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Abstract
The overarching goal of academic data mining is to deepen our
comprehension of the development, nature, and trends of science.
It offers the potential to unlock enormous scientific, technological,
and educational value. To facilitate related research, Tsinghua Uni-
versity and Zhipu AI have presented the Open Academic Graph
Challenge (OAG-Challenge) and published several realistic and
challenging datasets [29].

In this paper, we present our solution for the KDD Cup 2024 Aca-
demic Question Answering (AQA) task. Participants are required
to retrieve the most relevant papers to answer given professional
questions from a pool of candidate papers. To address this challenge,
we constructed a bi-encoder model for academic paper retrieval.
We conducted extensive experiments, exploring various language
models (LMs) and ensembling them to boost performance. Addi-
tionally, we explored the incorporation of hard negative examples
and a reranking model. Our team achieved high-quality results
and demonstrated competitive performance in the competition,
with mean average precision (MAP) scores of 0.20900 (top-6) and
0.18466 (top-7) on the validation and test sets, respectively. We have
released our source code1.

CCS Concepts
• Information systems→ Information retrieval; • Computing
methodologies→ Natural language processing.

Keywords
Information Retrieval, Academic Question Answering, Open Aca-
demic Graph Challenge
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Table 1: Statistics of the datasets

#Size #Avg. question words #Avg. body words

Training 8,757 9.25 176.31
Validation 2,919 9.91 148.18
Test 3,000 11.56 103.19

#Size #Avg. title words #Avg. abstract words

Papers 352,651 10.43 159.92

1 Introduction
KDD Cup 2024 OAG-Challenge consists of three tasks: author name
disambiguation (AND), academic question answering (AQA), and
paper source tracing (PST). In this paper, we focus on the AQA
task, which involves retrieving the most relevant papers to answer
given professional questions from a pool of candidate papers. In
this section, we formalize the dataset and task description.

1.1 Dataset Description
The training set consists of 8757 samples, where each sample in-
cludes three fields: question, body, and pids. In this context, body
refers to the detailed analysis of the question, and pids represents
the paper IDs which are relevant to the question (i.e., positive sam-
ples). The validation set and test set have a similar format to the
training set but do not include pids. The validation set contains
2919 samples, while the test set contains 3000 samples. Addition-
ally, there are 352,651 candidate papers, each containing pid, title
and abstract fields. The statistics of the datasets are summarized in
Table 1.

1.2 Task Description
Based on the rich landscape of academic data mining, the AQA task
aims to retrieve the most relevant papers to answer given profes-
sional questions from a pool of candidate papers. This task plays a
crucial role in advancing knowledge acquisition and understanding
cognitive impacts within academic research domains. Participants
are required to submit a sorted list of the top 20 papers for each
question in the test set, and the online evaluation metric used is
the top-k mean average precision (MAP) as follows:

𝐴𝑃
(
𝑉𝑞

)
=

1
𝑅𝑞

𝑀∑︁
𝑘=1

𝑃𝑞 (𝑘)1𝑘 (1)

𝑀𝐴𝑃 =
1
𝑛

𝑛∑︁
𝑞=1

𝐴𝑃
(
𝑉𝑞

)
(2)
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where 𝑅𝑞 is the number of paper IDs labeled as positives, 𝑀 rep-
resents the total number of candidate papers in the database, 𝑛
represents the number of samples in the test set, 𝑃𝑞 (𝑘) is the preci-
sion at the cut-off 𝑘 in the ranking list of question 𝑉𝑞 , and 1𝑘 is an
indicator function; 1𝑘 = 1 if the paper ranked at position k is the
correct answer, otherwise 1𝑘 = 0.

2 METHODOLOGY
The pipeline of our solution is shown in Figure 1 and includes
data preprocessing, representation learning, and reranking. We
first present the details of data analysis and preprocessing in § 2.1.
Representation learning is introduced in § 2.2, and reranking is
detailed in § 2.3.

. . .

Candidate 

Papers

question

body

Recall

Data 

Preprocessing

Rerank

Top 20 pidTop 2 pidTop 1 pid

Bi-encoder

Representation Learning

Hard Negatives

Cross-encoder

&&

Ensemble

Figure 1: The pipeline of our solution.

2.1 Data Analysis and Preprocessing
We first analyzed the token distribution for the question, body, title,
and abstract in the training set. In the experiment, there is not a
significant difference in the number of tokens across all models.
Here, we take the tokenizer of "Alibaba-NLP/gte-large-en-v1.5" [17]
as an example. The results are displayed in Figure 2. It can be
observed that the body contains more tokens compared to the
other three fields. Additionally, we noted the presence of numerous
HTML tags in both the body and abstract, which do not provide
useful information. Due to the model’s input length limitations,
these HTML tags reduce the amount of meaningful information
accessible to the model. Therefore, we applied regular expressions
to remove HTML tags from the body and abstract fields before
training the models.

Figure 2: Statistics of tokens in the training set.

2.2 Representation Learning
During the recall stage, an effective method to retrieve relevant pa-
pers given a question and body is as follows: Generate embeddings
for the question and body, denoted as 𝑄 , and generate embeddings
for the title and abstract of paper 𝑖 , denoted as 𝐷𝑖 . Sort papers
based on the cosine similarity between 𝑄 and 𝐷𝑖 in descending
order:

sim(𝑄,𝐷𝑖 ) =
𝑄 · 𝐷𝑖

∥𝑄 ∥ · ∥𝐷𝑖 ∥
(3)

Some efficient similarity search methods and libraries are available
here as well, such as HNSW [19] and Faiss [7], but for the size of
this dataset, there may not be a significant efficiency improvement.

We use pre-trained language models (PLMs) to construct a bi-
encoder framework for representation learning as shown in Figure
3. Text a and text b represent the concatenations of the question
with the body, and the title with the abstract, respectively. This
approach allows us to encode all papers just once during prediction,
which effectively reduces prediction cost.

Figure 3: Bi-encoder framework.

We model this task as a binary classification problem and train
the model using binary cross-entropy (BCE) loss. Since the dataset
only provides positive papers corresponding to query and body, we
had to construct negatives. We tried three different approaches:

• For each sample, randomly select 𝑁 papers from the paper
pool as negatives.

• Use unfine-tuned pre-trained language models to calculate
𝑠𝑖𝑚(𝑄,𝐷𝑖 ) and select the top 𝑁 papers with the highest
scores (excluding positive samples) as hard negatives.

• For each sample, select 𝑁 papers from the paper pool as
negatives, ensuring that after selecting negatives for all
samples, each paper in the pool is selected at least once.
This ensures that representations of all candidate papers
are trained.

2
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The experimental results indicate that the third method achieved
the best performance. We will provide a detailed discussion of this
in § 3.3.

2.3 Reranking
Generally, it is crucial to rerank the recalled results to achieve better
performance. We explored two different reranking approaches. One
involved constructing a cross-encoder model, as shown in Figure 4,
which leveraged cross-attention between the question, body, and
paper to capture more semantic information. The other approach
entailed training multiple bi-encoder models and ensembling the
prediction results.

Figure 4: Cross-encoder framework.

We selected the top 200 papers with the highest scores from the
recall results for reranking. For the cross-encoder, we directly use
its prediction scores as the final scores. For the model ensemble, we
aggregate the prediction scores from multiple bi-encoder models.
We then select the top 20 papers with the highest scores as the final
results.

3 EXPERIMENTS
In this section, we present our main experiment results and discuss
the findings.

3.1 Experimental Setup
For the bi-encoder, we experimented with different PLMs, including
snowflake-arctic-embed-l [21], gte-large-en-v1.5 [17], bge-large-en-
v1.5 [26], mxbai-embed-large-v1 [15] and UAE-Large-V1 [16]. For
the cross-encoder, we used bge-reranker-large [26]. The experi-
ments were conducted on the Linux operating system, utilizing
PyTorch2, transformers [25], and FlagEmbedding [3] for implemen-
tation.

3.2 Overall Performance
We compare the performance of different methods on the validation
and test sets in Table 2. The default is to use the third method of
negatives selection outlined in § 2.2. From the results, we conclude
that:

1) When using a single model, the gte model achieved the best
performance and demonstrated significant advantages compared
to other models.

2) When using model ensemble, the combination of gte and
snowflakes achieved the best performance. Additionally, it can be
observed that more models in the ensemble do not necessarily lead
to better performance. Ensembling a poor performing model could
potentially lead to a decline in overall performance.
2https://pytorch.org

Table 2: Overall Performance (MAP@20)

Method Validation Test

bge 0.1804 0.1529
UAE - 0.1546
mxbai - 0.1554
snowflake - 0.1607
gte 0.1938 0.1724

gte+reranker 0.1903 -
bge+gte+mxbai 0.1881 0.1762
bge+gte+mxbai+snowflakes+UAE 0.1934 0.1797
bge+gte+mxbai+snowflakes 0.2023 0.1830
gte+snowflakes 0.2090 0.1846

Table 3: The performance (MAP@20) under different nega-
tives selection strategies

Method Validation

bge w/ hard negatives 0.1053
w/ random negatives 0.1618
w/ negatives covering all papers 0.1804

3) The introduction of a reranker did not lead to performance
improvement. We feel there might be room for improvement in the
construction of training data or training methods for the reranker.

3.3 Negatives Selection
The performance under different negatives selection strategies is
shown in Table 3. It can be observed that the introduction of hard
negatives significantly deteriorated the model’s performance. These
hard negatives were considered by unfine-tuned PLMs to have
higher similarity with the question and body. We found that some
of these papers were actually positives that had been mislabeled.
Treating these samples as negatives led to a decline in the model’s
performance. Furthermore, ensuring that each paper in the pool is
selected at least once tends to result in better performance compared
to randomly selecting negatives.

4 RELATEDWORK
In question answering (QA), the passage retriever is crucial for
identifying relevant passages for extracting answers. Traditional
methods, such as TF-IDF and BM25, have used term-based retriev-
ers but are limited in their representation capabilities [2]. Recent
advancements have leveraged deep learning to enhance these re-
trievers, incorporating techniques like document expansion [23],
question expansion [20], and term weight estimation [4].

Unlike these term-based methods, dense passage retrieval has
emerged, representing both questions and documents as dense vec-
tors (i.e., embeddings) within a bi-encoder framework. Current
approaches fall into two categories: self-supervised pre-training for
retrieval [1, 9, 14] and fine-tuning pre-trained language models on
labeled datasets. Although the bi-encoder architecture is promising,
training such a retriever effectively is challenging. It faces issues like

3

https://pytorch.org


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDDCup ’24, August 25–29, 2024, Barcelona, Spain Xuantao Lu et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

training and inference discrepancies, a large number of unlabeled
positives, and limited training data. Recent studies[1, 10, 13, 18]
have attempted to address the first issue by developing complex
sampling mechanisms to create hard negatives but still struggle
with false negatives. The other two challenges have been less fre-
quently tackled in QA.

The concept of using dense vector representations in retrieval is
not new, with roots in Latent Semantic Analysis [6]. Recently, dis-
criminatively trained dense encoders with labeled query-document
pairs have gained traction [8, 11, 28], applied in areas like cross-
lingual document retrieval, ad relevance prediction, web search, and
entity retrieval. These dense methods complement sparse vectors
by scoring semantically related text pairs highly, even without exact
word overlap. However, dense representations often underperform
compared to sparse models.

Although not the primary focus here, dense representations from
pre-trained models combined with cross-attention mechanisms
have shown potential in re-ranking passages or dialogues [12, 22].
In QA, Das et al. [5] introduced an iterative retrieval approach us-
ing reformulated question vectors, while Seo et al. [24] proposed
bypassing passage retrieval altogether by directly encoding an-
swer phrases as vectors for retrieval. Lee et al. [14] jointly trained
question encoders and readers with additional pre-training to align
question surrogates with relevant passages, outperforming BM25
plus reader methods in QA accuracy. REALM [9] furthered this by
asynchronously tuning the passage encoder during training via re-
indexing. Improvements in pre-training objectives have also been
seen with work by Xiong et al. [27].

5 CONCLUSION
In this paper, we introduce our pipeline for the KDD CUP 2024
OAG-Challenge AQA task. We constructed a bi-encoder model for
academic paper retrieval, experimented with different LMs, and
ensembled them to boost performance. Furthermore, we tried differ-
ent ways of constructing negative samples and introduced a rerank
model. Our team achieved high-quality results and demonstrated
competitive performance in the competition.
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