
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

An Adaptive Entropy-Regularization Framework for Multi-Agent
Reinforcement Learning

Anonymous Authors1

Abstract
In this paper, we propose an adaptive entropy-
regularization framework (ADER) for multi-agent
reinforcement learning (RL) to learn the adequate
amount of exploration for each agent based on the
degree of required exploration. In order to handle
instability arising from updating multiple entropy
temperature parameters for multiple agents, we
disentangle the soft value function into two types:
one for pure reward and the other for entropy. By
applying multi-agent value factorization to the
disentangled value function of pure reward, we
obtain a relevant metric to assess the necessary de-
gree of exploration for each agent. Based on this
metric, we propose the ADER algorithm based on
maximum entropy RL, which controls the neces-
sary level of exploration across agents over time
by learning the proper target entropy for each
agent. Experimental results show that the pro-
posed scheme significantly outperforms current
state-of-the-art multi-agent RL algorithms.

1. Introduction
The goal of RL is to find the optimal policy that maximizes
expected return. To guarantee convergence of model-free
RL, the assumption that each element in the joint state-
action space should be visited infinitely often is required
(Watkins & Dayan, 1992; Sutton & Barto, 2018), but this
is practically impossible due to large state and/or action
spaces in real-world problems. Thus, effective exploration,
which aims to visit uncharted parts of the environment, has
been a core problem in RL, and various approaches such as
maximum entropy/entropy regularization (Haarnoja et al.,
2017; 2018a), intrinsic motivation (Chentanez et al., 2004;
Badia et al., 2019; Burda et al., 2018), parameter noise
(Plappert et al., 2018; Fortunato et al., 2018) and count-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

based exploration (Ostrovski et al., 2017; Bellemare et al.,
2016) have been investigated. In practical real-world prob-
lems, however, the given time for learning is limited and
thus the learner should exploit its own policy based on its
experiences so far. Therefore, the learner should balance
exploration and exploitation in the dimension of time and
this is typically called exploration-exploitation trade-off in
RL.

The problem of exploration-exploitation trade-off becomes
more challenging in multi-agent RL (MARL) because the
state-action space grows exponentially as the number of
agents increases. In addition, the degree of necessary ex-
ploration can be different across agents and moreover one
agent’s exploration can hinder other agents’ exploitation.
Thus, the balance of exploration and exploitation across
multiple agents should also be considered for MARL in
addition to along the time dimension. We refer to this prob-
lem as multi-agent exploration-exploitation trade-off. Al-
though there exist many algorithms for better exploration
in MARL (Liu et al., 2021; Zhang et al., 2021; Kim et al.,
2020; Mahajan et al., 2019), the research on multi-agent
exploration-exploitation trade-off has not been investigated
much yet.

In this paper, we propose a new framework based on entropy
regularization for adaptive exploration in MARL to handle
the multi-agent exploration-exploitation trade-off. The pro-
posed framework allocates different target entropy across
agents and across time based on our newly-proposed met-
ric for the degree of necessary exploration for each agent.
In order to implement the proposed framework, we adopt
the method of disentanglement between exploration and
exploitation (Han & Sung, 2021; Beyer et al., 2019) to de-
compose the joint soft value function into two types: one
for the return and the other for the entropy sum. This dis-
entanglement alleviates instability which can occur due to
the updates of multiple entropy temperature parameters and
enables applying the multi-agent value factorization tech-
nique to return and entropy separately. To derive a metric
for the level of required exploration for each agent, we
exploit this value factorization on the disentangled value
function of pure return and use the partial derivative of
the joint value function of pure return with respect to in-

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2022

dividual value function. The intuition behind this choice
is that the agents having high contributions to the return
should focus more on exploitation, whereas the agents hav-
ing low contributions to the return should explore more to
search better actions. Various experiments demonstrate the
effectiveness of the proposed framework for multi-agent
exploration-exploitation trade-off.

2. Background
Basic setup We consider a decentralized par-
tially observable MDP (Dec-POMDP), which describes
a fully cooperative multi-agent task (Oliehoek & Am-
ato, 2016). Dec-POMDP is defined by a tuple
< N ,S, {Ai},P, {Ωi},O, r, γ >, where N =
{1, 2, · · · , N} is the set of agents. At time step t, Agent
i ∈ N makes its own observation oit ∈ Ωi according to the
observation function O(s, i) : S ×N → Ωi : (st, i) 7→ oit,
where st ∈ S is the global state at time step t. Agent
i selects action ait ∈ Ai, forming a joint action at =
{a1t , a2t , · · · , aNt }. The joint action yields the next global
state st+1 according to the transition probability P(·|st, at)
and a joint reward r(st, at) according to the reward func-
tion r(·, ·). Each agent i has an observation-action history
τ it ∈ (Ωi×Ai)

∗ and trains its decentralized policy πi(ai|τ i)
to maximize the expected cumulative return E[

∑∞
t=0 γ

trt].
We consider the framework of centralized training with
decentralized execution (CTDE), where decentralized poli-
cies are trained with additional information including the
global state via a centralized way during the training phase
(Oliehoek et al., 2008).

Value Factorization In MARL, it is difficult to
learn the joint action-value function, which is defined as
QJT (s, τ ,a) = E[

∑∞
t=0 γ

trt|s, τ ,a] due to the problem
of the curse of dimensionality as the number of agents in-
creases. For efficient learning of the joint action-value func-
tion, value factorization techniques have been proposed to
factorize it into individual action-value functions Qi(τ

i, ai),
i = 1, · · · , N . One representative example is value de-
composition network (VDN), which factorizes the joint
action-value function into the sum of individual action-value
functions as QJT (τ ,a) =

∑N
i=1 Qi(τ

i, ai). Another repre-
sentative example is QMIX, which introduces a monotonic
constraint between the joint action-value function and the
individual action-value function. The joint action-value
function in QMIX is expressed as

QJT (s, τ ,a) = fmix(s,Q1(τ
i, ai), · · · , QN (τN , aN)),

∂QJT (s, τ ,a)

∂Qi(τ i, ai)
≥ 0, ∀i ∈ N , (1)

where fmix is a mixing network which combines the indi-
vidual action-values into the joint action-value based on the
global state. In order to satisfy the monotonic constraint
∂QJT /∂Qi ≥ 0, the mixing network is restricted to have

positive weights. There exist other value-based MARL al-
gorithms with value factorization (Son et al., 2019; Wang
et al., 2020a). Actor-critic based MARL algorithms also
considered value factorization to learn the centralized critic
(Peng et al., 2021; Su et al., 2021).

Maximum Entropy RL and Entropy Regularization
Maximum entropy RL aims to promote exploration and
enhance robustness by finding an optimal policy that maxi-
mizes the sum of cumulative reward and entropy (Haarnoja
et al., 2017; 2018a). The objective function of maximum
entropy RL is given by

JMaxEnt(π) = Eπ

[∞∑
t=0

γt(rt + αH(π(·|st)))

]
, (2)

where H(·) is the entropy function and α is the temper-
ature parameter which determines the importance of the
entropy compared to the reward. Soft actor-critic (SAC) is
an off-policy actor-critic algorithm which efficiently solves
the maximum entropy RL problem (2) based on soft policy
iteration. For this, SAC defines the soft Q function as the
sum of the total reward and the future entropy and the corre-
sponding soft Bellman backup operator. The soft Q function
for given policy is estimated by repeatedly applying the soft
Bellman backup operator based on the fixed-point theorem,
and this step is called the soft policy evaluation. Then, the
policy is updated based on the evaluated soft Q function and
this step is called the soft policy improvement. By iterat-
ing the soft policy evaluation and soft policy improvement,
called the soft policy iteration, SAC converges to an optimal
policy that maximizes (2) within the considered policy class
in the case of finite MDPs. SAC also works effectively for
large MDPs with function approximation (Haarnoja et al.,
2018a).

One issue with SAC is the adjustment of the hyperparam-
eter α in (2), which control the relative importance of the
entropy with respect to the reward. The magnitude of the re-
ward depends not only on tasks but also on the policy which
improves over time during the training phase. Because
the optimal entropy depends on this magnitude, this depen-
dence makes the temperature adjustment difficult (Haarnoja
et al., 2018b). Thus, Haarnoja et al. (2018b) proposed a
method to adjust the temperature parameter α over time to
guarantee the minimum average entropy at each time step
based on approximate dynamic programming. For this, they
reformulated the maximum entropy RL as the following
entropy-regularized optimization:

JER(π0:T) = Eπ0:T

[
T∑

t=0

rt

]
s.t. E(st,at)∼πt

[− log(πt(at|st))] ≥ H0 (3)

where H0 is the target entropy. Exploiting the fact that
πt affects only the present and future, the technique of dy-

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2022

namic programming is used, i.e., maxπt:T
E[
∑T

i=t ri] =

maxπt

{
E[rt] + maxπt+1:T

E[
∑T

i=t+1 ri]
}

. Then, the
backward recursion can be applied to obtain optimal α at
time step t based on the technique of Lagrange multiplier
by the dual optimization:

α∗
t = argmin

αt

Eat∼π∗
t
[−αt log π

∗
t (at|st)− αtH0]︸ ︷︷ ︸

△
=J(αt)

, (4)

where π∗
t is the maximum entropy policy at time step t. In

the infinite-horizon case, the discount factor γ is included
and π∗

t is replaced with the current approximate maxent so-
lution by SAC. Thus, the soft policy iteration of SAC is com-
bined with the α adjustment based on the loss function J(α)
defined in (4). This algorithm effectively handles the reward
magnitude change over time during training (Haarnoja et al.,
2018b). Hence, one needs to set only the target entropyH0

for each task and then α is automatically adjusted over time
for the target entropy.

Related Works Here, we mainly focus on the entropy-
based MARL. There exist previous works on entropy-based
MARL. Zhou et al. (2020) proposed an actor-critic algo-
rithm, named LICA, which learns implicit credit assignment
and regularizes the action entropy based on a simple tech-
nique. The entropy regularization technique proposed in
(Zhou et al., 2020) dynamically controls the magnitude of
the gradient regarding entropy to address the high sensitiv-
ity of the temperature parameter caused by the curvature
of derivative of entropy. It was shown that LICA allows
multiple agents to perform consistent level of exploration.
However, LICA does not maximize the cumulative sum of
entropy but regularize the entropy of policy. Zhang et al.
(2021) proposed an entropy-regularized MARL algorithm,
named FOP, which introduces a constraint that the entropy-
regularized optimal joint policy is decomposed into the prod-
uct of the optimal individual policies. FOP introduced a
weight network to determine individual temperature param-
eters and to factorize the joint soft Q-function. Zhang et al.
(2021) considered individual temperature parameters for
updating policy, but in practice, they used the same value
(for all agents) which is annealed during training for the
temperature parameters. This encourages multiple agents
to focus on exploration at the beginning of training, which
considers exploration-exploitation only in time dimension
in a heuristic way.

A key point is that the aforementioned algorithms maximize
or regularize the entropy of the policies of multiple agents
to encourage the same level of exploration across the agents.
Such exploration is still useful for several benchmarks but
cannot handle the multi-agent exploration-exploitation trade-
off. Furthermore, in the previous methods, the joint soft
Q-function defined as the total sum of return and entropy
is directly factorized by value decomposition, and hence

the return is not separated from the entropy in the Q-value.
From the perspective on one agent, however, the contribu-
tion to the global reward and that to the sum entropy can be
different. What we actually need to assess the goodness of
a policy is the return estimate, which is difficult to obtain
by such unseparated factorization.

3. Methodology
In order to address the aforementioned problems, we
propose an ADaptive Entropy-Regularization framework
(ADER) for multi-agent reinforcement learning, which can
balance exploration and exploitation across multiple agents
by learning and controlling the target entropy for each agent.
We first provide an example to motivate the learning prob-
lem of exploitation-and-exploration trade-off for multi-agent
RL and then describe our framework to address this problem,
including a novel method determining the target entropy
based on the degree of necessity of exploration.

3.1. Motivation

The convergence of model-free RL requires the assumption
that all state-action pairs should be visited infinitely often
(Watkins & Dayan, 1992; Sutton & Barto, 2018), and this
necessitates exploration. In practice, however, the number
of time steps during which an agent can interact with the
environment is limited. Thus, a balance between exploration
and exploitation in the dimension of time is crucial for high
performance in RL. Furthermore, in the case of MARL,
a balance between exploration and exploitation in the di-
mension of agents should be considered. This is because
1) the degree of necessity of exploration can be different
across multiple agents and 2) one agent’s exploration can
hinder other agents’ exploitation, resulting in the situation
that simultaneous exploration of multiple agents can make
learning unstable. We refer to this problem as multi-agent
exploration-exploitation trade-off. To handle the problem of
multi-agent exploration-exploitation trade-off, we need to
control the amount of exploration of each agent adaptively
and learn this amount across agents (i.e., agent dimension)
and over time (i.e., time dimension). We should allocate
higher target entropies to the agents who need more explo-
ration and lower target entropies to the agents who need
more exploitation. To make such adaptive target entropy
control possible, we need a metric to capture the degree
of required exploration, which changes during the learn-
ing process. In order to see the necessity of such adaptive
exploitation-exploration trade-off control in MARL, let us
consider a modified continuous cooperative matrix game
(Peng et al., 2021). The considered game consists of two
agents: each agent has an one-dimensional continuous ac-
tion ai which is bounded in [−1, 1]. The state of the envi-
ronment is the position, described by the s = (x, y), in the
2-dimensional plane in Fig. 1, and the state is determined by

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2022

Figure 1. Reward surface in the considered continuous cooperative
matrix game. a1 and a2 correspond to x-axis and y-axis, respec-
tively.

the joint action as s = (x, y) = a = (a1, a2). The shared
reward is determined by the state/joint action, and the re-
ward surface is given in Fig. 1. As seen in Fig. 1, there is a
connected narrow path from the origin (0, 0) to (0.6, 0.55),
consisting of two subpaths: one from (0, 0) to (0.6, 0) and
the other from (0.6, 0) to (0.6, 0.55). There is a circle with
center at (0.6, 0.6) and radius 0.05. The reward gradually
increases only along the path as the position approaches the
center of the circle and the maximum reward is 5. There is a
penalty if the joint action yields the position outside the path
or the circle, and the penalty value increases as the outside
position is farther from the origin (0, 0). The agents start
from the origin with initial action pair a = (0, 0) and want
to learn to reach the circle along the path. In the beginning,
to go through the first subpath, a2 (i.e., y-axis movement)
should not fluctuate from 0 and a1 should be trained to in-
crease upto 0.6. In this phase, if a2 explores too much, the
positive reward is rarely obtained. Then, a1 is not trained
to increase upto 0.6 because of the penalty. Once the joint
action is trained to (0.6, 0), on the other hand, the necessity
of exploration is changed. In this phase, a1 should keep
its action at 0.6, whereas a2 should be trained to increase
upto 0.55. As seen in this example, it is important to control
the trade-off between exploitation and exploration across
multiple agents. In addition, we should update the trade-off
over time because the required trade-off can change during
the learning process. As we will see in Section 4, a method
that retains the same or different-but-constant level of ex-
ploration across all agents fails to learn in this continuous
cooperative matrix game. Thus, we need a framework that
can adaptively learn appropriate levels of exploration for all
agents over time, considering the time-varying multi-agent
exploration-exploitation trade-off.

3.2. Adaptive Entropy-Regularized MARL

We now propose our framework named ADER enabling
adaptive exploration capturing the multi-agent exploration-
exploitation trade-off. One can adopt the entropy con-
strained objective defined in (3) and extend it to multi-agent
systems. A simple extension is to maximize the team re-
ward while keeping the average entropy of each agent above
the same target entropy. For the sake of convenience, we
call this scheme simple entropy-regularization for MARL
(SER-MARL). However, SER-MARL cannot handle the
multi-agent exploration-exploitation trade-off because the
amounts of exploration for all agents are the same. One can
also consider different but fixed target entropies for multiple
agents. However, this case cannot handle the time-varying
behavior of multi-agent exploitation-exploration trade-off,
discussed in the previous subsection with Fig. 1. To incor-
porate the multi-agent exploration-exploitation trade-off, we
consider the following optimization problem:

max
π

Eπ

[∞∑
t=0

γtrt

]
s.t. Eπ

[
− log(πi

t(a
i
t|τ it))

]
≥ Hi,

N∑
j=1

Hj = H0, ∀i ∈ N (5)

where π = (π1, · · · , πN),Hi is the target entropy of Agent
i, and H0 is the total sum of all target entropies. The key
point here is that we fix the target entropy sum asH0. Then,
this total entropy budgetH0 is shared by all agents. When
some agents’ target entropies are high for more exploration,
the target entropies of other agents should be low, leading
to more exploitation, due to the fixed total entropy budget.
Thus, the exploitation-exploration trade-off across agents
(i.e., agent dimension) can be captured. The main challenge
is how to learn individual target entropy valuesH1, · · · ,HN

(such that
∑N

j=1Hj = H0) over time (i.e., time dimension)
as the learning progresses.

We postpone the presentation of our method of learning the
individual target entropy values to Section 3.4. Here, we
consider how to solve the problem (5) when H1, · · · ,HN

are determined. In order to solve the problem (5) for deter-
minedH1, · · · ,HN , one can simply extend the method in
(Haarnoja et al., 2018b) to the MARL case. That is, one
can first consider a finite-horizon case with terminal time
step T , apply approximate dynamic programming and the
technique of Lagrange multiplier, obtain the update formula
at time step t, and then relax to the infinite-horizon case
by introducing the discount factor, as in (Haarnoja et al.,
2018b). For this, the joint soft Q-function QJT (st, τt,at)
can be defined as QJT (st, τt,at) :=

rt + Eτt+1∼π

[∞∑
l=t+1

γl−t(rl +

N∑
i=1

αiH(πi(·|τ il)))
]
, (6)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2022

and then this joint soft Q-function is estimated based on the
following Bellman backup operator: T πQJT (st, τt,at) :=

rt+γEτt+1 [V (st+1, τt+1)] where VJT (st, τt) =

Eat∼π

[
QJT (st, τt,at)−

N∑
i=1

αi log π(ait|τ it)

]
. (7)

However, optimizing the objective (5) based on the joint soft
Q-function in (6) and the corresponding Bellman operator
(7) has several limitations. First, the estimation of the joint
soft Q-function can be unstable due to the changing {αi}Ni=1

in (7) as the determined target entropy values are updated
over time. Second, we cannot apply value factorization
to return and entropy separately because the joint soft Q-
function defined in (6) estimates only the sum of return and
entropy. For a single agent, the contribution to the global
reward may be different from that to the total entropy. Thus,
learning to decompose the entropy can prevent the mixing
network from learning to decompose the global reward.
Furthermore, due to the inseparability of reward and entropy,
it is difficult to pinpoint each agent’s contribution to the
global reward itself, which actually provides the information
about the goodness of each agent’s current policy to assess
the necessity for more exploration.

3.3. Disentangled Exploration and Exploitation

To address the aforementioned problems and facilitate
the acquisition of a metric for the degree of required
exploration for each agent in MARL, we disentangle
exploration from exploitation by decomposing the joint
soft Q-function into two types of Q-function: One for
reward and the other for entropy. That is, the joint
soft Q-function is decomposed as QJT (st, τt,at) =

QR
JT (st, τt,at) +

∑N
i=1 α

iQH,i
JT (st, τt,at), where

QR
JT (st, τt,at) and QH,i

JT (st, τt,at) are the joint action
value function for reward and the joint action value function
for the entropy of Agent i’s policy, respectively, given by

QR
JT (st, τt,at) = rt + Eτt+1∼π

[∞∑
l=t+1

γl−trl

]
and

(8)

QH,i
JT (st, τt,at) = Eτt+1∼π

[∞∑
l=t+1

γl−tH(πi(·|τ it))

]
,

(9)

for all i ∈ N . The action value functions QR
JT (st, τt,at)

and QH,i
JT (st, τt,at) can be estimated based on their corre-

sponding Bellman backup operators, defined by

T π
RQR

JT (st, τt,at) := rt + γE
[
V R
JT (st, τt+1)

]
,

T π
H,iQ

H,i
JT (st, τt,at) := γE

[
V H,i
JT (st, τt+1)

]
(10)

where V R
JT (st, τt) = E

[
QR

JT (st, τt,at)
]

and

V H,i
JT (st, τt) = E

[
QH,i

JT (st, τt,at)− αi log π(ait|τ it)
]

are
the joint value functions regarding reward and entropy,
respectively.

Proposition 1. The disentangled Bellman operators T π
R

and T π
H,i are contractions.

Proof: See Appendix A.

Now we apply value decomposition with a mixing net-
work (Rashid et al., 2018) to represent each of all joint
action value and value functions as a mixture of individ-
ual value functions. For instance, the joint value func-
tion for reward V R

JT (s, τ) is decomposed as V R
JT (s, τ) =

fV,R
mix(s, V

R
1 (τ1), · · · , V R

N (τN)), where V R
i (τ i) is the in-

dividual value function of Agent i and fV,R
mix is the mix-

ing network for the joint value function for reward. Simi-
larly, we apply value decomposition and mixing networks
to QR

JT (τt,at) and QH,i
JT (τt,at), i ∈ N .

Based on the decomposed joint soft Q-functions, the opti-
mal policy and the temperature parameters can be obtained
as functions ofH1, · · · ,HN by using a similar technique to
that in (Haarnoja et al., 2018b) based on dynamic program-
ming and Lagrange multiplier. That is, we first consider the
finite-horizon case and apply dynamic programming with
backward recursion: maxπt:T

E
[∑T

i=t ri

]
=

max
πt

(
E[rt] + max

πt+1:T

(
E[

T∑
i=t+1

ri],
))

s.t.

E(st,at)∼πt

[
− log(πi

t(a
i
t|τ it))

]
≥ Hi, ∀t, i. (11)

We can obtain the optimal policy and the temperature pa-
rameters by recursively solving the dual problem from the
last time step T by using the technique of Lagrange multi-
plier. At time step t, the optimal policy is obtained for given
temperature parameters, and the optimal temperature param-
eters are computed based on the obtained optimal policy as
follows:

π∗
t = argmax

πt

Eat∼πt

[
QR∗

JT (st, τt,at)︸ ︷︷ ︸
(a)

+

N∑
i=1

αi
t (Q

H∗,i
JT (st, τt,at)− logπt(a

i
t|τ it))︸ ︷︷ ︸

(b)

]
(12)

αi∗
t = argmin

αi
t

Eat∼π∗
t

[
−αi

t logπ
∗
t (a

i
t|τ it)− αi

tHi

]
,

(13)

for all i ∈ N . In the infinite-horizon case, (12) and (13)
provide the update formulae at time step t, and the optimal
policy is replaced with the current approximate multi-agent

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2022

maximum-entropy solution, which can be obtained by ex-
tending SAC to MARL. Note that maximizing the term (a)
in (12) corresponds to the ultimate goal of MARL, i.e., the
expected return. On the other hand, maximizing the term
(b) in (12) corresponds to enhancing exploration of Agent i.

3.4. Learning Individual Target Entropies

In the ADER formulation (5), the amount of exploration for
Agent i can be controlled by the target entropyHi under the
sum constraint

∑N
j=1Hj = H0. In this subsection, we de-

scribe the proposed method to determine the target entropy
for each agent. First, we represent the target entropy of
Agent i as Hi = βi ×H0 with

∑N
i=1 βi = 1 to satisfy the

entropy sum constraint. To properly assign an individual tar-
get entropy to each agent, i.e., determine βi, i = 1, · · · , N ,
we need a metric that measures the necessity of exploration
for each agent. For this, we exploit our value factorization
and mixing network for the disentangled joint value func-
tion for pure reward V R

JT of which factorization is given
by V R

JT (s, τ) = fV,R
mix(s, V

R
1 (τ1), · · · , V R

N (τN)) with the
mixing constraint ∂V R

JT /∂V
R
i ≥ 0 (Su et al., 2021; Rashid

et al., 2018). Note that the partial derivative ∂V R
JT /∂V

R
i

denotes the change in the joint (pure reward) value with
respect to the change in the local value of Agent i. When
this quantity is large, the contribution of Agent i to the
joint (reward) value is large and the policy of Agent i can
be considered to work effectively with more exploitation
preferred. When this quantity is small, on the other hand,
the contribution of Agent i to the joint (reward) value is
small and the policy of Agent i can be considered to operate
poorly and need more exploration. Hence, we propose using
the negative of this partial derivative as a metric to assess
the necessity for exploration. Thus, forH0 ≥ 0, we set the
coefficients βi for determining the individual target entropy
Hi as β =

[
β1, · · · , βi, · · · , βN

]
=

Softmax

[
− E

[∂V R
JT (s, τ)

∂V R
1 (τ1)

]
, · · · ,

− E
[∂V R

JT (s, τ)

∂V R
i (τ i)

]
, · · · ,−E

[∂V R
JT (s, τ)

∂V R
N (τN)

]]
. (14)

The relative required level of exploration across agents
can change as the learning process and this is captured
in these partial derivatives. During the training phase, we
continuously compute (B.7) from the samples in the replay
buffer and set the target entropies. Instead of using the com-
puted value directly, we apply exponential moving average
(EMA) filtering for smoothing. The exponential moving
average filter prevents the target entropy from changing
abruptly. A rapid change in the target entropy can cause
instability in policy learning by perturbing the temperature
parameter {αi}Ni=1 too much. The output of EMA filter
βEMA =

[
βEMA
1 , · · · , βEMA

N

]
is computed recursively as

βEMA ← (1− ξ)βEMA + ξβ (15)

where β is given in (B.7) and ξ ∈ [0, 1]. Thus, the target
entropy is given byHi = βEMA

i ×H0.

Finally, the procedure of ADER at time step t is composed
of the policy evaluation based on the Bellman operators in
(16) and Proposition 1, the policy update for policy and tem-
perature parameters in (12) and (13), and the target entropy
update in (B.7) and (B.8). The detailed implementation is
provided in Appendix B.

4. Experiments
In this section, we provide numerical results and ablation
studies to evaluate ADER. We first present the result on the
continuous cooperative matrix game described in Sec. 3.1,
showing multi-agent exploration-exploitation trade-off, and
then results including sparse StarCraft II micromanagement
(SMAC) tasks (Samvelyan et al., 2019).

Continuous Cooperative Matrix Game As mentioned in
Sec.3.1, the goal of this environment is to learn two actions
a1 and a2 so that the position (a1, a2) starting from (0, 0) to
reach the target circle along a narrow path, as shown in Fig.
1. The maximum reward 5 is obtained if the position reaches
the center of the circle. We compare ADER with three
baselines. One is SER-MARL with the same target entropy
for all agents. Another is SER-MARL with different but
constant target entropies of two agents (SER-DCE). Here,
we set a higher target entropy for a1 than a2. The other is
Reversed ADER, which reversely uses the proposed metric
−∂V R

JT /∂V
R
i for the level of required exploration. That is,

Reversed ADER assigns a high target entropy to the agent
whose contribution to the joint value is large.

(a) Averaged test return (b) Target entropy of ADER

Figure 2. Comparison of ADER with the baselines on the continu-
ous cooperative matrix game.

Fig. 2(a) shows the performances of ADER and the base-
lines averaged over 5 random seeds. It is seen that the
considered baselines fail to learn to reach the target circle,
whereas ADER successfully learns to reach the circle. Here,
the different but constant target entropies of SER-DCE are

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2022

(a) 1c3s5z (b) 3m (c) 8m (d) 3s5z

(e) 3s vs 3z (f) 5m vs 6m (g) MMM2 (h) 8m vs 9m

Figure 3. Average test win rate on eight different SMAC maps

fixed as (H1,H2) = (−0.7,−1.3), which are the maximum
entropy values in ADER. It is observed that SER-DCE per-
forms slightly better than SER-MARL but cannot learn the
task with time-varying multi-agent exploration-exploitation
trade-off.

Fig. 2(b) shows the target entropiesH1 andH2 for a1 and
a2, respectively, which are learned with the proposed met-
ric during training, and shows how ADER learns to reach
the target circle based on adaptive exploration. The black
dotted line in Figs. 2(a) and (b) denotes the time when the
position reaches the junction of the two subpaths. Before
the dotted line (phase 1), ADER learns so that the target
entropy of a1 increases whereas the target entropy of a2
decreases. So, Agent 1 and Agent 2 are trained so as to
focus on exploration and exploitation, respectively. After
the black dotted line (phase 2), the learning behaviors of
target entropies of a1 and a2 are reversed so that Agent 1
now does exploitation and Agent 2 does exploration. That
is, the trade-off of exploitation and exploration is changed
across the two agents. In this continuous cooperative matrix
game, ADER successfully learns the time-varying trade-off
of multi-agent exploration-exploitation by learning appro-
priate target entropies for all agents.

Continuous Action Tasks We evaluated ADER on two
complex continuous action tasks: multi-agent HalfCheetah
(Peng et al., 2021) and heterogeneous predator-prey. The
multi-agent HalfCheetah divides the body into disjoint sub-
graphs and each sub-graph corresponds to an agent. We used
6× 1-HalfCheetah, which consists of six agents with one
action dimension. Next, the heterogeneous predator-prey
consists of three agents, where the maximum speeds of an
agent and other agents are different. In both environments,

each agent has a different role to achieve the common goal
and thus the multi-agent exploration-exploitation tradeoff
should be considered. Here, we used two baselines: SER-
MARL and FACMAC (Peng et al., 2021). As seen in Fig.
4 showing the performances of ADER and the baselines
averaged over 9 random seeds, ADER outperforms the con-
sidered baselines.

(a) H-PP (b) HalfCheetah(6× 1)

Figure 4. Comparison of ADER with SER-MARL and FACMAC
on multi-agent HalfCheetah and hetrogenuous predator prey (H-
PP)

Starcraft II We also evaluated ADER on the Star-
craftII micromanagement benchmark (SMAC) environment
(Samvelyan et al., 2019). To make the problem more dif-
ficult, we modified the SMAC environment to be sparse.
The considered sparse reward setting consists of a dead re-
ward and time-penalty reward. The dead reward is given
only when an ally or an enemy dies. Unlike the original
reward in SMAC which gives the hit-point damage dealt
as a reward, multiple agents do not receive a reward for
damaging the enemy immediately in our sparse reward set-
ting. We compare ADER with six state-of-the-art baselines:
DOP (Wang et al., 2020b), FACMAC (Peng et al., 2021),

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2022

FOP (Zhang et al., 2021), LICA (Zhou et al., 2020), QMIX
(Rashid et al., 2018) and VDAC(Su et al., 2021). For eval-
uation, we conduct experiments on eight different SMAC
maps with 5 different random seeds. Fig. 4 shows the
performance of ADER and the considered six baselines on
the modified SMAC environment. It is seen that ADER
outperforms all the considered baselines. Especially, on
the hard tasks shown in Figs. 4(e)-(h), ADER significantly
outperforms other baselines in terms of training speed and
final performance. This is because those hard maps require
high-quality adaptive exploration across agents over time.
In the maps 3s vs 3z, the stalkers (ally) should attack a zealot
(enemy) many times and thus the considered reward is rarely
obtained. In addition, since the stalker is a ranged attacker
whereas the zealot is a melee attacker, the stalker should be
trained to attack the zealot at a distance while avoiding the
zealot. For this reason, if all stalkers focus on exploration si-
multaneously, they hardly remove the zealot, which leads to
failure in solving the task. Similarly, in the hard tasks with
imbalance between allies and enemies such as 5m vs 6m,
MMM2, and 8m vs 9m, it is difficult to obtain a reward due
to the simultaneous exploration of multiple agents. Thus,
consideration of multi-agent exploration-exploitation trade-
off is required to solve the task, and it seems that ADER
effectively achieves this goal.

Ablation Study We provide an analysis of learning target en-
tropy in the continuous cooperative matrix game. Through
the analysis, we can see how the changing target entropy
affects the learning as seen in Fig. 2. In addition, we con-
ducted an ablation study on the key factors of ADER in the
SMAC environment. First, we compared ADER with SER-
MARL. As in the continuous action tasks, Fig. 5 shows
that ADER outperforms SER-MARL. From the result, it
is seen that consideration of the multi-agent exploration-
exploitation trade-off yields better performance. Second,
we compared ADER with and without the EMA filter. As
seen in Fig. 5, it seems that the EMA filter enhances the
stability of ADER. Lastly, we conducted an experiment to
access the effectiveness of disentangling exploration and
exploitation. We implemented ADER based on one critic
which estimates the sum of return and entropy. As seen
in Fig. 5, using two types of value functions yields better
performance.

We provided the training details for all considered environ-
ments in Appendix C.

5. Conclusion
We have proposed the ADER framework for MARL to
handle multi-agent exploration-exploitation trade-off. The
proposed method is based on entropy regularization with
learning proper target entropies across agents over time by
using a newly-proposed metric to measure the necessary

(a) MMM2 (b) 8m vs 9m

Figure 5. Ablation study

degree of exploration for each agent. Numerical results
on various tasks including the sparse SMAC environment
show that ADER can properly handle time-varying multi-
agent exploration-exploitation trade-off effectively and out-
performs other state-of-the-art baselines. Furthermore, we
expect the key ideas of ADER can be applied to other ex-
ploration methods for MARL such as intrinsic motivation.

References
Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,

B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., et al. Never give up: Learning directed
exploration strategies. In International Conference on
Learning Representations, 2019.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

Beyer, L., Vincent, D., Teboul, O., Gelly, S., Geist, M., and
Pietquin, O. Mulex: Disentangling exploitation from
exploration in deep rl. arXiv preprint arXiv:1907.00868,
2019.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In International
Conference on Learning Representations, 2018.

Chentanez, N., Barto, A., and Singh, S. Intrinsically moti-
vated reinforcement learning. Advances in neural infor-
mation processing systems, 17, 2004.

Christodoulou, P. Soft actor-critic for discrete action settings.
arXiv preprint arXiv:1910.07207, 2019.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Hessel, M.,
Osband, I., Graves, A., Mnih, V., Munos, R., Hassabis,
D., et al. Noisy networks for exploration. In International
Conference on Learning Representations, 2018.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
In International Conference on Machine Learning, pp.
1352–1361. PMLR, 2017.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2022

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Han, S. and Sung, Y. A max-min entropy framework for
reinforcement learning. Advances in Neural Information
Processing Systems, 34, 2021.

Kim, W., Jung, W., Cho, M., and Sung, Y. A maximum
mutual information framework for multi-agent reinforce-
ment learning. arXiv preprint arXiv:2006.02732, 2020.

Liu, I.-J., Jain, U., Yeh, R. A., and Schwing, A. Cooperative
exploration for multi-agent deep reinforcement learning.
In International Conference on Machine Learning, pp.
6826–6836. PMLR, 2021.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson, S.
Maven: Multi-agent variational exploration. Advances in
Neural Information Processing Systems, 32, 2019.

Oliehoek, F. A. and Amato, C. A concise introduction to
decentralized POMDPs. Springer, 2016.

Oliehoek, F. A., Spaan, M. T., and Vlassis, N. Optimal and
approximate q-value functions for decentralized pomdps.
Journal of Artificial Intelligence Research, 32:289–353,
2008.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R.
Count-based exploration with neural density models. In
International conference on machine learning, pp. 2721–
2730. PMLR, 2017.

Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny, P.-A.,
Torr, P., Böhmer, W., and Whiteson, S. Facmac: Factored
multi-agent centralised policy gradients. Advances in
Neural Information Processing Systems, 34, 2021.

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen,
R. Y., Chen, X., Asfour, T., Abbeel, P., and Andrychow-
icz, M. Parameter space noise for exploration. In Inter-
national Conference on Learning Representations, 2018.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: monotonic value
function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485, 2018.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G.,
Nardelli, N., Rudner, T. G., Hung, C.-M., Torr, P. H.,
Foerster, J., and Whiteson, S. The starcraft multi-agent
challenge. arXiv preprint arXiv:1902.04043, 2019.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y.
Qtran: Learning to factorize with transformation for co-
operative multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 5887–5896.
PMLR, 2019.

Su, J., Adams, S., and Beling, P. A. Value-decomposition
multi-agent actor-critics. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pp. 11352–
11360, 2021.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. Qplex:
Duplex dueling multi-agent q-learning. In International
Conference on Learning Representations, 2020a.

Wang, Y., Han, B., Wang, T., Dong, H., and Zhang, C. Dop:
Off-policy multi-agent decomposed policy gradients. In
International Conference on Learning Representations,
2020b.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3):279–292, 1992.

Zhang, T., Li, Y., Wang, C., Xie, G., and Lu, Z. Fop:
Factorizing optimal joint policy of maximum-entropy
multi-agent reinforcement learning. In International Con-
ference on Machine Learning, pp. 12491–12500. PMLR,
2021.

Zhou, M., Liu, Z., Sui, P., Li, Y., and Chung, Y. Y. Learning
implicit credit assignment for cooperative multi-agent
reinforcement learning. Advances in Neural Information
Processing Systems, 33:11853–11864, 2020.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2022

Appendix A: Proofs
Proposition 2. The decomposed soft Bellman operators T π

R and T π
H,i are contractions.

Proof: The action value functions QR
JT (τt,at) and QH,i

JT (τt,at) can be estimated based on their corresponding Bellman
backup operators, defined by

T π
RQR

JT (st, τt,at) := rt + γE
[
V R
JT (st+1, τt+1)

]
, where (16)

V R
JT (st, τt) = E

[
QR

JT (st, τt,at)
]

T π
H,iQ

H,i
JT (st, τt,at) := γE

[
V H,i
JT (st+1, τt+1)

]
, where (17)

V H,i
JT (st, τt) = E

[
QH,i

JT (st, τt,at)− αi log π(ait|τ it)
]
.

Here, V R
JT (st, τt) and V H,i

JT (st, τt) are the joint value functions regarding reward and entropy, respectively.

First, let us consider the decomposed Bellman operator regarding reward, T π
R . For the sake of simplicity, we abbreviate

(QR
JT , Q

H,i
JT , V R

JT , V
H,i
JT) as (QR, QH,i, V R, V H,i). From (16), we have

T π
RQR(st, τt,at) = rt + γEst+1,τt+1,at+1

[
QR(st+1, τt+1,at+1)

]
. (18)

Then, we have

∥T π
R (q1t)− T π

R (q2t)∥∞
= ∥(rt + γ

∑
st+1, τt+1

at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · q1t+1)

− (rt + γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · q2t+1)∥∞

= ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − q2t+1))∥∞

≤ ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞∥q1t+1 − q2t+1∥∞

≤ γ∥q1t+1 − q2t+1∥∞

for q1t =
[
QR

1 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

and q2t =
[
QR

2 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

since

∥
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞ ≤ 1. Thus, the operator T π
R is a γ-contraction.

Next, let us consider the decomposed Bellman operator regarding entropy, T π
H,i. From (17), we have

T π
H,iQ

H,i(st, τt,at) = γE
[
QH,i(st+1, τt+1,at+1)− αi log π(ait+1|τ it+1))

]
. (19)

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2022

Then, we have

∥T π
H,i(q

1
t)− T π

H,i(q
2
t)∥∞

= ∥(γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − αi log π(ait+1|τ it+1))

− (γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q2t+1 − αi log π(ait+1|τ it+1))∥∞

= ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at) · (q1t+1 − q2t+1))∥∞

≤ ∥γ
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞∥q1t+1 − q2t+1∥∞

≤ γ∥q1t+1 − q2t+1∥∞

for q1t =
[
QR

1 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

and q2t =
[
QR

2 (st, τt,at)
]

st ∈ S,at ∈ A
τt ∈ (Ω × A)∗

since

∥
∑

st+1, τt+1
at+1

π(at+1|τt+1)p(st+1, τt+1|st, τt,at)∥∞ ≤ 1. Thus, the operator T π
H,i is a γ-contraction.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2022

Figure 6. Overall architecture of the proposed ADER

Appendix B: Detailed Implementation for ADER
Here, we describe the implementation of ADER for discrete action tasks based on (Christodoulou, 2019). The learning
process consists of the update of both temperature parameters and target entropies and the approximation of multi-agent
maximum entropy solution, which consists of the update of the joint policy and the critics. To do this, we first approximate
the policies {πi

ϕi
}Ni=1, the joint action value functions QR

JT,θR
and QH,i

JT,θH,i
by using deep neural networks with parameters,

{ϕi}Ni=1, θR and {θH,i}Ni=1.

First, the joint policy is updated based on Eq. (12) and the loss function is given by

L(ϕ) = E(st,τt)∼D,{ai
t∼πi(·|τ i

t)}N
i=1

[
N∑
i=1

αi(log πi
ϕi
(ait|τ it)−QH,i

JT,θH,i
(st, τt,at))−QR

JT,θR(st, τt,at)

]
, (B.1)

where ϕ = {ϕi}Ni=1 is the parameter for the joint policy. Next, the joint action value functions are trained based on the
disentangled Bellman operators defined in Eq. (10) and the loss functions are given by

L(θR) = E(st,τt,at,st+1,τt+1)∼D

[
1

2
(QR

JT,θR(st, τt,at)− (rt + γV R
JT,θ̄R

(st+1, τt+1)))
2

]
(B.2)

L(θH,i) = E(st,τt,at,st+1,τt+1)∼D

[
1

2
(QH,i

JT,θi
(st, τt,at)− γV H,i

JT,θ̄H,i
(st+1, τt+1)))

2

]
(B.3)

where V R
JT,θ̄R

and V H,i

JT,θ̄H,i
are implicitly parameterized via the parameters of joint action value functions, and directly

computed as follows:

V R
JT,θ̄R

(st, τt) = E
[
QR

JT,θ̄R
(st, τt,at)

]
(B.4)

V H,i

JT,θ̄H,i
(st, τt) = E

[
QH,i

JT,θ̄H,i
(st, τt,at)− αi log π(ait|τ it)

]
. (B.5)

Note that θ̄R and θ̄H,i are obtained based on the EMA of the parameters of the joint action value functions.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2022

Algorithm 1 ADaptive Entropy-Regularization for multi-agent reinforcement learning (ADER)
Initialize parameters {ϕi}Ni=1, θR, {θH,i}Ni=1, θ̄R, {θ̄H,i}Ni=1

Generate a trajectory τ by interacting with the environment by using the joint policy π and store τ in the replay memory
for episode = 1, 2, · · · do

Generate a trajectory τ by using the joint policy π and store τ in the replay memory D
for each gradient step do

Sample a minibatch from D
Update {ϕi}Ni=1 by minimizing the loss function Eq. (B.1)
Update θR, {θH,i}Ni=1 by minimizing the loss functions Eq. (B.2) and Eq. (B.3)
Update αi by minimizing the loss function Eq. (B.6)
Update {Hi}Ni=1 by computing Eq. (B.7) and Eq. (B.8)
Update θ̄R and {θ̄H,i}Ni=1 by EMA based on θR and {θH,i}Ni=1

end for
end for

We update the temperature parameters based on Eq. (13) and the loss function is given by

L(αi) = Eτt∼D,{ai
t∼πi(·|τ i

t)}N
i=1

[
−αi logπt(a

i
t|τ it)− αiHi

]
, ∀i ∈ N . (B.6)

Finally, we update the target entropy of each agent. ForH0 ≥ 0, we set the coefficients βi for determining the individual
target entropyHi as β =

[
β1, · · · , βi, · · · , βN

]
=

Softmax

[
− E

[∂V R
JT (s, τ)

∂V R
1 (τ1)

]
, · · · ,−E

[∂V R
JT (s, τ)

∂V R
i (τ i)

]
, · · · ,−E

[∂V R
JT (s, τ)

∂V R
N (τN)

]]
. (B.7)

Note that we change the sign of the elements in Eq. (B.7) if H0 < 0 to satisfy the core idea of ADER, which assigns a
high target entropy to the agent whose contribution to the joint value is small. In addition, before the softmax layer, we
normalize the elements in Eq. (B.7). Based on the coefficients, the target entropy is given by Hi = βEMA

i ×H0 where
βEMA
i is computed recursively as

βEMA ← (1− ξ)βEMA + ξβ (B.8)

We summarize the proposed algorithm in Algorithm 1 and illustrate the overall architecture of the proposed ADER in Fig. 6.

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2022

Appendix C: Training details

(a) 6× 1-HalfCheetah (b) H-PP

Figure 7. Considered continuous action tasks

C1. Environment Details

Multi-agent HalfCheetah We considered the multi-agent HalfCheetah introduced in (Peng et al., 2021). As illustrated in
Fig. 7 (a), the multi-agent HalfCheetah divides the body into disjoint sub-graphs and each sub-graph corresponds to an
agent. We used 6× 1-HalfCheetah, which consists of six agents with one action dimension. We set the maximum graph
distance k = 1, where k denotes the distance each agent can observe. We set the maximum episode length as Tmax = 1000.

Heterogeneous Predator-Prey (H-PP) We modified the continuous predator-prey environment considered in (Peng et al.,
2021) to be heterogeneous. As illustrated in Fig. 7 (b), the considered heterogeneous predator-prey consists of three predator
agents, where the maximum speeds of an agent (v1max = 1.0) and other agents (v2max = 0.75) are different, three preys with
the maximum speed (v3max = 1.25) is faster than all predators and the landmarks. The preys move away from the nearest
predator implemented in (Peng et al., 2021) and thus the predators should be trained to pick one prey and catch the prey
together. Each agent observes the relative positions of the other predators and the landmarks within view range and the
relative positions and velocities of the prey within view range. The reward +10 is given when one of the predators collides
with the prey. We set the maximum episode length as Tmax = 50.

Starcraft II We evaluated ADER on the StarcraftII micromanagement benchmark (SMAC) environment (Samvelyan
et al., 2019). To make the problem more difficult, we modified the SMAC environment to be sparse. The considered sparse
reward setting consists of a death reward and time-penalty reward. The time-penalty reward is −0.1 and the death reward is
given +10 and −1 when one enemy dies and one ally dies, respectively. Additionally, the dead reward is given +200 if all
enemies die.

C2. Training Details and Hyperparameters

We implemented ADER based on (Samvelyan et al., 2019; Peng et al., 2021; Zhang et al., 2021) and conducted the
experiments on a server with Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz and 8 Nvidia Titan xp GPUs. Each experiment
took about 12 to 24 hours. We used the implementations of the considered baselines provided by the authors.

Multi-agent HalfCheetah In the multi-agent halfcheetah environment, the architecture of the policies and critics for
ADER follows (Peng et al., 2021). We use an MLP with 2 hidden layers which have 400 and 300 hidden units and ReLU
activation functions. The final layer uses tanh activation function to bound the action as in (Haarnoja et al., 2018a). We also
use the reparameterization trick for the policy as in (Haarnoja et al., 2018a). The replay buffer stores up to 106 transitions
and 100 transitions are uniformly sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

H0 = N × (−dim(A)) = 6× (−1) = −6,

where N is the number of agents. We set the hyperparameter for EMA filter as ξ = 0.9 and initialize the temperature
parameters as αi

init = e−2 for all i ∈ N .

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2022

Heterogeneous Predator-Prey In the heterogeneous predator-prey environment, the architecture of the policies and
critics for ADER follows (Peng et al., 2021). To parameterize the policy, we use a deep neural network which consists of a
fully-connected layer, GRU and a fully-connected layer which have 64 dimensional hidden units. The final layer uses tanh
activation function to bound the action. Next, for the critic network, we use a MLP with 2 hidden layers which have 64
hidden units and ReLU activation function. The replay buffer stores up to 5000 episodes and 32 episodes are uniformly
sampled for training. As in (Haarnoja et al., 2018b), we set the sum of target entropy as

H0 = N × (−dim(A)) = 3× (−2) = −6.

We set the hyperparameter for EMA filter as ξ = 0.9 and initialize the temperature parameters as αi
init = e−2 for all i ∈ N .

Starcraft II For parameterization of the policy we use a deep neural network which consists of a fully-connected layer,
GRU and a fully-connected layer which have 64 dimensional hidden units. For the critic networks we use a MLP with 2
hidden layers which have 64 hidden units and ReLU activation function. The replay buffer stores up to 5000 episodes and
32 episodes are uniformly sampled for training. For the considered maps in SMAC, we use different hyperparameters. We
set the sum of target entropy based on the maximum entropy, which can be achieved if the policy is uniform distribution, as

H0 = N ×H∗ × kratio = N × log(dim(A))× kratio.

The values of kratio, ξ, and initial temperature parameter for each map are summarized Table 1.

Table 1. Hyperparameters for the considered SMAC environment

MAP kratio ξ αi
init

1c3s5z 0.05 0.9 e−3

3m 0.1 0.9 e−2

8m 0.1 0.9 e−2

3s5z 0.05 0.9 e−3

3s vs 3z 0.1 0.9 e−3

5m vs 6m 0.15 0.5 e−3

MMM2 0.1 0.9 e−2.5

8m vs 9m 0.1 0.9 e−2

In all the considered environments, we apply the value factorization technique proposed in (Rashid et al., 2018). The
architecture of the mixing network for ADER, which follows (Rashid et al., 2018), takes the output of individual critics as
input and outputs the joint action value function. The weights of the mixing network are produced by the hypernetwork
which takes the global state as input. The hypernetwork consists of a MLP with a single hidden layer and an ELU activation
function. Due to the ELU activation function, the weights of the mixing network are non-negative and this achieves the
monotonic constraint in (Rashid et al., 2018). We expect that ADER can use other value factorization technique to yield
better performance.

