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Abstract

In this paper, we propose an adaptive entropy-
regularization framework (ADER) for multi-agent
reinforcement learning (RL) to learn the adequate
amount of exploration for each agent based on the
degree of required exploration. In order to handle
instability arising from updating multiple entropy
temperature parameters for multiple agents, we
disentangle the soft value function into two types:
one for pure reward and the other for entropy. By
applying multi-agent value factorization to the
disentangled value function of pure reward, we
obtain a relevant metric to assess the necessary de-
gree of exploration for each agent. Based on this
metric, we propose the ADER algorithm based on
maximum entropy RL, which controls the neces-
sary level of exploration across agents over time
by learning the proper target entropy for each
agent. Experimental results show that the pro-
posed scheme significantly outperforms current
state-of-the-art multi-agent RL algorithms.

1. Introduction

The goal of RL is to find the optimal policy that maximizes
expected return. To guarantee convergence of model-free
RL, the assumption that each element in the joint state-
action space should be visited infinitely often is required
(Watkins & Dayan, 1992; Sutton & Barto, 2018), but this
is practically impossible due to large state and/or action
spaces in real-world problems. Thus, effective exploration,
which aims to visit uncharted parts of the environment, has
been a core problem in RL, and various approaches such as
maximum entropy/entropy regularization (Haarnoja et al.,
2017; 2018a), intrinsic motivation (Chentanez et al., 2004;
Badia et al., 2019; Burda et al., 2018), parameter noise
(Plappert et al., 2018; Fortunato et al., 2018) and count-
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based exploration (Ostrovski et al., 2017; Bellemare et al.,
2016) have been investigated. In practical real-world prob-
lems, however, the given time for learning is limited and
thus the learner should exploit its own policy based on its
experiences so far. Therefore, the learner should balance
exploration and exploitation in the dimension of time and
this is typically called exploration-exploitation trade-off in
RL.

The problem of exploration-exploitation trade-off becomes
more challenging in multi-agent RL (MARL) because the
state-action space grows exponentially as the number of
agents increases. In addition, the degree of necessary ex-
ploration can be different across agents and moreover one
agent’s exploration can hinder other agents’ exploitation.
Thus, the balance of exploration and exploitation across
multiple agents should also be considered for MARL in
addition to along the time dimension. We refer to this prob-
lem as multi-agent exploration-exploitation trade-off. Al-
though there exist many algorithms for better exploration
in MARL (Liu et al., 2021; Zhang et al., 2021; Kim et al.,
2020; Mahajan et al., 2019), the research on multi-agent
exploration-exploitation trade-off has not been investigated
much yet.

In this paper, we propose a new framework based on entropy
regularization for adaptive exploration in MARL to handle
the multi-agent exploration-exploitation trade-off. The pro-
posed framework allocates different target entropy across
agents and across time based on our newly-proposed met-
ric for the degree of necessary exploration for each agent.
In order to implement the proposed framework, we adopt
the method of disentanglement between exploration and
exploitation (Han & Sung, 2021; Beyer et al., 2019) to de-
compose the joint soft value function into two types: one
for the return and the other for the entropy sum. This dis-
entanglement alleviates instability which can occur due to
the updates of multiple entropy temperature parameters and
enables applying the multi-agent value factorization tech-
nique to return and entropy separately. To derive a metric
for the level of required exploration for each agent, we
exploit this value factorization on the disentangled value
function of pure return and use the partial derivative of
the joint value function of pure return with respect to in-
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dividual value function. The intuition behind this choice
is that the agents having high contributions to the return
should focus more on exploitation, whereas the agents hav-
ing low contributions to the return should explore more to
search better actions. Various experiments demonstrate the
effectiveness of the proposed framework for multi-agent
exploration-exploitation trade-off.

2. Background

Basic setup We consider a decentralized par-
tially observable MDP (Dec-POMDP), which describes
a fully cooperative multi-agent task (Oliehoek & Am-
ato, 2016). Dec-POMDP is defined by a tuple
< N,S,{A},P,{Q:},O0,r,y >, where N =
{1,2,---, N} is the set of agents. At time step ¢, Agent
i € N makes its own observation o} € €); according to the
observation function O(s,4) : & x N — Q; : (s4,4) = ol,
where s; € S is the global state at time step t. Agent
i selects action a! € A;, forming a joint action a; =
{a},a?,--- ,al¥}. The joint action yields the next global
state s;41 according to the transition probability P(-|s;, a;)
and a joint reward 7 (s, a;) according to the reward func-
tion 7 (-, -). Each agent ¢ has an observation-action history
7/ € (Q; x A;)* and trains its decentralized policy 7% (a’|7?)
to maximize the expected cumulative return E[Y_,° ) 7]
We consider the framework of centralized training with
decentralized execution (CTDE), where decentralized poli-
cies are trained with additional information including the
global state via a centralized way during the training phase
(Oliehoek et al., 2008).

Value Factorization In MARL, it is difficult to
learn the joint action-value function, which is defined as
Qur(s,7,a) = K[}, 7'r|s, T,a] due to the problem
of the curse of dimensionality as the number of agents in-
creases. For efficient learning of the joint action-value func-
tion, value factorization techniques have been proposed to
factorize it into individual action-value functions Q; (7%, a*),
i = 1,---,N. One representative example is value de-
composition network (VDN), which factorizes the joint
action-value function into the sum of individual action-value
functions as Q y7(7,a) = Y.~ |, Qi(7", a’). Another repre-
sentative example is QMIX, which introduces a monotonic
constraint between the joint action-value function and the
individual action-value function. The joint action-value
function in QMIX is expressed as

QJT(sa T, a) = fmiz(sa Ql(Tia ai)a e 7QN(TN, aN)),
8QJT(S,T,G)
0Q; (7%, a?)

where f,;, is a mixing network which combines the indi-
vidual action-values into the joint action-value based on the
global state. In order to satisfy the monotonic constraint
0Q jr/0Q; > 0, the mixing network is restricted to have

>0, VieN, (1)

positive weights. There exist other value-based MARL al-
gorithms with value factorization (Son et al., 2019; Wang
et al., 2020a). Actor-critic based MARL algorithms also
considered value factorization to learn the centralized critic
(Peng et al., 2021; Su et al., 2021).

Maximum Entropy RL and Entropy Regularization
Maximum entropy RL aims to promote exploration and
enhance robustness by finding an optimal policy that maxi-
mizes the sum of cumulative reward and entropy (Haarnoja
et al., 2017; 2018a). The objective function of maximum
entropy RL is given by

o0

JMa:cEnt('/T) - ]ETK‘ Z’yt(rt + OZH(W(.L%))) ) (2)

t=0

where H(-) is the entropy function and « is the temper-
ature parameter which determines the importance of the
entropy compared to the reward. Soft actor-critic (SAC) is
an off-policy actor-critic algorithm which efficiently solves
the maximum entropy RL problem (2) based on soft policy
iteration. For this, SAC defines the soft Q function as the
sum of the total reward and the future entropy and the corre-
sponding soft Bellman backup operator. The soft Q function
for given policy is estimated by repeatedly applying the soft
Bellman backup operator based on the fixed-point theorem,
and this step is called the soft policy evaluation. Then, the
policy is updated based on the evaluated soft Q function and
this step is called the soft policy improvement. By iterat-
ing the soft policy evaluation and soft policy improvement,
called the soft policy iteration, SAC converges to an optimal
policy that maximizes (2) within the considered policy class
in the case of finite MDPs. SAC also works effectively for
large MDPs with function approximation (Haarnoja et al.,
2018a).

One issue with SAC is the adjustment of the hyperparam-
eter «v in (2), which control the relative importance of the
entropy with respect to the reward. The magnitude of the re-
ward depends not only on tasks but also on the policy which
improves over time during the training phase. Because
the optimal entropy depends on this magnitude, this depen-
dence makes the temperature adjustment difficult (Haarnoja
et al., 2018b). Thus, Haarnoja et al. (2018b) proposed a
method to adjust the temperature parameter « over time to
guarantee the minimum average entropy at each time step
based on approximate dynamic programming. For this, they
reformulated the maximum entropy RL as the following
entropy-regularized optimization:

T
Jer(mo.r) = Enp.r lz Tt]
=0

s.L. ]E(St7ut)"’7ft [7 log(ﬂ_t(a”st))] > 7-[0 (3)

where H, is the target entropy. Exploiting the fact that
m; affects only the present and future, the technique of dy-
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namic programming is used, i.e., maxn, . E[> ;7] =

maxy, {E[Tt} + maxy, ., E[ZiT:Hl 7] } Then, the
backward recursion can be applied to obtain optimal « at
time step ¢ based on the technique of Lagrange multiplier

by the dual optimization:

ai = argminEq, qx [—a¢log 7 (as|s:) — arHo], (4)
Qi

2 ()

where 7} is the maximum entropy policy at time step ¢. In
the infinite-horizon case, the discount factor ~ is included
and 7} is replaced with the current approximate maxent so-
Iution by SAC. Thus, the soft policy iteration of SAC is com-
bined with the o adjustment based on the loss function J ()
defined in (4). This algorithm effectively handles the reward
magnitude change over time during training (Haarnoja et al.,
2018b). Hence, one needs to set only the target entropy H
for each task and then « is automatically adjusted over time
for the target entropy.

Related Works Here, we mainly focus on the entropy-
based MARL. There exist previous works on entropy-based
MARL. Zhou et al. (2020) proposed an actor-critic algo-
rithm, named LICA, which learns implicit credit assignment
and regularizes the action entropy based on a simple tech-
nique. The entropy regularization technique proposed in
(Zhou et al., 2020) dynamically controls the magnitude of
the gradient regarding entropy to address the high sensitiv-
ity of the temperature parameter caused by the curvature
of derivative of entropy. It was shown that LICA allows
multiple agents to perform consistent level of exploration.
However, LICA does not maximize the cumulative sum of
entropy but regularize the entropy of policy. Zhang et al.
(2021) proposed an entropy-regularized MARL algorithm,
named FOP, which introduces a constraint that the entropy-
regularized optimal joint policy is decomposed into the prod-
uct of the optimal individual policies. FOP introduced a
weight network to determine individual temperature param-
eters and to factorize the joint soft Q-function. Zhang et al.
(2021) considered individual temperature parameters for
updating policy, but in practice, they used the same value
(for all agents) which is annealed during training for the
temperature parameters. This encourages multiple agents
to focus on exploration at the beginning of training, which
considers exploration-exploitation only in time dimension
in a heuristic way.

A key point is that the aforementioned algorithms maximize
or regularize the entropy of the policies of multiple agents
to encourage the same level of exploration across the agents.
Such exploration is still useful for several benchmarks but
cannot handle the multi-agent exploration-exploitation trade-
off. Furthermore, in the previous methods, the joint soft
Q-function defined as the total sum of return and entropy
is directly factorized by value decomposition, and hence

the return is not separated from the entropy in the Q-value.
From the perspective on one agent, however, the contribu-
tion to the global reward and that to the sum entropy can be
different. What we actually need to assess the goodness of
a policy is the return estimate, which is difficult to obtain
by such unseparated factorization.

3. Methodology

In order to address the aforementioned problems, we
propose an ADaptive Entropy-Regularization framework
(ADER) for multi-agent reinforcement learning, which can
balance exploration and exploitation across multiple agents
by learning and controlling the target entropy for each agent.
We first provide an example to motivate the learning prob-
lem of exploitation-and-exploration trade-off for multi-agent
RL and then describe our framework to address this problem,
including a novel method determining the target entropy
based on the degree of necessity of exploration.

3.1. Motivation

The convergence of model-free RL requires the assumption
that all state-action pairs should be visited infinitely often
(Watkins & Dayan, 1992; Sutton & Barto, 2018), and this
necessitates exploration. In practice, however, the number
of time steps during which an agent can interact with the
environment is limited. Thus, a balance between exploration
and exploitation in the dimension of time is crucial for high
performance in RL. Furthermore, in the case of MARL,
a balance between exploration and exploitation in the di-
mension of agents should be considered. This is because
1) the degree of necessity of exploration can be different
across multiple agents and 2) one agent’s exploration can
hinder other agents’ exploitation, resulting in the situation
that simultaneous exploration of multiple agents can make
learning unstable. We refer to this problem as multi-agent
exploration-exploitation trade-off. To handle the problem of
multi-agent exploration-exploitation trade-off, we need to
control the amount of exploration of each agent adaptively
and learn this amount across agents (i.e., agent dimension)
and over time (i.e., time dimension). We should allocate
higher target entropies to the agents who need more explo-
ration and lower target entropies to the agents who need
more exploitation. To make such adaptive target entropy
control possible, we need a metric to capture the degree
of required exploration, which changes during the learn-
ing process. In order to see the necessity of such adaptive
exploitation-exploration trade-off control in MARL, let us
consider a modified continuous cooperative matrix game
(Peng et al., 2021). The considered game consists of two
agents: each agent has an one-dimensional continuous ac-
tion @’ which is bounded in [—1, 1]. The state of the envi-
ronment is the position, described by the s = (z,y), in the
2-dimensional plane in Fig. 1, and the state is determined by
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Figure 1. Reward surface in the considered continuous cooperative
matrix game. a; and a2 correspond to x-axis and y-axis, respec-
tively.

the joint action as s = (z,y) = a = (a',a?). The shared
reward is determined by the state/joint action, and the re-
ward surface is given in Fig. 1. As seen in Fig. 1, thereis a
connected narrow path from the origin (0, 0) to (0.6, 0.55),
consisting of two subpaths: one from (0, 0) to (0.6, 0) and
the other from (0.6, 0) to (0.6,0.55). There is a circle with
center at (0.6,0.6) and radius 0.05. The reward gradually
increases only along the path as the position approaches the
center of the circle and the maximum reward is 5. There is a
penalty if the joint action yields the position outside the path
or the circle, and the penalty value increases as the outside
position is farther from the origin (0,0). The agents start
from the origin with initial action pair a = (0, 0) and want
to learn to reach the circle along the path. In the beginning,
to go through the first subpath, as (i.e., y-axis movement)
should not fluctuate from 0 and a; should be trained to in-
crease upto 0.6. In this phase, if ao explores too much, the
positive reward is rarely obtained. Then, a; is not trained
to increase upto 0.6 because of the penalty. Once the joint
action is trained to (0.6, 0), on the other hand, the necessity
of exploration is changed. In this phase, a; should keep
its action at 0.6, whereas as should be trained to increase
upto 0.55. As seen in this example, it is important to control
the trade-off between exploitation and exploration across
multiple agents. In addition, we should update the trade-off
over time because the required trade-off can change during
the learning process. As we will see in Section 4, a method
that retains the same or different-but-constant level of ex-
ploration across all agents fails to learn in this continuous
cooperative matrix game. Thus, we need a framework that
can adaptively learn appropriate levels of exploration for all
agents over time, considering the time-varying multi-agent
exploration-exploitation trade-off.

3.2. Adaptive Entropy-Regularized MARL

We now propose our framework named ADER enabling
adaptive exploration capturing the multi-agent exploration-
exploitation trade-off. One can adopt the entropy con-
strained objective defined in (3) and extend it to multi-agent
systems. A simple extension is to maximize the team re-
ward while keeping the average entropy of each agent above
the same target entropy. For the sake of convenience, we
call this scheme simple entropy-regularization for MARL
(SER-MARL). However, SER-MARL cannot handle the
multi-agent exploration-exploitation trade-off because the
amounts of exploration for all agents are the same. One can
also consider different but fixed target entropies for multiple
agents. However, this case cannot handle the time-varying
behavior of multi-agent exploitation-exploration trade-off,
discussed in the previous subsection with Fig. 1. To incor-
porate the multi-agent exploration-exploitation trade-off, we
consider the following optimization problem:

max E lz Wtrt] s.t. Ex [—log(mi(ay|7}))] = Hi,
t=0
N
> Hj=MHo, VieN (5)
j=1
where m = (7!, --- , V), H, is the target entropy of Agent

1, and H is the total sum of all target entropies. The key
point here is that we fix the target entropy sum as Hg. Then,
this total entropy budget H is shared by all agents. When
some agents’ target entropies are high for more exploration,
the target entropies of other agents should be low, leading
to more exploitation, due to the fixed total entropy budget.
Thus, the exploitation-exploration trade-off across agents
(i.e., agent dimension) can be captured. The main challenge
is how to learn individual target entropy values H1, - -- , Hn
(such that Z;VZI H,; = Ho) over time (i.e., time dimension)
as the learning progresses.

We postpone the presentation of our method of learning the
individual target entropy values to Section 3.4. Here, we
consider how to solve the problem (5) when H1,--- , Hn
are determined. In order to solve the problem (5) for deter-
mined H1,- - -, Hn, one can simply extend the method in
(Haarnoja et al., 2018b) to the MARL case. That is, one
can first consider a finite-horizon case with terminal time
step T', apply approximate dynamic programming and the
technique of Lagrange multiplier, obtain the update formula
at time step ¢, and then relax to the infinite-horizon case
by introducing the discount factor, as in (Haarnoja et al.,
2018b). For this, the joint soft Q-function @ jr(s¢, Tt, at)
can be defined as Q jr(s¢, Tt, at) 1=

rt+ETt+1N7\'|: Z "Yl t 7’1+Za7—[

l=t+1

Clm)))]s (©)
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and then this joint soft Q-function is estimated based on the
following Bellman backup operator: 7™ Q jr(ss, Tt, at) :=

e +yEr, [V(St-i-laTt—}-l)] where V7 (s, 7¢) =

Eat"-’ﬂ QJT StaTt7at

Za logn(ai|r))|. (D)

However, optimizing the objective (5) based on the joint soft
Q-function in (6) and the corresponding Bellman operator
(7) has several limitations. First, the estimation of the joint
soft Q-function can be unstable due to the changing {a} ¥ |
in (7) as the determined target entropy values are updated
over time. Second, we cannot apply value factorization

to return and entropy separately because the joint soft Q-

function defined in (6) estimates only the sum of return and
entropy. For a single agent, the contribution to the global
reward may be different from that to the total entropy. Thus,
learning to decompose the entropy can prevent the mixing
network from learning to decompose the global reward.
Furthermore, due to the inseparability of reward and entropy,
it is difficult to pinpoint each agent’s contribution to the
global reward itself, which actually provides the information
about the goodness of each agent’s current policy to assess
the necessity for more exploration.

3.3. Disentangled Exploration and Exploitation

To address the aforementioned problems and facilitate
the acquisition of a metric for the degree of required
exploration for each agent in MARL, we disentangle
exploration from exploitation by decomposing the joint
soft Q-function into two types of Q-function: One for
reward and the other for entropy. That is, the joint
soft Q-function is decomposed as Qur(sy,Te,ar) =
QJT(St,Tt,at) + ZZ 1alQJT(st,Tt,at) where
QJT(st,Tt,at) and Q]T(st,Tt,at) are the joint action
value function for reward and the joint action value function
for the entropy of Agent i’s policy, respectively, given by

QI}T(St»Tt, ay) =1 +Er,  on [ Z Vl_th] and
I=t+1
®)
QU (51,70,00) = Eryyom [ > vl-%(wi(-r:'))] 7
I=t+1
©))

for all ¢ € V. The action value functions Q}}T(st7 Tt, Qt)
and Q% (s¢, T, at) can be estimated based on their corre-
sponding Bellman backup operators, defined by

TR Q% (st, 7, ar) == 1 +VE [V (s, Te41)]
;IF,iQ?%i(StJt’ at) :=YE [Vﬁi(st, Tt+1)} (10)

where Vﬁp(st,n) = E[Q?T(st,rt,at)] and

H,i H,i ; T
VI (s0m) = B [QUF (51,73, a) — o log n(af]rf) | are
the joint value functions regarding reward and entropy,
respectively.

Proposition 1. The disentangled Bellman operators T
and Tjj ; are contractions.

Proof: See Appendix A.

Now we apply value decomposition with a mixing net-
work (Rashid et al., 2018) to represent each of all joint
action value and value functions as a mixture of individ-
ual value functions. For instance, the joint value func-
tion for reward Vf’}(s, 7) is decomposed as Vi.(s, T) =
YR VR, -, VE(EN)), where VE(7) is the in-
dividual value function of Agent i and fmlf is the mix-
ing network for the joint value function for reward. Simi-
larly, we apply value decomposition and mixing networks

to Q:I]%T(Tt7 at) and Q?;(Tt, at), 1€ ./\f

Based on the decomposed joint soft Q-functions, the opti-
mal policy and the temperature parameters can be obtained
as functions of Hy, - - - , H v by using a similar technique to
that in (Haarnoja et al., 2018b) based on dynamic program-
ming and Lagrange multiplier. That is, we first consider the
finite-horizon case and apply dynamic programming with

. T
backward recursion: max,,, [Zi:t rl} =

n}gx(E[rt] + max (E[ XT: ri],)> s.t.

Tt4+1:T .
1=t+1
E(Stvat)"“ﬂ't [_ log(ﬁz(a;‘ﬁ?))] Z Hia Vt»i' (11)

We can obtain the optimal policy and the temperature pa-
rameters by recursively solving the dual problem from the
last time step 7" by using the technique of Lagrange multi-
plier. At time step ¢, the optimal policy is obtained for given
temperature parameters, and the optimal temperature param-
eters are computed based on the obtained optimal policy as
follows:

7} = argmax Eq, wx, [Q?{F(st, T, Q)
—_———

' (@)

N
+ > at QU (1,7, a0) — log m(ail)) |
i=1
(b)

(12)
alf = arg min Eq, v [—ajlogm; (aj|7}) — aiH,]
ai

(13)

for all # € N. In the infinite-horizon case, (12) and (13)
provide the update formulae at time step ¢, and the optimal
policy is replaced with the current approximate multi-agent
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maximum-entropy solution, which can be obtained by ex-
tending SAC to MARL. Note that maximizing the term (a)
in (12) corresponds to the ultimate goal of MARL, i.e., the
expected return. On the other hand, maximizing the term
(b) in (12) corresponds to enhancing exploration of Agent s.

3.4. Learning Individual Target Entropies

In the ADER formulation (5), the amount of exploration for
Agent 7 can be controlled by the target entropy H; under the
sum constraint Ejvzl H; = Ho. In this subsection, we de-
scribe the proposed method to determine the target entropy
for each agent. First, we represent the target entropy of
Agent i as H; = 5; X Ho with Zf\;l Bi = 1 to satisfy the
entropy sum constraint. To properly assign an individual tar-
get entropy to each agent, i.e., determine 3;, i = 1,--- | N,
we need a metric that measures the necessity of exploration
for each agent. For this, we exploit our value factorization
and mixing network for the disentangled joint value func-
tion for pure reward V. of which factorization is given
by VE.(s,7) = foli(s, VE(rY), -, VE(N)) with the
mixing constraint BVJR} / 8VZ.R > 0 (Suetal., 2021; Rashid
et al., 2018). Note that the partial derivative OV . /0V,E
denotes the change in the joint (pure reward) value with
respect to the change in the local value of Agent :. When
this quantity is large, the contribution of Agent ¢ to the
joint (reward) value is large and the policy of Agent ¢ can
be considered to work effectively with more exploitation
preferred. When this quantity is small, on the other hand,
the contribution of Agent ¢ to the joint (reward) value is
small and the policy of Agent 7 can be considered to operate
poorly and need more exploration. Hence, we propose using
the negative of this partial derivative as a metric to assess
the necessity for exploration. Thus, for Hy > 0, we set the
coefficients 3; for determining the individual target entropy

’Hiasﬁz[51,-"7/31‘7"',5“:
Softmax —E{%},“w
OVfi(s.7) OV ils.7)
e b B |09

The relative required level of exploration across agents
can change as the learning process and this is captured
in these partial derivatives. During the training phase, we
continuously compute (B.7) from the samples in the replay
buffer and set the target entropies. Instead of using the com-
puted value directly, we apply exponential moving average
(EMA) filtering for smoothing. The exponential moving
average filter prevents the target entropy from changing
abruptly. A rapid change in the target entropy can cause
instability in policy learning by perturbing the temperature
parameter {a’}¥ | too much. The output of EMA filter
BEMA = [gEMA ... BEMA is computed recursively as

BEMA (1 -¢BFMA 1+ ¢ (15)

where 3 is given in (B.7) and £ € [0, 1]. Thus, the target
entropy is given by H; = BFMA x H,.

Finally, the procedure of ADER at time step ¢ is composed
of the policy evaluation based on the Bellman operators in
(16) and Proposition 1, the policy update for policy and tem-
perature parameters in (12) and (13), and the target entropy
update in (B.7) and (B.8). The detailed implementation is
provided in Appendix B.

4. Experiments

In this section, we provide numerical results and ablation
studies to evaluate ADER. We first present the result on the
continuous cooperative matrix game described in Sec. 3.1,
showing multi-agent exploration-exploitation trade-off, and
then results including sparse StarCraft II micromanagement
(SMAC) tasks (Samvelyan et al., 2019).

Continuous Cooperative Matrix Game As mentioned in
Sec.3.1, the goal of this environment is to learn two actions
ay and as so that the position (a1, az) starting from (0, 0) to
reach the target circle along a narrow path, as shown in Fig.
1. The maximum reward 5 is obtained if the position reaches
the center of the circle. We compare ADER with three
baselines. One is SER-MARL with the same target entropy
for all agents. Another is SER-MARL with different but
constant target entropies of two agents (SER-DCE). Here,
we set a higher target entropy for a; than as. The other is
Reversed ADER, which reversely uses the proposed metric
—9V ]}t JOV.E for the level of required exploration. That is,
Reversed ADER assigns a high target entropy to the agent
whose contribution to the joint value is large.

Phase1 Phase2

-0.6

—
—

5/ — ADER H
—— Reversed ADER

4] — SERDCE :

— SERMARL i

-0.8

w

-1.0

N

Test Return Mean

i

-1.2

)

, . S . . -14 :
0 5 10 15 20 25 0 5 10 15 20 25
Time Steps (1e4) Time Steps (1e4)

(b) Target entropy of ADER

(a) Averaged test return

Figure 2. Comparison of ADER with the baselines on the continu-
ous cooperative matrix game.

Fig. 2(a) shows the performances of ADER and the base-
lines averaged over 5 random seeds. It is seen that the
considered baselines fail to learn to reach the target circle,
whereas ADER successfully learns to reach the circle. Here,
the different but constant target entropies of SER-DCE are
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Figure 3. Average test win rate on eight different SMAC maps

fixed as (H1,H2) = (—0.7, —1.3), which are the maximum
entropy values in ADER. It is observed that SER-DCE per-
forms slightly better than SER-MARL but cannot learn the
task with time-varying multi-agent exploration-exploitation
trade-off.

Fig. 2(b) shows the target entropies #; and H, for a; and
as, respectively, which are learned with the proposed met-
ric during training, and shows how ADER learns to reach
the target circle based on adaptive exploration. The black
dotted line in Figs. 2(a) and (b) denotes the time when the
position reaches the junction of the two subpaths. Before
the dotted line (phase 1), ADER learns so that the target
entropy of a; increases whereas the target entropy of ao
decreases. So, Agent 1 and Agent 2 are trained so as to
focus on exploration and exploitation, respectively. After
the black dotted line (phase 2), the learning behaviors of
target entropies of a; and as are reversed so that Agent 1
now does exploitation and Agent 2 does exploration. That
is, the trade-off of exploitation and exploration is changed
across the two agents. In this continuous cooperative matrix
game, ADER successfully learns the time-varying trade-off
of multi-agent exploration-exploitation by learning appro-
priate target entropies for all agents.

Continuous Action Tasks We evaluated ADER on two
complex continuous action tasks: multi-agent HalfCheetah
(Peng et al., 2021) and heterogeneous predator-prey. The
multi-agent HalfCheetah divides the body into disjoint sub-
graphs and each sub-graph corresponds to an agent. We used
6 x 1-HalfCheetah, which consists of six agents with one
action dimension. Next, the heterogeneous predator-prey
consists of three agents, where the maximum speeds of an
agent and other agents are different. In both environments,

each agent has a different role to achieve the common goal
and thus the multi-agent exploration-exploitation tradeoff
should be considered. Here, we used two baselines: SER-
MARL and FACMAC (Peng et al., 2021). As seen in Fig.
4 showing the performances of ADER and the baselines
averaged over 9 random seeds, ADER outperforms the con-
sidered baselines.

—— ADER
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so0{ — SER-MARL
ggggg
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Figure 4. Comparison of ADER with SER-MARL and FACMAC
on multi-agent HalfCheetah and hetrogenuous predator prey (H-
PP)

Starcraft II We also evaluated ADER on the Star-
craftll micromanagement benchmark (SMAC) environment
(Samvelyan et al., 2019). To make the problem more dif-
ficult, we modified the SMAC environment to be sparse.
The considered sparse reward setting consists of a dead re-
ward and time-penalty reward. The dead reward is given
only when an ally or an enemy dies. Unlike the original
reward in SMAC which gives the hit-point damage dealt
as a reward, multiple agents do not receive a reward for
damaging the enemy immediately in our sparse reward set-
ting. We compare ADER with six state-of-the-art baselines:
DOP (Wang et al., 2020b), FACMAC (Peng et al., 2021),
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FOP (Zhang et al., 2021), LICA (Zhou et al., 2020), QMIX
(Rashid et al., 2018) and VDAC(Su et al., 2021). For eval-
uation, we conduct experiments on eight different SMAC
maps with 5 different random seeds. Fig. 4 shows the
performance of ADER and the considered six baselines on
the modified SMAC environment. It is seen that ADER
outperforms all the considered baselines. Especially, on
the hard tasks shown in Figs. 4(e)-(h), ADER significantly
outperforms other baselines in terms of training speed and
final performance. This is because those hard maps require
high-quality adaptive exploration across agents over time.
In the maps 3s vs 3z, the stalkers (ally) should attack a zealot
(enemy) many times and thus the considered reward is rarely
obtained. In addition, since the stalker is a ranged attacker
whereas the zealot is a melee attacker, the stalker should be
trained to attack the zealot at a distance while avoiding the
zealot. For this reason, if all stalkers focus on exploration si-
multaneously, they hardly remove the zealot, which leads to
failure in solving the task. Similarly, in the hard tasks with
imbalance between allies and enemies such as 5m vs 6m,
MMM?2, and 8m vs 9m, it is difficult to obtain a reward due
to the simultaneous exploration of multiple agents. Thus,
consideration of multi-agent exploration-exploitation trade-
off is required to solve the task, and it seems that ADER
effectively achieves this goal.

Ablation Study We provide an analysis of learning target en-
tropy in the continuous cooperative matrix game. Through
the analysis, we can see how the changing target entropy
affects the learning as seen in Fig. 2. In addition, we con-
ducted an ablation study on the key factors of ADER in the
SMAC environment. First, we compared ADER with SER-
MARL. As in the continuous action tasks, Fig. 5 shows
that ADER outperforms SER-MARL. From the result, it
is seen that consideration of the multi-agent exploration-
exploitation trade-off yields better performance. Second,
we compared ADER with and without the EMA filter. As
seen in Fig. 5, it seems that the EMA filter enhances the
stability of ADER. Lastly, we conducted an experiment to
access the effectiveness of disentangling exploration and
exploitation. We implemented ADER based on one critic
which estimates the sum of return and entropy. As seen
in Fig. 5, using two types of value functions yields better
performance.

We provided the training details for all considered environ-
ments in Appendix C.

5. Conclusion

We have proposed the ADER framework for MARL to
handle multi-agent exploration-exploitation trade-off. The
proposed method is based on entropy regularization with
learning proper target entropies across agents over time by
using a newly-proposed metric to measure the necessary

101 — ADER 101 — apER

—— ADER(w/o_DE) —— ADER(w/o_DE)
0.81 — ADER(£=0) 5081 — ADER(E=0)
— SER-MARL — SER-MARL

test_battle_won_mean
o
=
test_battle_won_me:
o
=

0 50 200 0 50 150 200

100
Time Steps (1e4)

(b) Sm vs 9m

100
Time Steps (le4)

(2) MMM?2

Figure 5. Ablation study

degree of exploration for each agent. Numerical results
on various tasks including the sparse SMAC environment
show that ADER can properly handle time-varying multi-
agent exploration-exploitation trade-off effectively and out-
performs other state-of-the-art baselines. Furthermore, we
expect the key ideas of ADER can be applied to other ex-
ploration methods for MARL such as intrinsic motivation.
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Appendix A: Proofs

Proposition 2. The decomposed soft Bellman operators T and Tf; ; are contractions.

Proof:  The action value functions Q% (7, a;) and Q?Tl (T¢, at) can be estimated based on their corresponding Bellman
backup operators, defined by

Here, Vf“}(st, 7¢) and Vﬁp’i (8¢, T¢) are the joint value functions regarding reward and entropy, respectively.

TIZETQ?T(St’ Tt,at) =T —+ ")/]E [Vtﬁ]"(st+laft+1)] y Where
Vii(se, 1) = E[QFr(se, ¢, ar)]

I}TViQJTZ(st,Tt,at) =K {VJTZ(stH,TH_l)} , where

Vﬁi(st,rt) =K [Q?’Ti(st,n, a) —a'log 7r(ai|7’ti)} .

(16)

a7

First, let us consider the decomposed Bellman operator regarding reward, 77 . For the sake of simplicity, we abbreviate
Q% QT VE VIE as (QF, Q™4 VE, V). From (16), we have

Then, we have

for ¢}

At

TEQ (s, e, at) = e + VBs, s msriacss [@7(St41, Teg1, Geg1)] -

177 (@) = T3 ()l

=4y Y m(@spalmern)p(sern, Teralse T @) - i)

St4+1>Tt41
At

— (Tt+’y Z W(at+1|7't+1)p(3t+17Tt+1|3t77'taat) 'q§+1)||00

St+1, Te41
Ay

=l > wasalmer)p(sein, Tetalse e an) - (gt — gi41) oo

St+1> Tt41
at41

<llv Y. wlamalrea)p(sis Teralse T ad) ol — @il

St+1> Tt41
At 41

< 'Y||qt1+1 - Qt2+1||oo

2

[QlR(Sthtaat) st €S,at € A and qy = Qg(sh‘rtaat) st €S,at € A
Tt € (2 x A)* Tt € (2 x A)*
1> St41s Teq (@41 |Te41)P(St41, Te1(Se, Te, @1)]| oo < 1. Thus, the operator 77 is a y-contraction.

Next, let us consider the decomposed Bellman operator regarding entropy, 77 ;. From (17), we have

7iQ™M (s, 71, a8) = VE [QT (s141, Teq1, aqa) — o' logm(ag 4 |774,))] -

(18)

since

(19)
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Then, we have
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=l D (@ g1 [Teq1)P(Se41, Tegalse, T, ar) - (141 — o' logm(ag, |77y 1))
St+1,Tt41
at41

- (’Y Z ﬂ(at+1|7't+1)p(5t+1a Tt+1|5ta Tt7at) : (qt2+1 —a IOgW(ai+1|7—Z+1))Hoo
St41s Te41
agi1

= v E (@1 [T 1)D(Se41, Tegale Te, @e) - (441 — G1)) oo
St415Tt41
At

<lly Y, mamalmer)p(sein Terlse T an)lloollglr — 6flloo
St41s Te41
At

<Allgiys — Giallos

_ R 2 _ R .
for g = {Ql (st,‘rt,at)} P and ¢; = Q5 (st, ¢, at) P since
Tt € (Q X A Tt € (2 X A

122 siirimeqn T(@t41|Te41)P(St41, Te1lSt, Te, ar) || oo < 1. Thus, the operator 77 ; is a y-contraction.
At i1



Submission and Formatting Instructions for ICML 2022

- —
Qr Vyr Vit
|

Sp—> Mixing network Mixing network — (5 0)
Computing gradient to
t* learn target entropies T' T T
R R Hji y/Hi Hi y7H,i
Q1,1 QR VR Q1" v Vy

cn - o

1,1 N N
0t,0r—1 Ot ,a¢—1

Figure 6. Overall architecture of the proposed ADER

Appendix B: Detailed Implementation for ADER

Here, we describe the implementation of ADER for discrete action tasks based on (Christodoulou, 2019). The learning
process consists of the update of both temperature parameters and target entropies and the approximation of multi-agent
maximum entropy solution, which consists of the update of the joint policy and the critics. To do this, we first approximate
the policies {Wsz 1V |, the joint action value functions Q’}T’ 9, and Q?ﬂem by using deep neural networks with parameters,

{(bi}i]\il’ eR and {OH,Z}{Vzl
First, the joint policy is updated based on Eq. (12) and the loss function is given by

N
) S Hi
L(¢) = E(st,‘n)ND,{aiwwi(~|7'ti)}fv=1 [Za’(logwfm (ailry) — QJTZ,GH,I-(Sthtaat)) - QIJ%T,OR(StaTh at)] ) (B.1)

i=1

where ¢ = {¢;}, is the parameter for the joint policy. Next, the joint action value functions are trained based on the
disentangled Bellman operators defined in Eq. (10) and the loss functions are given by

1
L(Or) = E(s,,re,a0,5011,7042)~D [g(QﬁT,eR(stv e, as) = (re + Vi (seen, Tt+1)))2] (B.2)
1 . 4
L(On,i) = E(St,Ttaat75t+1,Tt+1)ND [5(62?173,9,_ (s, Te, at) — ,)/V(]Ié:?éH’i (St+1, Tt+1)))2] (B.3)

where Vﬁ, in and Vﬁ%H ~are implicitly parameterized via the parameters of joint action value functions, and directly

computed as follows:

VJI'%T,(;R <5t, Tt) =K |:Q1}T7§R (5t7 Tt, at) (B4)
Vf;;fémi(st,n) =E [ ?;;éH,i(St’Tt, at) — o' log 7r(ai|7'ti)] . (B.5)

Note that 6 and 9 #,i are obtained based on the EMA of the parameters of the joint action value functions.
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Algorithm 1 ADaptive Entropy-Regularization for multi-agent reinforcement learning (ADER)
Initialize parameters {¢; } Y 1, Op, {0m i} Y1, Or, {0m i},
Generate a trajectory 7 by interacting with the environment by using the joint policy 7r and store 7 in the replay memory
for episode = 1,2,--- do
Generate a trajectory 7 by using the joint policy 7 and store 7 in the replay memory D
for each gradient step do
Sample a minibatch from D
Update {¢;}; by minimizing the loss function Eq. (B.1)
Update 0, {0} ; by minimizing the loss functions Eq. (B.2) and Eq. (B.3)
Update o’ by minimizing the loss function Eq. (B.6)
Update {H;}¥ , by computing Eq. (B.7) and Eq. (B.8)
Update 6 and {05 ;}Y ; by EMA based on 0 and {07},
end for
end for

We update the temperature parameters based on Eq. (13) and the loss function is given by

L(a%) = B oD {ai i ()}, [—a’logmi(af|r}) — a'H;], VieN. (B.6)

Finally, we update the target entropy of each agent. For Hy > 0, we set the coefficients j; for determining the individual
target entropy H; as /8 = [ﬁla T 76% e 761\7] =

8‘@%(3,7’)} N

OVE.(s, T)] N
OVE(TY) ’

OVE.(s,T) }
OVA(r)

Softmax[— ]E[ : ,—E[ : ,—]E{ () (B.7)

Note that we change the sign of the elements in Eq. (B.7) if Hy < 0 to satisfy the core idea of ADER, which assigns a
high target entropy to the agent whose contribution to the joint value is small. In addition, before the softmax layer, we
normalize the elements in Eq. (B.7). Based on the coefficients, the target entropy is given by H; = SEM4 x H, where
BEMA is computed recursively as

BEMA (1 ¢)gEMA 4¢3 (B.8)

We summarize the proposed algorithm in Algorithm 1 and illustrate the overall architecture of the proposed ADER in Fig. 6.
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Appendix C: Training details
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Figure 7. Considered continuous action tasks

C1. Environment Details

Multi-agent HalfCheetah We considered the multi-agent HalfCheetah introduced in (Peng et al., 2021). As illustrated in
Fig. 7 (a), the multi-agent HalfCheetah divides the body into disjoint sub-graphs and each sub-graph corresponds to an
agent. We used 6 x 1-HalfCheetah, which consists of six agents with one action dimension. We set the maximum graph
distance k = 1, where k denotes the distance each agent can observe. We set the maximum episode length as 7},,4, = 1000.

Heterogeneous Predator-Prey (H-PP) We modified the continuous predator-prey environment considered in (Peng et al.,
2021) to be heterogeneous. As illustrated in Fig. 7 (b), the considered heterogeneous predator-prey consists of three predator
agents, where the maximum speeds of an agent (v, . = 1.0) and other agents (v2,,, = 0.75) are different, three preys with
the maximum speed (v3,,, = 1.25) is faster than all predators and the landmarks. The preys move away from the nearest
predator implemented in (Peng et al., 2021) and thus the predators should be trained to pick one prey and catch the prey
together. Each agent observes the relative positions of the other predators and the landmarks within view range and the
relative positions and velocities of the prey within view range. The reward +10 is given when one of the predators collides

with the prey. We set the maximum episode length as T}, = 50.

Starcraft I We evaluated ADER on the Starcraftll micromanagement benchmark (SMAC) environment (Samvelyan
et al., 2019). To make the problem more difficult, we modified the SMAC environment to be sparse. The considered sparse
reward setting consists of a death reward and time-penalty reward. The time-penalty reward is —0.1 and the death reward is
given +10 and —1 when one enemy dies and one ally dies, respectively. Additionally, the dead reward is given 4200 if all
enemies die.

C2. Training Details and Hyperparameters

We implemented ADER based on (Samvelyan et al., 2019; Peng et al., 2021; Zhang et al., 2021) and conducted the
experiments on a server with Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz and 8 Nvidia Titan xp GPUs. Each experiment
took about 12 to 24 hours. We used the implementations of the considered baselines provided by the authors.

Multi-agent HalfCheetah In the multi-agent halfcheetah environment, the architecture of the policies and critics for
ADER follows (Peng et al., 2021). We use an MLP with 2 hidden layers which have 400 and 300 hidden units and ReLU
activation functions. The final layer uses tanh activation function to bound the action as in (Haarnoja et al., 2018a). We also
use the reparameterization trick for the policy as in (Haarnoja et al., 2018a). The replay buffer stores up to 10° transitions
and 100 transitions are uniformly sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

Ho = N x (—dim(A)) =6 x (—1) = —6,

where N is the number of agents. We set the hyperparameter for EMA filter as £ = 0.9 and initialize the temperature

parameters as o’ ,, = e 2 forall i € .
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Heterogeneous Predator-Prey In the heterogeneous predator-prey environment, the architecture of the policies and
critics for ADER follows (Peng et al., 2021). To parameterize the policy, we use a deep neural network which consists of a
fully-connected layer, GRU and a fully-connected layer which have 64 dimensional hidden units. The final layer uses tanh
activation function to bound the action. Next, for the critic network, we use a MLP with 2 hidden layers which have 64
hidden units and ReL.U activation function. The replay buffer stores up to 5000 episodes and 32 episodes are uniformly
sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

Ho = N x (—=dim(A)) =3 x (—=2) = —6.

We set the hyperparameter for EMA filter as € = 0.9 and initialize the temperature parameters as o, ;, = e~2 forall i € .

int

Starcraft I For parameterization of the policy we use a deep neural network which consists of a fully-connected layer,
GRU and a fully-connected layer which have 64 dimensional hidden units. For the critic networks we use a MLP with 2
hidden layers which have 64 hidden units and ReLU activation function. The replay buffer stores up to 5000 episodes and
32 episodes are uniformly sampled for training. For the considered maps in SMAC, we use different hyperparameters. We
set the sum of target entropy based on the maximum entropy, which can be achieved if the policy is uniform distribution, as

Ho = N X H* X kratio = N x log(dim(A)) X kratio-

The values of k.40, £, and initial temperature parameter for each map are summarized Table 1.

Table 1. Hyperparameters for the considered SMAC environment

MAP kTatic 5 O/z:n'it
1¢3s5z7 0.05 09 3
3m 0.1 0.9 €2
Sm 0.1 09 e2
3557 0.05 09 3
3svs 3z 0.1 0.9 73
Sm vs 6m 0.15 0.5 e 3
MMM?2 0.1 09 25

Smvs9m 0.1 0.9 €2

In all the considered environments, we apply the value factorization technique proposed in (Rashid et al., 2018). The
architecture of the mixing network for ADER, which follows (Rashid et al., 2018), takes the output of individual critics as
input and outputs the joint action value function. The weights of the mixing network are produced by the hypernetwork
which takes the global state as input. The hypernetwork consists of a MLP with a single hidden layer and an ELU activation
function. Due to the ELU activation function, the weights of the mixing network are non-negative and this achieves the
monotonic constraint in (Rashid et al., 2018). We expect that ADER can use other value factorization technique to yield
better performance.



