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Abstract—Large Language Models (LLMs) have demonstrated
remarkable performance in natural language processing tasks by
increasing the number of model parameters and the volume of
training data. To extend this capability to visual understanding
tasks, multimodal models (MM-LLMs) have been developed
by integrating LLMs with visual encoders. These models are
capable of handling tasks such as image captioning, detailed
image description, and image question answering, as well as more
complex tasks like video understanding. This survey first outlines
the characteristics and challenges of three visual understanding
tasks: image understanding, short video understanding, and long
video understanding. It then provides a detailed introduction to
the model architectures used in these tasks, highlighting their
similarities and differences, and discusses the evolving trends
in model training methods. Additionally, the paper presents
performance evaluations of several representative models and
offers insights into the future directions of visual understanding
MM-LLMs.

Index Terms—Multimodal Models, Visual Understanding,
Large Language Models, Image Understanding, Short-video
Understanding, Long-video Understanding

I. INTRODUCTION

Large Language Models (LLMs) have demonstrated the
capability to generate and comprehend natural language text
by increasing the number of model parameters and the volume
of training data. They have shown robust performance across
various downstream tasks, such as text expansion, summa-
rization, and conversational dialogue. To extend the powerful
capabilities of LLMs in natural language tasks to the domain
of visual understanding, researchers have connected LLMs
with visual encoders, thereby equipping LLMs with ”eyes”
to interpret visual information. This integration has led to
the development of multimodal models in the field of visual
understanding (MM-LLMs). Furthermore, through continuous
optimization and improvement of the interaction mechanisms
between visual encoders and LLMs, a variety of MM-LLMs
have been developed to adapt to multiple downstream tasks, in-
cluding image captioning [1]–[5], detailed image description,
visual question answering, and visual grounding [?], [6]–[8],
extending even to video understanding [9]–[16]. Depending on
whether the input visual information is an image or a video,
and the duration of the video, visual understanding MM-LLMs
are broadly categorized into three types: image understanding
models, short video understanding models, and long video
understanding models.

In visual understanding MM-LLMs for images and short
videos, a single image or a sequence of consecutive frames
is encoded into a series of visual tokens, which are then
integrated with text tokens. These visual tokens either serve as
a soft prompt [6] or directly interact with the internal mecha-
nisms of the LLM [4], enabling the MM-LLM to transform vi-
sual input into linguistic output, thereby accomplishing visual
information comprehension tasks. Such visual understanding
models have already found extensive real-world applications,
including the image-text and video-text chat functionalities in
GPT-4 and other large models.

In the context of long-video visual understanding within
MM-LLM, the model is required to process longer sequences
of visual information inputs, which include more frames and
more complex semantics. This inevitably involves the model’s
capabilities in long-term memory and extended reasoning,
necessitating more sophisticated designs in model architecture,
training methods, and the establishment of a more robust
framework for evaluating model effectiveness. Although the
application of such visual understanding models has not yet
become widespread, it is not difficult to predict that these
models will have broader and more useful applications com-
pared to image or short-video understanding models. Potential
applications include commenting on live sports broadcasts
or extracting highlights, narrating movies, assisting in the
investigation of surveillance footage, and ultimately applying
them in embodied intelligence, where they can assist robots in
decision-making by analyzing real-time first-person perspec-
tive videos (egocentric video) from their cameras.

Although the three categories of visual understanding MM-
LLMs differ in their application scenarios and detailed designs,
their fundamental model architectures and training methodolo-
gies are largely similar. The basic framework of these models
typically consists of three main components: a visual encoder
module, a cross-modal connection module, and an LLM
module. The training process generally can be divided into
two main phases: the pre-training phase and the instruction
fine-tuning phase. The pre-training phase is primarily aimed
at aligning the visual and linguistic modalities, while the
instruction fine-tuning phase focuses on enhancing the model’s
ability to follow instructions or optimizing the consistency
between the model’s outputs and the outputs required for
downstream tasks.
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Fig. 1. A brief comparison of three visual understanding tasks. The bold
items are items that do not exist in previous visual understanding tasks.

In the basic framework, the visual encoder module typi-
cally employs pre-trained image encoders such as CLIP-ViT
and SigLIP-ViT. The cross-modal connection module ranges
from simple fully connected layers or multilayer perceptrons
(MLPs) to more complex designs like Q-Former [3], primarily
used to map visual tokens from the visual latent space to text
tokens in the linguistic latent space (alignment of visual and
linguistic modalities). Notably, to accommodate long video
inputs, the cross-modal connection module not only requires
modality alignment but also needs to further compress a
large number of high-dimensional image tokens, either by
reducing their number or compressing their dimensions. This
process must also consider the issue of information loss.
Therefore, designing a cross-modal connection module that
can effectively compress image tokens while preserving visual
information remains a hot research topic. The LLM module
can utilize currently mature large models. Examples of the
actual architectures used for these three modules in different
models are illustrated in Figure 1.

This paper primarily introduces the fundamental objectives
and challenges of three visual understanding tasks: image
understanding, short video understanding, and long video
understanding (Section II). It also presents several model
architectures related to these tasks, analyzing their similar-
ities and differences, thereby providing a concise overview
of the development trajectory of visual understanding MM-
LLMs (Section III). Additionally, from the perspective of
model training, such as advancements in training methods and
dataset construction strategies, this paper further summarizes
the development trends of visual understanding MM-LLMs
(Section IV). Finally, the paper presents performance evalua-
tion results of several typical models (Section V). Based on
the aforementioned summaries and analyses, the paper briefly
outlines several potential future directions for the development
of visual understanding MM-LLMs (Section VI).

II. VISUAL INFORMATION UNDERSTANDING

The fundamental reason for the differences in the MM-
LLM architecture details for image, short video, and long
video understanding lies in the varying input sizes, information
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Fig. 2. A simple view of tasks of (a) image understanding (b) short-video
understanding and (c) long-video understanding.

dimensions, and semantic scales of these three types of tasks.
The diverse challenges in these three tasks also stem from
these differences. The characteristics of the three tasks are
summarized in Figure 1, while a more intuitive illustration is
provided in Figure 2.

A. Image Understanding

a) Task characteristics: In terms of input size, image
understanding tasks, such as image captioning, detailed de-
scription, and visual question answering, typically involve only
a single static image. The characteristic of such input is its
small size, and given the current performance of computers, it
often does not require compressing and storing visual tokens.
Instead, the input image can be encoded at a finer granularity,
such as by dividing the image into smaller patches and
encoding them sequentially [8], [10]. Regarding the dimen-
sionality of information, since an image contains only a single
static content, it inherently includes only spatial information;
thus, the model does not need to consider how to handle
temporal information during the encoding process. In terms of
semantic scale, images often contain no events (e.g., landscape
photos) or only a single event (e.g., a snapshot of a dynamic
scene), resulting in relatively limited semantic information.
Consequently, the model does not need to perform cross-event
reasoning or learn interactions among multiple semantics.

b) Task challenges: During the development of image
understanding MM-LLM, initially, due to training solely on
image-text pair data obtained from the internet, such datasets
often contain a large amount of noisy data (for instance, an
indoor home photo might come from a real estate website with
its text description as ”new summer model”; this is clearly
not appropriate training data), which negatively impacts the
training process. Thus, (1) how to acquire a large quantity of
high-quality training data is one of the challenges in image
understanding tasks [1]. Additionally, in the early stages of
the visual understanding MM-LLM field, individual models
were often specially trained for specific downstream tasks,
such as models for image classification or object detection only
outputting class labels or bounding box coordinates. Such im-
age understanding tasks can be termed as ”understanding sub-



classes within understanding tasks (understanding)”; whereas
other tasks like image captioning and visual dialog fall into
the category of ”generation subclasses within understanding
tasks (generation)”. Therefore, (2) how to unify understanding
and generation subclasses within image understanding tasks is
also a challenge [2]. After preliminarily addressing these two
types of ”material-level” challenges, the challenges in image
understanding tasks shift towards the ”spiritual level”, i.e., (3)
how to enhance the model’s instruction-following capability
and zero-shot learning ability, (4) how to improve the quality
and correctness of the model’s text output [6], [7], and (5)
how to optimize model performance and achieve efficient local
deployment of the model [8].

B. Short-Video Understanding
It is important to note that the definition of ”short video” dis-

cussed here differs from that used in entertainment platforms.
In entertainment contexts, short videos typically refer to those
with a duration of less than ten or five minutes. In contrast, the
term ”short video” in this context specifically refers to videos
that are approximately one minute long or shorter. According
to the definition used in the former context, the latter’s notion
of a short video could already be considered a ”long video”.

a) Task characteristics: Regarding input size, the short
video understanding task clearly involves a larger input volume
compared to image understanding tasks. A single input in short
video understanding can be considered as multiple inputs in
image understanding, where each frame of a video is treated
as an individual image and fed into a visual encoder all
at once for encoding. Performing fine-grained encoding on
such data (encoding each frame separately) would inevitably
lead to a significant increase in memory usage, making it
impractical. Current research remains focused on effectively
encoding video information without increasing the size of the
visual encoding [17].

In terms of information dimensions, videos obviously con-
tain not only spatial information within individual frames
but also temporal information across multiple frames. This
transforms what was a single image input into a continuous
sequence input. When encoding, models must also consider
how to effectively preserve temporal information. Regarding
semantic scale, due to time constraints, a short video typically
contains only one event (such as a person singing), which is
slightly more semantically complex than a single image but
still does not require the model to have strong memorization
capabilities.

b) Task challenges: (1) Similar to image understanding
tasks, the challenges in short video understanding tasks also
include aspects such as dataset quality, the model’s instruction-
following capability, and model performance. (2) Additionally,
since short videos contain more dimensions and a larger
scale of semantic information, how to efficiently encode this
information into visual tags is also one of the challenges [17].

C. Long-Video Understanding
a) Task characteristics: Regarding input size, similarly,

a single input in long video understanding can be viewed

as multiple inputs in short video understanding. Given that
the duration of long videos often spans several minutes to
several hours, the input volume for long video understanding
grows exponentially compared to image understanding and
short video understanding. Efficiently compressing and storing
image tokens has thus become an urgent necessity. In terms of
information dimensions, long videos are consistent with short
videos, both containing spatial and temporal information.

On the semantic scale, long videos are highly likely to
involve multiple events (for example, a person first singing,
then dancing, followed by rapping, and finally playing basket-
ball). Therefore, the semantic scale of long videos is further
increased beyond that of short videos. Moreover, as time
progresses linearly, the importance of events does not always
decrease linearly with their distance from the present. This
requires the model to have strong memory capabilities.

b) Task challenges: In addition to the challenges faced
by image understanding and short video understanding tasks,
long video understanding introduces new challenges due to
its characteristics of multiple events and extended time spans.
First, because long videos contain a larger number of events,
(1) how the model can efficiently store and remember a large
amount of information is one of the challenges. Moreover,
there may be parallel, progressive, or contrasting relationships
between multiple events, and the model needs to learn (2) how
to understand the connections between events and perform
cross-event reasoning.

Secondly, the time span of long videos is not only long
but also highly variable, ranging from several minutes to
several hours. For relatively shorter long videos, such as those
spanning several minutes, models can adopt more efficient
compression and storage methods similar to those used in
short video understanding, processing the entire video input at
once. However, for longer long videos, such as those spanning
tens of minutes to several hours, continuing to use a single
compression and storage method for the entire video inevitably
leads to the loss of excessive temporal and spatial information.
Therefore, the problem shifts to (3) how to effectively perform
dynamic storage of video inputs, i.e., how to efficiently conduct
online long video understanding.

For online long video understanding, the challenges can
be further broken down into: (5) how to balance old video
memories with new video information (designing an efficient
memory bank), (6) how to efficiently retrieve specific memories
from the memory bank (aligning memories with text), and (7)
how to quickly respond to user text inputs (decoupling memory
videos from response inputs) [9], [16].

III. DEVELOPMENT OF MODEL ARCHITECTURES

This section primarily discusses the architectural design of
models for image understanding, short video understanding,
and long video understanding tasks. The illustration of the
three common modules (visual encoder module, cross-modal
connection module, and LLM module) is shown in Figure 2.
This section will focus on the structure of the cross-modal
connection module, which not only handles the fundamental
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task of modal alignment in image understanding but also
plays a crucial role in integrating temporal information across
multiple frames and events in video understanding tasks, as
well as efficiently compressing, memorizing, and retrieving
visual information.

In conjunction with some of the challenges proposed in
Section II, it can be seen that the selection of the LLM module
can address challenges (3) and (4) in image understanding
tasks (which also exist in the other two types of tasks). The
design of the cross-modal connection module can resolve
challenge (2) in image understanding tasks, challenge (2) in
short video understanding tasks, and challenges (2) to (7) in
long video understanding tasks.

A. Visual Encoder Module and LLM Module

TABLE I
VISUAL ENCODER MODULES AND LLM MODULES USED IN SOME VISUAL

UNDERSTANDING MM-LLMS

Model Visual Encoder LLM
InstructBLIP EVA-CLIP-ViT-G/14 FlanT5, Vicuna-7B/13B
VideoChat EVA-CLIP-ViT-G/14 StableVicuna-13B
MovieChat EVA-CLIP-ViT-G/14 LLama-7B

LLaVA-NeXT CLIP-ViT-L/14 Vicuna1.5-7B/13B, Mistral-7B, Nous-Hermes-2-Yi-34B
MiniGPT-4-Video EVA-CLIP-ViT-G/14 LLaMA2-7B, Mistral-7B
LLaVA-OneVision SigLIP-SO400M Qwen2-7B

Zoom in for a better view of the table.

Although visual understanding MM-LLMs can be catego-
rized into those designed for images and those for long/short
videos, the visual encoder modules and LLM modules used
across these MM-LLM types are largely similar. There is not
much difference in the selection of visual encoder modules.
However, the development of LLM modules in the field
of natural language processing has provided more choices
over time: early large models for image understanding transi-
tioned from using smaller-parameter LLMs to larger-parameter
LLMs, while large models for long video understanding,
which require long-term reasoning capabilities, naturally tend
to choose LLMs with more parameters and larger context
windows. For details on the selection of these two modules
in some visual understanding MM-LLMs, see Table I.

a) Visual encoder module: The pre-trained visual en-
coder primarily handles extracting visual information from

raw images/video frames and representing this information
using visual tokens in a latent space. Widely used visual
encoder modules for the three types of visual understand-
ing MM-LLMs include CLIP-ViT-L/14, EVA-CLIP-ViT-G/14,
OpenCLIP-ViT-bigG/14, and SigLIP-SI400M, among others.

Research has shown that the parameter size or architecture
type of the visual encoder module has a relatively minor
impact on the overall performance of visual understanding
MM-LLMs [6], [7]. Apart from the performance of the cross-
modal connection module, at the level of the visual encoder
module, factors that significantly influence the overall model
performance include the quality of the training data, the reso-
lution size that the module can accept, and the dimensionality
of the visual tokens generated by the module [10].

b) LLM module: The pre-trained LLM is primarily re-
sponsible for reasoning and decision-making based on multi-
modal information passed from the input, ultimately generat-
ing natural language output that meets user expectations. Since
the design of the overall architecture of visual understanding
MM-LLMs may involve modifications to the internal archi-
tecture of the LLM, more widely used are open-source large
models such as Flan-T5, LLaMA, Vicuna, QWen, Mistral,
OpenFlamingo, etc.

After the cross-modal connection module aligns the visual
and language spaces, the performance of the LLM module has
the most significant impact on the overall performance of the
visual understanding MM-LLM [6], [7]. A less performant
LLM module tends to overfit the training data during the
training phase. For example, if the training data contains a
large number of image-short caption pairs, the final model’s
ability to generate longer text outputs will be limited [5]. In
contrast, high-performance LLM modules can often transfer
their capabilities to the visual understanding MM-LLM, such
as strong instruction-following abilities and robust zero-shot
learning capabilities [7]. If coupled with a larger parameter
size, the emergent phenomena observed in LLMs can also
manifest in MM-LLMs, enabling the latter to exhibit new
capabilities during testing that were not introduced during
training [6], [7]. In recent large models for long video un-
derstanding, LLMs with larger context windows have been
directly utilized, successfully transferring their long-context
analysis capabilities into these long video understanding mod-
els [11].

B. Cross-modal Connection Module

The cross-modal connection module is primarily respon-
sible for aligning the visual space with the language space,
providing soft prompts related to visual information to the
downstream LLM module or directly integrating visual in-
formation into the LLM model. If the performance of the
LLM is considered as whether a visual understanding MM-
LLM can ”speak well,” then the performance of the cross-
modal connection module can be viewed as whether the model
”can speak” at all: only when the model ”can speak” can
it learn to ”speak well.” Similar to the three categories of
visual understanding tasks, cross-modal connection modules



can also be divided into three categories: image-level, video-
level, and long-video-level. Among these, the image-level
connection module serves as the technical foundation for the
other two types, with most of the modal alignment work being
accomplished at this level. The other two types of modules
build upon the image-level module by introducing specialized
architectures designed to understand the corresponding visual
information, thereby enhancing the model’s ability to process
short/long video inputs after modal alignment.

a) Image-level connection modules: The image-level
connection module primarily handles the most fundamental
modal alignment tasks. This modal alignment can be divided
into two subcategories: internal modal alignment within the
connection module and external modal alignment. Internal
modal alignment exists only in cross-modal connection mod-
ules that can accept both image and text inputs, such as
Q-Former [3]. This alignment method requires training only
the visual encoder module and the cross-modal connection
module, using objectives abstracted from various downstream
tasks to train these two modules to handle generalized tasks.
Ultimately, without connecting to an LLM, the visual encoding
module and the connection module alone can achieve good
performance on some simple downstream tasks.

External modal alignment does not impose any requirements
on the types of inputs accepted by the connection module. This
alignment method involves end-to-end training/fine-tuning of
the entire model with the LLM connected (training parameters
of the connection module and the LLM; training the visual
encoder module’s parameters is optional), ultimately ensuring
that the output of the connection module can serve as soft
prompts for the LLM or be integrated into the LLM, effectively
assisting the LLM in understanding visual information.

Based on the above introduction, it is not difficult to analyze
the interaction between the two alignment methods: internal
modal alignment essentially prepares for external modal align-
ment by pre-aligning visual modality information towards the
language modality, thus accelerating the speed and improving
the effectiveness of external modal alignment.

Depending on whether the connection module performs
internal modal alignment, image-level connection modules can
also be divided into two subcategories.

Without internal alignment. Image-level connection mod-
ules are the earliest developed and most widely applied type.
Their structure is very simple, typically consisting of one to
multiple linear layers (i.e., fully connected layers or multilayer
perceptrons) [6], [7], [10]. Although such connection modules
can only perform external alignment, they achieve excellent re-
sults after joint instruction fine-tuning with the visual encoder
module or LLM module. Additionally, due to their simple
design and ease of training, these connection modules are
widely used in numerous visual understanding MM-LLMs.

With internal alignment. Image connection modules are
relatively less common but include representative examples
such as the ALBEF architecture, the MED (Mixture of
Encoder-Decoder) structure proposed in the BLIP architec-
ture, and the Q-Former module introduced in the BLIP-2

architecture. The architecture of such connection modules is
more complex, generally involving two unimodal encoders
(one for visual modality and one for language modality), a
vision-based language encoder, and a vision-based language
decoder. The two unimodal encoders separately accept vi-
sual and language inputs, outputting visual tokens and text
tokens, respectively. Subsequently, the text tokens are fed into
the vision-based language encoder/decoder, while the visual
tokens are input into a cross-attention module, producing
multimodal encodings or decoding multimodal information
to predict subsequent text outputs. During this process, there
are three main types of outputs: unimodal visual tokens and
text tokens, multimodal encodings, and predicted text outputs.
Internal alignment is achieved by designing objective functions
based on these three outputs, optimizing the final output of
the connection module before integrating it with the LLM
module, thereby completing the internal modal alignment of
the connection module. Moreover, these three optimization
objectives indicate that internally aligned connection modules
can unify understanding and generation tasks within image
understanding tasks. To further enhance the modal alignment
performance, some model architectures adopt a strategy com-
bining internally aligned and non-internally aligned connection
modules [3], [7].

Although connection modules without internal alignment
are simple and effective, they cannot mitigate the memory
usage issues caused by images that are too numerous or have
excessively high resolutions (the number of visual tokens
output by such modules grows linearly with the increase in
image resolution or quantity). Connection modules with inter-
nal alignment can employ Perceiver techniques to represent
images of various resolutions using a fixed number of token
vectors. Typical examples include the Q-Former module in
BLIP-2 and the Perceiver Resampler module in Flamingo [4].

b) Video-level connection modules: The video-level con-
nection module primarily handles extracting temporal informa-
tion from sequential visual data and compressing the size of
visual tokens. Some short video understanding models do not
design complex video-level connection modules; instead, they
simply concatenate the outputs (a series of frame tokens) of
image-level connection modules and input them into the LLM
module. Such a design inevitably makes the model sensitive
to the length of the input video (i.e., the number of frames),
with the memory usage of visual tokens increasing linearly
with the number of input frames [5].

Notably, if a series of frame tokens are directly com-
pressed and stored using a strategy that does not independently
compress each frame’s tokens, the model effectively extracts
temporal information between frames during the compression
process. Thus, analogous to the perception induction tech-
niques used in image-level connection modules, video-level
connection modules can use a smaller number of tokens to
integrate information from multiple frames. This approach
does not treat multi-frame inputs independently and achieves
the extraction of temporal information. A typical example is
the Video Perceiver [18].



Additionally, 3D convolution techniques, which add a new
temporal dimension to traditional 2D convolutions (spatial
dimensions), can also compress the size of frame tokens [19].
Since frames are not independently compressed, this method
can also extract temporal information.

c) Long-video-level connection modules: Long-video-
level connection modules, building on the tasks of video-
level connection modules, also need to efficiently compress
and store large volumes of video information and quickly
retrieve memories based on user instructions. A common
approach for storing and retrieving memories is to use a
memory bank: dynamically append the latest frame encodings
of videos to the memory bank and appropriately ”forget”
(compress/discard) previous information based on capacity.
When retrieving memories, the encoding of user instructions
is used to find highly similar tokens in the memory bank,
which are then extracted and input into the LLM module [16].
Since this type of connection module requires using language
modality information to retrieve visual modality information,
it clearly benefits from internal alignment for better retrieval
performance.

Additionally, some models further compress the size of the
memory bank by not directly appending new frame encodings
to the memory bank and discarding older frame encodings.
Inspired by perception induction techniques, they use fewer
encoding vectors and multiple encoding methods to store
long video information. Each encoding method provides a
different ”perspective” for the downstream LLM module to
understand the long video. Unlike memory banks that directly
append/concatenate new memories, the encoding vectors in
this approach collectively summarize the video’s historical
information, with individual vectors theoretically lacking in-
dependent meaning. Therefore, such memory banks do not
require retrieval; instead, all vectors are input into the LLM
module when needed to assist its reasoning [9].

Besides the two types of memory bank-based connection
module designs mentioned above, some models attempt to
use simple MLP designs for long-video connection modules.
In these models, the memory function is embodied in the
context input to the LLM, leveraging the LLM’s context
window to remember historical information. With appropri-
ate training strategies, these models can also achieve good
performance [14], [15].

The three designs of long-video-level connection modules
described above have all decoupled memory storage from
user interaction. Specifically, to respond to user interactions,
the model does not need to re-encode the entire video each
time but can dynamically extract memories or directly use
content from the memory bank/LLM context window. This
approach enables faster response times and initially addresses
the challenges of online long video understanding.

IV. IMPROVEMENTS ON TRAINING SETTINGS

This section primarily discusses the advancements in train-
ing methods and dataset construction for visual understanding
MM-LLMs. In early model designs, training consisted of only

one phase. As the field evolved, two-phase training—pre-
training and instruction fine-tuning—became the norm. The
former is used for modal alignment, while the latter optimizes
the model’s instruction-following performance and zero-shot
learning capabilities. From the perspective of two-phase train-
ing, early single-phase training can be seen as encompassing
only the pre-training phase.

Combining some of the challenges proposed in Section
II, it becomes evident that the instruction fine-tuning phase
further addresses challenges (3) and (4) in image training;
certain models’ training set construction methods or training
approaches also address challenges (1) in image training (these
three challenges are also present in the other two types of
tasks).

A man and a woman standing in a kitchen
A man and a woman standing in a kitchen, while talking

to each other and preparing their dinner

A man and a woman in a
kitchen talking and preparing

dinner

A man cutting fruits before
fetching a bowl of red peppers

A man poured cut ingredients
into a machine, then poured

them into a green bowl

A man put cut carrots into a
green bowl and stired it well

(a) A simple view of data used in pre-training stage
Spatial reasoning:
Q: What's in the picture?
A: A man and a woman.

Single-event reasoning:
Q: What happened in the first event of this video?
A: A man and a woman preparing dinner while
talking in the kitched.

Long-term reasoning:
Q: How many kinds of vegetables and fruits were stired in the green
bowl?
A: 5. Mango, lime, garlic, carrot and red pepper.

Multi-event reasoning:
Q: Who was cutting ingredients in the second
event?
A: A man with a red T-shirt.

(b) A simple view of data used in instruction finetuning stage

Fig. 4. A simple view of training data in training stage (a) pre-training and
(b) instruction tuning.

A. Two-stage Training

a) Pre-training: During the pre-training phase, the cross-
modal connection module is necessarily trained. Depending
on the specific settings of different models, parameters of
the visual encoder module and the LLM module may be
frozen or unfrozen during sub-phases of pre-training. In image
understanding tasks, the pre-training phase primarily uses a
large number of simple image-short caption pairs to train the
model [6], [7], [17]. During the early single-phase training pro-
cess, since this was the only form of training, the quality of the
dataset became particularly important. Given that manually fil-
tering noise from large datasets is impractical, self-supervised
or model distillation approaches were developed [1], [2] to
optimize the quality of the pre-training dataset (see IV-B for
details).

In short video understanding tasks, the pre-training phase
still uses image-short caption pairs to train the model but
also introduces short video-short text pairs for training. Long
videos can be considered as concatenated segments of short
videos; thus, the pre-training data for long videos takes the
form of ”a long video - multiple text segments with times-
tamps.” Additionally, if the ”multiple text segments” within the
pre-training data for long videos contain references to other
video segments, then pre-training on such data effectively
achieves event-level visual-language modal alignment from an



alignment perspective. This allows the LLM to actively seek
connections between different events during inference. Figure
4 (a) provides a visual illustration of the training data format.

b) Instruction finetuning: During the instruction fine-
tuning phase, the cross-modal connection module and the LLM
module are necessarily trained; some models may unfreeze
all parameters. In image understanding tasks, the data used
during this phase includes high-quality image-short caption
pairs and image-long description pairs. Additionally, there
may be image-text pairs adapted for other downstream tasks,
such as image-question-answer pairs, image-bounding box
coordinates-object name tuples, etc. [6].

In short video understanding tasks, the data used during
the instruction fine-tuning phase is similar to that used in
image understanding tasks. However, long video understand-
ing involves cross-event reasoning (long-term reasoning) and
long-term memory. Therefore, the data used for instruction
fine-tuning of long video understanding models also includes
cross-event descriptions and overall video summaries. Figure
4 (b) provides a visual illustration of the training data format.

B. Some Other Effective Training Practice

In addition to the basic pre-training and instruction fine-
tuning, some models also design additional training methods
based on their specific needs. These training methods are
primarily aimed at enhancing the robustness of the model,
ensuring that it can achieve good performance even when
trained on noisy data.

a) Momentum distillation: This method was introduced
as a model training approach in the ALBEF architecture.
Since this architecture does not undergo instruction fine-
tuning, its performance can be affected by noisy data in the
training dataset. Therefore, the ALBEF proposes this method
to enhance the training effectiveness of the model. This method
can be viewed as establishing a queue of historical snapshots
of the model: after each epoch or batch is trained, a new
snapshot of the model is saved and added to the queue. This
queue can be referred to as the model’s ”momentum queue,”
reflecting the evolution of the model parameters over time.
During training, the model does not solely use the ground
truth as the training target but also uses the outputs from
models in the queue as additional targets. The actual training
target is thus a weighted average of the ground truth and the
outputs from historical snapshots. The work refers to these
targets derived from historical snapshots as ”pseudo targets.”

Since these pseudo targets are generated by models that
have not fully fitted (noisy) training data, they may be more
accurate than the ground truth for instances where the ground
truth is incorrect. Specifically, if the ground truth is erroneous,
the pseudo targets could represent predictions based on other
correctly labeled training data, making them potentially more
reliable. Ultimately, this approach demonstrates that using
pseudo targets can lead to better model performance when
training on noisy datasets.

The process of saving model snapshots to the momentum
queue is akin to an online self-distillation mechanism, where

the model continuously distills its knowledge into models with
the same architecture during training. Hence, this method is
referred to as momentum distillation [1].

b) CapFilt (captioning and filtering): This method was
introduced as a model training approach in the BLIP archi-
tecture. Similar to ALBEF, this architecture does not undergo
instruction fine-tuning. The method leverages the Mixture of
Encoder-Decoder (MED) structure within BLIP by extracting
the multimodal text encoder-decoder during training. These
components are used separately: one as a classifier to deter-
mine whether captions in image-caption pairs accurately de-
scribe the corresponding images, and the other as a generative
model to produce image captions.

In each training iteration, updated data is used to re-pretrain
the MED structure of BLIP. After training, the MED structure
extracts the aforementioned classifier and generative model,
which are then used to filter noisy data from the original
dataset, forming updated data for the next training iteration.
This cycle repeats until the final model is obtained. The
original work refers to the classifier as the ”filter” and the
generative model as the ”captioner,” collectively naming this
approach CapFilt.

Additionally, the work notes that this process can also
be viewed as a form of model distillation. In this context,
the captioner and filter alternate roles as teacher and student
models, distilling their knowledge into the captions or filtered
data, allowing the counterpart to learn from it.

V. PERFORMANCE BENCKMARKING

A. Performance Analysis

Table II shows the performance of several models as indi-
cated in their respective works. To highlight more apparent
performance comparisons, the table only includes evaluation
frameworks for visual question answering that were com-
monly tested by these models, as well as data on the quality
scores of their generated content rated by GPT. Regarding
the scoring items by GPT, CI stands for the correctness of
information (Correctness of Information), DO for the level of
detail in the generated information (Detail Orientation), CU
for the model’s understanding of the question-answer context
(Context Understanding), TU for the model’s understanding of
temporal information (Temporal Understanding), and CO for
the coherence of the generated content (Consistency).

TABLE II
PERFORMANCE OF SOME VISUAL UNDERSTANDING MODELS

Model MSVD-QA ActivityNet-QA CI DO CU TU CO Average
InstructBLIP 41.8 - - - - - - -
MovieChat 75.2 45.7 2.76 2.93 3.01 2.24 2.42 2.67

LLaVA-NeXT - 53.2 3.39 3.29 3.92 2.60 3.12 3.26
MiniGPT-4-Video 72.9 45.9 2.93 2.97 3.45 2.47 2.60 2.88
LLaVA-OneVision - 56.6 - - - - - 3.49
Statistical data are from original work. Zoom in for a better view of the table.

By analyzing the data in the table, we can derive some
challenges related to long video understanding:

• The more frames a video contains, the higher the com-
plexity of the information introduced, and the greater the
demand for the model’s reasoning capabilities.



• Short video understanding models that perform well on
videos ranging from tens of seconds to about one minute
tend to perform poorly on longer videos that span several
minutes. In contrast, long video understanding models
often exhibit good performance on both long and short
videos. This may be attributed to the ability of long video
understanding models to capture spatiotemporal detail
information present in short videos as well.

B. Performance Optimization for Local Deployment
Research on performance optimization for local deploy-

ment has a representative model known as MiniCPM-V [8].
This model optimizes its performance through five primary
methods: (1) Compression of parameter quantity. In terms of
architectural design, it adopts an Perceiver strategy to capture
information from the visual modality using a fixed number
of tokens; additionally, it employs parameter quantization
techniques to reduce the bit size occupied by each value in
memory. (2) Optimization of memory allocation. The model
loads parameters of the visual encoder and LLM in batches and
sequentially rather than attempting to load both at once. This
approach can decrease the frequency of memory swapping.
(3) Configuration file optimization. This method is tailored
specifically for the deployment of llama.cpp. By utilizing
an automated parameter-setting learning method, more reason-
able configurations can be generated during deployment; for
instance, CPUs of the device can be allocated more efficiently
according to the computational needs of the model. (4) Local
compilation. It was found that compiling the model on the
target device before running leads to faster execution. It is
speculated that this is because post-compilation assembly code
usage aligns better with the architecture of the target device.
(5) Utilizing NPU acceleration on supported devices.

Following the aforementioned performance optimization
strategies, the MiniCPM-V model was successfully deployed
on both the Xiaomi 14 Pro and vivo X100 Pro mobile devices.
This deployment achieved an average encoding latency of 10
seconds and an average decoding throughput of 6 tokens per
second (with the human reading speed being approximately 5
tokens per second), significantly enhancing the performance
of visual understanding MM-LLM on local mobile devices
post-deployment.

VI. FUTURE RESEARCH DIRECTIONS

Regarding the future research directions for visual under-
standing MM-LLM, the primary focus is on enhancing the
performance of online long-video understanding. Nevertheless,
the following potential research directions/strategies could
serve all three types of visual understanding tasks: (1) Creating
more training resources; (2) Designing more challenging
evaluation frameworks; (3) Designing more effective and ro-
bust model architectures; (4) Developing richer application
scenarios to drive model advancements through practical use.

VII. CONCLUSION

This survey provides an overview of the development tra-
jectories of three types of visual understanding MM-LLM

(image understanding, short video understanding, and long
video understanding). Initially, it analyzes the objectives and
challenges of these three types of visual understanding tasks,
such as dataset quality issues, the unification of generation
and understanding tasks, the quality of generated text, and
the memory capabilities for visual content. Subsequently,
it introduces the architectural design patterns of the three
types of models and some typical architectures, analyzing
how these architectures address the various task challenges.
The paper then describes the basic training paradigms and
two training methods aimed at enhancing model stability.
Finally, it briefly showcases the performance of several typical
models on question-answering tasks and provides a concise
introduction to performance optimization strategies for local
deployment on mobile devices. Based on the above analysis,
this paper also proposes some future research directions for
visual understanding MM-LLM.
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