associated with each decision. In Table 6, we can see that this result in
the highest runtime for both online and offline phases.

Table 6: Average runtime of the baselines on the circles dataset.

CARA cum. CARA CARA per. UPF ADWIN FHDDM KSWIN
Offline ms 8.4871 8.6608 7.8461 0.0947 0.0274 0.0122 0.3392
Online (one step)ms 1.5604 1.5046 1.5940 0.0247 0.0351 0.0103 0.3438

In comparison, our approach consists of fitting a linear model on a small dataset. The shift distribu-
tion features must be obtained, but they involve comparing two histograms, scaling as O(w2∣Dt∣)

rather than exponentially with ∣Dt∣.

The distribution shift baselines do not have an offline phase, as they monitor shifts in the underlying
distribution continuously. Their runtime complexity is therefore very low, at O(∣Dt∣), as reflected
in Table 6

8.8 ADDITIONAL RESULTS

In this section, we include additional figures to visualize our results in Figures 13, 14, 15, 16, 17, 18,
and Figures 19. Overall, the results are generally consistent and exhibit a similar trend. The
EpicGames dataset, however, is more challenging and presents greater difficulties for all baselines.
In particular, UPF performs worse than other baselines at low values of the retraining cost ratio α.
For those operating points, UPF does reach the correct retraining frequency; however, it is unable to
pinpoint the optimal moments to retrain, resulting in worse performance than baselines that retrain
more frequently, as shown in the right panel of Figure 19.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

C(
)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

7

8

nu
m

. r
et

ra
in

s

strategy
UPF
CARA
CARA cumul.
CARA per.
KSWIN-5%
KSWIN-50%
FHDDM-5%
FHDDM-50%
ADWIN-5%
ADWIN-50%

Figure 13: Result on the electricity dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

0.00 0.02 0.04 0.06 0.08 0.10
1.100

1.125

1.150

1.175

1.200

1.225

1.250

1.275

1.300

C(
)

0.00 0.02 0.04 0.06 0.08 0.10

0

1

2

3

4

5

6

7
nu

m
. r

et
ra

in
s

Figure 14: Result on the yelp dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

0.00 0.01 0.02 0.03 0.04 0.05
3.15

3.20

3.25

3.30

3.35

3.40

C(
)

0.00 0.01 0.02 0.03 0.04 0.05

0

1

2

3

4

5

6

7

nu
m

. r
et

ra
in

s

Figure 15: Result on the epicgames dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs
α.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

C(
)

0.0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4

5

6

7

8

nu
m

. r
et

ra
in

s

Figure 16: Result on the Gauss dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

0.00 0.05 0.10 0.15 0.20 0.25

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

C(
)

0.00 0.05 0.10 0.15 0.20 0.25

0

1

2

3

4

5

6

7

8

nu
m

. r
et

ra
in

s

Figure 17: Result on the circles dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

0.0 0.2 0.4 0.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

C(
)

0.0 0.2 0.4 0.6

0

1

2

3

4

5

6

nu
m

. r
et

ra
in

s

strategy
UPF
CARA
CARA cumul.
CARA per.
KSWIN-5%
KSWIN-50%
FHDDM-5%
FHDDM-50%
ADWIN-5%
ADWIN-50%

Figure 18: Result on the airplanes dataset. left) Cost Ĉα(θ) vs α. right) Number of retrains vs α.

We additionally include results with the oracle baselines in Figures 19. We can see that the UPF
baseline is reasonably close to the optimal algorithm in two of the datasets (circles and electricity),

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

but struggles for the more challenging dataset, epicgames. Looking at the number of retrains, we
can see that UPF more closely follows the retraining frequency of the oracle for all datasets.

0.0 0.1 0.2

0.10

0.15

0.20

0.25

0.30

C(
)

0.0 0.5 1.0
1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

C(
)

0.00 0.02 0.04
3.12

3.14

3.16

3.18

3.20

3.22

3.24

3.26

C(
)

0.0 0.1 0.2

0

2

4

6

8

nu
m

. r
et

ra
in

s

strategy
UPF
oracle
CARA

0.0 0.5 1.0

0

2

4

6

8

nu
m

. r
et

ra
in

s

strategy
UPF
oracle
CARA

0.00 0.02 0.04
0

1

2

3

4

5

nu
m

. r
et

ra
in

s

strategy
UPF
oracle
CARA

Figure 19: Result on the circles (left), electricity (middle) and epicgames (right) datasets. Top)
Cost Ĉα(θ) vs α. Bottom) Number of retrains vs α.

8.9 METHODOLOGY AS OFFLINE RL

We can frame the retraining problem as an offline RL task (Levine et al., 2020). We define a state
space where each state is described by the index of the trained model and the timestep; S ∈ {T} ×
{T}. The action space is to either retrain or not, so A = {0,1}. The state transitions are deterministic
and known:

T (St+1∣St = (i, t),A) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if A = 0, St+1 = (i, t + 1)

1 if A = 1, St+1 = (t + 1, t + 1)

0 o.w.
. (62)

Figure 20 provides a visualization of the MDP. Since the state transitions are deterministic, we can
define the deterministic transition function:

st+1 = t(at, st). (63)

The reward function only depends on the end state (which describes the performance of a model i
evaluated at timestep t) and on the action. Using peS to denote the performance at a state S and
reusing of tradeoff parameter α, we have the reward function:

r(at, st+1) = −αat − pest+1 . (64)

To match our setting, the discount factor has to be set to one γ = 1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

t=0,
f=0

t=1,
f=0

t=2,
f=0

t=3,
f=0

t=1,
f=1

t=2,
f=1

t=3,
f=1

t=2,
f=2

t=3,
f=3

t=3,
f=2

Time t

Model
f

No retrain (keep)

Retrain

…

…

Figure 20: Visualization of the MDP

The goal is to learn a policy π on offline data to generalize to the online period. The offline dataset
is given by: Doffline = {sn, an, rn}

N
n=1.

The objective is defined as:

J(π) = Eτ∼pπ(τ)[
T+w
∑
t=w

r(st, at)], (65)

which is the same objective as we defined, with the added option of defining a random policy to
make decisions pπ(θ):

J(π) = Eθ∼pπ(θ)[
T+w
∑
t=w

r(st, at)] (66)

= −Eθ∼pπ(θ)[
T+w
∑
t=w

αat + pest+1] (67)

= Eθ∼pπ(θ)[Cα(θ)]. (68)

Q-learning (approximate dynamic methods) The basic idea of Q-learning is to define a Q function
and to derive a deterministic policy π from it. The Q function is defined as follows;

Qπ
(st, at) = Eτ∼pτ ∣st,at

[
T+w
∑
t′=t

r(st′ , at′)] (69)

and the policy is set to:

π(at∣st) = δ(at = argmaxQ(st, at)). (70)

Since the optimal policy π∗ should satisfy

Q∗(st, at) = r(st, at) +Est∼T (st+1∣st,at)[max
at+1

Q∗(st+1, at+1)] , (71)

one algorithm is to train Qϕ until that equation is satisfied.

In our case, the transition is deterministic, so we can define st+1 = t(st, at) and have

Q∗(st, at) = r(st, at) +maxat+1Q
∗
(t(st, at), at+1) . (72)

The idea is then to parameterize Qϕ, and minimize the following for all samples in the dataset using
the Bellman update:

∑
n

(Qϕ(sn, an) − [r(sn, an) +max
a′

Qϕ(s
′, a′)])2 . (73)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

First we set the target:

yn = r(sn, an) +max
a′

Qϕ(s
′, a′) (74)

then we optimize

∂

∂ϕ
∑
n

(Qϕ(sn, an) − yn)
2. (75)

and the algorithm iterates between those two steps. We can therefore apply any Q-learning method
to our problem, provided that it uses a standard Qϕ parameterization.

Connecting Q-learning to our UPF algorithm

In our setting, we have special knowledge of the structure of Q. First, there is no randomness on the
transition state, so we know that:

yn = r(sn, an) +max
an+1

Qϕ(t(sn, an), an+1) (76)

By definition, we have that:

Qϕ(st, at) = −atα − pes,t +max
at+1

Qϕ(t(st, at), at+1) (77)

While computing the Bellman update and setting the target, we can see that the Q function of one
of the last states Qϕ(sT,x, ⋅) will have to predict the end performance:

Qϕ(sT,x, ⋅) = −pesT,x
, (78)

= −fϕ(sT,x) . (79)

By the DAG structure of the transition function, and since the α value is known, we can parameterize
recursively all the Qϕ functions with shareable components:

Qϕ(sT−1,x, aT−1,x) = −αaT−1,x − fϕ(sT−1,x) +max(−α − fϕ(sT,T),−fϕ(sT,x)), (80)

where each fϕ(sT−1,x) is modeling the performance pesT,x
at that given state.

The MSE objective that is traditionally applied (Eqn. 75) can then be decomposed into 2 terms,
where one of the terms corresponds to our objective:

L =∑
n

(Qϕ(sn, an) − yn)
2 (81)

= (− αan,x − fϕ(sn) +max(−α − fϕ(sT,T),−fϕ(sT,x)) (82)

− (anα + pesn +max
an+1

Qϕ(t(sn, an), an+1)))
2

(83)

= (fϕ(sn) − pesn +max(−α − fϕ(sT,T),−fϕ(sT,x)) +max
an+1

Qϕ(t(sn, an), an+1)))
2

(84)

L =∑
n

(fϕ(sn) − pesn)
2

+C. (85)

The term (fϕ(sn) − pesn)
2

in the loss function aligns with our objective, as Ai,j represents our
model’s approximation of the performance metric pei,j . Therefore, with this specific parameteriza-
tion, we can establish a connection between Q-learning and our learning method.

However, as noted in the main text, applying existing ORL methods to this problem would not be
effective. The problem involves a deterministic transition matrix and a highly structured reward, both
of which are uncommon in typical RL settings. Additionally, most RL methods prioritize scalability
to large state or action spaces, use complex models, and assume access to plentiful data, making
them ill-suited for our scenario. A key requirement for our approach is training efficiency, given our
limited performance data and the need for online adaptation as more information becomes available.
If the computational cost of deciding when to retrain is comparable to the retraining process itself,
the approach becomes impractical.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

8.9.1 OFFLINE RL BASELINES

In this section, we present results using an offline RL baseline that is appropriate for low-data set-
tings: Least-Squares Policy Iteration (LSPI) (Lagoudakis & Parr, 2003). We follow the detailed RL
formulation as previously presented. To implement LSPI, we use the model index i and timesteps
t as states (following the formulation from the previous section). In LSPI, various approximation
methods are introduced to solve the linear equation, but these are unnecessary in our case, as we can
solve it exactly due to the small size of our problem. We present various versions of this baseline
by changing the λ parameter. In Table 7, we can see that this proposed baseline is not competitive.
These initial results for this basic formulation of the offline RL problem indicate that more care and
design should be taken to appropriately solve this problem using offline RL, supporting that existing
RL methods, as they are, may not be well-suited to solve the problem.

Table 7: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range of
α values, for all datasets. The bolded entries represent the best, and the underlined entries indicate
the second best. The ∗ The ∗ denotes statistically significant difference with respect to the next best
baseline, evaluated using a Wilcoxon test at the 5% significance level.

electricity Gauss circles airplanes yelpCHI epicgames iWild
ADWIN-5% 2.8099 0.4533 0.0753 2.6353 0.1298 0.3217 3.7371
ADWIN-50% 2.8131 0.4848 0.0753 2.7147 0.1298 0.3238 4.2564
KSWIN-5% 3.8979 0.3975 0.0753 3.2300 0.1322 0.3420 4.4268
KSWIN-50% 4.0521 0.9530 0.0794 3.2042 0.1655 0.3537 4.4268
FHDDM-5% 3.1525 0.3893 0.0753 2.6577 0.1324 0.3298 4.4267
FHDDM-50% 3.4037 0.5918 0.0772 2.7077 0.1450 0.3389 4.4268
CARA cumul. 2.7147 0.3862 0.0731 2.2900 0.1299 0.3228 3.8922
CARA per. 2.8986 0.4678 0.0800 2.4061 0.1318 0.3260 3.7527
CARA 2.7198 0.3841 0.0726 2.2753* 0.1294 0.3202 3.9506

LSPI λ = 1 4.3820 1.0530 0.2412 3.7140 0.1493 0.3523 -
LSPI λ = 0.5 4.5260 1.0837 0.2455 3.6924 0.1442 0.3566 -
LSPI λ = 0.0 4.5317 1.0933 0.2478 3.5862 0.1378 0.3573 -

UPF (ours) 2.5782* 0.3829* 0.0668* 2.2865 0.1293* 0.3189* 3.0498*

oracle 2.4217 0.3724 0.0627 2.2298 0.1275 0.3170 2.4973

8.10 RELATING OUR OBJECTIVE TO THE CARA FORMULATION

In (Mahadevan & Mathioudakis, 2024), even though they are also tackling the retraining problem,
they are formulating the problem differently.

Instead of using a binary vector to model the retraining decisions, they use a sequence of model
indices S = [s1, . . . , sT] with the constraint that st ∈ {0, . . . , t}. If st = t, it signifies a retrain.

The cost objective they consider is similar to ours; they sum over the timesteps to get the cumulative
total cost. The cost per timestep is encoded in an upper triangular matrix C:

C[t′, t] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ψ̄t,t′ if t′ < t
κ if t′ = t (cost of retraining)
∞ o.w.

(86)

where Ψ̄t,t′ is defined as some “relative staleness cost”. The total cost is defined as:

Ccara
(S) =

T

∑
t=1

C[st, t]. (87)

The staleness cost is defined as the cost of using a model f1 to classify data from Q2, approximated
by dataset D3:

Ψ(Q2,D3, f1) ≜ ∑
q∼Q2

1

∣D3∣
∑

x,y∼D3

sim(q, x)ℓ(f1, x, y) (88)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

The aim of this metric is to predict the performance of f1 on the query points in Q2 by computing
the loss on a reference dataset D3. The idea is to weight the loss at each sample of D3 by how
similar they are to the query samples in Q2 (this is the role of sim(q, x)).

ℓ(f3(q), yq) ≈
1

∣D3∣
∑

x,y∼D3

sim(q, x)ℓ(f1, x, y) (89)

Ψ(Q2,D3, f1) ≈ NeEQ2[ℓ(f3(X), Y)] (90)
≈ Nepet3,t2 (91)

The relative staleness cost is defined as the difference between staleness costs:
Ψ̄t,t′ = Ψ(Qt,Dt, ft′) −Ψ(Qt,Dt′ , ft′) . (92)

This is intended to approximate the relative gap of performance:
Ψ̄t,t′ ≈ Ne(pet′,t − pet,t) (93)

In our experiment, we directly use Ψ(Qt,Dt, ft′) as an approximation of pet′,t and apply the CARA
algorithm directly on the staleness costs instead of using the relative staleness cost.

Relating it to our formulation Our objective is given by;

C(θ) = c∣∣θ∣∣1 + eN
T

∑
t=1

perθ,t. (94)

To understand the connection with our formulation, we start by rewriting the CARA cost as:

Ccara
(S) =

T

∑
t=1

1[st = t]κ + 1[st < t]Ψ̄t,st (95)

=
T

∑
t=1

1[st = t]κ + 1[st < t]Ψ̄t,st (96)

≈
T

∑
t=1

1[st = t]κ +Ne1[st < t](pest,t − pet,t) from equation 93 (97)

Ccara
(θ) = κ∣∣θ∣∣1 +Ne

T

∑
t=1
(perθ,t − pet,t) switching to our notation with θ. (98)

This reveals the assumptions that are required for both solutions to coincide. First, this approxima-
tion for the loss of a future model ft should hold:

ℓ(ft(xq), yq) ≈
1

∣Dt∣
∑

x,y∼Dt

sim(xq, x)ℓ(f1, x, y) (99)

Second, in order to have:
C(θ) = Ccara

(θ) (100)
we need

κ = c +
Ne∑

T
t=1 pet,t
∣∣θ∣∣1

. (101)

Proof: We require that:

c∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t = κ∣∣θ∣∣1 +Ne
T

∑
t=1
(perθ,t − pet,t) . (102)

This implies that:

c∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t = κ∣∣θ∣∣1 +Ne
T

∑
t=1

perθ,t −Ne
T

∑
t=1

pet,t , (103)

and hence that:

κ = c +
Ne∑

T
t=1 pet,t
∣∣θ∣∣1

. (104)

The cost of retraining κ in the CARA formulation must thus scale with the minimum performance
cost that can be obtained by always using the most recent model Ne∑

T
t=1 pet,t, divided by the

number of retrains that have been made. It is of course not possible to set κ to this value, as it
depends on θ, but it gives insight into how the formulations relate to each other.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

8.11 VARYING TRAINING DATA SIZE

In this section, we provide experimental results where we assume that we have access to fewer of-
fline time steps and analyze how it impacts the results. We display the relative improvement of
the best baseline vs. the competing baselines by reporting normalized AUC values in Tables 8,9,
and10. Overall, our method remains effective in scenarios with reduced training data. It demon-
strates greater robustness compared to the CARA baselines, which can be explained by the fact that
it can adapt to new information received during the online process, which CARA cannot do. With
very few training steps (w = 2), the CARA baselines suffer the most, reaching more than twice the
error for some datasets. With more data (w = 4), the relative performance is more in line with larger
datasets (w = 7), with UPF remaining the best.

Table 8: w = 2. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ),
computed over a range of α values, for all datasets. We normalize by dividing by the best value
for each dataset. The bolded entries represent the best. The ∗ denotes statistical significance with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 2 electricity airplanes yelpCHI epicgames Gauss circles
CARA 1.0000 1.0101 1.0100 1.0282 2.6519 1.4792
CARA c. 1.0669 1.0680 0.0544 2.7437 4.0150 1.6872
CARA per. 2.1971 1.6703 0.0661 2.9131 10.6965 1.8901

UPF 1.0258 1.0000* 1.0000* 1.0000 1.0000* 1.0000*

Table 9: w = 4. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ),
computed over a range of α values, for all datasets. We normalize by dividing by the best value
for each dataset. The bolded entries represent the best. The ∗ denotes statistical significance with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 4 electricity airplanes yelpCHI epicgames Gauss circles
CARA 1.0093 1.0024 1.0000 1.0063 1.0049 1.0653
CARA per. 1.1029 1.0721 1.0017 1.0168 1.0984 1.0045
CARA c. 1.0153 1.0060 1.0025 1.0220 1.0042 1.0501
UPF 1.0000* 1.0000* 1.0008 1.0000* 1.0000* 1.0000*

Table 10: w = 7. Normalized AUC of the combined performance/retraining cost metric Ĉα(θ),
computed over a range of α values, for all datasets. We normalize by dividing by the best value
for each dataset. The bolded entries represent the best. The ∗ denotes statistical significance with
respect to the next best baseline, evaluated using a Wilcoxon test at the 5% significance level.

w = 7 electricity airplanes yelpCHI epicgames Gauss circles
CARA c. 1.0530 1.0065 1.0046 1.0122 1.0086 1.0944
CARA per. 1.1244 1.0575 1.0193 1.0223 1.2219 1.1976
CARA 1.0549 1.0000* 1.0008 1.0041 1.0031 1.0868
UPF (ours) 1.0000* 1.0050 1.0000* 1.0000* 1.0000* 1.0000*

8.12 PRELIMINARY RESULTS ON THE WILD TEMPORAL DATASET

In this section, we present preliminary results on one dataset from the suite of temporal datasets
from Yao et al. (2022). Specifically, we present preliminray results from the yearbook dataset.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

To construct our sequence of datasets Dt, . . . , we follow the construction from (Yao et al., 2022).
For training, we iteratively add more samples from each year, spanning from 1930 to 2012. For
testing, we evaluate only on samples from the most recent year. As for the model ft, we use the
ERM model from (Yao et al., 2022), and follow the training procedure fromYao et al. (2022). We
use a similar setup to the one followed in our experiment, setting the offline window size w = 7,
evaluating over an online phase of T = 8 steps, and presenting results over 10 trials (See table 11).
Preliminary results for this dataset which can be seen in Table 12 are inline with the results from the
main paper.

Table 11: Dataset description. w denotes the number of timestep of the offline phase, T denotes the
number of timestep of the online phase. The Model describes the architecture used for each ft.

Dataset Model αmax w ∣M<0∣ T Dataset size (∣D∣) Num. features Task
yearbook ERM 0.5 7 21 8 (varies) 32X32X3 Binary

Table 12: AUC of the combined performance/retraining cost metric Ĉα(θ), computed over a range
of α values, for all datasets. The bolded entries represent the best, and the underlined entries indicate
the second best. The ∗ The ∗ denotes statistically significant difference with respect to the next best
baseline, evaluated using a Wilcoxon test at the 5% significance level.

yearbook
CARA cumul 0.0351
CARA per. 0.0195
CARA 0.0322
UPF 0.0120*

Oracle 0.0105

8.13 LIST OF TIMM PRETRAINED VISION MODELS

’ b e i t b a s e p a t c h 1 6 2 2 4 ’ ,
’ b e i t v 2 b a s e p a t c h 1 6 2 2 4 ’ ,
’ c a f o r m e r s 1 8 ’ ,
’ c a i t s 2 4 2 2 4 ’ ,
’ c a i t x x s 2 4 2 2 4 ’ ,
’ c a i t x x s 3 6 2 2 4 ’ ,
’ c o a t l i t e m i n i ’ ,
’ c o a t l i t e s m a l l ’ ,
’ c o a t l i t e t i n y ’ ,
’ c o a t m i n i ’ ,
’ c o a t t i n y ’ ,
’ c o a t n e t 0 r w 2 2 4 ’ ,
’ c o a t n e t b n 0 r w 2 2 4 ’ ,
’ c o a t n e t n a n o r w 2 2 4 ’ ,
’ c o a t n e t r m l p 1 r w 2 2 4 ’ ,
’ c o a t n e t r m l p n a n o r w 2 2 4 ’ ,
’ c o a t n e x t n a n o r w 2 2 4 ’ ,
’ c o n v f o r m e r s 1 8 ’ ,
’ c o n v i t b a s e ’ ,
’ c o n v i t s m a l l ’ ,
’ c o n v i t t i n y ’ ,
’ c o n v m i x e r 1 0 2 4 2 0 k s 9 p 1 4 ’ ,
’ c o n v n e x t a t t o ’ ,
’ c o n v n e x t a t t o o l s ’ ,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

’ c o n v n e x t b a s e ’ ,
’ c o n v n e x t f e m t o ’ ,
’ c o n v n e x t f e m t o o l s ’ ,
’ c o n v n e x t n a n o ’ ,
’ c o n v n e x t n a n o o l s ’ ,
’ c o n v n e x t p i c o ’ ,
’ c o n v n e x t p i c o o l s ’ ,
’ c o n v n e x t s m a l l ’ ,
’ c o n v n e x t t i n y ’ ,
’ c o n v n e x t t i n y h n f ’ ,
’ c o n v n e x t v 2 a t t o ’ ,
’ c o n v n e x t v 2 f e m t o ’ ,
’ c o n v n e x t v 2 n a n o ’ ,
’ c o n v n e x t v 2 p i c o ’ ,
’ c o n v n e x t v 2 t i n y ’ ,
’ c r o s s v i t 1 5 2 4 0 ’ ,
’ c r o s s v i t 1 5 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t 1 5 d a g g e r 4 0 8 ’ ,
’ c r o s s v i t 1 8 2 4 0 ’ ,
’ c r o s s v i t 1 8 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t 9 2 4 0 ’ ,
’ c r o s s v i t 9 d a g g e r 2 4 0 ’ ,
’ c r o s s v i t b a s e 2 4 0 ’ ,
’ c r o s s v i t s m a l l 2 4 0 ’ ,
’ c r o s s v i t t i n y 2 4 0 ’ ,
’ c s 3 d a r k n e t f o c u s l ’ ,
’ c s 3 d a r k n e t f o c u s m ’ ,
’ c s 3 d a r k n e t l ’ ,
’ c s 3 d a r k n e t m ’ ,
’ c s 3 d a r k n e t x ’ ,
’ c s 3 e d g e n e t x ’ ,
’ c s 3 s e e d g e n e t x ’ ,
’ c s 3 s e d a r k n e t l ’ ,
’ c s 3 s e d a r k n e t x ’ ,
’ c s p d a r k n e t 5 3 ’ ,
’ c s p r e s n e t 5 0 ’ ,
’ c s p r e s n e x t 5 0 ’ ,
’ d a r k n e t 5 3 ’ ,
’ d a r k n e t a a 5 3 ’ ,
’ d a v i t b a s e ’ ,
’ d a v i t s m a l l ’ ,
’ d a v i t t i n y ’ ,
’ d e i t 3 b a s e p a t c h 1 6 2 2 4 ’ ,
’ d e i t 3 m e d i u m p a t c h 1 6 2 2 4 ’ ,
’ d e i t 3 s m a l l p a t c h 1 6 2 2 4 ’ ,
’ d e i t b a s e d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t b a s e p a t c h 1 6 2 2 4 ’ ,
’ d e i t s m a l l d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t s m a l l p a t c h 1 6 2 2 4 ’ ,
’ d e i t t i n y d i s t i l l e d p a t c h 1 6 2 2 4 ’ ,
’ d e i t t i n y p a t c h 1 6 2 2 4 ’ ,
’ d e n s e n e t 1 2 1 ’ ,
’ d e n s e n e t 1 6 1 ’ ,
’ d e n s e n e t 1 6 9 ’ ,
’ d e n s e n e t 2 0 1 ’ ,
’ d e n s e n e t b l u r 1 2 1 d ’ ,
’ d l a 10 2 ’ ,
’ d l a102x ’ ,
’ d l a102x2 ’ ,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

’ d l a 16 9 ’ ,
’ d l a 3 4 ’ ,
’ d l a 4 6 c ’ ,
’ d l a 4 6 x c ’ ,
’ d l a 6 0 ’ ,
’ d l a 6 0 r e s 2 n e t ’ ,
’ d l a 6 0 r e s 2 n e x t ’ ,
’ d l a 60 x ’ ,
’ d l a 6 0 x c ’ ,
’ d m n f n e t f 0 ’ ,
’ d m n f n e t f 1 ’ ,
’ dpn68 ’ ,
’ dpn68b ’ ,
’ dpn92 ’ ,
’ dpn98 ’ ,
’ e c a n f n e t l 0 ’ ,
’ e c a n f n e t l 1 ’ ,
’ e c a n f n e t l 2 ’ ,
’ e c a r e s n e t 3 3 t s ’ ,
’ e c a r e s n e x t 2 6 t s ’

36

	Introduction
	Related Work
	Problem Setting
	Offline and Online data
	Some analysis

	Methodology
	Performance Forecaster
	Decisions under uncertainty

	Experiments
	Results
	Conclusion and limitations
	Appendix
	Extended Discussion of Related Work
	Proof of Proposition 3.1
	Proposition 3.1 in practice

	Bounding L
	Dataset
	Base model of the iWild dataset

	Performance forecaster
	Extension to non-bounded metrics
	Impact of the Normal approximation

	Training complexity
	Additional results
	Methodology as offline RL
	Offline Rl baselines

	Relating our objective to the CARA formulation
	Varying training data size
	Preliminary results on the Wild Temporal dataset
	List of timm pretrained vision models

