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Abstract

Real-world datasets are often highly class-imbalanced, which can adversely impact
the performance of deep learning models. The majority of research on training
neural networks under class imbalance has focused on specialized loss functions,
sampling techniques, or two-stage training procedures. Notably, we demonstrate
that simply tuning existing components of standard deep learning pipelines, such
as the batch size, data augmentation, optimizer, and label smoothing, can achieve
state-of-the-art performance without any such specialized class imbalance methods.
We also provide key prescriptions and considerations for training under class
imbalance, and an understanding of why imbalance methods succeed or fail.

1 Introduction

Only a minuscule proportion of credit card transactions are fraudulent, and most cancer screenings
come back negative. In reality, some events are common while others are exceedingly rare. As a
result, machine learning systems, often developed in class-balanced settings [e.g., 48, 46, 16], are
routinely trained and deployed on class-imbalanced data where relatively few samples are associated
with certain minority classes, while majority classes dominate the datasets. Class-imbalanced training
data can negatively impact performance. Consequently, a wide body of literature focuses on specially
tailored loss functions and sampling methods for counteracting the negative effects of imbalance
[10, 14, 25, 27, 50, 61]. In striking contrast to such approaches, we instead show that simply
tuning existing components of standard neural network training routines can achieve state-of-the-art
performance on class-imbalanced image and tabular benchmarks at little implementation overhead
and without requiring any specialized loss functions or samplers designed specifically for imbalance.
Like Wightman et al. [69], who found that modern training routines allow ResNets to achieve
performance competitive with that of later architectures, we show that modern training techniques
cause the benefits of specialized class-imbalance methods to nearly vanish.

Moreover, our carefully tuned training routine can be combined with existing class imbalance
methods for additional performance boosts. Conducting evaluations on real-world datasets, we find
that existing methods, which performed well on web-scraped natural image benchmarks on which
they were designed, underperform in the real-world setting, whereas our approach is robust.

Our investigation provides key prescriptions and considerations for training under class imbalance:
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1. The impact of batch size on performance is much more pronounced in class-imbalanced
settings, where small batch sizes shine.

2. Data augmentations have an amplified impact on performance under class imbalance,
especially on minority-class accuracy. The augmentation strategies in our experiments which
achieve the best performance on class-balanced benchmarks yield inferior performance on
imbalanced problems.

3. Large architectures, which do not overfit on class-balanced training sets, strongly overfit on
imbalanced training sets of the same size. Moreover, newer architectures which work well
on class-balanced benchmarks do not always perform well under class imbalance.

4. Adding a self-supervised loss during training can improve feature representations, leading
to performance boosts on class-imbalanced problems.

5. A small modification of Sharpness-Aware Minimization (SAM) [19] pulls decision bound-
aries away from minority samples and significantly improves minority-group accuracy.

6. Label smoothing [57], especially on minority class examples, helps prevent overfitting.

To understand why exactly such training routine improvements confer significant benefits, we
investigate the role of overfitting in class-imbalanced training. Our analysis shows that naive training
routines overfit on minority samples, causing neural collapse [60], whereby features extracted from
the penultimate layer concentrate around their class-mean. Combining this analysis with decision
boundary visualizations, we demonstrate that unsuccessful methods for class-imbalanced training
overfit strongly, whereas successful methods regularize.

2 Related Work

A long line of research has been conducted on class-imbalanced classification. There are several
archetypal approaches specially designed to address imbalance:

Resampling the data. In early ensemble learning studies, boosting and bagging algorithms were
adjusted to take account of imbalanced data by resampling. Traditionally, resampling involves
oversampling minority class samples by simply copying them [25, 10, 27], or undersampling majority
classes by removing samples [17, 32, 3, 8], so that minority and majority class samples appear equally
frequently in the training process.

Loss reweighting. Reweighting methods assign different weights to majority and minority class loss
functions, increasing the influence of minority samples which would otherwise play little role in the
loss function [14, 34]. For instance, one may scale the loss by inverse class frequency [28] or reweight
it using the effective number of samples [14]. As an alternative approach, one may focus on hard
examples by down-weighing the loss of well-classified examples [50] or dynamically rescaling the
cross-entropy loss based on the difficulty of classifying a sample [61]. Bertsimas et al. [6] encourage
larger margins for rare classes, while Goh and Sim [21] learn robust features for minority classes
using class-uncertainty information which approximates Bayesian methods.

Two-stage fine-tuning and meta-learning. Two-stage methods separate the training process into
representation learning and classifier learning [54, 59, 38, 4]. In the first stage, the data is unmodified,
and no resampling or reweighting is used to train good representations. In the second stage, the
classifier is balanced by freezing the backbone and fine-tuning the last layers with resampling or by
learning to debias the class confidences. These methods assume that the bias towards majority classes
exists only in the classifier layer or that tweaking the classifier layer can correct the underlying biases.

Several works have also inspected representations learned under class imbalance. Kang et al. [38]
find that representations learned on class-imbalanced training data via supervised learning perform
better when the linear head is fine-tuned on balanced samples. Yang and Xu [71] instead examine the
effect of self- and semi-supervised training on imbalanced data and conclude that imbalanced labels
are significantly more useful when accompanied by auxiliary data for semi-supervised learning. Kotar
et al. [44], Yang and Xu [71] make the observation that self-supervised pre-training is insensitive
to imbalance in the upstream training data. These works study SSL pre-training for the purpose of
transfer learning, sometimes using linear probes to evaluate the quality of representations. Inspired
by their observations, we find that the addition of an SSL loss function on the same class-imbalanced
dataset, even when no upstream data is available, can significantly improve generalization.
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In summary, existing works propose countless approaches to address class imbalance during training.
In contrast, we show that strong performance can be achieved on class-imbalanced datasets simply
by tuning the components of standard neural networks training routines, without specialized loss
functions or sampling methods designed specifically for imbalance. Our tuned routines require little
to no additional implementation compared to standard neural network training pipelines and can be
combined with existing specialized approaches for class imbalance. We additionally provide novel
prescriptions and considerations for training under class imbalance, as well as an understanding of
how regularization can contribute to the success of training under imbalance.

3 Optimizing Training Routines for Imbalanced Data
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Figure 1: Imbalanced data prefers small batch sizes.
We plot the percent improvement in accuracy over the
baseline batch size of 128 for different train ratios as a
function of batch size. Positive values indicate higher
accuracy than the baseline. Balanced training sets yield
flatter lines, indicating insensitivity to batch size. Exper-
iments conducted with ResNet-50 on CIFAR-100.

While previous research on training class im-
balance mainly concentrated on developing new
loss functions and sampling methods tailored to
imbalanced data, little attention has been paid
to how the components of traditional training
routines interact with such data.

In this section, we delve into various methods
that can be optimized or modified specifically
for imbalanced training scenarios. For clarity
and depth of discussion, we divide these meth-
ods into two distinct groups, each discussed in
its own subsection.

Subsection 3.1 deals with what we identify as
the ”fundamental building blocks” of conven-
tional balanced training. This includes elements
like batch size, data augmentation, pre-training,
model architecture, and optimizers. We scruti-
nize the effects of altering these elements’ hy-
perparameters, emphasizing their influence on
the performance of models under imbalanced
training. Our discussion is fortified by experi-
ments conducted on both vision datasets (CIFAR-10, CIFAR-100, CINIC-10 and Tiny-ImageNet)
and tabular datasets across different network architectures.

Subsection 3.2 introduces a set of optimization methods—Joint-SSL, SAM, and label smoothing—that
we have reformed to cater more appropriately to imbalanced training. These methods, initially
designed for balanced datasets, are subjected to modifications making them more amenable to
imbalanced scenarios. The effectiveness of these methods, including comparisons to other state-of-
the-art techniques across various domains and datasets (vision and tabular), is thoroughly evaluated
in Section 3.1.1.

This structure allows a separate discourse on the fundamental aspects of deep learning training and
the particular adjustments needed for imbalanced training. Our aim is to provide a comprehensive
overview of both traditional and innovative techniques, giving readers a broad spectrum of strategies
for tackling imbalanced data.

3.1 Tuning the Building Blocks of Neural Network Training

The success of deep learning models hinges on the precise orchestration of their training routine. The
success of models is especially sensitive to this orchestration under imbalanced training data. We now
explore the building blocks of neural network training routines and their importance in optimizing
models for imbalanced data. This study equips researchers and practitioners with practical strategies
to improve the performance of their models under class imbalance. In this subsection, we focus on
batch size, data augmentation, pre-training, model architecture, and optimizers.
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3.1.1 Experimental Setup

Datasets. To conduct our investigation, we leverage three benchmark image datasets: CIFAR-10 [46],
CIFAR-100, and CINIC-10 [15], along with three tabular datasets: Otto Group Product Classification
[37], Covertype [7], and Adult datasets [43]. For naturally balanced datasets, we adopt the imbalanced
setup proposed by Liu et al. [54], which employs an exponential distribution to imbalance classes,
closely mirroring real-world long-tailed class distributions. The Class-imbalance ratio (r) represents
the ratio of samples in the rarest to the most frequent class. A dataset with r = 1 is fully balanced,
while r = 0.1 indicates that the majority class has ten times more samples than the minority class.
We investigate varying imbalance ratios in both the training and test sets.

Models. For image datasets, we utilize ResNets [29] and WideResNet [73] with different depths
(8, 32, 50, and 152). In addition, to evaluating the role of architecture in imbalanced training, we
also employ DenseNet [35], MobileNetV2 [62], Inception v3 [67], EfficientNet [68], and VGG
[64]. Tabular datasets are processed using XGBoost [11], SVM, and MLP. We follow the supervised
pre-training protocol of Kang et al. [39], while for self-supervised pre-training, we employ SimCLR
[12] and VICReg [5], where the fine-tuning is as described in Kotar et al. [44]. Further details can be
found in Appendix B.

Metrics. In addition to overall test accuracy, we provide minority and majority class accuracy
(representing the 20% of classes with the smallest and largest number of samples) in the appendix, if
not in the main body of the paper. We conduct five runs with different seeds for each evaluation in
our experiments and report the mean along with one standard error.

3.1.2 Results

Batch size. Studies conducted on balanced training data suggest that small batch sizes may exhibit
superior convergence behavior, while large batch sizes can reach optimal minima unattainable by
smaller sizes [41]. In class-imbalanced settings, one intuition is that larger batch sizes may be
necessary to obtain enough samples from the minority class and counteract forgetting. On the other
hand, large batches can also increase the risk of overfitting.

To examine the influence of batch size in class-imbalanced contexts, we train networks with varying
batch sizes across multiple training ratios. In Figure 1, we plot the percent improvement in accuracy
over the baseline (which is set as best batch size 128 as a function of batch size for several training
ratios. Positive values represent higher accuracy compared to the baseline, whereas negative values
denote lower accuracy.

Our analysis reveals that batch size has a much greater impact in highly imbalanced settings and
very little impact in balanced settings. Notably, data with a high degree of class imbalance tends to
benefit from smaller batch sizes, even though small batches often do not contain minority samples,
possibly due to the regularization effects that help mitigate overfitting to the majority classes. See
Appendix A.1 for additional details and experiments.

Data augmentation. Data augmentation is a feature of virtually all modern image classification
pipelines. We now investigate the impacts of various augmentation policies across varying levels of
class imbalance. Our experiments show that the effects of data augmentation are greatly amplified
on imbalanced data, especially for minority classes (Figure 2 - left). This finding suggests that
augmentation serves as a regularizer, supporting recent studies on the role of data augmentation
in preventing overfitting during class-balanced training [20]. Moreover, we find that the optimal
augmentation policy can depend on the level of imbalance.

We assess our findings using a variety of augmentation methods including horizontal flips, random
crops, AugMix [31], TrivialAugmentWide [58], AutoAugment [13], Mixup, CutOut, and Random
Erasing.

To identify the most potent data augmentation strategy, we gauge the improvement in accuracy,
represented as the percentage increase compared to training without augmentation, in Appendix A.2.
While TrivialAugment outperforms other methods on balanced training data, AutoAugment emerges
as the most effective for imbalanced data

Furthermore, we examine the sensitivity of performance to the specific augmentation method used.
By assessing the variance in performance across different augmentations for balanced and imbalanced
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Figure 2: Left: Augmentations yield far bigger improvements on minority classes. We compare the percent
improvement in test accuracy of TrivialAugment compared to training without any augmentation as a function
of the training ratio. Right: The type of augmentation matters more on imbalanced data. Augmentation
variance measures the variance in percent improvement over training without augmentation across different
augmentation types. Variance across augmentation types on imbalanced data is much greater for minority
classes, indicating the importance of choosing an appropriate augmentation policy. Experiments conducted with
ResNet-50 on CIFAR-100. Error bars represent one standard error over 5 trials.
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Figure 3: Left: Deeper architectures overfit on class-imbalanced data. While deeper ResNet models perform
better on balanced data, they can overfit and underperform on imbalanced data. Right: Performance on
balanced and imbalanced datasets is virtually uncorrelated across a wide variety of architectures (Pearson
correlation coefficient 0.14). Experiments conducted on CIFAR-100 with an imbalanced train ratio of 0.001.
Error bars represent one standard error over 5 trials.

situations (see Figure 2), we find that minority class performance is particularly sensitive to the
chosen augmentation policy See Appendix A.2 for additional details and experiments.

Model architecture. While larger networks often enhance performance on class-balanced datasets
without overfitting, their efficacy on imbalanced data remains unexplored. To probe this behavior, we
train ResNets of various sizes on both balanced and imbalanced data with a training ratio of 0.01.
We plot the test accuracy on minority classes as a function of the network’s size in Figure 3 (left).
While the network’s performance on balanced data monotonically improves with increasing size, its
performance on imbalanced data peaks at a size with 20 million parameters, and declines thereafter.
This dip in performance suggests that, unlike their behavior on balanced data, larger networks may
be susceptible to overfitting minority classes in the face of severe class imbalance. We then plot the
test accuracy of a wide variety of architectures on the balanced and imbalanced CIFAR-100 variants
in Figure 3 (right), and find that accuracies in these two settings are virtually uncorrelated! Computer
vision architectures have largely been developed on well-known class-balanced benchmarks like
ImageNet [16]. These developments may not generalize to imbalanced settings which are common in
the real world. See Appendix A.3 for additional details and experiments.

Pre-training. Fine-tuning models pre-trained on expansive upstream datasets can markedly enhance
performance across a variety of domains by equipping the model with an informative initial parameter
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vector learned from pre-training data [12, 65]. Self-Supervised Learning (SSL) has emerged as a
highly effective strategy for representation learning in fields such as computer vision, natural language
processing (NLP), and tabular data. Networks pre-trained using SSL often produce more transferable
representations than those pre-trained through supervised learning. Furthermore, self-supervised
pre-training strategies for transfer learning display greater robustness to upstream imbalance com-
pared to supervised pre-training [51]. We observe in our experiments that pre-trained backbones
provide considerably greater benefits under severe downstream class imbalance than under balanced
downstream training sets. The ability for SSL pre-training to mitigate overfitting could therefore be
particularly valuable in the class-imbalanced setting.

To gauge the effectiveness of pre-training, we fine-tune various pre-trained models on downstream
datasets with a range of class imbalance ratios. We make use of pre-trained ResNet-50 weights
learned on ImageNet-1K [16], ImageNet-21K, and two self-supervised learning methods, SimCLR
and VICReg. Figure 4 depicts the relative improvement in test accuracy compared to training from
random initialization across different pre-training models. A positive value signifies a performance
improvement. All pre-training methods notably outperform random initialization. However, we
observe a considerably larger improvement under class imbalanced scenarios, where models pre-
trained on larger datasets yield greater boosts in accuracy. Moreover, SSL methods conducted on
ImageNet-1K surpass supervised pre-training on the same upstream training set. See Appendix A.4
for additional details and experiments.

3.2 Improved Optimization Methods for Class Imbalance
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Figure 4: Pre-training is more impactful on imbal-
anced downstream data. % Improvement refers to
the improvement in test accuracy compared to training
from random initialization. The benefits of SSL over
supervised pre-training are also amplified under class
imbalance. Experiments conducted with ResNet-50 on
CIFAR-100.

While the fundamental building blocks above
provide a strong foundation for training perfor-
mant models, we can also customize modern
optimization techniques specifically for imbal-
anced training and achieve further gains. This
subsection showcases adapted variants of SSL,
SAM, and label smoothing.

Self-Supervision. Self-Supervised Learning
(SSL) has received substantial attention in rep-
resentation learning, particularly in computer
vision, NLP, and tabular data [12, 40, 65, 49],
especially for training on massive volumes of un-
labeled data. Networks pre-trained via SSL of-
ten showcase more transferable representations
compared to those pre-trained through super-
vised methods [24]. Moreover, self-supervised
pre-training strategies for transfer learning ex-
hibit more robustness to upstream imbalance
compared to supervised pre-training [51]. De-
spite these advantages, the availability of mas-
sive pre-training datasets can often be a limiting
factor in many use cases.

Traditionally, pre-training involves a two-step process: learning on an upstream task, followed
by fine-tuning on a downstream task. In our approach, we instead integrate supervised learning
with an additional self-supervised loss function during from-scratch training, bypassing the need
for pre-training. The simple integration of an SSL loss function, which does not depend on class-
imbalanced labels and is insensitive to imbalance, results in improved feature representations and
better generalization. We refer to this combined training procedure as Joint-SSL. It is important to
note that our method differs from those used in Kotar et al. [44], Yang and Xu [71], Liu et al. [51],
which investigate SSL pre-training on larger datasets for transfer learning, rather than directly training
with an SSL objective on downstream data. See Appendix A.5 for additional details.

Sharpness-Aware Minimization (SAM). SAM [19] is an optimization technique for finding “flat”
minima of the loss function, often improving generalization. The technique involves taking an inner
ascent step followed by a descent step to find parameters that minimize the increase in loss from the
ascent step. Huang et al. [36] shows that flat minima correspond to wide-margin decision boundaries.
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We thus adapt SAM for class-imbalanced cases by increasing the flatness especially for minority
class loss terms. To do so, we increase the ascent step size in SAM’s inner loop for minority classes,
denoting this method SAM-Asymmetric (SAM-A). Plotting the decision boundaries of a small
multi-layer perceptron on a toy 2D dataset (Appendix Figure 18), we observe that classifiers naturally
form small margins surrounding minority class samples. SAM-A expands these margins, preventing
the model from overfitting to the minority samples. See Appendix A.6 for additional details.

Label smoothing. Conventionally, classifiers are trained with hard targets, minimizing the cross-
entropy between true targets yk and network outputs pk as in H(y; p) =

∑K
k=1 −yk log(pk), with yk

equal to 1 for the correct class and 0 otherwise. Label smoothing uses a smoothing parameter, ϵ to
instead minimize the cross-entropy between smoothed targets yLSk

and network outputs pk, where
yLSk

= yk(1− ϵ) + ϵ/K [57].

We adapt label smoothing for the class-imbalanced setting by applying more smoothing to minority-
class examples than to majority-class examples. This procedure prevents overfitting on minority
samples. See Appendix A.7 for additional details and experiments.

Dataset curation. Common intuition dictates that training on data that is more balanced than the
testing distribution can improve representation learning by preventing overfitting to minority samples
[25, 10, 27]. In Appendix A.8, we find that this intuition may be misguided both for neural networks
and gradient-boosted decision trees, especially on large datasets, and that curating additional samples
may in fact be destructive if the proper dataset balance is not maintained.

4 Benchmarking Training Routines under Class Imbalance

In the preceding sections, we examined various building blocks of balanced training routines and
presented modifications of optimization methods—label smoothing, Sharpness-Aware Minimization,
and self-supervision—tailored specifically for imbalanced scenarios. In this section, we compare
the performance of models trained using our modified methods to those trained using existing state-
of-the-art methods for handling class imbalance. To ensure a fair and unbiased comparison, all
methods are trained using the same refined training routines. Our comparison provides evidence of
the effectiveness of our proposed methods when coupled with our optimized routines.

4.1 Vision Datasets

4.1.1 Experimental Setup

Datasets. We perform experiments on six image datasets, including natural image, medical, and
remote sensing datasets: CIFAR-10 [46], CIFAR-100, CINIC-10 [15], Tiny-ImageNet[16], SIIM-
ISIC Melanoma [26], APTOS 2019 Blindness [1] and EuroSAT [30].

Baseline Methods. We compare to the following comprehensive range of baselines: (a) Empirical
Risk Minimization (ERM) involves training on the cross-entropy loss without any re-balancing.
(b) Resampling balances the objective by adjusting the sampling probability for each sample. (c)
Synthetic Minority Over-sampling Technique (SMOTE) [10] is a re-balancing variant that involves
oversampling minority classes using data augmentation. (d) Reweighting [33] simulates balance by
assigning different weights to the majority and minority classes. (e) Deferred Reweighting (DRW)
involves deferring the resampling and reweighting until a later stage in the training process. (f)
Focal Loss (Focal) [50] upweights the objective for difficult examples, thereby focusing more on the
minority classes. (g) Label-Distribution-Aware Margin (LDAM-DRW) [9] trains the classifier
to impose a larger margin on minority classes. (h) M2m [42] translates samples from majority to
minority classes. Lastly, (i) MiSLAS [75] is a two-stage training method that combines mixup [74]
with label smoothing. We also combine our techniques with previous state-of-the-art Major-to-minor
Translation (M2m) [42] and observe it improves performance over M2m alone.

Evaluation. We follow the evaluation protocol used in [54, 42], training models on class-imbalanced
training sets and evaluating them on balanced test sets. We evaluate on four benchmark datasets for
imbalanced classification: CIFAR-10, CIFAR-100 [46], CINIC-10 [15] and Tiny-ImagNet [47] with
training ratios of 0.01, 0.02, and 0.1. Additionally, we use three real-world datasets, namely APTOS
2019 Blindness Detection [1], SIIM-ISIC Melanoma Classification [26], and EuroSAT [30].
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Table 1: Our training routines exceed previous SOTA or improve existing methods when combined.
Accuracy on various datasets using different methods. Error bars correspond to one standard error over 5 trials.

CIFAR-10 CIFAR-100 CINIC-10 Tiny-ImageNet (0.1)
Method 0.01 0.02 0.01 0.02 0.01 0.02 SwinV2 ConvNeXt

ERM 84.9± 0.2 84.2± 0.3 47.7± 0.5 52.5± 0.4 78.6± 0.2 82.3± 0.3 53.4± 0.2 53.1± 0.3

Reweighting 81.8± 0.3 79.6± 0.4 42.1± 0.4 47.8± 0.3 71.4± 0.4 74.9± 0.4 52.8± 0.4 52.3± 0.1

Resampling 82.1± 0.3 79.0± 0.2 42.8± 0.3 48.2± 0.4 72.1± 0.5 75.6± 0.4 52.5± 0.3 52.1± 0.2

Focal Loss 83.2± 0.5 84.4± 0.4 47.1± 0.5 52.9± 0.5 74.9± 0.4 78.4± 0.3 53.5± 0.1 53.1± 0.4

LDAM-DRW 84.9± 0.3 82.9± 0.4 47.2± 0.4 53.3± 0.3 76.0± 0.3 79.7± 0.4 54.2± 0.2 53.4± 0.3

M2m 84.5± 0.2 84.3± 0.2 47.1± 0.3 52.1± 0.3 78.3± 0.5 81.3± 0.5 54.3± 0.4 53.9± 0.2

MiSLAS 85.1± 0.3 84.3± 0.3 47.3± 0.3 53.1± 0.5 78.1± 0.2 81.8± 0.3 54.1± 0.3 53.4± 0.1

SAM-A 85.4± 0.3 83.3± 0.3 47.1± 0.4 52.7± 0.2 77.3± 0.2 80.9± 0.2 54.7± 0.4 53.9± 0.2

Joint-SSL 85.2± 0.2 84.1± 0.2 47.0± 0.2 51.7± 0.5 77.5± 0.3 81.3± 0.3 54.3± 0.2 53.7± 0.3

Joint-SSL +
SAM-A + Smoothing 85.9± 0.2 84.7± 0.3 48.0± 0.3 52.6± 0.3 78.1± 0.6 82.3± 0.4 54.8± 0.1 54.1± 0.4

Joint-SSL +
SAM-A + M2m 86.0± 0.5 85.0± 0.4 48.9± 0.2 53.8± 0.2 79.2± 0.4 82.1± 0.3 55.0± 0.2 54.3± 0.3

Training procedure. Our training protocol for all methods incorporates TrivialAugment [58] +
CutMix [72] as an augmentation policy, along with label smoothing and an exponential moving
weight average with small batch size on image classification. We use WideResNet-28×10 [73] for
CIFAR-10, CIFAR-100, and CINIC-10 datasets. For Tiny-ImageNet we use both ConvNeXt [53]
and Swin transformer v2 [52] and ResNeXt-50-32×4d [70] for the real-world datasets following the
comparisons in Fang et al. [18]. We provide further implementation details in Appendix B.

4.1.2 Image Classification Benchmarks

We see in Table 1 that our adaptations alone bring the performance of standard ERM training remark-
ably close to or even exceeding that of state-of-the-art imbalanced training methods. Additionally,
the integration of our findings from Section 3 with Joint-SSL and Asymmetric-SAM atop M2m
establishes a new state-of-the-art across all benchmark datasets. Even using only our self-supervision
and Asymmetric-SAM (without M2m) often surpasses the previous state-of-the-art. Furthermore, the
integration of our previous findings from Section 3 with Joint-SSL and Asymmetric-SAM atop M2m
establishes new state-of-the-art performance across all benchmark datasets.

Our combined method enhances minority class accuracy while preserving accuracy on majority
classes. On the 20 smallest classes of CIFAR-100, our method reduces error by 5.4% − 6.8%
compared to baseline methods. On CINIC-10, our approach enhances the generalization on the
two smallest minority classes by 4.6% − 8.5% compared to baseline methods. Additional results
regarding split class accuracy and different backbones can be found in Appendix A.9.

4.1.3 Real-World Datasets
Table 2: Our routines exceed previous SOTA on real-
world datasets. Error bars corresponds to one standard
error over 5 trials using ResNeXt-50-32×4. ↑ denotes
the method on the line above.

Method SIIM-ISIC
Melanoma

APTOS 2019
Blindness EuroSAT

ERM 95.1± 0.3 89.1± 0.3 99.0± 0.2

Reweighting 94.7± 0.3 88.4± 0.2 98.4± 0.3

Resampling 94.9± 0.2 88.7± 0.4 98.7± 0.3

Focal Loss 95.0± 0.2 89.2± 0.3 98.9± 0.3

LDAM-DRW 95.2± 0.2 89.0± 0.4 99.0± 0.4

M2m 95.2± 0.2 89.6± 0.5 99.3± 0.2

MiSLAS 95.4± 0.2 89.4± 0.4 99.2± 0.3

Joint-SSL 95.7± 0.3 89.7± 0.5 99.1± 0.2

↑ + SAM-A 96.0± 0.2 90.1± 0.6 99.1± 0.2

↑ + Smoothing 96.2± 0.2 90.1± 0.6 99.3± 0.2

Since the majority of research on class-
imbalanced training focuses on web-scraped
datasets such as ImageNet or CIFAR-10 and
CIFAR-100, we now investigate whether such
advances are overfit to these datasets or whether
they are robust in other settings.

To address this question, we consider the SIIM-
ISIC Melanoma, APTOS 2019 Blindness, and
EuroSAT datasets. In Table 2, we observe that
our highly tuned training routine equipped with
Joint-SSL, Asymmetric-SAM, and modified la-
bel smoothing delivers equal or superior per-
formance compared to previous state-of-the-art
imbalanced training methods on all datasets.

Correlation between performance on differ-
ent datasets. Given the superior performance of
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our approach on these datasets, we now examine the correlation between the performance of various
methods on CIFAR-10 (with a training ratio of 0.01) and their performance on real-world datasets.
Our findings, illustrated in Table 3, reveals a surprisingly low correlation. This low correlation
suggests that a method’s successful application to web-scraped datasets like CIFAR-10 does not
necessarily translate into equivalently strong performance on real-world datasets. These findings
further underscore the need for a more diverse range of datasets in the development and testing of
machine learning methods for class imbalance.

4.2 Tabular Datasets

Table 3: There is only a weak correlation
between CIFAR-10 test accuracy and per-
formance on real-world datasets.

Dataset Correlation Slope

APTOS 2019
Blindness 0.11 0.04

SIIM-ISIC
Melanoma 0.19 0.03

EuroSAT 0.03 0.04

Tabular data problems represent a challenging frontier for
deep learning research. While recent advances in natural
language processing (NLP), vision, and speech recognition
have been driven by deep learning models, their efficacy
in the tabular domain remains unclear. Notably, there is a
debate over the performance of neural networks in compar-
ison to decision tree ensembles like XGBoost [11, 63, 56].
Despite the fact that most tabular datasets inherently ex-
hibit imbalance, there has been limited research addressing
the impact of imbalanced data on deep learning in tabular
domains.

We thus apply our findings to imbalanced tabular datasets,
using a Multilayer Perceptron (MLP) with the improved
numerical feature embeddings of Gorishniy et al. [23]. Our approach incorporates SAM-A, modified
label smoothing, and SGD with cosine annealing performed and small batch size.

We apply our methods to the following three imbalanced tabular datasets: Otto Group Product
Classification [37], Covertype [7], and Adult datasets [43]. We compare our methodology with the
following baseline methods: (1) XGBoost, (2) MLP, (3) ResNet, and (4) FT-Transformer, where the
last three baselines are employed as in Gorishniy et al. [22]. Our tuning, training, and evaluation
protocols are consistent with those in Gorishniy et al. [23]. For full details about the training
procedures, see Appendix A.9.1.

We see in Table 6 that our tuned training routine outperforms both XGBoost and recent state-of-
the-art neural methods on all datasets, demonstrating the applicability of our findings beyond image
classification.

5 Regularization and Overfitting in Class-Imbalanced Training

Specialized loss functions and sampling methods for class-imbalanced learning are often designed to
mitigate overfitting [42], yet we rarely look under the hood to understand what happens to models
trained in this setting. In this section, we quantify and visualize overfitting during class-imbalanced
training, and we find that successful methods regularize against this overfitting.

One concern for training under class imbalance might be optimization. Perhaps minority samples
are hard to fit since they occur infrequently in batches during training. In Appendix A.10, we verify
that empirical risk minimization, without any special interventions, easily fits all training data. This
observation indicates that variations in performance among the different methods we compare stem
not from their optimization abilities but from their generalization to unseen test samples.

To understand the differences between classifiers learned on imbalanced training data, we visualize
their decision boundaries on a 2D toy problem with a multi-layer perceptron. Standard training results
in small margins around minority class samples, whereas SAM-A, acting as a regularizer, expands
these margins (Figure 18a). For additional examples, see Appendix A.11, where we also use the
method introduced by Somepalli et al. [66] to visualize decision boundaries.

To quantify these observations, we examine the Neural Collapse phenomenon [45], which was
previously observed in the class-balanced setting. Neural Collapse refers to the tendency of the
features in the penultimate layer associated with training samples of the same class to concentrate
around their class-means. Our investigation focuses on two metrics:
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Class-Distance Normalized Variance (CDNV): This metric evaluates the compactness of features
from two unlabeled sample sets, S1 and S2, relative to the distance between their respective feature
means. A value trending towards zero indicates optimal clustering.

Nearest Class-Center Classifier (NCC): As training progresses, feature embeddings in the penulti-
mate layer undergoing Neural Collapse become distinguishable. Consequently, the classifier tends to
align with the ’nearest class-center classifier’.

Table 4: Neural Collapse during class-imbalanced training.
Neural collapse (low CDNV and high NCC) corresponds to low
test accuracy. Experiments conducted on CIFAR-10.

Method CDNV NCC Accuracy

ERM 0.42± 0.02 0.92± 0.02 84.58± 0.40

Reweighting 0.38± 0.02 0.94± 0.01 82.62± 0.44

Resampling 0.38± 0.03 0.97± 0.01 82.16± 0.43

LADM-DRW 0.41± 0.02 0.94± 0.01 83.86± 0.23

Joint-SSL
+ SAM-A 0.43± 0.02 0.90± 0.02 84.80± 0.43

We see in Table 4 that the collapse,
measured by CDNV and NCC for
minority training examples, is sig-
nificantly worse in standard training
without class-imbalance interventions.
Furthermore, a correlation exists be-
tween the degree of collapse and the
performance of the different meth-
ods. Specifically, methods that suc-
cessfully counteract Neural Collapse
exhibit superior performance.

We conclude that well-tuned training
routines can regularize and prevent
overfitting to minority class training
samples without specialized loss functions or sampling methods, which is associated with perfor-
mance improvements on class-imbalanced data. See Appendix A.10 for more details.

6 Discussion

While neural network training practices have been studied extensively on class-balanced benchmarks,
real-world problems often involve class imbalance. We have shown that class-imbalanced datasets
require carefully tuned batch sizes and smaller architectures to avoid overfitting, as well as specially
chosen data augmentation policies, self-supervision, sharpness-aware optimizers, and label smoothing.
Whereas previous state-of-the-art works for class-imbalance focused on specialized loss functions or
sampling methods, we show that simply tuning standard training routines can significantly improve
performance over such ad hoc approaches.

Our findings give rise to several important directions for future work:

• We saw that existing methods designed for web-scraped natural image classification bench-
marks do not always provide improvements on other real-world problems. If we are to
reliably compare methods for class imbalance, we need a more diverse benchmark suite.

• Since most real-world datasets are class-imbalanced and architectures designed for class-
balanced benchmarks like ImageNet are highly suboptimal under class imbalance, perhaps
future work should build architectures which are specifically optimized for class imbalance.

• The generalization theory literature explains the tradeoff between fitting training samples
and the complexity of learned solutions [55]. Can PAC-Bayes generalization bounds explain
the large role regularization plays in successful training under class imbalance?

• Language models perform classification over tokens, but some tokens occur much less
frequently than others. How can we apply what we have learned about training under class
imbalance to language models?
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Appendix Outline

. This appendix is organized as follows:

• In Appendix A, we provide more detailed results on additional datasets for the different
components discussed in Section 3. Specifically, in subsections Appendices A.1 to A.7, we
present results on batch size, data augmentation, model architectures, pre-training, SSL,
Sharpness-Aware Minimization, and label smoothing. These subsections delve into the
specific effects and outcomes of each component.

• In Appendix A.8, we examine the relationship between the training and test distributions
in imbalanced training. We explore the optimal balance of training data and discuss the
potentially destructive impact of collecting additional majority samples.

• In Appendix A.9, we present additional and extended experimental results that compare the
methods proposed in our paper with the baseline methods.

• In Appendix A.10, we provide additional experimental results that illustrate how the training
process evolves for imbalanced data.

• In Appendix A.11, we include decision boundary visualizations for imbalanced training.
Specifically, we demonstrate that Sharpness-Aware Minimization (SAM-A) helps decision
regions take up similar volumes, whereas standard training routines tend to shrink-wrap the
decision boundaries around minority samples.

• In Appendix B, we provide detailed information on the hyperparameters, datasets, and
architectures used in our experiments.

• In Appendix C, we discuss the limitations of our study. This section addresses potential
constraints, challenges, and areas for improvement in our research.

• Lastly, in Appendix D, we discuss the broader impact of our work. This section explores the
implications, significance, and potential applications of our findings beyond the scope of the
immediate study.

A Additional Experiments

A.1 Batch Size

To investigate the impact of batch size in the context of class imbalance, we train networks across
various training ratios using different batch sizes. In order to compare the accuracy for each training
ratio, we calculate the percentage improvement over the baseline (set as the best batch size of 128).
Specifically, if we denote Accρb as the accuracy on the imbalanced dataset with training ratio ρ and
batch size b, we define the adjusted accuracy newAcc

ρ
b as

Ācc
ρ
b =

Accρb −Accρ128
Accρb

. (1)

Positive values represent higher accuracy compared to the baseline, while negative values denote
lower accuracy. This normalization allows us to examine the relative effect of batch size. As shown
in the main text and Figure 5, data with a high degree of class imbalance tends to benefit from smaller
batch sizes, despite the fact that small batches often do not contain any minority samples.

A.2 Data Augmentation

In order to evaluate and compare the effectiveness of various popular augmentation tech-
niques—including horizontal flips, random crops, AugMix [31], TrivialAugmentWide [58], and
AutoAugment [13]—we investigate their impact on the accuracy of minority and majority classes
across a range of training ratios.

We measure the relative improvement in performance by comparing the accuracy achieved with data
augmentation to that achieved without it. We thus plot the percentage improvement as a function of
the training ratio in Figure 6.
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Figure 5: Batch size matter more for imbalanced data where small batch sizes are best, whereas the curve
corresponding to balanced data is flat. Percentage improvement in test accuracy over the default batch size of
128 at different training ratios. Experiments conducted on CIFAR-10.

Our findings reveal that while the newer TrivialAugment method exhibits superior performance on
balanced training data, the older AutoAugment method yields better results on highly imbalanced
data.
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Figure 6: Optimal augmentations depend on the imbalance ratio. We plot the percent improvement in test
accuracy for different augmentations compared to training without augmentations across train ratios for different
augmentations. We see that TrivialAugment, which is known to outperform AutoAugment on class-balanced
data, actually performs worse when data is severely imbalanced. Experiments conducted on CIFAR-100.

A.3 Model architecture

In Figure 8, we illustrate the impact of model size on the performance of the CIFAR-10 dataset with
a training ratio of 0.001. The trend observed is similar to the results discussed in the main text, where
increasing the model size leads to overfitting in the case of imbalanced training.
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Figure 7: Strong augmentations are particularly effective at improving minority class accuracy under
severe class imbalance. The percent improvement in test accuracy of TrivialAugment compared to training
without any augmentation as a function of the training ratio. Experiments conducted on CIFAR-10. Error bars
represent one standard error over 5 trials.
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Figure 8: Bigger architectures overfit on class-imbalanced data. Experiments conducted on CIFAR-10. Error
bars represent one standard error over 5 trials.

A.4 Pre-training

To assess the effectiveness of pre-training, we fine-tune several pre-trained models on downstream
datasets with varying training ratios. In addition to the main body, Figure 10 illustrates the percentage
improvement in test accuracy compared to random initialization for supervised pre-training on
ImageNet-1k and ImageNet-21k, as well as SimCLR on ImageNet-1k (which is a Self-Supervised
Learning (SSL) method), measured by downstream performance on CIFAR-10. This comparison is
made across different training ratios (Figure 4). Let AccρRand denote the accuracy of the model trained
from random initialization at a training ratio ρ. The relative improvement is then defined by:

Ācc
ρ
b =

Accρb −AccρRand

AccρRand
(2)
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Figure 9: Bigger architectures overfit on class-imbalanced data. Experiments were conducted on CINIC-10
with an imbalanced train ratio of 0.001. Error bars represent one standard error over 5 trials.

Positive values indicate an improvement in performance compared to random initialization. It is
clear that all pre-training methods improve performance when compared to random initialization.
Interestingly, these improvements are significantly more pronounced under imbalanced conditions.
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Figure 10: Pre-training yields bigger improvements on more imbalanced data. The improvement in the test
accuracy compared to training from random initialization. Experiments conducted on CIFAR-10.

A.5 SSL

Self-supervised learning (SSL) has gained substantial traction as a method of representation learning
across multiple domains, including computer vision, natural language processing, and tabular data
[12, 40, 65]. Networks pre-trained using SSL often demonstrate more transferable representations
than those pre-trained with supervision [24]. Pre-training traditionally consists of a two-stage process:
initial learning on an upstream task followed by fine-tuning on a downstream task. However, the
limitation in many use-cases is the lack of large-scale pre-training datasets. In order to solve this
problem, our approach diverges from this two-stage process by merging supervised learning with an
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auxiliary self-supervised loss function during from-scratch training, effectively eliminating the need
for any pre-training.

For this, we employ the Variance-Invariance-Covariance Regularization (VICReg) objective [5]:

Given two batches of embeddings, Z = [f(x1), . . . , f(xB)] and Z ′ = [f(x′
1), . . . , f(x

′
B)], each of

size (B ×K), where xi and x′
i are two distinct random augmentations of a sample Ii, we derive the

covariance matrix C ∈ RK×K from [Z,Z ′].

Consequently, the VICReg loss can be articulated as:

LSSL=
1

K

K∑
k=1

αmax
(
0, γ −

√
Ck,k + ϵ

)
+β

∑
k′ ̸=k

(Ck,k′)
2

+ γ∥Z −Z ′∥2F /N.

In our experiments, the total loss is given by

LJoint−SSL = LSSL + λLSupervised.

Note that the SSL loss function is independent of the class-imbalanced labels.

A.6 SAM

Sharpness-Aware Minimization [19] is an optimization technique that seeks to find “flat” minima
of the loss function, often leading to improved generalization. This method consists of taking an
initial ascent step followed by a descent step, aiming to find parameters that minimize the increase
in loss resulting from the ascent step. Huang et al. [36] demonstrate that flat minima correspond to
wide-margin decision boundaries.

Given a model parameterized by weights θ and a loss function L(θ) that we aim to minimize, SAM
performs two steps in each iteration:

1. First step (gradient ascent): Perform a scaled gradient ascent step from the current model
weights θ:

θ′ = θ + ρ|∇L(θ)|2
∇L(θ)

|∇L(θ)|2
(3)

2. Second step (weight update): Update the weights from θ in the negative direction of the
gradient computed at the post-ascent parameter vector:

θ = θ − η∇L (θ′) (4)

In the above steps, η represents the learning rate, ρ is a hyperparameter determining the size of the
neighborhood around the current weights, and | · |2 denotes the Euclidean norm.

SAM was initially developed for balanced datasets, where the decision boundaries for each class have
comparable areas. However, this assumption does not hold true for imbalanced datasets. To address
this, we adapted SAM for use with class-imbalanced datasets by increasing the flatness specifically
for minority class loss terms. We propose a new method - SAM-Asymmetric (SAM-A). Our method
adjusts the ascent step size (ρ) in SAM’s inner loop for minority classes by employing a step size
inversely proportional to the classes’ proportions.

Let pi be the proportion of class i in the training set. We define the class-conditional ascent step size
as:

ρi =
ρ

1− pi
, (5)

where ρ is a scaling factor.

By doing this, we widen the margins around under-represented classes, potentially improving
generalization in imbalanced datasets.
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A.7 Label Smoothing

Label smoothing is a regularization technique often used in training deep learning models. It
mitigates the model’s excessive confidence in class labels, which can improve generalization and
reduce overfitting. However, traditional label smoothing assumes a balanced class distribution, which
is not always the case in real-world datasets.

To adapt label smoothing for imbalanced training, we propose a class-conditional label smoothing
technique. Instead of using a uniform smoothing parameter ϵ, we use a different ϵi for each class i,
which is proportional to the inverse of the class’s proportion within the dataset.

Let pi be the proportion of class i in the training set. We define the class-conditional smoothing
parameter as:

ϵi =
ϵ

1− pi
, (6)

where ϵ is a scaling factor.

We then apply label smoothing as follows. Let p be the model’s output probability distribution over
K classes, and let qi be the target distribution for class i. The smoothed target distribution is:

qi,j = (1− ϵi)Iy=j +
ϵi
K

, (7)

where j ∈ 1, 2, ...,K, y is the true class, and I. is the indicator function.

During training, we minimize the cross-entropy loss between the model’s predictions p and the
class-conditional smoothed labels qi:

L = −
K∑
i=1

qi,y log py (8)

By using class-conditional label smoothing, we apply more smoothing to the minority classes and
less to the majority classes, which can help the model generalize better when the class distribution is
imbalanced.

A.8 Data Curation

Common intuition dictates that training on data that is more balanced than the testing distribution can
improve representation learning by preventing overfitting to minority samples [25, 10, 27]. In this
section, we put that intuition to the test by examining the optimal balance of training data. Moreover,
while minority class samples may be scarce, a practitioner may be able to collect additional majority
class training samples at will, so we also examine the potentially destructive impact of collecting
additional majority samples.

A.8.1 The Relationship Between Train-Time and Test-Time Imbalance

The literature on training routines for class imbalance in machine learning is filled with methods
designed for scenarios in which training data is highly imbalanced but testing data is balanced.
However, data encountered during deployment is typically also imbalanced. Therefore, we disentangle
training and testing balances and investigate how sensitive models are to discrepancies between
the two. This study may be particularly important if one considers collecting training data for a
downstream application. Should we gather training data with the same balance we anticipate during
testing? How worried should we be if the data we encounter during deployment is more or less
balanced than the training data we gathered?

We begin by illustrating three scenarios in Figure 11: (1) identical training and testing ratios, (2)
balanced training, and (3) the training ratio with the lowest test error (optimal training ratio). We see
that training on data with the same imbalance as the testing data is superior to training on balanced
data, and the two strategies only approach equal performance when the testing data becomes balanced.
We share additional results over different datasets and models in Figure 20, Figure 21, and Figure 22.
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We then plot for each test ratio the corresponding train ratio that results in the lowest test error in
Figure 12. If the two ratios are perfectly aligned, then points will lie on the diagonal. Indeed, the
points are close to the diagonal, indicating that it is best to train with a very similar imbalance ratio to
the test dataset, especially for highly imbalanced testing scenarios.

In these previous experiments, we fixed the size of the training set, but what happens as we gather
more and more training data? In Figure 15, we train and evaluate a network on different imbalance
ratios across training set sizes, and we plot the misalignment between the train and test ratios, referring
to the average distance between the optimal train ratio and the specified test ratio. As the amount of
training data increases, we see that the optimal training ratio becomes more and more close to the
ratio of the test data.
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Figure 11: Imbalanced training data is optimal for imbalanced testing scenarios. Test accuracy as a function
of the test ratio for different training setups. Experiments conducted on CIFAR-100.

A.8.2 When More Data Degrades Performance

In practice, a practitioner may not have precise control over the data they collect. Will collecting
additional samples always help performance? Instead of fixing the total number of samples and
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Figure 12: The optimal train ratio is closely aligned with the test ratio. Experiments conducted on CIFAR-
100.
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Figure 13: The optimal train ratio is closely aligned with the test ratio. Experiments conducted on CINIC-10.

10−2 10−1

Test Ratio

Te
st

 E
rr

or

Equal
Balanced
Optimal

Figure 14: Test accuracy on the minority classes as a function of the test ratio for different training setups.
‘Equal’ denotes the same balance between training and testing, and ‘Optimal’ is the optimal trainset balance
amongst the ratios we try. Experiments conducted on CIFAR-10.
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Figure 15: Alignment between train and test proportions improves as the number of training samples
increases. Train/test misalignment is calculated by taking the mean over test ratios of the difference between the
best train ratio (train ratio that gives maximum test accuracy) and the test ratio. If misalignment is 0, then the
best train ratio is always the same as the test ratio.
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Figure 16: The potentially destructive effects of adding majority class samples. We fix the number of
minority samples to be 200 and vary the number of majority samples. Experiments conducted on CIFAR-100.

Table 5: Our training routines exceed previous state-of-the-art or improve existing methods when
combined. Split class accuracy for classes with Few, Med and Many examples of WideResNet-28×10 on
long-tailed CIFAR-100 and CINIC-10. Error bars correspond to one standard error over 5 trials.

CINIC-10 CIFAR-100

Method Few Med Many Few Med Many

ERM 40.5± 0.4 64.1± 0.3 90.1± 0.5 20.1± 0.3 42.3± 0.3 70.5± 0.6

Reweighting 36.6± 0.5 63.1± 0.3 87.8± 0.3 17.1± 0.4 39.3± 0.3 67.1± 0.4

Resampling 37.4± 0.5 63.6± 0.6 87.9± 0.4 18.4± 0.2 38.1± 0.2 68.9± 0.3

Focal Loss 39.1± 0.2 63.9± 0.2 88.2± 0.5 19.8± 0.4 39.0± 0.5 69.3± 0.6

LDAM-DRW 40.1± 0.4 64.3± 0.4 89.8± 0.3 20.8± 0.5 42.1± 0.3 70.6± 0.4

M2m 42.8± 0.7 64.1± 0.6 90.3± 0.4 20.1± 0.6 41.8± 0.4 69.4± 0.5

SAM-A 43.2± 0.3 62.3± 0.6 89.7± 0.3 22.5± 0.4 40.3± 0.3 70.1± 0.4

Joint-SSL + SAM-A 43.9± 0.4 63.3± 0.5 90.4± 0.5 22.9± 0.3 41.3± 0.6 69.9± 0.6

Joint-SSL +
SAM-A + M2m 44.1± 0.3 64.2± 0.4 90.9± 0.3 23.9± 0.4 42.3± 0.2 70.4± 0.3

varying their imbalance ratio, we now fix the number of samples from the minority class and vary the
number of total majority class samples.

In Figure 16, we see that increasing the number of samples from the majority class initially boosts
performance on a balanced test set. Nevertheless, in both cases, the performance reaches an optimum
before the growing training data imbalance eventually degrades test accuracy. Thus, adding training
data can help, but if we add enough majority samples, we must be careful not to cause too sharp a
mismatch between training and testing distributions. Notably, the optimal training set ratio is nearly
balanced, matching the test set, even when we are allowed to gather extra samples from one class
without having to forego samples from another.

A.9 Benchmarking Results

In Table 5, we present additional experimental results that compare the methods proposed in our
paper with the baseline methods. In accordance with Kang et al. [38], we also report the accuracy
across three distinct subsets: (1) Many-shot classes, which contain more than 100 training samples.
(2) Medium-shot classes, comprising 20 to 100 samples, and (3) Few-shot classes, including classes
with fewer than 20 samples.
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Table 6: SAM-A, our modified label smoothing, and small batch sizes improve performance on class-
imbalanced tabular datasets.

Method Otto Adult CoverType

XGBoost 82.7 87.5 96.9

MLP 83.0 87.4 97.5

ResNet 82.5 87.4 97.5

FT-Transformer 82.3 87.3 97.5

MLP w/ SAM-A
+ Smoothing 83.2 87.6 97.6

A.9.1 Tabular Datasets

Training procedure - Our tuning, training, and evaluation protocols are consistent with those in
Gorishniy et al. [23]

Accordingly, we tune each model’s hyperparameters for each dataset on a validation split. We use
the Optuna library [2] to execute Bayesian optimization via the Tree-Structured Parzen Estimator
algorithm. In our evaluation process, we run 15 experiments for each tuned configuration using
different random seeds, and report the average performance on the test set.

A.10 Regularization and Overfitting

In order to determine whether the performance differences among various methods stem from their
optimization abilities or their generalization to unseen test samples, we evaluate the training error
without any regularization or specialized optimization method. Specifically, we train a ResNet-50
network on CIFAR-10 and CIFAR-100 datasets using SGD with an initial learning rate of 0.5 and
cosine annealing, across different levels of training data imbalance. As seen in Figure 17, although
fitting all training examples takes longer as we increase the imbalance ratio of our datasets, the
empirical risk minimization successfully fits all training data eventually, including minority samples.
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Figure 17: Imbalanced data is harder to fit. Training accuracy every epoch for imbalanced training with
various imbalance ratios. Experiments conducted on CIFAR-10.

A.11 Decision Boundary Visualizations

To explore the differences between classifiers trained on imbalanced data, we visualize their decision
boundaries. A variety of methods have been established for visualizing the decision boundaries of
deep learning models, offering valuable insights into their intricate internal operations. Apart from
the methods discussed in the main text, we utilize the approach introduced by Somepalli et al. [66]
to visualize the decision boundaries of a ResNet-50 network trained on the CIFAR-10 dataset. In
Figure 19, we display the decision boundaries resulting from standard training (right), which yields
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(a) After naive training (b) After SAM training

Figure 18: SAM-A pulls decision boundaries away from minority samples, whereas standard training
routines overfit. Experiments conducted on a toy 2D classification problem with a multi-layer perceptron.

(a) After naive training (b) After SAM training

Figure 19: SAM-A makes decision regions take up similar volumes, whereas standard training routines
shrink wrap the decision boundaries around minority samples. Experiments conducted on a CIFAR-10 with
ResNet-18.

narrow margins around minority classes (green, grey, and orange), and SAM-A (left), which notably
broadens these margins and all the classes occupy similar area in input space.

B Experimental Details

In this section, we provide additional implementation details that were not included in the main text.

For the CIFAR-10, CIFAR-100, and CINIC-10 datasets, we follow the imbalanced setup proposed by
Liu et al. [54], using an exponential distribution to create imbalances between classes. Across all
methods, we use TrivialAugment [58] combined with CutMix as our augmentation policy, supple-
mented by label smoothing and an exponential moving weight average. Our model of choice is the
WideResNet-28×10 [73].

We employ the SGD optimizer with momentum 0.9 and weight decay coefficient 2 × 10−4. Our
models are trained for 300 epochs with cosine annealing and a linear warm-up of the learning rate.
The learning rate is initialized at 0.1.

For the APTOS 2019 Blindness Detection, SIIM-ISIC Melanoma Classification, and EuroSAT
datasets, we largely follow the approach detailed in Fang et al. [18], utilizing the ResNeXt-50-32×4d
model, which was identified as the best model for these datasets in the comparison by Fang et al.
[18].

Our implementation was done in PyTorch, utilizing the PyTorch Lightning library for training. All of
our models were trained on V100 GPUs.

C Limitations

In our paper, we found that existing methods for class imbalance are unreliable on real-world datasets.
While our tuned routine was effective on the real-world datasets we considered, these general trends
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(a) ResNet on CIFAR-10 Dataset
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(b) XGBoost on Adult Dataset
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(c) SVM on Forest Cover Dataset
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(d) ResNet on CIFAR-10 Dataset
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(e) XGBoost on Adult Dataset
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(f) SVM on Forest Cover Dataset

Figure 20: Test error split by majority and minority classes for balanced test sets. We see similar trends across
all models and datasets.
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Figure 21: Additional metrics for XGBoost on the Adult dataset.
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Figure 22: Additional metrics for SVM on the Forest Cover dataset.
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raise the concern that solutions which are effective on some class-imbalanced datasets may fail on
others. A second limitation of our work is that some tools we utilize are only applicable in certain
domains. For example, data augmentations and self-supervised learning for tabular data are not
widely accepted.

D Broader Impacts

Across a wide variety of high-impact domains, ranging from credit card fraud detection to disease
diagnosis, data is severely class-imbalanced. Therefore, performance increases for class-imbalanced
data is highly valuable. With this potential for value also comes the potential that proposed methods
make false promises which won’t benefit real-world practitioners and may in fact cause harm when
deployed in sensitive applications. For this reason, we release our numerical results across diverse
datasets, and we also include implementation details for the sake of transparency and reproducibility.
As with all new state-of-the-art methods, our improvements may also improve models used for
malicious intentions.
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