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Abstract

Quantum computing is an emerging field recognized for the significant speedup it1

offers over classical computing through quantum algorithms. However, designing2

and implementing quantum algorithms pose challenges due to the complex nature3

of quantum mechanics and the necessity for precise control over quantum states.4

To address these challenges, we leverage AI to simplify and enhance the process.5

Despite the significant advancements in AI, there has been a lack of datasets6

specifically tailored for this purpose. In this work, we introduce QCircuitNet, a7

benchmark and test dataset designed to evaluate AI’s capability in designing and8

implementing quantum algorithms in the form of quantum circuit codes. Unlike9

traditional AI code writing, this task is fundamentally different and significantly10

more complicated due to the highly flexible design space and the extreme demands11

for intricate manipulation of qubits. Our key contributions include: 1. The first12

comprehensive, structured universal quantum algorithm dataset. 2. A framework13

which formulates the task of quantum algorithm design for Large Language Models14

(LLMs), providing guidelines for expansion and potential evolution into a training15

dataset. 3. Automatic validation and verification functions, allowing for scalable16

and efficient evaluation methodologies. 4. A fair and stable benchmark that avoids17

data contamination, a particularly critical issue in quantum computing datasets. Our18

work aims to bridge the gap in available resources for AI-driven quantum algorithm19

design, offering a robust and scalable method for evaluating and improving AI20

models in this field. As we expand the dataset to include more algorithms and21

explore novel fine-tuning methods, we hope it will significantly contribute to both22

quantum algorithm design and implementation.23

1 Introduction24

Quantum computing is an emerging field in recent decades, which can attribute to the fact that algo-25

rithms on quantum computers may solve problems significantly faster than their classical counterparts.26

From the perspective of theoretical computer science, the design quantum algorithms have been27

investigated in various research directions - see the survey [Dalzell et al., 2023] and the quantum28

algorithm zoo [Zoo, 2024]. However, the design of quantum algorithms on quantum computers has29

been completed manually by researchers. This process is notably challenging due to highly flexible30

design space and extreme demands for a comprehensive understanding of mathematical tools and31

quantum properties.32
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For these reasons, quantum computing is often considered to have high professional barriers. As the33

discipline evolves, we aim to explore more possibilities for algorithm design and implementation34

in the quantum setting. This is aligned with recent advances among "AI for Science", including35

AlphaFold [Jumper et al., 2021], AlphaGeometry [Trinh et al., 2024], etc. Recently, large language36

models (LLMs) has also become crucial among AI for science approaches [Yang et al., 2024, Zhang37

et al., 2024, Yu et al., 2024]. Therefore, we attempt to gear LLMs for quantum algorithm design. As far38

we know, there has not been any dataset for AI in quantum algorithm design. Existing work combining39

quantum computing and AI are mostly targeting at exploiting quantum computing for AI; there are40

some papers that apply AI for quantum computing, but they consider niche problems [Nakayama41

et al., 2023, Schatzki et al., 2021] or limited functions [Tang et al., 2023, Fürrutter et al., 2024], not42

quantum algorithm datasets of general interest. See more discussions in Section 2.43

Key contributions. In this work, we propose QCircuitNet, the first comprehensive, structured44

dataset for quantum algorithm design. Technically, QCircuitNet has the following key contributions:45

• It formulates the task of quantum algorithm design for Large Language Models (LLMs), providing46

guidelines for expansion that may evolve to be a training dataset.47

• It has automatic validation and verification functions, allowing for scalable and efficient evaluation.48

• It provides a fair and stable benchmark that avoids data contamination, a particularly critical issue49

in quantum computing datasets.50

2 Related Work51

To the best of our knowledge, QCircuitNet is the first dataset tailored specifically for quantum52

algorithm design. Previous efforts combining quantum computing with artificial intelligence pri-53

marily fall under the category of Quantum Machine Learning (QML), which aims at leveraging the54

unique properties of quantum systems to enhance machine learning algorithms and achieve potential55

improvements over their classical counterparts [Schuld et al., 2015, Biamonte et al., 2017, Ciliberto56

et al., 2018]. Corresponding datasets often focus on encoding classical data into quantum states,57

which we may call "Quantum for AI". For instance, MNISQ [Placidi et al., 2023] is a dataset of58

quantum circuits representing the original MNIST dataset [LeCun et al., 1998] generated by the59

AQCE algorithm [Shirakawa et al., 2021]. Considering the intrinsic nature of quantum properties,60

another category of datasets focuses on collecting quantum data to demonstrate quantum advantages61

since classical machine learning methods could fail to characterize particular patterns of quantum62

data. For example, Nakayama et al. [2023] created a VQE-generated quantum circuit dataset for63

classification of variational ansatzes and shows the quantum supremacy on this task. NTangled64

[Schatzki et al., 2021] further emphasized on the different types and amounts of entanglement and65

composed quantum states with various multipartite entanglement for classification. While these66

datasets successfully demonstrate the supremacy of quantum computing, they address rather niche67

problems which might not have practical applications.68

There have also been efforts in the direction of "AI for Quantum", which explores the possibility of69

leveraging the huge potential of AI to facilitate the advancement of quantum computing. QDataSet70

[Perrier et al., 2022] collects data from simulations of one- and two-qubit systems and targets training71

classical machine learning algorithms for quantum control, quantum tomography, and noise mitigation.72

LLM4QPE [Tang et al., 2023] is a large language model style paradigm for predicting quantum73

system properties with pre-training and fine-tuning workflows. While the paradigm is interesting,74

the empirical experiments are limited to two downstream tasks: quantum phase classification and75

correlation prediction. Fürrutter et al. [2024] studied the application of diffusion models [Sohl-76

Dickstein et al., 2015, Rombach et al., 2022] to quantum circuit synthesis [Saeedi and Markov, 2013,77

J. et al., 2022]. Although their methodology is appealing, scalability issues must be addressed to78

achieve practical and meaningful unitary compilation.79

The aforementioned works represent meaningful explorations at the intersection of artificial intelli-80

gence and quantum computing. However, none of these datasets or models considers the task which81
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interests the quantum computing community (from the theoretical side) the most: quantum algorithm82

design. Our work aims to take the first step in bridging this gap. It is worth noting that several83

quantum algorithm benchmarks already exist, such as QASMBench [Li et al., 2023] and VeriQBench84

[Chen et al., 2022]. However, these benchmarks are designed to evaluate the performance of NISQ85

(Noisy Intermediate-Scale Quantum) [Preskill, 2018] machines, rather than for training and evaluating86

AI models. For instance, QASMBench includes a diverse variety of quantum circuits from different87

domains based on the OpenQASM assembly representation [Cross et al., 2022], covering quantum88

circuits with qubit sizes ranging from 2 to 127. However, each algorithm is represented by only 2-389

QASM files at most. While this is sufficient for benchmarking the fidelity of quantum hardware90

and the efficiency of QC compilers, it fails as a dataset for AI in that it does not capture the design91

patterns of each algorithm and ignores the construction of different oracles, which are crucial to92

quantum computing. Similar limitations apply to VeriQBench.93

3 Preliminaries for Quantum Computing94

In this section, we will introduce necessary backgrounds for quantum computing related to this paper.95

Additional preliminaries can also be found in Appendix B. A more detailed introduction to quantum96

computing can be found in the standard textbook by Nielsen and Chuang [2000].97

Quantum states. In classical computing, the basic unit is a bit. In quantum computing, the basic98

unit is a qubit. Mathematically, n (n 2 N) qubits forms an N -dimensional Hilbert space for N = 2n.99

An n-qubit quantum state |�i can be written as100

|�i =
N�1X

i=0

↵i|ii, where
N�1X

i=0

|↵i|2 = 1. (1)

Here |·i represents a column vector, also known as a ket state. The tensor product of two quantum101

states |�1i =
PN�1

i=0 ↵i|ii and |�2i =
PM�1

j=0 �j |ji with M = 2m, m 2 N is defined as102

|�1i ⌦ |�2i =
N�1X

i=0

M�1X

j=0

↵i�j |i, ji, (2)

where |i, ji is an (n+m)-qubit state with first n qubits being the state |ii and the last m qubits being103

the state |ji. When there is no ambiguity, |�1i ⌦ |�2i can be abbreviated as |�1i|�2i.104

Quantum oracles. To study a Boolean function f : {0, 1}n ! {0, 1}m, we need to gain its access.105

Classically, a standard setting is to being able to query the function, in the sense that if we input an106

x 2 {0, 1}n, we will get the output f(x) 2 {0, 1}m. In quantum computing, the counterpart is a107

quantum query, which is instantiated by a quantum oracle. Specifically, the function f is encoded as108

an oracle Uf such that for any x 2 {0, 1}n, z 2 {0, 1}m,109

Uf |xi|zi = |xi|z � f(x)i, (3)

where � is the plus modulo 2. Note that a quantum query to the oracle is stronger than a classical110

query in the sense that the quantum query can be applied to a state in superposition: For an input111

state
P

i ci|xii|zii with
P

i |ci|2 = 1, the output state is
P

i ci|xii|zi � f(xi)i; measuring this state112

gives xi and zi � f(xi) with probability |ci|2. A classical query for x can be regarded as the special113

setting with c1 = 1, x1 = x, z1 = 0m, and ci = 0 for all other i.114

Quantum gates. Similar to classical computing that can stem from logic synthesis with AND, OR,115

and NOT, quantum computing is also composed of basic quantum gates. For instance, the Hadamard116

H is the matrix 1p
2


1 1
1 �1

�
, satisfying H|0i = 1p

2
(|0i + |1i) and H|1i = 1p

2
(|0i � |1i). In117

general, an n-qubit quantum gate is a unitary matrix C2n⇥2n .118
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4 QCircuitNet Dataset119

4.1 Task Suite120

For the general purpose of quantum algorithm design, we consider two categories of tasks: oracle121

construction and algorithm design. These two tasks are crucial for devising and implementing a122

complete quantum algorithm, with oracle construction serving as the premise for algorithm design.123

4.1.1 Task I: Oracle Construction124

The construction of such an oracle Uf using quantum gates is deeply rooted in the research topic125

of reversible quantum logic synthesis, which remains a challenge for complex Boolean functions.126

In this dataset, we mainly focus on the construction of textbook-level oracles: Bernstein-Vazirani127

Problem [Bernstein and Vazirani, 1993], Deutsch-Jozsa Problem [Deutsch and Jozsa, 1992], Simon’s128

Problem [Simon, 1997], and Grover’s algorithm for unstructured search [Grover, 1996] (including129

constructions of both the oracle and the diffusion operator). We also consider more advanced oracle130

construction tasks which we refer to as "Problem Encoding". For example, one can apply Grover’s131

oracle to solving constraint problems such as SAT and triangle finding [Ambainis, 2004]. The132

intrinsic nature of formulating problem encoding tasks for LLMs slightly differs from quantum logic133

synthesis, and we refer the readers to Appendix B for more detailed discussion.134

4.1.2 Task II: Quantum Algorithm Design135

A general description of a quantum algorithm in natural language could be verbose and vague.136

Considering that quantum circuits stand at the core of designing and implementing a quantum137

algorithm, and that they resemble a special type of "language", we decide to use quantum circuits138

as the main medium for LLMs to generate for algorithm design. There are certain crucial points to139

consider when designing this framework to formulate the task precisely:140

• From the perspective of quantum algorithm design, the oracle is usually provided as a blackbox141

gate since the goal of many algorithms is to determine the property of the function f(x) encoded142

by the oracle Uf . If the model has access to the gate implementation of the oracle, it can directly143

deduce the property from the circuit, failing the purpose of designing a quantum algorithm to144

decode the information. However, for all experiment platforms, a quantum circuit needs to145

be explicitly constructed to compile and run successfully, which means the oracle should be146

provided with exact gate implementation. Most tutorials and benchmarks (especially those based147

on OpenQASM) simply merge the circuit implementation of the oracle and the algorithm as a148

whole for demonstration purposes. In our task of gearing LLMs for quantum algorithm design,149

how to separate the algorithm circuits from oracle implementation to avoid information leakage is150

a critical point to consider.151

• A quantum algorithm constitutes not only the quantum circuit, but also the interpretation of execu-152

tion (typically measurement) results of the quantum circuit. For example, in Simon’s algorithm, the153

measurement results yi are not direct answer s to the problem, but rather satisfies the property of154

s · yi = 0. Linear equations need to be solved to obtain the final answer. In this case, for a complete155

algorithm design, the model should also specify the way to process the execution results to derive156

the answer to the original problem.157

• Quantum circuits for the same algorithm vary with different qubit number n. Although this is trivial158

for theoretical design, it needs to be considered when implementing concrete quantum circuits.159

Beyond quantum algorithm design, we also consider quantum teleportation and quantum key dis-160

tribution, since these protocols are widely used in quantum information. We cover their details in161

Appendix B.162

4.2 Dataset Structure163

The overall structure of QCircuitNet is illustrated as follows (more details are given in Appendix A):164

4



Figure 1: Structure of QCircuitNet. The components of QCircuitNet are presented in the frame on
the top-right. As a showcase, this figure presents the components for Simon’s problem [Simon, 1997],
including its problem description in natural language, post-processing function in python code, circuit
in a .qasm file, and oracle definition in a .inc file.

Design Principles. As discussed in Section 4.1, a critical consideration in formulating the frame-165

work is the dilemma between providing the oracle as a black box for quantum algorithm design and166

the need for its explicit construction to execute the circuit and interpret the results, making the algo-167

rithm design complete. Additionally, model training and reference present challenges, particularly168

for LLMs in generating complex and precise composite gates and evaluating the results efficiently.169

To address these obstacles, we highlight the following construction principles, which are specially170

designed to adapt to these two tasks:171

• For algorithm design tasks, as discussed in Section 4.1.2, we provide the oracle as a black-box gate172

named "Oracle" with the explicit definition in a separate "oracle.inc" library, which is supported by173

the OpenQASM 3.0 grammar. In this way, we make sure that the model can use the oracle without174

accessing its underlying function, which solves the problem of isolating oracle definition from the175

algorithm circuit.176

• For oracle construction tasks, we ask the model to directly output the quantum circuit in QASM177

format. For algorithm design task, we require both a quantum circuit and a post-processing function178

to derive the final answer from circuit execution results. Moreover, we ask the model to explicitly179

set the shots needed to run the circuit itself in order to characterize the query complexity, which is180

critical in the theoretical analysis of algorithms.181

• For available quantum gates, we provide the definition of some important composite gates not182

included in the standard QASM gate library in a "customgates.inc". Hierarchical definition for183

multi-controlled X gate contains 45060 lines for qubit number n = 14 in OpenQASM format,184

which is impossible for AI models to accurately generate at the time. Providing these as a .inc file185

guarantees the correctness of OpenQASM’s grammar while avoiding the generation of complicated186

gates, which is a distraction from the original design task.187

• To verify models’ output automatically without human evaluation, we compose verification func-188

tions to validate the syntax of QASM / Qiskit and the functionality of the implemented circuits189

/ codes. Since comprehensive Logic Equivalence Checking (LEC) might be inefficient for the190

throughput of LLM inference, we perform the verification by directly checking the correctness of191

output with extensive test cases.192
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Based on theses principles, we proposed the framework of QCircuitNet. Below is a more detailed193

explanation for the 7 components of the dataset:194

1. Problem Description: carefully hand-crafted prompts stating the oracle to be constructed or the195

target problem to be solved in natural language and latex math formulas. If the problem involves196

the usage of a quantum oracle or composite gates beyond the standard gate library, the interfaces197

of the oracle / gate will also be included (input qubits, output qubits, function mechanism).198

2. Generation Code: one general Qiskit [Javadi-Abhari et al., 2024] code to create quantum circuits199

for oracles or algorithms of different settings, such as distinct secret strings or various qubit200

numbers. We choose Qiskit as the main experiment platform because it is a general quantum201

programming software widely used for the complete workflow from creating quantum circuits to202

transpiling, simulation, and execution on real hardware.203

3. Algorithm Circuit: a .qasm file storing the quantum circuit for each specific setting. We choose204

OpenQASM 3.0 [Cross et al., 2022] as the format to store the quantum circuits, because Qiskit,205

as a python library, can only create quantum circuits at runtime instead of explicitly saving the206

circuits at gate level.1207

4. Post-Processing Function: this is for Algorithm Design task only, see Section 4.1.2. The function208

takes a complete quantum circuit as input, uses the Qiskit AerSimulator to execute the circuit,209

and returns the final answer to the original problem according to the simulation results. For state210

preparation problems such as creating a GHZ state of n qubits, this function returns the qubit211

indices of the generated state.212

5. Oracle / Gate Definition: a .inc file to provide definitions of composite gates or oracles. For213

oracle construction tasks, this only includes the definition of composite gates required to build the214

oracle. For algorithm design tasks, we also provide the gate definition of the oracle in this file,215

which successfully delivers the oracle in a black-box way.216

6. Verification Function: a function to evaluate whether the implemented oracle / algorithm217

successfully achieves the desired purpose with grammar validation and test cases verification. The218

function returns -1 if there exist grammar errors, and returns a score between [0, 1] indicating the219

success rate on test cases.2220

7. Dataset Creation Script: the script to create the dataset from scratch in the format suitable for221

fine-tuning / evaluating LLMs. It contains the following functions: 1. generate primitive QASM222

circuits. 2. extract gate definitions and add include instructions to create algorithm circuit, the223

direct output of model. 3. validate and verify the correctness of the data points in the dataset. 4.224

concatenate algorithm circuit with problem description as a json file for the benchmark pipeline.225

This structure of QCircuitNet provides a general framework to formulate quantum algorithm design226

for large language models, with an easy extension to more advanced quantum algorithms.227

5 Experiments228

5.1 Methodology for Benchmarking229

We benchmark the quantum algorithm design capabilities of leading closed-source and open-source230

large language models using QCircuitNet. The workflow of our benchmark is illustrated in Figure 2.231

The total computation cost is approximately equivalent to two days on an A100 GPU.232

1Although currently the Qiskit APIs for importing and dumping OpenQASM 3.0 files are still in experimental
stage, we choose to adopt version 3.0 over 2.0 in that it supports parameterized circuits, which allows for
extending the framework to variational quantum algorithms [Cerezo et al., 2021] by saving parameterized
varational ansatzes.

2The verification function explicitly integrates the oracle / gate definition library with output algorithm circuit
since Qiskit importer for OpenQASM 3.0 does not support non-standard gate libraries currently.
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Figure 2: Flowchart of benchmarking QCircuitNet.

Models. Recently, the GPT series models have become the benchmark for generative models due233

to their exceptional performance. Specifically, we include two models from OpenAI, GPT-3.5-turbo234

[Brown et al., 2020] and GPT-4 [OpenAI et al., 2024], in our benchmark. Additionally, the LLAMA235

series models [Touvron et al., 2023a,b] are widely recognized as leading open-source models, and236

we have selected LLAMA-3-8B for our study. For a comprehensive evaluation, we also benchmark237

Phi-3-medium-128k [Abdin et al., 2024] and Mistral-7B-v0.3 [Jiang et al., 2023].238

Prompts. We employ a few-shot learning framework, a prompting technique that has shown239

considerable success in generative AI [Xie et al., 2021]. In this approach, we utilize either 1 or 5240

examples, followed by a problem description. To ensure we do not train and test on the same quantum241

algorithm, we implement k-fold validation. This method involves using one problem as the test set242

while the remaining problems serve as the training set, rotating through each problem one at a time.243

Evaluation Metrics. We use three evaluation metrics:244

1. BLEU Score: this metric measures how closely the generated code matches the reference code,245

with a higher BLEU score indicating greater similarity.246

2. Byte Perplexity: this metric evaluates the model’s ability to predict the next byte in a sequence.247

Lower byte perplexity indicates better performance by reflecting the model’s predictive accuracy.248

3. Verification function: this function checks the syntax validation and the result correctness of the249

code produced by the language model, and returns a score depending on the performance. See250

Section 4.2 for more detailed discussion.251

5.2 Results252

The results for BLEU and verification function score are shown in Figure 3, Table 1, and Table 2. We253

include the results of Byte Perplexity and more experiments in Appendix C.254

As illustrated in the table, verification scores for the output of the model reveal that almost none can255

produce a correct algorithm, because a single mistake could make the whole algorithm fail. However,256

we can still partially assess the models’ ability to solve quantum problems by measuring the BLEU257
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Figure 3: Benchmarking algorithm design and oracle construction in BLEU scores.

score. The figure indicates that GPT-4o significantly outperforms all other models. Additionally,258

nearly all models demonstrate the ability to learn quantum knowledge from context, as the five-shot259

prompt performs much better than the one-shot alternative.260

The figure also reveals the different difficulty levels for each algorithm. For simple quantum261

algorithms such as the Bernstein-Vazirani algorithm where directly applying more H gates to the qubits262

solves the problem, language models tend to perform well. However, for complicated algorithms263

such as the W state where the parameters vary with qubit number, the models tend to perform poorly.264

Table 1: Benchmarking algorithm design in verification function scores.

Model Shot Bernstein-
Vazirani

Deutsch-
Jozsa Grover Phase

Estimation
Quantum

Fourier Transform Simon GHZ State Random
Number Generator

Swap
Test W State

gpt-4o-2024-05-13 1 -1 -1 -1 -1 -1 -1 -0.846153846 -1 -1 -1
gpt-4o-2024-05-13 5 -1 -1 -1 -1 -1 -1 -0.153846154 0.405072709 -1 -0.846153846
Meta-Llama-3-8B 1 -1 -1 -1 -1 -1 -1 -0.769230769 -0.928534157 -1 -0.461538462
Meta-Llama-3-8B 5 -1 -1 -1 -1 -1 -1 -0.384615385 -0.730665436 -1 -0.153846154
gpt-3.5-turbo-0125 1 -1 -1 -1 -1 -1 -1 -0.846153846 -1 -1 -1
gpt-3.5-turbo-0125 5 -1 -1 -1 -1 -1 -1 -0.076923077 -0.490434406 -1 -0.846153846

Table 2: Benchmarking oracle construction in verification function scores.

Model Shot Bernstein-
Vazirani

Deutsch-
Jozsa

Diffusion-
Operator Grover Simon

gpt-4o-2024-05-13 1 0.15 0.22 -0.923076923 -0.977011494 -0.260869565
gpt-4o-2024-05-13 5 0.15 0.43 -0.230769231 -0.931034483 -0.043478261
Meta-Llama-3-8B 1 -0.64 -0.49 -0.615384615 -1 -0.456521739
Meta-Llama-3-8B 5 -0.06 0.21 -0.615384615 -1 -0.423913043
gpt-3.5-turbo-0125 1 -0.4 -0.01 -0.846153846 -0.977011494 -0.423913043
gpt-3.5-turbo-0125 5 -0.07 0.06 -0.307692308 -0.896551724 -0.108695652
Phi-3-medium-128k-instruct 1 -0.5 -0.52 -0.846153846 -1 -0.673913043
Phi-3-medium-128k-instruct 5 -0.6 -0.22 -1 -1 -0.760869565
Mistral-7B-v0.3 1 -0.35 -0.47 -1 -1 -0.369565217
Mistral-7B-v0.3 5 -0.11 -0.02 -1 -1 -0.217391304

5.3 Observations and Analysis265

The Challenge of LLM for Quantum Algorithm Design. As shown by the experiment results,266

the integration of LLMs into quantum algorithm design presents several challenges:267

8



1. Lack of data: Unlike classical computing and code generation, where vast datasets and extensive268

examples exist, the field of quantum computing is still nascent, with limited accessible data. This269

scarcity hampers the ability of LLMs to learn and generalize effectively.270

2. Distinct nature of each algorithm: Quantum algorithms can be seen as unitary maps but in271

exponential size linear spaces. This distinct nature makes it intractable for LLMs to generalize272

knowledge from one algorithm to another, posing challenges to transfer learning.273

3. Reasoning of underlying mechanism: Quantum algorithms involve deep comprehension of unitary274

transformations and the evolution of quantum states. Such reasoning goes beyond simple pattern275

recognition and is difficult for LLMs to grasp and apply accurately.276

4. Quantum programming language syntax: The syntax of quantum programming languages, such as277

Qiskit and OpenQASM, introduces an additional layer of complexity. As shown by the verification278

scores, the models can barely output circuit / codes with correct syntax, demonstrating that this is279

a non-trivial task, which challenges the current capabilities of LLMs.280

Usage of QCircuitNet Dataset. Our dataset helps provide guidance to address these challenges:281

1. Formulate the task: We propose framing algorithm design tasks in circuit or code form rather than282

natural language descriptions, which can be vague, or mathematical formulas, which are difficult283

to verify. This provides a concrete framework for LLMs to operate within.284

2. Clarify descriptions with concrete examples: The dataset includes detailed descriptions of repre-285

sentative problems in universal quantum algorithms, accompanied by concrete cases, which helps286

bridge the gap between abstract algorithms and practical implementations.287

3. Benchmark for fair evaluation: To improve the capability of LLMs in quantum algorithm design,288

we need a fair and robust evaluation method first. Our dataset includes metrics and benchmarks289

for such purpose, providing a foundation for developing and testing novel improvement methods.290

Implications for AI Learning. We observe a performance separation between writing general291

qiskit codes and explicit gate-level circuits in QASM. Since Qiskit provides detailed tutorial with292

general codes for several algorithms, this may imply a data contamination phenomenon where293

LLMs rely on memorization and retrieval rather than genuine algorithm design. Similarly, current294

benchmarks for AI code generation and syntax learning may also suffer from this unseen bias. Our295

dataset, based on QASM files created from scratch, may help circumvent this issue and serve as a296

stable and fair evaluation method for benchmarking AI syntax learning.297

6 Conclusions and Future Work298

In this paper, we propose QCircuitNet, the first comprehensive, structured universal quantum al-299

gorithm dataset and quantum circuit generation benchmark for AI models. It contains automatic300

validation and verification functions, allowing for scalable and efficient evaluation methodologies.301

Benchmarking of QCircuitNet on up-to-date LLMs are systematically conducted.302

Our work leaves several open questions for future investigation:303

• QCircuitNet is a benchmarking dataset for LLMs. It is of general interest to extend benchmarking304

to training, which will help LLMs better maneuver quantum algorithm design. This may need305

implementations of more advanced algorithms to make it a more meaningful training dataset.306

• Since quantum algorithms have fundamental difference from classical algorithms, novel fine-307

tuning methods to attempt quantum algorithm design and quantum circuit implementation, or even308

development of new quantum algorithms by LLMs are solicited.309

• Currently, variational quantum algorithms [Cerezo et al., 2021] can already be implemented on near-310

term NISQ machines [Preskill, 2018]. It would be also of general interest to extend QCircuitNet to311

contain the design and implementation of variational quantum algorithms.312
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