

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PREDICTIVE EMBEDDING AS LATENT ACTION: TOWARDS VLA PRETRAINING IN THE WILD

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language-Action models (VLAs) show promise for scalable robot learning, yet their progress is limited by small, narrow robot datasets. Human manipulation videos could provide richer learning material of skills, but current methods face a dilemma: either use expensive, precise labeled data with a limited scope, or abundant in-the-wild videos without hand tracking labels. We propose **PELA**, a pre-training framework that learns human motions by creating **Predictive Embeddings** that align with **Latent Actions**. Instead of trying to reconstruct every dynamics detail, PELA focuses on motion patterns that can be predicted from context and reflect real physical interaction. This creates a latent action space that captures motion dynamics across heterogeneous data sources. We build **UniHand-Mix**, a large hybrid dataset combining 5M carefully labeled lab recordings pairs with 2.5M pairs from in-the-wild human videos (7.5M total samples, >2,000 hours). This provides both reliable training signals and diverse real-world scenarios for large-scale learning. Our experiments show PELA generates realistic hand motions in both controlled and in-the-wild scenarios, and significantly improves downstream robot manipulation performance. The results demonstrate that predictive embeddings offer a practical route to scaling VLA pretraining using abundant human data.

1 INTRODUCTION

Robotics researchers have long sought foundation models enabling robots to perform diverse tasks. Recent Vision-Language-Action (VLA) models (Zitkovich et al., 2023; Black et al., 2024; Bjorck et al., 2025b) show promise by adapting Large Multimodal Models (LMMs) with robotics datasets (O’Neill et al., 2024; Khazatsky et al., 2024). However, robotic data remains orders of magnitude smaller and less diverse than datasets enabling breakthroughs in vision and language (Touvron et al., 2023; Li et al., 2024a). This scarcity, combined with cross-embodiment heterogeneity, creates a major obstacle for scaling VLA pretraining (Kim et al., 2025; Octo Model Team et al., 2024).

To address this data problem, recent works (Luo et al., 2025; Yang et al., 2025) have turned to cost-effective human demonstration videos, which contain diverse skilled hand movements valuable for VLA learning. By treating hand motions as actions, VLAs can learn skills unavailable in robot-only datasets. However, using human data creates a quality-variety trade-off: Lab-collected datasets (Fan et al., 2023; Chao et al., 2021; Hoque et al., 2025; Liu et al., 2022) provide precise 3D hand tracking but are limited to controlled tabletop scenarios, while in-the-wild human videos (Grauman et al., 2022; Perrett et al., 2025; Damen et al., 2022) offer tremendous variety and natural behaviors but lack precise action labels. This creates our core question: *how can we combine these complementary human data sources to scale VLA pretraining effectively?*

The challenge is that in-the-wild videos lack explicit action labels despite being rich in motion **dynamics** (how vision changes during interaction). Previous approaches capture this information indirectly through auxiliary visual representation learning (Nair et al., 2023; Radosavovic et al., 2023) or world models (Wu et al., 2024; Cheang et al., 2024), but their connection to action control remains weak. To extract more direct action information, recent works (Ye et al., 2025; Team, 2024b; Chen et al., 2024a) exploit inverse dynamics — the mapping from visual transitions to underlying actions — producing **latent actions** that form a **latent action space**. As shown in Fig. 1 (left), these approaches couple an inverse dynamics model (IDM) with a forward dynamics model (FDM): the IDM infers latent actions from current and future frames, while the FDM reconstructs future

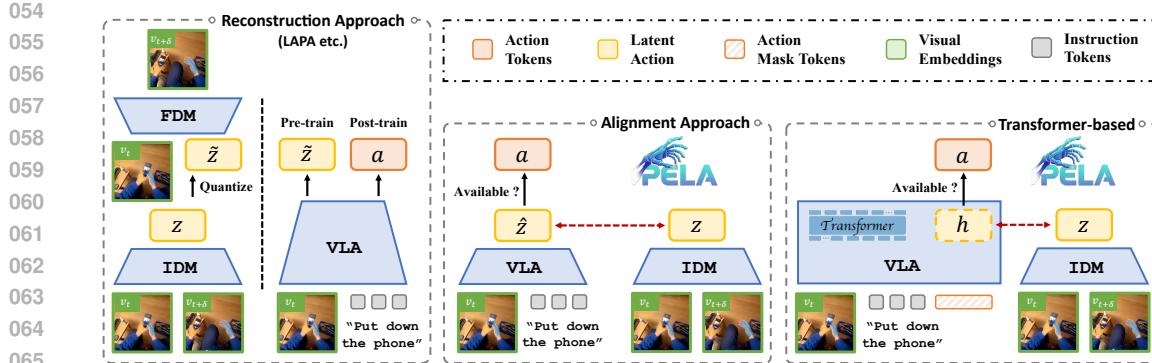


Figure 1: **Comparison of VLA’s latent action paradigms with human videos.** (left) Prior reconstruction-based methods like LAPA (Ye et al., 2025) rely on multi-stage pipelines extracting latent actions via dynamics reconstruction as pseudo-labels. (middle) Our PELA introduces predictive embeddings aligned with latent actions. (right) Transformer-based PELA implementation where intermediate hidden states serve as the predictive embeddings to align with latent actions, while output tokens use available action labels as supervision.

frames from latent actions and current frames, constraining latent actions to encode action-relevant information. However, for fine-grained human manipulation, this paradigm is problematic because the mapping from latent to real actions relies heavily on the FDM’s ability to model future frames, but human hand motions are so subtle and variable that this modeling is unreliable, often introducing noise rather than stable grounding.

In this paper, we rethink human actions for VLA pretraining. Inspired by how humans learn manipulation through key transferable patterns rather than memorizing details, we propose PELA (Predictive Embedding as Latent Action), which captures these patterns through constrained embeddings in a latent action space. Unlike methods requiring full reconstruction (Fig. 1, left), PELA (Fig. 1, middle) introduces lighter supervision where the VLA derives an embedding \hat{z} satisfying two objectives: (1) soft alignment with IDM-derived latent actions z , and (2) robust mapping to ground-truth action a . This “predictive embedding” carries real action information while connecting to inverse dynamics. When aligned with predictive embeddings, latent actions capture essential action cues through real action supervision while filtering unnecessary visual details by avoiding full FDM reconstruction. This alignment works consistently regardless of explicit action label availability, constructing a unified embedding space for learning from both lab-annotated and in-the-wild human videos.

To realize this design, we instantiate PELA on a Transformer-based VLA. As shown in Fig. 1 (right), the VLA predicts action tokens from action mask tokens while aligning intermediate hidden states h with latent actions from IDM — these hidden states serve as predictive embeddings connecting real actions and latent actions. When we adapt the pretrained VLA for robot tasks, we feed these predictive embeddings into a flow-matching head (Lipman et al., 2022), efficiently transferring the pretrained latent action space to robot tasks.

To enable large-scale pretraining, we construct **UniHand-Mix**, combining lab-recorded videos with precise hand tracking and in-the-wild videos without tracking. Following Luo et al. (2025), we process 1,000 hours of lab videos to create 5M instruction-tuning samples with explicit motion labels, then extend to unconstrained settings by filtering manipulation clips from 1123 hours of Ego4D videos (Grauman et al., 2022), adding 2.5M in-the-wild samples. Built on InternVL3-2B (Chen et al., 2024b), PELA is evaluated on realistic hand motion generation and robot manipulation tasks. Results show PELA significantly improves hand motion generation in wild scenarios while maintaining lab performance, outperforming similar-size VLA models on Libero (Liu et al., 2023) and RoboCasa (Nasiriany et al., 2024) benchmarks, and remains competitive with larger models.

Our key contributions are: (1) **Novel latent action paradigm:** We introduce predictive embeddings, enabling VLAs to learn from both labeled and unlabeled human videos at unprecedented scale. (2) **Large-scale hybrid dataset:** We create UniHand-Mix, extending UniHand with 2.5M in-the-wild human manipulation samples, providing greater diversity for VLA pretraining. (3) **Strong empirical results:** We demonstrate a VLA that substantially improves generalization in hand motion generation with SoTA performance among similar-size models on robot tasks.

108
109
110
2 RELATED WORK

111 **Vision-Language-Action Model Pretraining.** There has been growing interest in building
 112 VLAs by adapting pretrained vision-language architectures for robotics. Using large-scale robot
 113 datasets (Padalkar & et al., 2023; Khazatsky et al., 2024; Bu et al., 2025), researchers have taken
 114 two main approaches: one convert robot actions into discrete tokens and trains like autoregressive
 115 LLMs (Brohan et al., 2023; Zitkovich et al., 2023; O’Neill et al., 2024; Kim et al., 2025; Pertsch
 116 et al., 2025; Zhong et al., 2025), while another uses diffusion- or flow-matching methods to generate
 117 continuous actions (Octo Model Team et al., 2024; Black et al., 2024; Intelligence et al., 2025; Bjorck
 118 et al., 2025b; Driess et al., 2025; Liu et al., 2024; Wen et al., 2025; Shukor et al., 2025). In our work,
 119 we use tokenization during pretraining to learn general action patterns, then switch to flow-matching
 120 for precise robot control during deployment. However, robot data alone is limited, so researchers
 121 have turned to human videos as a more scalable resource. Some works learn indirectly from human
 122 videos by extracting generic visual representations or building world-model (Bjorck et al., 2025b; Ra-
 123 dosavovic et al., 2023; Nair et al., 2023; Wu et al., 2024; Cheang et al., 2024), or creating latent action
 124 spaces (Ye et al., 2025; Team, 2024a; Chen et al., 2024a). While promising, these approaches struggle
 125 to connect abstract representations to actual physical actions. Other approaches use lab-collected
 126 human data with precise hand tracking (Hoque et al., 2025; Banerjee et al., 2025; Liu et al., 2022;
 127 Chao et al., 2021) to explicitly model human hand movements (Luo et al., 2025; Yang et al., 2025;
 128 Singh et al., 2025a). This offers stronger physical grounding but requires expensive data collection
 129 and limits task diversity. Our work bridges these two approaches. We introduce a new method for
 130 constructing latent actions by aligning predictive embeddings with motion dynamics, allowing us to
 131 combine the scalability of learning from unlabeled videos with the precision of explicitly annotated
 132 trajectories. Our design reduces annotation cost while maintaining physical grounding, enabling VLA
 133 pretraining to scale more effectively across heterogeneous human datasets.

134 **Learning from Videos.** Our work also connects to research on *learning from videos* (LfV) (Yang
 135 et al., 2015; Seo et al., 2022), where studies extract behavioral knowledge from unlabeled videos
 136 using various techniques: masked auto-encoding which predicts missing parts of videos (Radosavovic
 137 et al., 2023; Xiao et al., 2022), temporal contrastive learning which learn to distinguish different
 138 video clips (Li et al., 2024b; Nair et al., 2023), video prediction which forecasts future frames (Seo
 139 et al., 2022; Luo et al., 2024), or inverse dynamics modeling which infers actions from visual
 140 changes (Baker et al., 2022; Schmeckpeper et al., 2021; Ye et al., 2022). For robot control specifically,
 141 some works exploit carefully matched human–robot pairs to enable imitation policies (Kareer et al.,
 142 2024; Singh et al., 2025b; Luo & Lu, 2025; Zheng et al., 2025b), but this approach only scales to
 143 specific task sets. When using unconstrained human videos with robot actions (Team, 2024a; Ye
 144 et al., 2025), effectiveness is limited due to unclear alignment between human and robot behaviors.
 145 Our approach differs by leveraging human hand tracking as a rich source of physical alignment, with
 146 the human hand serving as the most extensively annotated manipulator available. We combine these
 147 precise annotations with diverse in-the-wild videos within a unified pretraining framework, achieving
 148 both physical grounding and task diversity.

149
150
151
3 PRELIMINARIES

152 We introduce preliminaries for PELA, detailing human hand movement modeling during VLA
 153 pretraining and our hybrid data formulation with optional pose annotations.

154 Following Luo et al. (2025), we convert human manipulation data for VLA pretraining using MANO
 155 parameters (Romero et al., 2017) as our hand representation. Each dataset entry contains a video
 156 $v = \{v_1, v_2, \dots, v_T\}$, textual instruction x , and hand pose sequence $\mathcal{M} = \{m_1, m_2, \dots, m_T\}$.
 157 Each m_t uses MANO parameters $(\theta_t, \mathbf{r}_t, \tau_t, \beta_t)$ for relative joint angles, global wrist rotation, wrist
 158 translation, and hand shape. We exclude β_t in practice since it keeps static over time and does not
 159 help for dynamic understanding. For VLA pretraining, we convert continuous hand movements
 160 into discrete tokens by dividing pose sequence into fixed-length chunks and converting each into K
 161 motion tokens via GRQ-With chunk length δ and $N = T/\delta$ chunks, the training sequence becomes:
 162 $[x, v_1, A_1, A_2, \dots, A_N]$, where v_1 is the first video frame and A_i denotes the i -th tokenized motion
 163 chunk. This format aligns with the VLA pretraining paradigm, allowing to generate hand motions
 164 based on visual and language inputs. Our VLA f_Θ learns to maximize motion token likelihood given

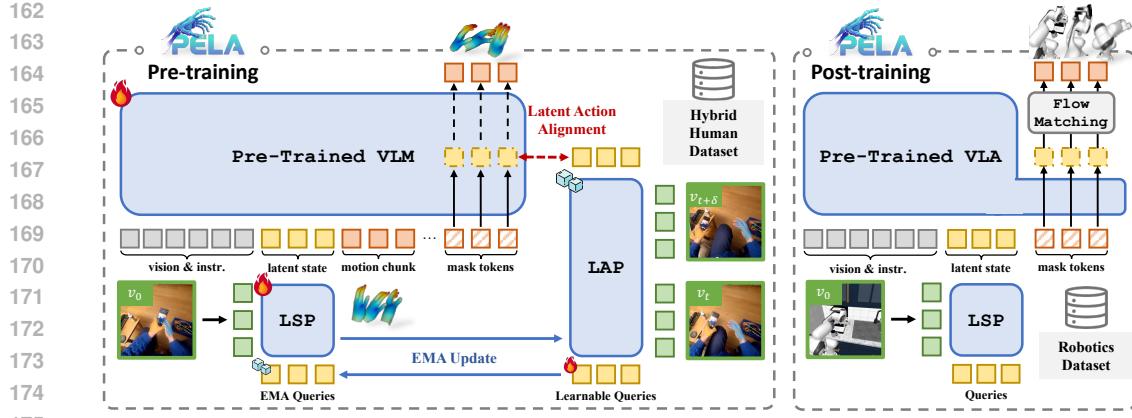


Figure 2: **The PELA framework.** **Pre-training (left):** Hidden states of masked motion chunks serve as predictive embeddings to align with latent actions from boundary frames. The Latent Action Perceiver (LAP) maps boundary frames to latent action space, providing supervision without action labels. A parameter-shared Latent State Perceiver (LSP) injects initial frame context, with LAP and LSP linked via decoupled EMA update for stability. **Post-training (right):** The predictive embeddings are fed into a flow-matching head for robot task transfer.

the previous context:

$$\max_{\Theta} \sum_{i=1}^N \log p(A_i | A_{<i}, v_1, x; \Theta). \quad (1)$$

Following [Luo et al. \(2025\)](#), we include auxiliary training tasks, generating text descriptions of motions (motion description generation) and continuing partial motion sequences (motion continuation). These tasks help the model learn richer token meanings before adapting to robot tasks while keeping the formulation of generating motions chunk by chunk.

Given limited availability of hand tracking data, we use both annotated and in-the-wild videos. Here, we define: (1) Annotated dataset $\mathcal{D}_A = \{(x^{(i)}, v^{(i)}, \mathcal{M}^{(i)})\}_{i=1}^{N_A}$ with instructions, videos, and hand poses. (2) Unannotated dataset $\mathcal{D}_U = \{(x^{(j)}, v^{(j)})\}_{j=1}^{N_U}$ with only instructions and videos. Our goal is jointly training on the hybrid dataset $\mathcal{D} = \mathcal{D}_A \cup \mathcal{D}_U$, leveraging both the precision of annotated data and the diversity of in-the-wild videos.

4 METHODOLOGY

As illustrated in Fig. 2, PELA builds on a Transformer-based vision-language model that processes visual tokens, instruction tokens, and motion tokens together. The key innovation is using intermediate hidden states as *predictive embeddings*, which act as a bridge between explicit hand motion labels and latent actions derived from inverse dynamics information. Through this bridging role, predictive embeddings capture both motion information and visual dynamics, deriving a unified latent action space that works consistently across both lab-collected and in-the-wild human data.

4.1 ALIGNING PREDICTIVE EMBEDDINGS WITH LATENT ACTIONS

For each motion token $a_{i,k}$ in a tokenized chunk A_i , we extract its hidden state from a preselected attention layer, denoted as $h_{i,k} \in \mathbb{R}^d$. These hidden states become our *predictive embeddings* and are shaped by two complementary signals: (1) supervision from motion labels, and (2) alignment with latent actions. Below we detail how to exploit these two signals, respectively.

Masked Chunk Prediction (MCP). To capture motion information based on hand tracking labels, we introduce MCP, an objective of chunk-level masked token modeling similar to action prediction in GR-1 ([Wu et al., 2024](#)). During pretraining, we replace all motion tokens in a chunk with [MASK] placeholder and use bidirectional attention within the chunk. This allows the model to understand

216 relationships between motions within a chunk. The model learns by predicting the original tokens:
 217

$$218 \quad \mathcal{L}_{\text{MCP}} = - \sum_{i=1}^N \sum_{k=1}^K \log p_{\Theta}(a_{i,k} | A_{<i}, v, x). \quad (2)$$

219 Although we sum over individual tokens, the bidirectional attention ensures that all motions $a_{i,k}$ in a
 220 chunk A_i are modeled jointly, creating structured representations of chunk-level movement patterns.
 221

222 **Latent Action Perceiver (LAP).** To align predictive embeddings with visual dynamics, we in-
 223 troduce LAP, similar to [Jaegle et al. \(2021\)](#); [Shridhar et al. \(2023\)](#), to act as an inverse dynamics
 224 model. For each chunk, LAP takes the start and end frames $(v_t, v_{t+\delta})$ and produces K latent action
 225 vectors $\{z_{i,1}, \dots, z_{i,K}\}$ using a fixed set of learnable query vectors. These latent actions capture the
 226 dynamics of short-horizon transition without needing to reconstruct full video frames. We then align
 227 our predictive embeddings $h_{i,k}$ with these latent actions $z_{i,k}$:
 228

$$229 \quad \mathcal{L}_{\text{Align}} = \sum_{i=1}^N \sum_{k=1}^K \|h_{i,k} - z_{i,k}\|_1. \quad (3)$$

232 To learn effective predictive embeddings, neither component works well alone. LAP by itself cannot
 233 guarantee transferable representations, and motion labels alone cannot capture visual dynamics.
 234 Predictive embeddings bridge them together: motion patterns from MCP and visual dynamics from
 235 latent action alignment are jointly compressed into the predictive embeddings. This dual constraint
 236 anchors predictive embeddings as a unified latent action space that works consistently across hybrid
 237 data types.
 238

239 4.2 JOINT PERCEIVER IMPLEMENTATION WITH DECOUPLED UPDATES

240 To capture short-horizon dynamics more effectively, we use features from a pretrained visual encoder
 241 (e.g., DINOv3 ([Siméoni et al., 2025](#)) or V-JEPA2 ([Bardes et al., 2024](#))) as inputs to our latent
 242 action module. However, since these visual features originate from a model different from the VLM
 243 backbone, they may reside in a misaligned representation space. Simply connecting them to predictive
 244 embeddings could lose important information or create latent actions that don't match the model's
 245 context. To solve this, we introduce an additional **Latent State Perceiver (LSP)** to pair with the
 246 **Latent Action Perceiver (LAP)** (Fig. 2). While LAP processes boundary-frame features to generate
 247 latent actions, LSP connects the VLM's predictive context to the same latent action space to alleviate
 248 the predictive burden.
 249

250 A central challenge is that the alignment loss directly ties two heterogeneous modules, risking collapse
 251 if one dominates the optimization. To address this, we decouple the updates of the latent Perceiver's
 252 backbone and its learnable queries. The backbone is optimized with the gradient from the LSP,
 253 ensuring that visual features are consistently mapped into the predictive embedding space shaped by
 254 MCP and latent-action alignment. In contrast, the queries are optimized with the gradient from the
 255 LAP, allowing them to specialize in anchoring latent actions with explicit action cues. To maintain
 256 consistency without overfitting to either side, we adopt an asymmetric EMA update: backbone
 257 weights are propagated from LSP to LAP, while query weights are propagated from LAP to LSP.
 258 This design ensures that latent actions remain both predictable from context and anchored with action
 259 cues, enabling stable integration of pretrained visual features into PELA's unified latent action space.
 260

261 4.3 TRAINING DETAILS

262 **Pretraining on Hybrid Data.** Once we establish predictive embeddings as a bridge to latent actions,
 263 we can use the same approach for videos without hand tracking labels. For unlabeled videos, we
 264 skip MCP since no labels exist and only align predictive embeddings with visual dynamics from
 265 LAP. This allows in-the-wild human manipulation videos to contribute useful learning signals despite
 266 lacking precise annotations. As a result, we combine both labeled and unlabeled data using a hybrid
 267 training objective.
 268

$$\mathcal{L} = \mathbf{1}_{\text{labeled}} \cdot \mathcal{L}_{\text{MCP}} + \lambda \mathcal{L}_{\text{Align}}, \quad (4)$$

269 where $\mathbf{1}_{\text{labeled}}$ is an indicator that only activates MCP when hand tracking labels are available. This
 270 means predictive embeddings learn from both sources: motion labels (when available) and dynamics
 271 (always), allowing PELA to scale pretraining across heterogeneous data.
 272

270 **Post-training with Flow Matching.** After pretraining on hybrid human data, PELA establishes a
 271 unified latent action space through aligned predictive embeddings. For robot manipulation tasks, we
 272 transfer this space to robot-specific actions a **flow-matching head** that adapts predictive embeddings
 273 to the robot action space (Fig. 2, right). Given predictive embeddings $\{h_{i,k}\}$ from the pretrained
 274 VLA backbone, we feed them as a conditional input into the policy head, which is based on a
 275 Diffusion Transformer (DiT) with alternating self-attention and cross-attention modules. Self-
 276 attention processes the robot’s proprioceptive state and noised actions, while cross-attention fuses
 277 this with predictive embeddings $\{h_{i,k}\}$, injecting the general dynamics knowledge learned from
 278 pre-training into action generation. During post-training we employ a flow-matching objective. For a
 279 ground-truth action chunk A_t , we construct a noised action $A_t^\tau = \tau A_t + (1 - \tau)\epsilon$ based on a timestep
 280 $\tau \in$ and standard Gaussian noise ϵ . The model V_θ learns to predict the denoising vector field $\epsilon - A_t$:

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{\tau, \epsilon, A_t} \left[\|V_\theta(\{h_{i,k}\}, A_t^\tau, q_t) - (\epsilon - A_t)\|_2^2 \right], \quad (5)$$

283 where q_t is the robot’s proprioceptive state. During inference, by applying the learned model V_θ , we
 284 iteratively denoise a random initial action chunk using forward Euler integration with a fixed step
 285 number. This ultimately yields precise robot action commands, enabling PELA to efficiently transfer
 286 dynamics-rich knowledge from human data to downstream precise robot control.

288 5 UNIHAND-MIX: HYBRID HUMAN MANIPULATION DATASET

290 To scale PELA pretraining, we construct **UniHand-Mix**, a hybrid dataset unifying lab-annotated
 291 human manipulation data and in-the-wild videos.

293 **Lab-annotated Subset.** Similar to the pipeline proposed in [Luo et al. \(2025\)](#), each sample
 294 includes instruction, video, and MANO-based hand motion sequence. We provide three instruction-
 295 tuning types: *motion generation*, *motion description*, and *motion continuation*. Finally, we process
 296 approximately 1,000 hours of lab videos, yielding 5M+ instruction–video-motion samples.

297 **In-the-wild Subset.** We curate an in-the-wild subset from Ego4D ([Grauman et al., 2022](#)) to
 298 add diverse human interactions. Compared to controlled labs, egocentric recordings pose unique
 299 challenges: intermittent hand visibility from occlusions and irrelevant content like idle hands. To
 300 distill clean manipulation episodes, we design a two-stage pipeline. **(1) Visual Filtering:** We
 301 detect hand regions at the frame level using [Potamias et al. \(2025\)](#), and apply pose estimation using
 302 HaWoR ([Zhang et al., 2025b](#)), retaining high-confident clips with approximate hand supervision as
 303 a bridge between lab and in-the-wild data. **(2) Instruction Validation:** We use Gemini-2.5-flash
 304 to identify hand-centric activities, discarding clips with absent/idle/distractor hands while pairing
 305 remaining clips with auto-generated instructions. This yields 2.5M instruction–video pairs, enriching
 306 UniHand-Mix with broader task diversity and contextual priors for enhancing pretraining scalability.

307 We further present more details and some statistics in the [Appendix B](#).

310 6 EXPERIMENTS

311 Our experimental study investigates three core questions: **(1) In-the-wild Learning:** Can PELA
 312 learn from in-the-wild human videos and demonstrate scaling? **(2) Downstream Transfer.** Does
 313 predictive embedding improve robot task performance? **(3) Ablation Validation.** Are the proposed
 314 alignment designs effective?

316 6.1 IMPLEMENTATION DETAILS

318 **Pre-training.** PELA uses InternVL3–2B backbone ([Chen et al., 2024b](#)) with DINOv3 ([Siméoni
 319 et al., 2025](#)) or V-JEPA2 ([Bardes et al., 2024](#)) as the visual encoder feeding into the latent perceiver.
 320 Each 15-frame motion chunk is tokenized by GRQ-VAE into 128 discrete tokens (codebook size
 321 8192). In-the-wild data is temporally slowed by a factor of 0.5, to account for the differing action
 322 speeds with lab-collected data. The 19th attention layer (out of 28) outputs predictive embeddings
 323 for alignment with inverse-dynamics signals. The unified loss is optimized with $\lambda = 0.5$, AdamW,
 cosine learning rate scheduling and mixed precision. More details are in [Appendix A](#).

324 Table 1: Comparison of hand motion generation and prediction tasks on both Lab and Wild splits.
325

326 327 328 Model	329 330 331 332 333 334 MPJPE (cm) ↓		335 336 PA-MPJPE (cm) ↓		337 338 MWTE (cm) ↓		339 340 MDE (cm) ↓	
	330 331 Lab	330 331 Wild	332 333 Lab	332 333 Wild	334 335 Lab	334 335 Wild	336 337 Lab	336 337 Wild
# Next Token Prediction								
Being-H0-2B	7.61	16.91	1.34	3.81	6.03	14.54	7.16	18.33
Being-H0-2B+dino	7.54	15.14	0.90	2.78	5.85	13.65	6.95	17.17
# Masked Chunk Prediction								
PELA w/o align	7.72	15.73	0.89	2.34	6.18	14.02	8.09	16.23
PELA-dino	7.16	11.02	0.91	1.12	5.77	9.79	7.24	11.04
PELA-vjepa	7.05	11.54	0.94	1.32	5.85	10.04	6.73	11.87

337 **Post-training.** After pre-training, we fine-tune PELA on LIBERO and RoboCase using a flow-
338 matching head. Training uses batch size 128, learning rate 1e-4 with cosine decay and 5% warm-up.
339 Only language model parameters are unfrozen and the vision encoder remains frozen. We train a
340 GR00T-N1.5 baseline for comparison with identical settings. Success rate is the primary metric.

341 **Simulation Benchmark.** In this work, we use the following two benchmark for robotic task
342 evaluation: **(1) LIBERO:** We independently fine-tune our model on four task suites (Spatial, Object,
343 Goal, and Long). For each suite, we use < 50 expert demonstrations and train our model for 30,000
344 steps. **(2) RoboCasa:** To assess the model’s performance on different data sources, we conduct
345 two experiments on the atomic tasks: the first one trained with 50 **human demonstrations** per task,
346 another with 50 **synthetic demonstrations** per task. Both train for 60,000 steps.

348 6.2 HAND MOTION GENERATION

350 We assess our model on the hand motion generation task which predicts a motion chunk given an
351 initial visual input and instruction. Performance on this task directly reflects how well a model
352 captures human strategy priors from the pretraining data. We report results on two testing splits of
353 UniHand-Mix: **Lab split** held-out from lab-annotated data, which measures fidelity under precise
354 supervision; and **Wild split** curated from Ego4D with HaWoR annotations, which measures the
355 model’s generalization to unconstrained human interactions.

356 **Model Variants and Baselines.** We report two variants of PELA: **PELA-dino** and **PELA-vjepa**
357 (using DINOv3 or V-JEPA2 visual feature). We also use three baselines for comparison: **Being-H0-2B**
358 (Being-H0 reproduction on our annotated subset with a InternVL-2B backbone), **Being-H0-2B+dino**
359 (add DINOv3 features like PELA’s LSP), **PELA w/o align** (PELA-dino without LAP to isolate the
360 alignment effect).

361 **Evaluation metrics.** We report four metrics: **(1) MPJPE**, the mean Euclidean distance between
362 predicted and ground-truth 3D joints for spatial accuracy measurement; **(2) PA-MPJPE**, the MPJPE
363 after rigid alignment for relative pose fidelity measurement; **(3) MWTE**, the average offset of wrist
364 trajectories for global trajectory fidelity measurement; **(4) MDE**, the error of final displacement
365 direction from the initial wrist position for motion trend consistency measurement. These metrics
366 capture both local pose accuracy and global trajectory realism.

367 **Main Results.** Tab. 1 shows that both PELA variants outperform baselines on most metrics. Gains
368 are modest on the Lab split but substantial promotion is shown on the Wild split, demonstrating
369 PELA’s scaling to diverse scenarios. While all models degrade on the Wild split compared to the Lab
370 split due to higher variability and complexity, PELA achieves much smaller gaps, confirming the
371 benefit of large-scale in-the-wild videos.

372 **Design Insights.** Through a set of controlled comparisons, we can further dissect the reasons for
373 the improvements. Being-H0-2B+dino vs. Being-H0-2B shows that adding self-supervised visual
374 features yields moderate gains, while its similar performance to PELA w/o align indicates that
375 prediction paradigm (next-token vs. masked chunk) isn’t decisive. The gap between PELA w/o
376 align and full PELA variants confirms the alignment mechanism as the key contributor for effective
377 in-the-wild video use. The comparable performance of PELA-dino and PELA-vjepa shows PELA
robustly constructs a unified latent action space from self-supervised visual features.

378
 379 Table 2: Results on LIBERO benchmark showing success rates (%) by task category and overall
 380 average. Models are grouped by size: $>3\text{B}$ parameters (top) and $\leq 3\text{B}$ parameters (bottom). The
 381 results of LAPA* are reported in UniVLA. UniVLA-human † uses only human pretraining data.
 382 UniVLA-full †† incorporates Bridge-V2 (Walke et al., 2023) for pretraining.

Model	Spatial	Object	Goal	Long	Average
# $> 3\text{B}$ Backbones					
LAPA* (Ye et al., 2025)	73.8	74.6	58.8	55.4	65.7
OpenVLA (Kim et al., 2025)	84.7	88.4	79.2	53.7	76.5
TriVLA (Liu et al., 2025)	91.2	93.8	89.8	73.2	87.0
4D-VLA (Zhang et al., 2025a)	88.9	95.2	90.9	79.1	88.5
UniVLA-human † (Team, 2024a)	91.2	94.2	90.2	79.4	88.7
UniVLA-full †† (Team, 2024a)	96.5	96.8	95.6	92.0	95.2
# $\leq 3\text{B}$ Backbones					
Diffusion Policy (Chi et al., 2023)	78.3	92.5	68.3	50.5	72.4
Octo (Octo Model Team et al., 2024)	78.9	85.7	84.6	51.1	75.1
UniACT (Zheng et al., 2025a)	77.0	87.0	77.0	70.0	77.8
SpatialVLA (Qu et al., 2025)	88.2	89.9	78.6	55.5	78.1
DiT Policy (Hou et al., 2024)	84.2	96.3	85.4	63.8	82.4
ThinkAct (Huang et al., 2025)	88.3	91.4	87.1	70.9	84.4
Being-H0-2B (Luo et al., 2025)	86.6	92.8	89.6	70.4	84.9
GR00T N1.5 (Bjorck et al., 2025b)	91.4	97.6	94.0	85.6	92.1
PELA w/o align	89.4	91.2	90.0	72.6	85.8
PELA-vjepa	91.6	98.2	94.4	84.2	92.1
PELA-dino	90.4	96.4	95.2	87.2	92.3

400
 401 Table 3: Results on the RoboCasa benchmark. We report success rates (%) across task categories and
 402 the overall average for all the models.

Data Source	GR00T N1.5	Being-H0-2B	PELA w/o align	PELA-vjepa	PELA-dino
Synthetic Data	20.83	23.83	24.50	27.17	27.58
Human Demonstrations	35.17	31.33	31.75	34.92	35.42
Average	28.00	27.58	28.13	31.04	31.50

409 6.3 SIMULATION RESULTS

410
 411 **LIBERO.** We fine-tune PELA on the four task suites from the LIBERO benchmark and compare its
 412 performance against state-of-the-art methods, particularly those with backbones of a similar scale
 413 ($<3\text{B}$ parameters). As shown in Table 2, our PELA models, utilizing either V-JEPA or DINO visual
 414 features, demonstrate top-tier performance. Specifically, PELA-dino establishes a new state-of-the-art
 415 average success rate of 92.3% among models in this category, outperforming strong baselines like
 416 GR00T N1.5 (92.1%). This strong performance is particularly notable in the most challenging Long
 417 task suite, where PELA-dino achieves the highest score of 87.2%, highlighting our model’s superior
 418 generalization capabilities on long-horizon tasks, which are notoriously difficult. Furthermore, the
 419 importance of our proposed alignment strategy is validated by the PELA w/o align ablation, which
 420 sees a significant performance drop to an average of 85.8%. This result underscores that our alignment
 421 mechanism is critical to the model’s success. Notably, our lightweight PELA model also outperforms
 422 some larger 7B-parameter models, showcasing the efficiency and effectiveness of our approach.

423
 424 **RoboCasa.** As shown in Table 3, our PELA model comprehensively outperforms all baseline models,
 425 including GR00T N1.5. PELA-dino achieves an average success rate of 31.50%, significantly higher
 426 than the 28.00% from GR00T N1.5, demonstrating the superiority of our pre-training methodology.

427
 428 The advantage of PELA is particularly pronounced on synthetic data. PELA-dino’s success rate
 429 (27.58%) far exceeds that of GR00T N1.5 (20.83%), showing an improvement of nearly 7 percentage
 430 points. This strongly suggests that our model’s latent action space and pre-training priors can more
 431 effectively distill useful control strategies from large-scale, albeit potentially biased, synthetic data.
 432 On human demonstrations, our model also delivers outstanding performance, with both PELA-dino
 433 (35.42%) and PELA-vjepa (34.92%) achieving leading results that surpass GR00T N1.5 (35.17%) and
 434 all other compared methods. This demonstrates that PELA not only excels in overall performance but

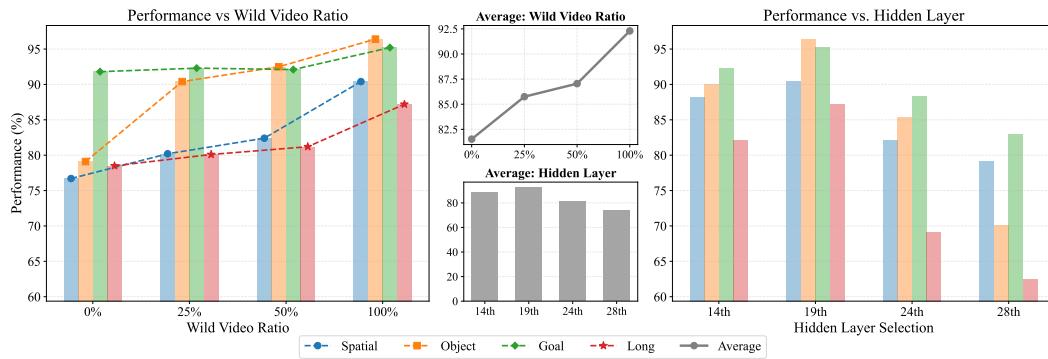


Figure 3: Ablation studies on PELA-dino evaluated on LIBERO. **Left:** performance across various the proportion of in-the-wild data used during pretraining (0%, 25%, 50%, 100%). **Right:** performance when feeding hidden states from different backbone layers (14, 19, 24, 28) into the flow-matching head during adaptation. **Middle:** average success rate across task suites for these variants.

also possesses strong data adaptability, learning efficiently to achieve the best performance regardless of whether the data source is real human operations or synthetic algorithms. Furthermore, the ablation result of PELA w/o align (28.13%) again confirms the criticality of our alignment strategy, as its removal causes performance to regress to a level on par with the baseline.

6.4 ABLATION STUDIES

We conduct two ablations on the LIBERO benchmark with PELA-dino to validate (i) its scalability to unconstrained human videos, and (ii) the role of predictive embeddings compared with other generic hidden states.

Scalability to in-the-wild data. To assess how large uncurated videos contribute to PELA, we vary the proportion of in-the-wild data during pretraining while keeping lab-annotated data fixed (0%, 25%, 50%, and 100%). Results on LIBERO (Fig. 3, left) show a consistent improvement in downstream success rates as more in-the-wild data are added, confirming the strong scaling potential of our framework.

Flow-matching input ablation. We further test the effectiveness of different hidden states from the backbone when fed into the flow-matching head during downstream adaptation. Note that we only vary the layer providing inputs to flow-matching on the PELA-dino pre-trained with the 19th layer used for alignment. We compare hidden states from layers 14, 19, 24, and 28. As shown in Fig. 3 (right), using the 19th layer yields the best transfer performance, the 14th layer is slightly worse, while later layers degrade sharply. This might suggest that alignment concentrates generalizable cues in the selected layer, whereas deeper layers overfit to dataset-specific details, reducing their utility for downstream robot control.

7 CONCLUSION

In this work, we presented **PELA**, a pretraining framework that rethinks how to represent latent actions for scalable VLA pretraining with human videos. By introducing predictive embeddings aligned with latent actions, PELA moves beyond reconstruction-heavy paradigms and instead captures motion cues without detailed distortion. This design enables a unified latent action space that works consistently across lab-annotated and in-the-wild human data. To support pretraining at scale, we constructed **UniHand-Mix**, a 7.5M-sample dataset combining over 2,000 hours of annotated and unconstrained human videos. This hybrid resource provides both reliable physical anchors and broad task diversity, and our experiments demonstrate that PELA can effectively leverage both sources. Results show strong improvements on hand motion generation and gains on downstream robot manipulation benchmarks, surpassing existing VLA methods with comparable or larger model sizes. Overall, our study highlights predictive embeddings as a practical and scalable route for bridging human video data with robotic learning. We believe this perspective opens opportunities for learning from even larger and more diverse human corpora.

486 REFERENCES
487

488 Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
489 Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
490 unlabeled online videos. In *Proc. of Neural Information Processing Systems*, 2022.

491 Prithviraj Banerjee, Sindi Shkodrani, Pierre Moulon, Shreyas Hampali, Shangchen Han, Fan Zhang,
492 Linguang Zhang, Jade Fountain, Edward Miller, Selen Basol, et al. Hot3d: Hand and object
493 tracking in 3d from egocentric multi-view videos. In *Proc. of Computer Vision and Pattern
494 Recognition*, 2025.

495 Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
496 Assran, and Nicolas Ballas. V-JEPA: Latent video prediction for visual representation learning,
497 2024.

498 Johan Bjorck, Valts Blukis, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
499 Linxi Jim Fan, Yu Fang, Dieter Fox, Fengyuan Hu, et al. GROOT N1.5: An improved open
500 foundation model for generalist humanoid robots. 2025a.

501 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
502 Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GROOT N1: An open foundation model for
503 generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025b.

504 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
505 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
506 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

507 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
508 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. RT-1: Robotics
509 transformer for real-world control at scale. In *Proc. of Robotics: Science and Systems*, 2023.

510 Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
511 He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
512 scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025.

513 Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S
514 Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. DexYCB: A benchmark for capturing
515 hand grasping of objects. In *Proc. of Computer Vision and Pattern Recognition*, 2021.

516 Chilam Cheang, Guangzeng Chen, Ya Jing, Tao Kong, Hang Li, Yifeng Li, Yuxiao Liu, Hongtao Wu,
517 Jiafeng Xu, Yichu Yang, et al. GR-2: A generative video-language-action model with web-scale
518 knowledge for robot manipulation. *arXiv preprint arXiv:2410.06158*, 2024.

519 Xiaoyu Chen, Junliang Guo, Tianyu He, Chuheng Zhang, Pushi Zhang, Derek Cathera Yang, Li Zhao,
520 and Jiang Bian. IGOR: Image-goal representations are the atomic control units for foundation
521 models in embodied ai. *arXiv preprint arXiv:2411.00785*, 2024a.

522 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
523 Zhang, Xizhou Zhu, Lewei Lu, et al. InternVL: Scaling up vision foundation models and aligning
524 for generic visual-linguistic tasks. *arXiv preprint arXiv:2312.14238*, 2024b.

525 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
526 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The
527 International Journal of Robotics Research*, 2023.

528 Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Jian Ma, Evangelos
529 Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric
530 vision: Collection, pipeline and challenges for EPIC-KITCHENS-100. *International Journal of
531 Computer Vision*, 130:33–55, 2022.

532 Danny Driess, Jost Tobias Springenberg, Brian Ichter, Lili Yu, Adrian Li-Bell, Karl Pertsch, Allen Z
533 Ren, Homer Walke, Quan Vuong, Lucy Xiaoyang Shi, et al. Knowledge insulating vision-language-
534 action models: Train fast, run fast, generalize better. *arXiv preprint arXiv:2505.23705*, 2025.

540 Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed Kocabas, Manuel Kaufmann, Michael J
 541 Black, and Otmar Hilliges. ARCTIC: A dataset for dexterous bimanual hand-object manipulation.
 542 In *Proc. of Computer Vision and Pattern Recognition*, 2023.

543

544 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
 545 Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4D: Around the world
 546 in 3,000 hours of egocentric video. In *Proc. of Computer Vision and Pattern Recognition*, pp.
 547 18995–19012, 2022.

548 Ryan Hoque, Peide Huang, David J. Yoon, Mouli Sivapurapu, and Jian Zhang. Egodex: Learning
 549 dexterous manipulation from large-scale egocentric video. *arXiv preprint arXiv:2505.11709*, 2025.

550

551 Zhi Hou, Tianyi Zhang, Yuwen Xiong, Hengjun Pu, Chengyang Zhao, Ronglei Tong, Yu Qiao, Jifeng
 552 Dai, and Yuntao Chen. Diffusion transformer policy. *arXiv preprint arXiv:2410.15959*, 2024.

553

554 Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, and Fu-En Yang.
 555 Thinkact: Vision-language-action reasoning via reinforced visual latent planning. *arXiv preprint*
 556 *arXiv:2507.16815*, 2025.

557

558 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 559 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_{0.5}$: a vision-language-action
 560 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

561

562 Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
 563 Perceiver: General perception with iterative attention. In *Proc. of International Conference on
 Machine Learning*, 2021.

564

565 Simar Kareer, Dhruv Patel, Ryan Punamiya, Pranay Mathur, Shuo Cheng, Chen Wang, Judy Hoffman,
 566 and Danfei Xu. EgoMimic: Scaling imitation learning via egocentric video. *arXiv preprint*
 567 *arXiv:2410.24221*, 2024.

568

569 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth Karam-
 570 cheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis, et al.
 571 DROID: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint arXiv:2403.12945*,
 572 2024.

573

574 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 575 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 576 vision-language-action model. In *Proc. of Conference on Robot Learning*, 2025.

577

578 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 579 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 580 *arXiv:2408.03326*, 2024a.

581

582 Siyuan Li, Shijie Han, Yingnan Zhao, By Liang, and Peng Liu. Auxiliary reward generation with
 583 transition distance representation learning. *arXiv preprint arXiv:2402.07412*, 2024b.

584

585 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 586 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

587

588 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 589 Benchmarking knowledge transfer for lifelong robot learning. *arXiv preprint arXiv:2306.03310*,
 590 2023.

591

592 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 593 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint*
 594 *arXiv:2410.07864*, 2024.

595

596 Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan, Hao Shen, Boqiang Liang, Zhoujie Fu,
 597 He Wang, and Li Yi. Hoi4d: A 4d egocentric dataset for category-level human-object interaction.
 598 In *Proc. of Computer Vision and Pattern Recognition*, 2022.

594 Zhenyang Liu, Yongchong Gu, Sixiao Zheng, Xiangyang Xue, and Yanwei Fu. Trivila: A unified
 595 triple-system-based unified vision-language-action model for general robot control. *arXiv preprint*
 596 *arXiv:2507.01424*, 2025.

597

598 Hao Luo and Zongqing Lu. Learning video-conditioned policy on unlabelled data with joint embed-
 599 ding predictive transformer. In *International Journal of Computer Vision*, 2025.

600

601 Hao Luo, Bohan Zhou, and Zongqing Lu. Pre-trained visual dynamics representations for efficient
 602 policy learning. In *Proc. of European Conference on Computer Vision*, 2024.

603

604 Hao Luo, Yicheng Feng, Wanpeng Zhang, Sipeng Zheng, Ye Wang, Haoqi Yuan, Jiazheng Liu, Chaoyi
 605 Xu, Qin Jin, and Zongqing Lu. Being-h0: Vision-language-action pretraining from large-scale
 606 human videos. *arXiv preprint arXiv:2507.15597*, 2025.

607

608 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
 609 visual representation for robot manipulation. In *Proc. of Conference on Robot Learning*, 2023.

610

611 Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 612 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
 613 robots. In *Proc. of Robotics: Science and Systems*, 2024.

614

615 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 616 Dasari, Joey Hejna, Charles Xu, Jianlan Luo, et al. Octo: An open-source generalist robot policy.
 617 In *Proc. of Robotics: Science and Systems*, 2024.

618

619 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 620 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open X-Embodiment:
 621 Robotic learning datasets and RT-X models. In *Proc. of International Conference on Robotics and
 622 Automation*, pp. 6892–6903, 2024.

623

624 Abhishek Padalkar and et al. Open x-embodiment: Robotic learning datasets and rt-x models. *arXiv*
 625 *preprint arXiv:2310.08864*, 2023.

626

627 Toby Perrett, Ahmad Darkhalil, Saptarshi Sinha, Omar Emara, Sam Pollard, Kranti Kumar Parida,
 628 Kaiting Liu, Prajwal Gatti, Siddhant Bansal, Kevin Flanagan, et al. Hd-epic: A highly-detailed
 629 egocentric video dataset. In *Proc. of Computer Vision and Pattern Recognition*, 2025.

630

631 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 632 Chelsea Finn, and Sergey Levine. FAST: Efficient action tokenization for vision-language-action
 633 models. *arXiv preprint arXiv:2501.09747*, 2025.

634

635 Rolandos Alexandros Potamias, Jinglei Zhang, Jiankang Deng, and Stefanos Zafeiriou. Wilor:
 636 End-to-end 3d hand localization and reconstruction in-the-wild. In *Proceedings of the Computer
 637 Vision and Pattern Recognition Conference*, pp. 12242–12254, 2025.

638

639 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu,
 640 Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-language-
 641 action model. *arXiv preprint arXiv:2501.15830*, 2025.

642

643 Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
 644 Real-world robot learning with masked visual pre-training. In *Proc. of Conference on Robot
 645 Learning*, 2023.

646

647 Javier Romero, Dimitrios Tzionas, and Michael J Black. Embodied hands: Modeling and capturing
 648 hands and bodies together. *ACM Transactions on Graphics*, 36(6):245:1–245:17, 2017.

649

650 Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Reinforcement
 651 learning with videos: Combining offline observations with interaction. In *Proc. of Conference on
 652 Robot Learning*, 2021.

653

654 Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
 655 action-free pre-training from videos. In *Proc. of International Conference on Machine Learning*,
 656 2022.

648 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
 649 robotic manipulation. In *Proc. of Conference on Robot Learning*, 2023.
 650

651 Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil Zouine,
 652 Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, et al. Smolyla: A vision-
 653 language-action model for affordable and efficient robotics. *arXiv preprint arXiv:2506.01844*,
 654 2025.

655 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 656 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
 657 *preprint arXiv:2508.10104*, 2025.

658

659 Himanshu Gaurav Singh, Pieter Abbeel, Jitendra Malik, and Antonio Loquercio. Deep sensorimotor
 660 control by imitating predictive models of human motion. *arXiv preprint arXiv:2508.18691*, 2025a.

661

662 Himanshu Gaurav Singh, Antonio Loquercio, Carmelo Sferrazza, Jiajun Wu, Haozhi Qi, Pieter
 663 Abbeel, and Jitendra Malik. Hand-object interaction pretraining from videos. In *Proc. of Interna-*
 664 *tional Conference on Robotics and Automation*, 2025b.

665

666 UniVLA Team. UniVLA: Unified vision-language-action model for cross-embodiment robotic
 667 learning. *arXiv preprint*, 2024a.

668

669 Video2Skill Team. Video2skill: Adapting foundation models for task-level robot manipulation. *arXiv*
 670 *preprint*, 2024b.

671

672 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 673 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 674 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

675

676 Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan Vuong, Chongyi Zheng, Philippe Hansen-
 677 Estruch, Andre Wang He, Vivek Myers, Moo Jin Kim, Max Du, et al. Bridgedata v2: A dataset for
 678 robot learning at scale. In *Conference on Robot Learning*, pp. 1723–1736. PMLR, 2023.

679

680 Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
 681 Vision-language model with plug-in diffusion expert for general robot control. *arXiv preprint*
 682 *arXiv:2502.05855*, 2025.

683

684 Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
 685 Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
 686 manipulation. In *International Journal of Computer Vision*, 2024.

687

688 Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
 689 motor control. *arXiv preprint arXiv:2203.06173*, 2022.

690

691 Ruihan Yang, Qinxi Yu, Yecheng Wu, Rui Yan, Borui Li, An-Chieh Cheng, Xueyan Zou, Yunhao
 692 Fang, Hongxu Yin, Sifei Liu, Song Han, Yao Lu, and Xiaolong Wang. Egovla: Learning vision-
 693 language-action models from egocentric human videos. *arXiv preprint arXiv:2507.2507.12440*,
 694 2025.

695

696 Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloimonos. Robot learning manipulation action
 697 plans by "watching" unconstrained videos from the world wide web. 2015.

698

699 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Mandlekar,
 700 Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos. In
 701 *International Journal of Computer Vision*, 2025.

702

703 Weirui Ye, Yunsheng Zhang, Pieter Abbeel, and Yang Gao. Become a proficient player with limited
 704 data through watching pure videos. In *International Journal of Computer Vision*, 2022.

705

706 Jiahui Zhang, Yurui Chen, Yueming Xu, Ze Huang, Yanpeng Zhou, Yu-Jie Yuan, Xinyue Cai, Guowei
 707 Huang, Xingyue Quan, Hang Xu, et al. 4d-vla: Spatiotemporal vision-language-action pretraining
 708 with cross-scene calibration. *arXiv preprint arXiv:2506.22242*, 2025a.

702 Jinglei Zhang, Jiankang Deng, Chao Ma, and Rolandos Alexandros Potamias. Hawor: World-space
703 hand motion reconstruction from egocentric videos. In *Proc. of Computer Vision and Pattern*
704 *Recognition*, 2025b.

705 Jinliang Zheng, Jianxiong Li, Dongxiu Liu, Yinan Zheng, Zhihao Wang, Zhonghong Ou, Yu Liu,
706 Jingjing Liu, Ya-Qin Zhang, and Xianyuan Zhan. Universal actions for enhanced embodied
707 foundation models. In *Proc. of Computer Vision and Pattern Recognition*, 2025a.

708 Ruijie Zheng, Jing Wang, Scott Reed, Johan Bjorck, Yu Fang, Fengyuan Hu, Joel Jang, Kaushil
709 Kundalia, Zongyu Lin, Loic Magne, et al. Flare: Robot learning with implicit world modeling.
710 *arXiv preprint arXiv:2505.15659*, 2025b.

711 Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei
712 Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, et al. A survey on vision-language-action
713 models: An action tokenization perspective. *arXiv preprint arXiv:2507.01925*, 2025.

714 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
715 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
716 to robotic control. In *Proc. of Conference on Robot Learning*, 2023.

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 Appendix

759 A ADDITIONAL IMPLEMENTATION DETAILS

761 A.1 MOTION TOKENIZATION

763 Our PELA architecture follows the Being-H0 design and is built on InternVL3-2B as the vision-
 764 language backbone with 28 attention layers. To incorporate the motion modality, we tokenize
 765 *15-frame motion chunks*. Each chunk is decomposed into *wrist* and *finger* motions, which are
 766 separately quantized into 64 tokens each, yielding 128 tokens per chunk. The codebook size of
 767 each part is 4096, learned via a *GRQ-VAE* self-supervised clustering algorithm to capture general
 768 motion patterns. The motion tokens are then wrapped with two **special tokens** `<mot>` and `</mot>`,
 769 forming the following unified format:

770 `<mot> {wrist_motion_tokens} {finger_motion_tokens} </mot>`

772 These special tokens serve as explicit delimiters, helping the VLM distinguish motion chunks from
 773 other modalities such as vision or instruction tokens. For sequences containing **both hands**, we
 774 interleave the left-hand and right-hand chunks along the temporal axis to preserve synchrony while
 775 maintaining modality distinction.

777 A.2 LATENT ACTION PERCEIVER (LAP) & LATENT STATE PERCEIVER (LSP)

779 **Structure.** The Latent Action Perceiver (LAP) and Latent State Perceiver (LSP) share the same
 780 structure and weights. We adopt a 2-layer Perceiver module, where each layer consists of:

- 782 1. A **cross-attention block**, using visual features as key-value pairs and learnable latent queries
 783 for information extraction.
- 784 2. A **self-attention block** applied on the extracted latent tokens for within-latent aggregation.

786 The resulting features are passed through a 2-layer MLP to map them into the VLM embedding space.
 787 Since videos may contain two hands, latent actions originating from the same Perceiver must align to
 788 different motion chunks. To maximize sharing while allowing differentiation, we double the channel
 789 dimension of the Perceiver’s MLP and split it into two hand-specific heads. Each sample dynamically
 790 selects the left- or right-hand head depending on the active motion stream. Specially, for consistency
 791 between the Latent Action Perceiver (LAP) and the Latent State Perceiver (LSP), both modules are
 792 designed to process pairs of frames. While LAP takes the boundary frames $(v_t, v_{t+\delta})$ of each motion
 793 chunk, in LSP we duplicate the initial frame (v_0, v_0) . This ensures that differences between LAP and
 794 LSP stem solely from their input semantics (dynamics vs. context), rather than from architectural
 795 mismatch.

796 **EMA update for Perceiver.** A key challenge in aligning predictive embeddings with latent actions
 797 is that the Latent Action Perceiver (LAP) and Latent State Perceiver (LSP) process heterogeneous
 798 signals (visual boundary frames vs. predictive context). Direct joint optimization often leads to
 799 instability or collapse. To stabilize training, we adopt a decoupled exponential moving average
 800 (EMA) update between the two modules. Concretely, let $\theta_b^{\text{LAP}}, \theta_q^{\text{LAP}}$ denote the backbone and query
 801 parameters of LAP, and $\theta_b^{\text{LSP}}, \theta_q^{\text{LSP}}$ those of LSP. We update them as:

$$\theta_b^{\text{LAP}} \leftarrow \alpha \theta_b^{\text{LAP}} + (1 - \alpha) \theta_b^{\text{LSP}}, \quad (6)$$

$$\theta_q^{\text{LSP}} \leftarrow \alpha \theta_q^{\text{LSP}} + (1 - \alpha) \theta_q^{\text{LAP}}, \quad (7)$$

807 where $\alpha \in [0, 1]$ is the EMA coefficient. This asymmetric design ensures that the LAP backbone
 808 stays consistent with the predictive context shaped by MCP and alignment losses, while the LSP
 809 queries gradually inherit the action-grounding capability from LAP. In practice, we set $\alpha = 0.999$ to
 balance stability and adaptability.

810 A.3 MASKED CHUNK PREDICTION (MCP)
811812 During pretraining, we apply masked decoding to enforce predictive consistency. A naive masking
813 strategy introduces a mismatch between training and inference, since all tokens in a chunk are
814 replaced by [MASK] during training, but in inference, motion chunks are generated sequentially.815 To mitigate this gap, we design a **hybrid masking scheme**:816
817

- 818 • For each sequence with N chunks, we randomly select one chunk as the main prediction
819 target.
- 820 • Chunks before the target are kept intact (no masking).
- 821 • Inside the target chunk, each token is masked with a random ratio uniformly sampled from
822 $\{0.05, 0.15, \dots, 1.0\}$.
- 823 • Tokens in chunks after the target are masked with a fixed 5% probability to provide additional
824 supervision without distorting context.

825 This ensures that the main prediction chunk has aligned context during both training and inference.
826827 **Unlabeled videos (no motion tokens).** For in-the-wild *video-only* samples that lack motion tokens,
828 the entire motion chunk A_i is replaced by [MASK] placeholders. In this case, the MCP term is
829 inactive, and training proceeds solely via alignment to latent actions from LAP (i.e., only $\mathcal{L}_{\text{Align}}$ is
830 applied). This keeps the interface unified while still learning predictive embeddings that are aligned
831 to dynamics without requiring explicit motion labels.832 **Inference.** For motion generation, we decode the current chunk **multiple times**, each time decode
833 $\sim 5\%$ of the tokens in the chunk; the outputs are ensembled to reduce approximation error. This
834 retains the efficiency advantage over causal decoding, while downstream transfer still uses a **single**
835 **forward pass** to extract predictive embeddings.836 **Flow-matching head for robot adaptation.** For post-training adaptation, we directly follow the
837 flow-matching head design in GR00TN1.5 (Bjorck et al., 2025a). Given predictive embeddings $\{h_{i,k}\}$
838 from the pretrained VLA backbone, we use them as conditional input to a Diffusion Transformer
839 (DiT) policy head composed of alternating self-attention and cross-attention layers. We employ a DiT
840 with 16 layers of 32-head attention blocks, and the hidden state dimension is 2048. Self-attention
841 operates over the robot’s proprioceptive states and noisy actions, while cross-attention integrates
842 predictive embeddings $\{h_{i,k}\}$ to inject human-derived dynamics knowledge. The training objective
843 is a flow-matching loss:

844
$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{\tau, \epsilon, A_t} \left[\|V_\theta(\{h_{i,k}\}, A_t^\tau, q_t) - (\epsilon - A_t)\|_2^2 \right], \quad (8)$$

845 where $A_t^\tau = \tau A_t + (1 - \tau)\epsilon$ is a noised action chunk, q_t is the proprioceptive state, and $\epsilon \sim \mathcal{N}(0, I)$.
846 During inference, we initialize with Gaussian noise and iteratively denoise using forward Euler steps,
847 typically with a fixed schedule of N steps (we use $N = 4$ by default). This process generates precise
848 action sequences consistent with the pretrained latent action space, enabling efficient transfer of
849 dynamics-rich human priors to robotic control tasks.850 A.4 TRAINING DETAILS
851852 We optimize PELA with AdamW using a base learning rate of 3×10^{-5} , weight decay of 0.05, and
853 $\beta = (0.9, 0.95)$. The learning rate is warmed up for the first 5% steps and then decayed with a cosine
854 schedule, while gradient clipping (max norm 1.0) is applied throughout. Training uses an effective
855 batch size of 128 sequences, obtained from a per-GPU batch size of 16 with gradient accumulation
856 across 8 GPUs, where each sequence contains a 15-frame motion chunk plus paired instructions and
857 boundary frames. The hybrid loss combines masked chunk prediction and latent-action alignment
858 with $\lambda = 0.5$, and for in-the-wild videos, only the alignment loss is applied. The perceiver modules
859 are updated with an EMA coefficient of $\alpha = 0.999$ to stabilize training.860 Pretraining is performed on the full 7.5M UniHand-Mix dataset for a single epoch, which requires 68
861 hours on 8 NVIDIA A800 (80GB) GPUs. For downstream adaptation with the flow-matching head,

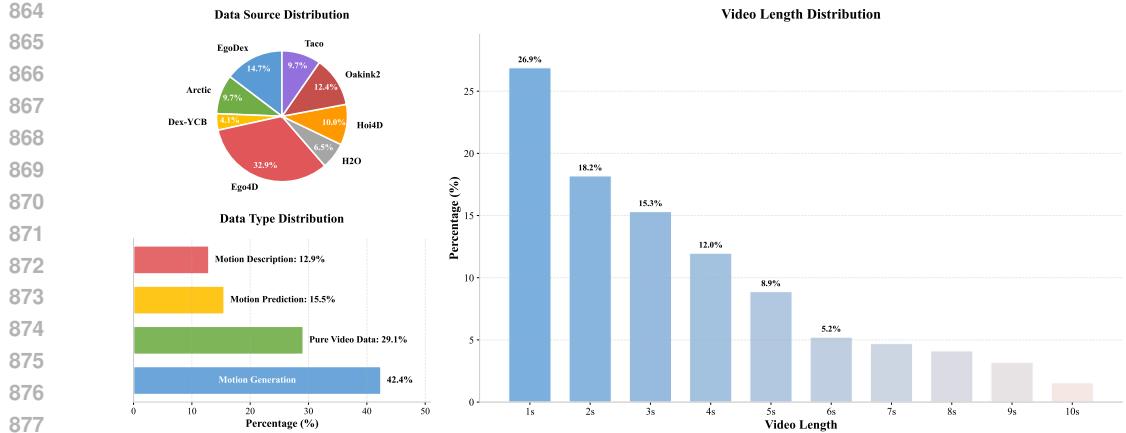


Figure 4: **Dataset statistics of UniHand-Mix.** (Left top) Source distribution across lab-collected and in-the-wild datasets. (Left bottom) Breakdown by task type. (Right) Distribution of clip lengths (1–10 seconds). Together, these statistics highlight the diversity and scale of UniHand-Mix, enabling scalable pretraining.

we freeze the visual modules and use a batch size of 128, learning rate of 1×10^{-4} with cosine decay and 5% warm-up. On LIBERO tasks we run 30k steps (≈ 5 hours), while on RoboCasa tasks we run 60k steps (≈ 10 hours), using the same hardware configuration.

B DATASET DETAILS

B.1 DATA CURATION STEPS

Lab-Collected Subset. Following the UniHand [Luo et al. \(2025\)](#) pipeline, we curate a high-quality lab-collected subset with precise 3D hand annotations and dense task descriptions. (1) *Hand pose standardization*: All annotations are unified into the MANO parameter format ([Romero et al., 2017](#)). For datasets with mocap or SLAM labels, we directly convert to MANO. For datasets with only 3D joints, we fit MANO via gradient optimization. For raw RGB-only data, we apply HoWaR ([Zhang et al., 2025b](#)) for per-frame estimation, followed by temporal smoothing and left-right correction. (2) *Task labeling*: Videos are segmented into 10s chunks and annotated hierarchically. At the chunk level, we produce imperative instructions and concise summaries. At the second level, we annotate contact states, object properties, and hand-object interactions, including both two-handed and single-hand actions. (3) *Instructional data generation*: Based on these annotations, we construct multimodal tasks—motion generation, motion translation, and motion prediction—using 20 base templates per task type, diversified via Gemini-2.5-Pro. This establishes explicit grounding between vision, language, and motion.

In-the-Wild Subset. To complement lab data with naturalistic human behaviors, we curate an additional subset from Ego4D ([Grauman et al., 2022](#)). Unlike controlled setups, egocentric recordings bring challenges such as frequent hand occlusion and irrelevant non-manipulative segments. To extract meaningful manipulation episodes, we employ a two-stage filtering pipeline. First, *visual filtering*: hand regions are detected with an off-the-shelf detector ([Potamias et al., 2025](#)), and candidate clips are annotated with HaWoR ([Zhang et al., 2025b](#)) to obtain approximate pose supervision. Only high-confidence clips are retained, and the threshold is 0.65 for both. Second, *instruction validation*: Gemini-2.5-flash-lite is prompted to verify the presence of hand-centric activities, removing idle or distractor clips. Valid clips are then paired with automatically generated natural language instructions. This process yields roughly 2.5M instruction–video pairs, which, combined with 5M lab-annotated samples, form the UniHand-Mix dataset. The two subsets provide complementary strengths: lab data anchors physical accuracy, while in-the-wild data brings diversity and contextual richness, together enabling scalable pretraining.

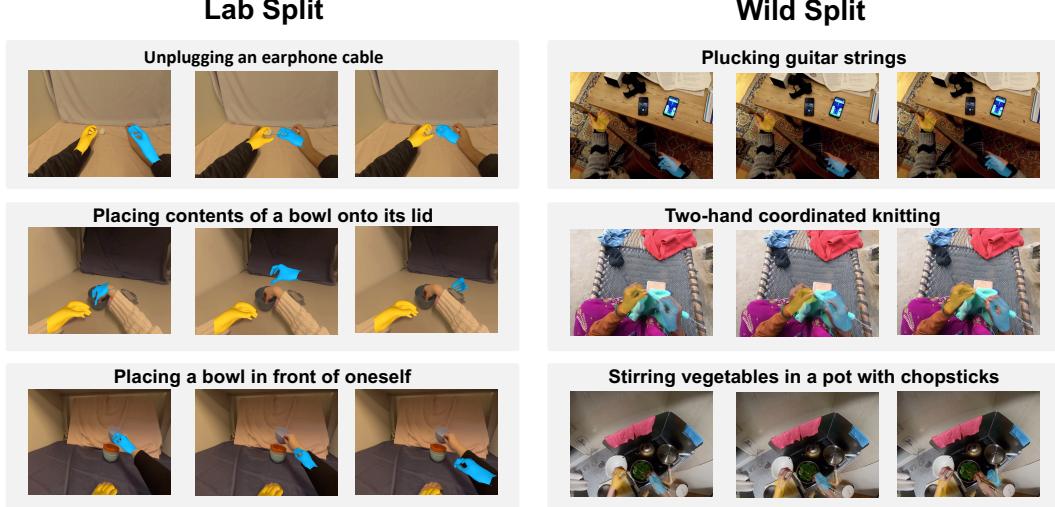


Figure 5: **Qualitative hand-motion generation on wild (left column) and lab (right column) scenes.** Left: (top) *Plucking guitar strings*; (middle) *Two-hand coordinated knitting*; (bottom) *Stirring vegetables in a pot with chopsticks*. Right: (top) *Unplugging an earphone cable*; (middle) *Placing contents of a bowl onto its lid*; (bottom) *Placing a bowl in front of oneself*. Colored overlays denote generated hand poses.

B.2 DATASET STATICS

To provide a clearer picture of the curated UniHand-Mix dataset, we summarize its composition and distributional properties in Fig. 4. The dataset combines diverse sources, task types, and temporal scales:

- **Data Sources.** As shown in the pie chart (top left), UniHand-Mix integrates both lab-collected datasets (e.g., DexYCB, OakInk2, H2O, Arctic, EgoDex, TACO) and in-the-wild videos (Ego4D), yielding a balanced mix of precise motion annotations and naturalistic behaviors.
- **Data Types.** The bar chart (bottom left) shows the breakdown by task type: motion generation (42.4%), motion prediction (15.5%), motion description (12.9%), and pure video data without explicit motion tokens (29.1%).
- **Video Lengths.** The histogram (right) illustrates the distribution of clip lengths. While short clips (1–3 seconds) dominate, longer sequences (up to 10 seconds) are also included, ensuring coverage of both fine-grained and long-horizon manipulations.

B.3 ADDITIONAL QUALITATIVE EXAMPLES

Figure 5 presents qualitative hand-motion generations covering both in-the-wild and lab-collected scenarios. On the **wild** side (left column), our model successfully handles diverse, unconstrained interactions such as *plucking guitar strings*, *two-hand coordinated knitting*, and *stirring vegetables in a pot with chopsticks*, demonstrating robust generalization to complex scenes and bimanual coordination. On the **lab** side (right column), the model produces precise and temporally consistent motions for *unplugging an earphone cable*, *placing contents of a bowl onto its lid*, and *placing a bowl in front of oneself*, reflecting accurate fine-grained control in structured settings. These results illustrate that PELA’s predictive embeddings support both generalization in the wild and accuracy in controlled environments.

972 C USE OF LARGE LANGUAGE MODELS
973974 The large language model (LLM) in this work is applied exclusively for text polishing. Its scope is
975 limited to refining linguistic quality, coherence, and stylistic consistency, and it plays no role in the
976 generation of data or the creation of substantive content.
977978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025