
CaseBench: A GraphQL Benchmark for Indian Legal Text Analytics

Anonymous ACL submission

Abstract001

Despite the integration of Large Language002
Models (LLMs) into legal workflows, several003
fundamental challenges remain in Legal Text004
Analytics (LTA). Many downstream tasks, such005
as determining case similarity or drafting com-006
plex legal documents, involve reasoning over007
large and heterogeneous data sources. Cur-008
rent models often struggle with factual consis-009
tency, hallucinations, and handling large con-010
texts that integrate structured and unstructured011
data. To address these challenges, we intro-012
duce CaseBench, a new benchmark and re-013
source that uses GraphQL as a retrieval mech-014
anism for multi-modal legal data, enabling015
complex queries over relational tables, knowl-016
edge graphs, and vector databases. CaseBench017
provides data samples, query templates, and018
evaluation tasks designed to test the ability of019
LLMs to leverage GraphQL-based retrieval-020
augmented generation in legal contexts.021

1 Introduction022

Large Language Models (LLMs) have shown re-023

markable capabilities in style generation, short-024

form writing, and code generation. However, tasks025

in Legal Text Analytics (LTA) frequently demand026

more than stylistic fluency. They often require027

reasoning over large corpora of legal precedents,028

factual consistency, and precise citation of rele-029

vant documents. For example, drafting a legal030

petition, identifying case similarity, or answering031

domain-specific legal questions requires not just032

language proficiency but also the ability to retrieve033

and integrate factual information from external data034

sources.035

LLMs, even with increased context windows,036

often struggle in these settings due to their tenden-037

cies to hallucinate or produce imprecise reasoning038

steps. Recent agentic frameworks and retrieval-039

augmented generation (RAG) solutions attempt to040

mitigate these issues by externalizing memory and041

retrieval functions. Instead of storing all knowledge 042

in the model’s parameters, these approaches rely 043

on structured databases and retrieval mechanisms 044

(e.g., SQL, vector searches, or knowledge graphs) 045

to fetch relevant facts. This reduces hallucinations 046

and improves factual correctness. 047

A key challenge, however, is integrating hetero- 048

geneous sources consistently. Legal documents 049

may be spread across relational databases (case fil- 050

ings, metadata), knowledge graphs (case law cita- 051

tions, semantic relations), and vector databases (se- 052

mantic embeddings for efficient similarity search). 053

Orchestrating queries across these modalities can 054

be complex, error-prone, and difficult to scale. 055

In this paper, we propose using GraphQL as a 056

unified retrieval mechanism for LTA. GraphQL pro- 057

vides a single, flexible interface to query diverse 058

backends — relational, graph, and vector databases 059

— by integrating them behind a GraphQL schema. 060

This can simplify the retrieval layer in agentic sys- 061

tems, reducing complexity and making it easier to 062

build RAG pipelines that LLMs can leverage. 063

We introduce CaseBench, a new dataset and 064

benchmark for evaluating LLMs on LTA tasks us- 065

ing GraphQL-mediated retrieval. CaseBench in- 066

cludes: 067

• Multi-modal Data Sources: We provide le- 068

gal documents from Indian courts (2,286 case 069

judgments), stored across relational tables, a 070

Neo4j graph database, and a Milvus vector 071

store. Each modality enriches the representa- 072

tion of legal knowledge, from metadata and 073

events (relational), to citation and similarity 074

relations (graph), to dense embeddings for se- 075

mantic search (vector DB). 076

• GraphQL Query Samples: We show how 077

to write GraphQL queries to retrieve struc- 078

tured attributes from relational DBs (e.g., Post- 079

greSQL), graph relations from Neo4j, and vec- 080

tor embeddings from Milvus. These queries 081

1

can be integrated into LLM prompts or agen-082

tic frameworks to produce factually grounded083

answers.084

• Tasks and Baselines: We propose three evalu-085

ated tasks: Case Similarity, Question Answer-086

ing (QA), and Automatic Answer Validation.087

Additionally, we discuss Petition Drafting as088

a complex, real-world application, though we089

do not currently provide quantitative evalua-090

tion for it.091

By building on GraphQL-based retrieval, we092

hope CaseBench will spur research into more trust-093

worthy and controllable LLM-based legal assis-094

tants. Our initial experiments indicate that inte-095

grating factual retrieval into generation pipelines096

can improve performance on tasks requiring factual097

precision and legal reasoning.098

2 Related Work099

Legal Text Analytics (LTA) has benefited from100

large, annotated corpora and specialized models.101

Benchmarks like LegalBench (Guha et al., 2023)102

and the ILDC corpus (Malik et al., 2021) have103

spurred research on legal reasoning and judgment104

prediction. Domain-specific models such as Legal-105

BERT (Chalkidis et al., 2020), InLegalBERT (Paul106

et al., 2022), NyayaAnumana (Nigam et al., 2024),107

and InLegalLLaMA (Ghosh et al., 2024) highlight108

the utility of leveraging pre-trained language mod-109

els tailored to legal corpora. Further, knowledge-110

based enhancements like legal knowledge graphs111

(Dhani et al., 2021) have supported tasks includ-112

ing question answering and similarity detection,113

enriching the legal NLP ecosystem.114

While GraphQL has been widely used in the in-115

dustry, publicly available GraphQL datasets have116

been relatively few. Recently however, there is117

increasing interest in generating GraphQL using118

large language models (Ganesan et al., 2024; Ke-119

sarwani et al., 2024; Saha et al., 2024).120

While substantial progress has been made in as-121

sembling legal datasets and building GraphQL re-122

sources, these two areas have not been integrated123

for retrieval-augmented generation (RAG) in the124

legal domain. Similarly, while large-scale LTA125

datasets provide ample text and structured informa-126

tion, there is currently no GraphQL-based resource127

specifically designed to facilitate multi-modal re-128

trieval—across relational tables, vector databases,129

and knowledge graphs—for legal text analytics130

tasks.131

A GraphQL-based dataset tailored for legal RAG 132

would unify access to legal documents, metadata, 133

embeddings, and networked relations via a single 134

schema. Such a resource could enable more con- 135

trollable and verifiable queries, reducing hallucina- 136

tion and improving the reliability of LLM-based 137

legal applications. We address this need by pre- 138

senting a new benchmark and dataset that couples 139

GraphQL with legal text analytics resources. 140

3 CaseBench Dataset 141

We introduce a new legal dataset consisting of 142

2,286 case judgments across multiple modalities, 143

namely relational tables, a graph database, and a 144

vector database. 145

Case Documents in Vector DB 146

We adopt the Milvus database for storing judge- 147

ment’s text in vector storage. Milvus is specifically 148

designed for handling large-scale data and excels 149

at representing unstructured documents using vec- 150

tor representation, which capture semantic of the 151

documents. By converting case documents into 152

high-dimensional vectors, we enable efficient simi- 153

larity searches and retrievals. Additionally, Milvus 154

allows us to store rich metadata associated with 155

each document, such as case ID, date of judgment, 156

and involved parties, ensuring that both the vector- 157

ized content and the structured metadata are acces- 158

sible for advanced queries. This method provides 159

a powerful foundation for legal data analysis, as 160

it combines the benefits of semantic search with 161

the flexibility of metadata-based retrieval. For fa- 162

cilitating semantic search, We choose to employ 163

the Sentence Transformer, specifically utilizing the 164

all-MiniLM-L6-v2 model with dimension 384. 165

Case Graph in Graph DB 166

We move to case graphs, which offer an optimal 167

way to transform unstructured legal documents into 168

structured representations. Graphs provide a more 169

comprehensive and practical depiction of unstruc- 170

tured data, making them particularly suited for cap- 171

turing the intracies of legal texts. In our case graphs, 172

the nodes represent individual judgments, each as- 173

sociated with attributes such as case metadata, in- 174

volved parties, and judgment details, effectively 175

defining the node’s characteristics. To enable re- 176

lationships between these nodes, we leverage two 177

primary sources. First, we use citations from Indi- 178

anKanoon (Sinha, 2008), which connect judgments 179

based on referenced cases, which supported using 180

2

directed edge. Second, we use recommendations181

of similar cases from Casemine (Yadav, 2013),182

enacting links based on legal relevance. These183

two types of relationships—citations and similarity-184

based edges—form the edges of our graph, creating185

a rich network of interconnected legal judgments186

that enhances the ability to analyze case depen-187

dencies and legal precedents. For managing and188

efficiently querying the case graph we stored them189

into Neo4j database, which is a graph database190

that provides flexibility with a schema-less design191

and supports real-time data processing. This con-192

structed case graph consists of 2,286 nodes and193

4,766 edges.194

Case Details in Relational DB195

We populate the Postgres tables to store the data in196

structured relations. For that, we create the schema197

for the various tables, and then to fill these tables198

we opt for two methods, manual and automated199

extraction. We manually extract the required val-200

ues from the judgements and store them into rela-201

tions. Due to the tedious nature of this task, we fur-202

ther populate our relations by employing an open-203

source large language model, LLAMA 3.1, given204

its efficient data extraction capabilities. It is impor-205

tant to note that the extracted data is reliable, as it206

is not generated but rather accurately sourced from207

the original documents. In addition, we enhance208

the LLM by providing few-shot examples of the209

extraction procedure. Afterward, we carry out post-210

processing to amend the extracted values, making211

them suitable for storage in structured relations.212

Table Name Records Columns
casedetail 2286 5
court 951 2
event 11567 4
gpe 951 3
ground 18061 3
person 6596 7

Table 1: Relational Tables Statistics

Such queries can be extended to retrieve related213

cases from the graph database or fetch top-k similar214

embeddings from the vector database. We also215

provide GraphQL samples for complex retrieval,216

for example:217

• Relational + Graph: Retrieve a case’s ID, then218

fetch its citing cases from the Neo4j backend.219

Property Value
Nodes 2286
Edges 4766
Edges (CITATION) 1159
Edges (SIMILAR TO) 3607
Node’s Properties 32
Node’s Properties (quant) 19
Node’s Properties (categ) 9

Table 2: Case Graph Statistics

Property Value
Documents 2284
Embedding Dim 384

Table 3: Vector Database Statistics

• Vector Search: Query Milvus via a GraphQL 220

endpoint that takes a query embedding, return- 221

ing semantically similar paragraphs. 222

This schema can be exposed to LLM-based 223

agents. Instead of ad-hoc retrieval calls, the LLM 224

can produce a GraphQL query string that the agent 225

executes, returning structured JSON results to the 226

model. 227

4 CaseBench Tasks 228

We present three core tasks—Case Similarity, Pe- 229

tition Drafting, and Case Brief Evaluation—that 230

demonstrate how querying multi-modal legal data 231

with GraphQL can support complex reasoning and 232

text generation. All three tasks can be reframed as 233

question answering (QA) problems where an LLM, 234

augmented by GraphQL-based retrieval, accesses 235

relational tables, graph databases, and vector stores 236

to gather necessary facts before producing final 237

answers. Through this unified QA-based evalua- 238

tion, we can measure the effectiveness of retrieval- 239

augmented generation (RAG) in solving practical 240

legal tasks. 241

4.1 Case Similarity 242

Determining if two legal judgments are similar 243

is essential for precedent analysis. Prior work 244

(Dhani et al., 2021) relied on graph-based meth- 245

ods and domain-tuned models like LegalBERT. In 246

our framework, an LLM can first pose GraphQL 247

queries to fetch relevant case metadata, citations, or 248

semantic embeddings from the vector database. By 249

integrating these facts, the model can answer a QA- 250

style prompt: “Are these two cases similar?” This 251

3

reduces hallucination and increases factual ground-252

ing, improving performance beyond closed-book253

baselines.254

4.2 Petition Drafting255

Drafting a petition often requires filling in missing256

details, citing appropriate precedents, and adhering257

to procedural requirements. Instead of directly gen-258

erating the entire petition, we treat the task as itera-259

tive QA. The model asks targeted questions—e.g.,260

“Which prior cases support this ground?” or “What261

is the correct jurisdiction?”—and issues GraphQL262

queries to retrieve answers. By extracting struc-263

tured information and then integrating it into the264

petition draft, the system can incrementally pro-265

duce a factual, contextually accurate petition.266

4.3 Case Brief Evaluation267

In evaluating a student’s case brief, we must con-268

firm factual accuracy, identify missing elements,269

and assess whether the brief aligns with the source270

judgments. Using QA prompts such as “Is the sum-271

mary of the defendant’s argument correct?” the272

model can query the graph DB for citations, re-273

trieve semantic vectors from Milvus, and verify274

metadata from relational tables. This ensures that275

the LLM’s evaluation of the brief is grounded in276

actual case content rather than relying on memory277

alone.278

By formulating all three tasks as QA challenges279

enhanced by GraphQL-based retrieval, we unify280

the evaluation paradigm. The final performance281

metric for each task—be it identifying similar-282

ity, completing a petition draft, or evaluating a283

brief—boils down to the correctness and complete-284

ness of the model’s answers to factual queries. This285

approach enables an end-to-end RAG solution that286

leverages multi-modal data to improve factual ac-287

curacy and reliability in legal text analytics.288

5 Experiments and Results289

Case Similarity290

We use Dhani et al. (2021) as our GNN baseline. It291

leverages handcrafted features and citations, while292

our LLaMA-3 variants use different inputs: one293

model receives feature-based inputs, and another294

uses full document excerpts. Table 4 shows the ac-295

curacy scores. The GNN baseline achieves an accu-296

racy of 0.536. The LLaMA-3 model conditioned on297

extracted features alone performs at 0.454, which298

is lower than the baseline. However, when pro-299

vided with entire document excerpts, LLaMA-3 300

obtains an accuracy of 0.548, surpassing the GNN 301

baseline. This suggests that providing richer tex- 302

tual context to a large language model can improve 303

performance on the case similarity task. 304

Model Accuracy
GNN 0.536
LLaMA-3 (features) 0.454
LLaMA-3 (docs) 0.548

Table 4: Case Similarity results. The LLaMA-3 model
leveraging entire documents outperforms the GNN base-
line.

GraphQL Query Generation 305

We conducted an additional experiment to evaluate 306

how smaller models might reproduce the GraphQL 307

queries generated for a subset of our questions. 308

From our collection of 100 QA-query samples, 309

we randomly selected 20 samples and asked 310

three smaller models—codellama, ibm-granite, and 311

deepseek coder—to independently generate queries 312

for each question. We then compared their gener- 313

ated queries against the original queries for exact 314

string matches. As shown in Table 5, codellama 315

models performs the best in our expeiments. 316

Model Correct Percentage
Queries

codellama 34b 19 95
ibm-granite-code 34b 14 70
deepseek coder 33b 15 75

Table 5: Accuracy of smaller models in reproducing the
original GraphQL queries on 20 random samples.

6 Conclusion 317

We introduce CaseBench, a novel benchmark and 318

dataset that integrates GraphQL-based retrieval 319

with legal text analytics tasks. By providing a 320

unified retrieval interface over structured and un- 321

structured data, we facilitate more trustworthy and 322

controllable LLM-based solutions in the legal do- 323

main. In the future, we plan on exploring agentic 324

LLM frameworks that dynamically select retrieval 325

strategies, conducting human evaluation for peti- 326

tion drafting, and experimenting with additional 327

data sources. 328

4

Limitations329

While we have introduced datasets for all the three330

legal text analytics tasks, we have compared the331

performance of our solution only with the case332

similarity baselines. The two other tasks, petition333

drafting and case brief evaluation do not have rele-334

vant baselines, especially in the context of legal text335

analytics. We hope to produce supervised methods336

for these tasks and compare the results in future337

works.338

Ethics Statement339

We are aware of ethical concerns in using AI sys-340

tems in the legal domain. In this work, we do341

not propose any solutions where decision impact-342

ing people will be made by AI systems. On the343

contrary, we have discussed tasks that can enable344

people to more easily approach the judicial sys-345

tem. None of the datasets we have generated can346

be used to specifically identify any individual or347

organisation, even though the original documents348

from which we have generated such data are public349

domain documents released by Indian courts.350

References351

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-352
siotis, Nikolaos Aletras, and Ion Androutsopoulos.353
2020. LEGAL-BERT: The muppets straight out of354
law school. In Findings of the Association for Com-355
putational Linguistics: EMNLP 2020, pages 2898–356
2904, Online. Association for Computational Lin-357
guistics.358

Jaspreet Singh Dhani, Ruchika Bhatt, Balaji Ganesan,359
Parikshet Sirohi, and Vasudha Bhatnagar. 2021. Sim-360
ilar cases recommendation using legal knowledge361
graphs. Preprint, arXiv:2107.04771.362

Balaji Ganesan, Sambit Ghosh, Nitin Gupta, Man-363
ish Kesarwani, Sameep Mehta, and Renuka Sind-364
hgatta. 2024. Llm-powered graphql generator for365
data retrieval. In Proceedings of the Thirty-Third366
International Joint Conference on Artificial Intel-367
ligence, IJCAI-24, pages 8657–8660. International368
Joint Conferences on Artificial Intelligence Organi-369
zation. Demo Track.370

Sudipto Ghosh, Devanshu Verma, Balaji Ganesan, Purn-371
ima Bindal, Vikas Kumar, and Vasudha Bhatnagar.372
2024. Inlegalllama: Indian legal knowledge en-373
hanced large language model. In Proceedings of374
the 33rd International Joint Conference on Artificial375
Intelligence.376

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré,377
Adam Chilton, Aditya K, et al. 2023. LegalBench:378

A Collaboratively Built Benchmark for Measuring 379
Legal Reasoning in Large Language Models. In Ad- 380
vances in Neural Information Processing Systems, 381
volume 36, pages 44123–44279. 382

Manish Kesarwani, Sambit Ghosh, Nitin Gupta, Shra- 383
mona Chakraborty, Renuka Sindhgatta, Sameep 384
Mehta, Carlos Eberhardt, and Dan Debrunner. 2024. 385
Graphql query generation: A large training and 386
benchmarking dataset. In Proceedings of the 2024 387
Conference on Empirical Methods in Natural Lan- 388
guage Processing: Industry Track, pages 1595–1607. 389

Vijit Malik, Rishabh Sanjay, Shubham Kumar Nigam, 390
Kripabandhu Ghosh, Shouvik Kumar Guha, Arnab 391
Bhattacharya, and Ashutosh Modi. 2021. ILDC for 392
CJPE: Indian Legal Documents Corpus for Court 393
Judgment Prediction and Explanation. In Proceed- 394
ings of the 59th Annual Meeting of the Association 395
for Computational Linguistics, pages 4046–4062. 396

Shubham Kumar Nigam, Balaramamahanthi Deepak 397
Patnaik, Shivam Mishra, Noel Shallum, Kripabandhu 398
Ghosh, and Arnab Bhattacharya. 2024. Nyayaanu- 399
mana & inlegalllama: The largest indian legal judg- 400
ment prediction dataset and specialized language 401
model for enhanced decision analysis. arXiv preprint 402
arXiv:2412.08385. 403

Shounak Paul, Arpan Mandal, Pawan Goyal, and Sap- 404
tarshi Ghosh. 2022. Pre-training transformers on 405
indian legal text. arXiv preprint arXiv:2209.06049. 406

Avirup Saha, Lakshmi Mandal, Balaji Ganesan, Sambit 407
Ghosh, Renuka Sindhgatta, Carlos Eberhardt, Dan 408
Debrunner, and Sameep Mehta. 2024. Sequential api 409
function calling using graphql schema. In Proceed- 410
ings of the 2024 Conference on Empirical Methods in 411
Natural Language Processing, pages 19452–19458. 412

Sushant Sinha. 2008. IndianKanoon: Search Engine for 413
Indian Law. 414

Aniruddha Yadav. 2013. Casemine: A granular map- 415
ping of indian case law. 416

5

https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://arxiv.org/abs/2107.04771
https://arxiv.org/abs/2107.04771
https://arxiv.org/abs/2107.04771
https://arxiv.org/abs/2107.04771
https://arxiv.org/abs/2107.04771
https://doi.org/10.24963/ijcai.2024/1002
https://doi.org/10.24963/ijcai.2024/1002
https://doi.org/10.24963/ijcai.2024/1002
https://proceedings.neurips.cc/paper_files/paper/2023/file/89e44582fd28ddfea1ea4dcb0ebbf4b0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/89e44582fd28ddfea1ea4dcb0ebbf4b0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/89e44582fd28ddfea1ea4dcb0ebbf4b0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/89e44582fd28ddfea1ea4dcb0ebbf4b0-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/89e44582fd28ddfea1ea4dcb0ebbf4b0-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.18653/v1/2021.acl-long.313
https://doi.org/10.48550/ARXIV.2209.06049
https://doi.org/10.48550/ARXIV.2209.06049
https://doi.org/10.48550/ARXIV.2209.06049
https://indiankanoon.org/
https://indiankanoon.org/
https://indiankanoon.org/
https://www.casemine.com/
https://www.casemine.com/
https://www.casemine.com/

A Appendix

This appendix presents additional details on the CaseBench tool, data schemas, prompts, and examples
used in our experiments. We first describe the tools and interfaces that enable unified retrieval of legal
data, followed by schemas and query examples. We then provide sample prompts and code snippets
illustrating how we structure queries and instructions for the LLM.

A.1 CaseBench Tool and Interfaces

In this section, we provide screenshots and descriptions of the interfaces and backend systems used for
creating and interacting with the CaseBench dataset. These tools facilitate the integration of relational
data, knowledge graphs, and vector databases, accessible via GraphQL queries.

A.1.1 GraphQL Interface for Relational Data
Figure 1 shows the GraphQL interface for accessing relational data stored in PostgreSQL. This interface
enables querying case details, courts, events, and other structured attributes using a unified schema.

Figure 1: GraphQL interface for Relational Data

A.1.2 Case Graph in Neo4j
Figure 2 illustrates a portion of the legal knowledge graph stored in Neo4j. Nodes represent cases, and
edges capture citation and similarity relationships, enabling graph-based queries to find relevant precedents
and related cases.

A.1.3 Petition Drafting Application Interface
Figures 3, 4, and 5 show the user interfaces of our Petition Drafting Application. The tool provides
different views for advocates and clients, guiding them through the drafting process by retrieving necessary
legal facts via GraphQL queries.

6

Figure 2: CaseGraph stored in Neo4j database

Figure 3: Login Page of the Petition Drafting Application

7

Figure 4: Advocate View for Petition Drafting

Figure 5: Client View for Petition Drafting

8

A.1.4 Case Brief Evaluation Interface
Figure 6 shows an example interface for evaluating a student’s case brief. Here, the system can generate
factual questions and retrieve authoritative information to check the brief’s accuracy.

Figure 6: Case Brief Evaluation Interface

A.2 GraphQL Schemas and Queries
Below, we present an example GraphQL schema that unifies the PostgreSQL tables and describes the
queries supported. This schema enables seamless retrieval of data such as case details, events, grounds,
and related entities.

A.2.1 GraphQL Example Query
The following code snippet demonstrates how to query the casedetailList to retrieve case IDs, synopses,
and prayers. More complex queries can combine relational, graph, and vector data.

query {
casedetailList {

case_id
detailed_synopsis
prayer
filed_in_court_id

}
}

A.2.2 GraphQL Schema Example
The schema below shows the types and queries for interacting with relational data. Similar schemas
integrate graph and vector databases to achieve a unified retrieval interface.

9

Figure 7: Schema for Petition Drafting Data

type Casedetail {
case_id: Int!
detailed_synopsis: String
filed_in_court_id: Int
prayer: String
tid: Int
}

type Court {
court_id: Int!
name: String
}

type Event {
date: Date
description: String
event_id: Int!
related_to_case_id: Int
}
. . .
type Query {
casedetailList: [Casedetail]
courtList: [Court]
eventList: [Event]
. . .
}

A.3 LLM Prompts and Examples

This section provides examples of the prompts used to guide the LLM in various tasks such as case
similarity prediction and question-answer generation.

10

A.3.1 Case Similarity Prompts
The prompt below shows how we present pairs of legal documents along with known similarity examples
to the model. After showing a few labeled examples, the model is asked to classify a new pair.

Listing 1: Sample LLaMA-2 Prompt
[INST]Given below are four pairs of legal documents. You have been presented with

some parts of these documents and whether they are similar or not. Try to answer
for Document 9 and Document 10.

Document 1: 22. In the light of the foregoing discussion , we allow the appeals ,
set aside the impugned ...

Document 2: the suit or application the Court should accept that the statements
made in the plaint/application are ...

Similarity: Yes

Document 3: filed , unacceptable. Learned counsel for the respondent submitted
that the Court could not have granted ...

Document 4: right. By adopting the latter course indicated by us, the defendants
first set would have got a fair ...

Similarity: No

Document 5: iv) "Hits of Salman Khan" v) "Hum Aapke Hai Kaun". However , I may
clarify that it shall be open to ...

Document 6: flights can not be a ground to prevent the passengers on board from
returning to the airport lounge ...

Similarity: No

Document 7: An advocate abusing the process of court is guilty of misconduct.
When witnesses are present in the ...

Document 8: complying with the legal provisions contained in Section 309 of the
Code. Of course , the High Court ...

Similarity: Yes

Document 9: the order passed by the learned Trial Judge we wish to make it clear
that our aforesaid conclusion ...

Document 10: ... Even in the light of the principles highlighted above when the
evidence is tested , the inevitable ...

Similarity: ?

Similarly , are the given parts of Legal Document 9 and Legal Document 10 similar
apart from the fact that they contain discussions of legal terms? Give a one
word response: Yes or No.[/ INST]

A.3.2 Question-Answer Generation Prompts
For generating QA pairs, we provide examples and a target context. The model generates questions and
answers relevant to the provided legal context.

Listing 2: Sample LLaMA-2 Prompt
These are the few examples of questions pertaining to the Indian Constitution ,

judiciary , legislative , and various socio -political issues in India.
<Examples >

Context:The 'Doctrine of Basic Structure ' was propounded by the Indian Supreme Court
to limit the amendment power of the Parliament. It holds ...

Question: Can you interpret the implications of the 'Doctrine of Basic Structure ' in
the Indian Constitution?

Context:To: The Hon 'ble District and Sessions Judge , [Location]. Subject:
Application for Anticipatory Bail under Section ...

Question: How would you draft an anticipatory bail application under Section 438 of
the Code of Criminal Procedure , 1973?

Context:Honourable court , my client has been unjustly accused of defamation. However
, as the evidence will show , my ...

Question: Can you write an opening statement for a defense attorney in a defamation
case under Indian law?

11

A.4 Few-Shot examples for information retrieval from legal documents
Figure 8 and Figure 9 show how we provide few-shot examples to the LLM for tasks like extracting court
information or parsing event descriptions. These help the model learn the format and style of the output
required.

Figure 8: Few-shot examples to instruct the language model (court queries)

12

Figure 9: Few-shot examples to instruct the language model (events queries)

13

	Introduction
	Related Work
	CaseBench Dataset
	CaseBench Tasks
	Case Similarity
	Petition Drafting
	Case Brief Evaluation

	Experiments and Results
	Conclusion
	Appendix
	CaseBench Tool and Interfaces
	GraphQL Interface for Relational Data
	Case Graph in Neo4j
	Petition Drafting Application Interface
	Case Brief Evaluation Interface

	GraphQL Schemas and Queries
	GraphQL Example Query
	GraphQL Schema Example

	LLM Prompts and Examples
	Case Similarity Prompts
	Question-Answer Generation Prompts

	Few-Shot examples for information retrieval from legal documents

