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Abstract

We study realizable continual linear regression under random task orderings, a1

common setting for developing continual learning theory. In this setup, the worst-2

case expected loss after k learning iterations admits a lower bound of Ω(1/k).3

However, prior work using an unregularized scheme has only established an upper4

bound of O(1/k1/4), leaving a significant gap. Our paper proves that this gap can5

be narrowed, or even closed, using two frequently used regularization schemes:6

(1) explicit isotropic ℓ2 regularization, and (2) implicit regularization via finite step7

budgets. We show that these approaches, which are used in practice to mitigate8

forgetting, reduce to stochastic gradient descent (SGD) on carefully defined sur-9

rogate losses. Through this lens, we identify a fixed regularization strength that10

yields a near-optimal rate of O(log k/k). Moreover, formalizing and analyzing a11

generalized variant of SGD for time-varying functions, we derive an increasing12

regularization strength schedule that provably achieves an optimal rate of O(1/k).13

This suggests that schedules that increase the regularization coefficient or decrease14

the number of steps per task are beneficial, at least in the worst case.15

1 Introduction16

In continual learning, a learner encounters a sequence of tasks and aims to acquire new knowledge17

without “forgetting” what was learned in earlier tasks. Many algorithmic approaches have been pro-18

posed to address this challenge [see surveys in 43, 40]. However, a deeper theoretical understanding19

is still needed to clarify the principles governing continual learning and is essential for the practical20

and reliable deployment of such methods.21

We study standard regularization-based schemes in a setting with random task orderings. Both the22

setting and—especially—the schemes play a central role in the practical and theoretical continual23

learning literature, as discussed below. We find this combination mutually beneficial: (1) regulariza-24

tion improves the best known upper bound under random orderings, achieving an optimal rate; and25

(2) randomness facilitates analysis that motivates heuristics for setting the regularization strength.26

We focus on two forms of regularization: a well-known explicit isotropic ℓ2 regularization, and27

implicit regularization induced by a finite number of gradient steps on the unregularized loss of each28

task. Prior work studied such schemes in restricted settings—i.e., two tasks [27, 28], simplified data29

models [27, 46, 28], weak regularization [12, 22], or cyclic orderings [5]. In contrast, we consider30

any number of regression tasks drawn from any collection, under random orderings.31

Random task orderings are both theoretically motivated and empirically relevant: they closely32

characterize non-adversarial—and often realistic—task sequences; can be induced algorithmically33

via random sampling to actively mitigate forgetting; and are implicitly present in standard randomly34

generated continual learning benchmarks (e.g., split or permuted datasets). These orderings were35
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found to have a remedying effect on forgetting in continual learning, both empirically [26, 19] and36

theoretically [11, 12, 22, 13]. Under such orderings, the best known dimensionality-independent loss37

rate for linear regression with jointly realizable tasks is O(1/k1/4) [13], leaving a significant gap38

from the Ω(1/k) lower bound that holds for any continual learning scheme.39

In this work, we analytically reduce both the explicit and implicit regularization schemes to incre-40

mental gradient descent, which aligns with SGD under random orderings. We prove that, under41

jointly realizable tasks, specific choices of fixed and increasing regularization strength schedules42

yield nearly-optimal and optimal rates of O(log k/k) and O(1/k), respectively.43

Summary of contributions. Summarized more technically, our main contributions are:44

• We reduce continual linear regression with either explicit ℓ2 regularization or finite-step budget to45

Incremental Gradient Descent (IGD) on surrogate losses. These reductions apply under arbitrary46

task orderings and non-realizable settings, enabling unified analysis. Figure 1 schematically47

depicts our reductions and their role in the analysis.48

• In the realizable case under random task orderings, where the best known bound of O
(
1/k1/4

)
is49

obtained via an unregularized continual scheme:50

– We prove that a carefully set, fixed regularization strength yields a near-optimal worst-case51

expected loss of O(log k/k).52

– We introduce and analyze a generalized form of SGD for time-varying objectives and show53

that an increasing regularization schedule achieves the optimal rate of O(1/k), closing the54

existing gap between upper and lower bounds. See Table 1 for a summary.55

Table 1: Loss rates in realizable continual linear regression [based on Table 1 of 11]. Upper bounds apply to
any M jointly realizable tasks. Lower bounds indicate worst cases attained by specific constructions. Bounds
for random orderings apply to the expected loss. We omit unavoidable scaling terms and constant multiplicative
factors (which are mild).
Notation: k= iterations; d= dimensions; r̄, rmax= average/maximum data matrix ranks; a ∧ b ≜ min(a, b).

Bound Regularization Paper / Ordering Random
with Replacement Cyclic

Evron et al. [11]
d− r̄

k

M2

√
k
∧ M2(d− rmax)

k

Unregularized Kong et al. [25] —
M3

k

Upper Evron et al. [13]
1
4
√
k
∧

√
d− r̄

k
∧

√
Mr̄

k
—

Fixed (explicit) C&D [5] —
M

√
log (k/M)

k

Fixed Ours (2025)
log k

k
—

Increasing Ours (2025)
1

k
—

Lower
Unregularized Evron et al. [11]

1

k
(*)

M2

k

Any Ours (2025)
1

k
(**) —

(*) They did not explicitly present such lower bounds, but the M =2 tasks construction from their proof of
Theorem 10, can yield a Θ(1/k) random behavior by cloning those 2 tasks ⌊M/2⌋ times for any general M .
(**)While the proof is standard, we are not aware of an explicit statement in the literature.
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2 Setting: Continual linear regression with explicit or implicit regularization56

We focus on the widely studied continual linear regression setting, which, despite its simplicity, often57

reveals key phenomena and interactions in continual learning [e.g., 10, 11, 30, 15, 35, 27, 46, 16].58

Notation. Bold symbols are reserved for matrices and vectors. Denote the Euclidean (vectors) or59

spectral (matrices) norm by ∥·∥, and the Moore-Penrose inverse by X+. Finally, denote [n] = 1, ..., n.60

Throughout the paper, the learner is given access to a task collection of M linear regression tasks, that61

is, (X1,y1), . . . , (XM ,yM ), where Xm ∈ Rnm×d and ym ∈ Rnm . We define the data “radius” as62

R ≜ maxm∈[M ] ∥Xm∥2. Over k iterations, tasks are presented sequentially according to a task63

ordering τ : [k]→ [M ]. The learner aims to accumulate expertise, quantified by the objective below.64

Definition 2.1 (Average loss). The average—or population—loss is defined as the mean loss across
all individual tasks m ∈M . That is,

L(w) ≜
1

M

M∑
m=1

L(w;m) ≜
1

2M

M∑
m=1

∥Xmw − ym∥2 .

Remark 2.2 (Forgetting and seen-task loss). Prior work analyzed not only the loss over all tasks but65

also the forgetting, or loss on seen tasks. Under the random orderings considered here, all of these66

quantities are typically close. We thus focus on average loss and discuss the others in Section 4.3.67

Explicit regularization. A large body of practical continual learning research focuses on mitigating68

forgetting by explicitly penalizing changes in parameter space [e.g., 24, 45, 2, 6]. Many employ69

regularization terms based on Fisher information [4], though others have found empirically that70

isotropic regularization often performs comparably well [31, 38]. Following recent theoretical work71

[e.g., 27, 12, 5, 28], we also focus on isotropic regularizers but discuss alternatives in Section 4.3.72

Scheme 1 Regularized continual linear regression

Input: Regression tasks {(Xm,ym)}Mm=1, task ordering τ , regularization strengths (λt)
k
t=1.

Initialize w0 = 0d

For each iteration t = 1, . . . , k:
wt ← argminw

{
1
2 ∥Xτtw − yτt∥

2
+ λt

2 ∥w −wt−1∥2
}

Output wk

Remark 2.3 (Unregularized first task). Our analysis is also valid for the common choice λ1 → 0.73

While the continual update step above admits a closed-form solution—useful for theoretical analysis74

[e.g., 27]—our paper does not directly leverage it. Instead, in Section 3, we reduce this step—which75

solves an entire task—to a single gradient step, thus enabling last-iterate SGD analysis of the scheme.76

Implicit regularization. Practically, it is common to minimize the current task’s unregularized loss77

with a gradient algorithm for a finite number of steps (e.g., in [23]; in contrast to theoretically learning78

to convergence [11, 13]). This implicitly regularizes the model, even in stationary settings [1, 39].79

Recently, it has attracted theoretical interest in continual setups [22, 46].80

Scheme 2 Continual linear regression with finite step budgets

Input: Regression tasks {(Xm,ym)}Mm=1, task ordering τ , inner step counts and sizes (Nt, γt)
k
t=1.

Initialize w0 = 0d

For each task t = 1, . . . , k:
Initialize w(0) ← wt−1

For s = 1, . . . , Nt: # Perform Nt gradient steps on the current task’s unregularized loss.
w(s) ← w(s−1) − γt∇ 1

2

∥∥Xτtw
(s−1) − yτt

∥∥2
wt ← w(Nt)

Output wk

Regularization strength. The coefficients λt and step counts Nt in Schemes 1 and 2 control the81

“regularization strength” and how well the current loss is minimized. This is often seen as tuning the82

stability-plasticity tradeoff [17, 43]. Our paper identifies choices that lead to improved upper bounds.83
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3 Regularized continual linear regression reduces to Incremental GD84

Evron et al. [13] proved a reduction from unregularized continual linear regression to a “stepwise-85

optimal” SGD scheme, where a single SGD step corresponds to solving an entire task. This has86

allowed them to use last-iterate SGD analysis to study continual learning, as we do in Section 4.87

We define the Incremental Gradient Descent (IGD) scheme to cast both Schemes 1 and 2 within a88

unified framework, enabling a common analysis. The reductions and the flow in which we employ89

them are illustrated in Figure 1. At each iteration t, the algorithm performs a gradient step on the90

time-varying smooth convex function f (t)(·; τt), selected by the ordering τ , using step size ηt.91

Scheme 3 Incremental Gradient Descent for smooth, convex, time-varying functions

Input: Smooth, convex, time-varying functions
{
f (t)(·;m)

}M
m=1

, ordering τ , step sizes (ηt)
k
t=1

Initialize w0 ∈ Rd

For each iteration t = 1, . . . , k:
wt ← wt−1 − ηt∇f (t)(wt−1; τt) # Perform a single gradient step on the current objective.

Output wk

92

93

We present two reductions that cast regularized and budgeted continual regression as special cases of94

incremental gradient descent. Proofs for this section are provided in Appendix C.95

Reduction 1 (Regularized Continual Regression⇒ Incremental GD). Given M regression tasks96

{(Xm,ym)}Mm=1, there exist functions f (t)
r (w;m) ≜ 1

2

∥∥√Am(w −X+
mym)

∥∥2 , for Am depend-97

ing on λt, ηt > 0, such that, for any ordering τ , regularized continual linear regression with98

regularization strengths (λt)
k
t=1 is equivalent to IGD applied to the sequence

(
f
(t)
r (·; τt)

)k
t=1

. That99

is, the iterates of Schemes 1 and 3 coincide.100

Reduction 2 (Budgeted Continual Regression ⇒ Incremental GD). Given M regression tasks101

{(Xm,ym)}Mm=1, there exist functions f (t)
b (w;m) ≜ 1

2

∥∥√Am(w −X+
mym)

∥∥2 , for Am depend-102

ing on Nt ∈ N, γt ∈
(
0, 1/R2

)
and ηt > 0, such that, for any ordering τ , budgeted continual linear103

regression with (Nt)
k
t=1 inner steps of sizes (γt)

k
t=1, is equivalent to IGD applied to the sequence104 (

f
(t)
b (·; τt)

)k
t=1

. That is, the iterates of Schemes 2 and 3 coincide.105

Proof idea. The updates (wt−1−wt) in Schemes 1 and 2 are affine in wt−1, and thus correspond to106

gradients of quadratic functions. In Reduction 1, this yields Am = 1
ηt

(
Id − λt

(
X⊤

mXm + λtId
)−1)

;107

and in Reduction 2, Am = 1
ηt

(
Id −

(
Id − γtX

⊤
mXm

)Nt
)
. In both cases, the update coincides with108

an IGD step on the surrogate f (t)(w;m) = 1
2∥
√
Am(w −X+

mym)∥2.109

Next, we establish key properties of the surrogate objectives f (t)
r , f

(t)
b , which hold regardless of task110

ordering or realizability. Importantly, they enable last-iterate GD analysis for continual regression.111

Lemma 3.1 (Properties of the IGD objectives). For t ∈ [k], define f (t)
r , f

(t)
b as in Reductions 1 and 2,112

and recall the data radius R ≜ maxm∈[M ] ∥Xm∥2.113

(i) f
(t)
r , f

(t)
b are both convex and β-smooth1 for β(t)

r ≜ 1
ηt

R2

R2+λt
, β

(t)
b ≜ 1

ηt

(
1− (1− γtR

2)Nt
)
.114

(ii) Both functions bound the “excess” loss from both sides, i.e., ∀w ∈ Rd,∀t ∈ [k] ,∀m ∈ [m],115

λtηt · f (t)
r (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

β
(t)
r

· f (t)
r (w;m) ,

ηt
γtNt

· f (t)
b (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

β
(t)
b

· f (t)
b (w;m) .

(iii) Finally, when the tasks are jointly realizable (see Assumption 4.1), the same w⋆ minimizes all
surrogate objectives simultaneously. That is,

L(w⋆;m) = f (t)
r (w⋆;m) = f

(t)
b (w⋆;m) = 0, ∀t ∈ [k] ,∀m ∈ [M ] .

1A function h : Rd → R is β-smooth when ∥∇h(y)−∇h(x)∥ ≤ β ∥y − x∥ for all x, y ∈ Rd.

4



Continual 

Linear Regression:
unregularized, 

learned to convergence

Incremental GD:
𝛽-smooth functions,

fixed, “step-wise optimal” step 

size of 1/𝛽

Continual 

Linear Regression:
explicit, isotropic,

 ℓ2 regularization 

Incremental GD:
Smooth functions,

tunable smoothness & step size

(fixed or scheduled)

Continual 

Linear Regression:
implicit regularization via 

finite step size budgets

Loss / Forgetting  Rate:

𝒪 1/𝑘1/4  

for unregularized CL

Loss / Forgetting  Rate:

near optimal 𝒪 log𝑘/𝑘  

via fixed regularization

Loss / Forgetting  Rate:

optimal 𝒪 1/𝑘  

via increasing regularization

Random Task Orderings

Last-Iterate SGD Analysis Last-Iterate SGD Analysis for Time-Varying Functions

(a) Previous Results (Evron et al. [13]) (b) New Results (Ours [2025])

Figure 1: Schematic overview of our contributions compared to prior results in [13]. Evron et al.
[13] reduce unregularized continual linear regression to incremental gradient descent on a surrogate
objective with fixed smoothness. They then analyze the last iterate of SGD to derive a loss rate
of O(1/k1/4) under random task orderings. In contrast, we show that adding explicit or implicit
regularization enables tuning the smoothness of the corresponding surrogate objective. Importantly,
this added flexibility allows a more nuanced last-iterate analysis: a well-tuned fixed regularization
strength yields a near-optimal O(log k/k) rate, while a specific increasing schedule achieves the first
O(1/k) rate for continual linear regression under random orderings.

4 Rates for realizable continual linear regression in random orderings116

Jointly realizable regression. In this section, we focus on a setting in which all tasks can be117

perfectly solved by a single predictor—a common assumption2 in theoretical continual learning [e.g.,118

11, 12, 25, 16, 22, 13]. This assumption simplifies analysis by allowing all iterates to be compared to119

a fixed predictor, ruling out task collections with inherent contradictions. Realizability often holds in120

highly overparameterized deep networks, which can typically be optimized to arbitrarily low loss. In121

the neural tangent kernel (NTK) regime [21, 7], such networks exhibit effectively linear dynamics122

that closely align with our analysis.123

Assumption 4.1 (Joint realizability). There exists an offline solution w⋆ ∈ Rd such that

Xmw⋆ = ym, ∀m ∈ [M ] .

Random task orderings. We study random orderings as a natural model of non-adversarial task124

sequences. Such orderings avoid worst-case pathologies and allow reductions to standard stochastic125

tools. They are implicitly used when generating common random benchmarks (e.g., permuted or split126

datasets), and can also be induced algorithmically by random sampling. These settings have been127

studied empirically [26, 19] and theoretically [11, 12, 22, 13]. Table 1 compares known rates under128

random and cyclic orderings.129

Definition 4.2 (Random task ordering). A random task ordering samples tasks uniformly from the130

collection [M ]. That is, τ1, . . . , τk ∼ Unif ([M ]), with or without replacement.131

An immediate lower bound. Under random ordering with replacement, no algorithm can achieve132

a worst-case expected loss convergence rate faster than Ω(1/k). This result, which stems from the133

2Other theoretical works similarly assume an underlying linear model, but allow additive label noise.
This, however, almost invariably requires assuming either i.i.d. features [15, 30, 3] or commutable covariance
matrices across tasks [27, 28, 46]—whereas we allow arbitrary data matrices, enabling worst-case analysis.
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uncertainty over unseen tasks, is formally established in Theorem B.1 and serves as a baseline for134

evaluating the tightness of our upper bounds.135

Lastly, throughout the section, we use the data radius R ≜ maxm∈[M ] ∥Xm∥2.136

4.1 Near optimal rates via fixed, horizon-dependent regularization strength137

We apply last-iterate convergence results for SGD to the surrogate losses used by IGD under random138

orderings. Specifically, using the results of Evron et al. [13] together with the smoothness and upper139

bound from Lemma 3.1, we establish:140

Lemma 4.3 (Rates for fixed regularization strength). Assume a random with-replacement ordering141

over jointly realizable tasks. Then, for each of Schemes 1 and 2, the expected loss after k ≥ 1142

iterations is upper bounded as:143

(i) Fixed coefficient: For Scheme 1 with a regularization coefficient λ > 0,144

EτL (wk) ≤
e ∥w0 −w⋆∥2 R2

2 · R2

R2+λ ·
(
2− R2

R2+λ

)
· k1−

R2

R2+λ

(
1− R2

4(R2+λ)

) .

(ii) Fixed budget: For Scheme 2 with step size γ ∈ (0, 1/R2) and budget N ∈ N,145

EτL (wk) ≤
e ∥w0 −w⋆∥2 R2

2 · (1− (1− γR2)2N ) · k1−(1−(1−γR2)N )
(
1− 1−(1−γR2)N

4

) .

All proofs for this subsection are provided in App. D.146

The rates established in Lemma 4.3 raise a natural question: What choice of the regularization147

strength—i.e., the regularization coefficient λ or step count N—achieves the tightest bound?148

Corollary 4.4 (Near-optimal rates via fixed regularization strength). Assume a random with-149

replacement ordering over jointly realizable tasks. When the regularization strengths in Lemma 4.3150

are set as follows:151

(i) Fixed coefficient: For Scheme 1, set regularization coefficient λ ≜ R2(ln k − 1);152

(ii) Fixed budget: For Scheme 2, choose step size γ ∈ (0, 1/R2) and set budget N ≜
ln(1− 1

ln k )
ln(1−γR2) ;153

Then, under either Scheme 1 or Scheme 2, the expected loss after k ≥ 2 iterations is bounded as:154

EτL (wk) ≤
5 ∥w0 −w⋆∥2 R2 ln k

k
.

Remark 4.5 (Extension to without replacement orderings). The rates in Lemma 4.3 and Corollary 4.4155

extend to random orderings without replacement; see App. D for details.156

This marks a significant improvement over theO(1/k1/4) rate established by Evron et al. [13] for the157

unregularized scheme. By tuning the regularization strength, we gain control over the smoothness of158

the surrogate losses f (t)
r and f

(t)
b in Reductions 1 and 2, allowing us to attain theO(log k/k) rate that159

is optimal within the SGD framework used in their analysis. In contrast, their unregularized scheme160

lacked this flexibility, which made achieving such rates considerably more difficult and potentially161

out of reach. A similar rate can also be derived from the last-iterate bounds of Varre et al. [41], as the162

smoothness induced by our choice of regularization falls within the applicable regime of their results.163

While the rate we obtained in the corollary is closer to the lower bound of Ω(1/k), a gap remains.164

This leaves an open question: can regularization be used to match the known lower bound? In the165

next section, we develop techniques to answer this question.166
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4.2 Optimal rates via increasing regularization regularization167

We present the first result in continual linear regression that achieves the optimal rate for the last168

iterate, matching the known lower bound. This is obtained by employing a schedule in which the169

regularization strength increases over time. We discuss these findings and their connections to prior170

work in Section 6. All proofs for this subsection are provided in App. E.171

Theorem 4.6 (Optimal rates for increasing regularization). Assume a random with-replacement172

ordering over jointly realizable tasks. Consider either Scheme 1 or Scheme 2 with the following173

time-dependent schedules:174

(i) Scheduled coefficient: For Scheme 1, set regularization coefficient λt =
13R2

3
· k + 1

k − t+ 2
;175

(ii) Scheduled budget:176

For Scheme 2, choose step sizes γt ∈ (0, 1/R2) and set budget Nt =
3

13γtR2
· k − t+ 2

k + 1
;177

Then, under either Scheme 1 or Scheme 2, the expected loss after k ≥ 2 iterations is bounded as:178

EτL(wk) ≤
20 ∥w0 −w⋆∥2 R2

k + 1
.

Proof technique: Last-iterate analysis for time-varying objectives. Establishing the theorem179

requires a novel last-iterate bound in stochastic optimization, as no existing analysis yields a O(1/k)180

guarantee for last-iterate convergence in the realizable setting. A standard path to such rates is to use a181

decreasing step-size schedule. However, our setting is more nuanced: the quantities we control are the182

regularization strengths—i.e., the regularization coefficient or step budget in Scheme 1 or 2—which183

inherently modify the surrogate objectives f (t)
r and f

(t)
b in Reductions 1 and 2.184

To handle this, we analyze SGD applied to time-varying objectives—a generalization of standard SGD.185

For this analysis to yield meaningful guarantees, the evolving surrogates must closely approximate186

the original loss. Indeed, this condition holds, as verified by Lemma 3.1, thus enabling the application187

of the next lemma.188

Lemma 4.7 (SGD bound for time-varying distributions). Assume τ is a random with-replacement189

ordering over M jointly-realizable convex and β-smooth loss functions f(·;m) : Rd → R. Define190

the average loss f(w) ≜ Em∼τf(w;m). Let k ≥ 2, and suppose
{
f (t)(·;m) | t ∈ [k],m ∈ [M ]

}
191

are time-varying surrogate losses that satisfy:192

(i) Smoothness and convexity: f (t)(·;m) are β-smooth and convex for all m ∈ [M ], t ∈ [k] ;193

(ii) There exists a weight sequence ν1, . . . , νk such that for all m ∈ [M ], t ∈ [k],w ∈ Rd:194

f (t)(w;m)− f (t)(w⋆;m) ≤ f(w;m)− f(w⋆;m) ≤ (1+νtβ)(f
(t)(w;m)− f (t)(w⋆;m)) ;

(iii) Joint realizability:195

w⋆ ∈ ∩t∈[k] ∩m∈[M ] argmin
w

f (t)(w;m); ∀m ∈ [M ], t ∈ [k], f (t)(w⋆;m) = f(w⋆;m) .

Then, IGD (Scheme 3) with a diminishing step size that satisfies νt ≤ ηt = η
(

k−t+2
k+1

)
, ∀t ∈ [k] for196

some η ≤ 3/(13β), guarantees the following expected loss bound:197

Ef(wk)− f(w⋆) ≤
9

2η(k + 1)
∥w0 −w⋆∥2 .

In particular, for η = 3
13β we obtain198

Ef(wk)− f(w⋆) ≤
20β ∥w0 −w⋆∥2

k + 1
.
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4.3 Do not forget forgetting: Extension to seen-task loss199

We now take the opportunity to briefly revisit our results through the lens of other quantities of200

interest beyond the average (training) loss defined in Definition 2.1.201

Continual (or lifelong) learning aims to develop systems that accumulate expertise over time—202

learning from new experiences without forgetting previous ones [32, 14]. While mitigating forgetting203

has long been a central goal in continual learning, practitioners often monitor it indirectly using204

“positive” metrics, such as average accuracy or performance [36, 24, 29].205

In theoretical work, however, it is essential to define such quantities explicitly. Doan et al. [10] defined206

forgetting at time k as the drift in model outputs, e.g., 1
k

∑k
t=1 ∥Xτt(wk −wt)∥2. Nevertheless, this207

can be large even if the model improves between times t and k—that is, in the presence of positive208

backward transfer.209

An alternative forgetting definition, used, e.g., by Evron et al. [11, 13], Lin et al. [30], is loss degrada-210

tion: 1
k

∑k
t=1 L(wk; τt)−L(wt; τt) =

1
2k

∑k
t=1 ∥Xτtwk − yτt∥

2 −∥Xτtwt − yτt∥
2. Commonly,211

such works [11, 16] assume joint realizability (as we do), and also that the model is trained to212

convergence at each step, achieving zero loss on the current task. In that case, forgetting reduces to:213
1
2k

∑k
t=1 ∥Xτtwk − yτt∥

2, which is always non-negative and can be meaningfully upper bounded.214

However, in schemes like our regularized approaches (Schemes 1 and 2), where convergence is not215

achieved despite realizability, loss degradation can be negative due to backward transfer. As a result,216

it is sensitive to worst-case analytical “manipulations” and difficult to analyze theoretically.217

We introduce a more suitable alternative: the seen-task loss, which quantifies performance on218

previously encountered tasks. Importantly, this quantity is always non-negative and decreases in the219

presence of desirable backward transfer.220

Definition 4.8 (Seen-task loss). Let τ : [k] → [M ] be the task ordering, and let wk be the iterate221

(parameters) after k steps. The seen-task loss at step k is defined as L1:k(wk) ≜ 1
k

∑k
t=1 L(wk; τt) .222

In App. E, we extend Theorem 4.6 from the average loss to the seen-task loss. Specifically, we223

show that increasing regularization also achieves an O(1/k) rate for the expected seen-task loss.224

But, is this the optimal rate for seen-task loss?225

The next lemma shows that, at least under explicit isotropic regularization (Scheme 1), it is optimal.226

Proof in App. B. More precisely, under random task orderings, no regularization schedule yields a227

rate faster than O(1/k) for the expected seen-task loss. In Section 6, we discuss how non-isotropic228

regularization—at the cost of additional space complexity—can ensure a seen-task loss of zero.229

Lemma 4.9 (Lower bound for seen-task loss under Scheme 1). For any d ≥ 2, initialization230

w0 ∈ Rd, and regularization coefficient sequence λ1, . . . , λk ≥ 0, there exists a set of jointly231

realizable linear regression tasks {(Xm,ym)}Mm=1 such that, under a with-replacement random task232

ordering, Scheme 1 incurs seen-task loss L(wk)1:k = Ω(1/k) with probability at least 1/10.233

5 Related work234

Throughout the paper, we discussed connections to related work, focusing on other continual learning235

and optimization studies. Due to space constraints, we now briefly highlight a few additional links236

not previously covered in detail. An extended related work section, reviewing recent theoretical237

studies on regularized continual learning with assumptions and focus different from ours, is provided238

in App. A.239

Finite step budgets. Two main theoretical works studied the finite budget setting (Scheme 2).240

Jung et al. [22] analyzed continual linear classification under cyclic and random orderings. For241

cyclic orderings, they provided convergence rate for the loss; and, for random orderings, they only242

proved asymptotic convergence. Moreover, classification settings can yield different results and243

conclusions compared to regression settings [see 12]. Zhao et al. [46] analyzed both regularized and244

budgeted continual linear regression schemes under restrictive assumptions, showing that a carefully245

constructed, task-dependent regularization matrix can force the iterates of the regularized scheme246

to match those of the budgeted one. This alignment, however, requires precise knowledge of task247
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covariances and breaks under standard isotropic ℓ2 regularization. In contrast, our unified reduction248

of both schemes to IGD (Section 3) avoids this limitation entirely.249

Proximal method. Cai and Diakonikolas [5] analyzed the Incremental Proximal Method (IPM),250

corresponding to isotropic ℓ2 regularization, under cyclic orderings. They provided convergence rates251

for convex smooth or convex Lipschitz losses with bounded noise, but their guarantees only become252

meaningful after multiple full sweeps (or epochs) over the task sequence. In contrast, we analyze the253

random orderings and establish nontrivial—and even optimal—guarantees without requiring repeated254

passes. See Section 6 for a comparison with our regularization schedules.255

6 Discussion256

Regularization strength scheduling. In Section 4.2, we derived an optimal regularization schedule257

in which the regularization strength increases with each task. This implies that the parameters change258

progressively less over time. Interestingly, such an attenuation in “synaptic plasticity” is also observed259

in biological systems: the rate at which synapses grow or shrink in response to sensory stimulation260

[42] or motor learning [20] significantly decreases over time as the brain matures [34].261

In continual learning, many papers practically set a fixed regularization coefficient λ through simple262

hyperparameter tuning. However, non-isotropic weighting schemes often encode an implicit scale263

in the weighting matrices they compute. Methods such as EWC [24] and Path Integral [45] are264

particularly sensitive to λ, as their weighting matrices tend to have low magnitude early in training and265

may increase over time [see 9]. This initially low regularization strength was considered problematic266

by some [e.g., 6] and was even canceled algorithmically, as it allows excessive plasticity in early tasks.267

Yet, one may argue that high plasticity is desirable in the beginning of long task sequences, where268

substantial expertise remains to be acquired. Our analysis in Theorem 4.6 supports this intuition,269

showing that in such cases, an increasing regularization schedule yields optimal upper bounds under270

random task orderings. See also the findings and discussion in Mirzadeh et al. [33] on the effects of a271

decaying step size, which—as noted in our Section 2—corresponds to an increasing regularization272

strength.273

Analytically, Evron et al. [12] showed that in continual linear models for binary classification, increas-274

ing the regularization coefficient can be harmful to convergence guarantees (see their Example 3).275

However, their analysis applies only to weakly regularized schemes (where λt → 0 for all t), and the276

problematic schedule they presented increases the coefficient at a doubly-exponential rate—in con-277

trast to our Theorem 4.6 which utilizes finite, and relatively large, coefficients that increase linearly.278

Under cyclic orderings over linear regression tasks, solved with explicit regularization (Scheme 1), the279

analysis of Cai and Diakonikolas [5] dictates a fixed coefficient λ = 2MR2
√
ln(k/M). In contrast,280

under random orderings, our fixed variant in Section 4.1 sets λ = R2(ln k − 1). While both choices281

grow at most logarithmically with k, theirs grows with the number of tasks M , making it less suitable282

for “single-epoch” settings—though effective in the multi-epoch regime that they studied.283

Non-isotropic explicit regularization. Throughout the paper, we assumed Scheme 1 uses isotropic284

ℓ2 regularization. Such regularization often performs competitively with weighted schemes in practice285

[31, 38]. The latter, widely used in the literature, typically rely on weight matrices derived from286

Fisher information, often approximated by their diagonal [24, 45, 2, 4]. Theoretically, using the full287

Fisher matrix from previous tasks requires O(d2) memory in the worst case, but guarantees zero288

seen-task loss (Definition 4.8)—that is, complete retention of past expertise (see Proposition 5.5 of289

Evron et al. [12] and Proposition 5 of Peng et al. [35]).290

Last-iterate convergence of SGD in the realizable smooth setting. Our Lemma 4.7, originally291

proved to leverage the reductions from continual learning to the incremental gradient descent method,292

also establishes a last-iterate convergence guarantee for a variant of SGD that may be of independent293

interest. By setting the surrogate functions equal to the original functions, this result yields anO(1/k)294

convergence guarantee for convex smooth optimization in the realizable regime, using a linear decay295

schedule [8]. To our knowledge, this is the first fast-rate guarantee for the last-iterate convergence of296

SGD in the realizable setting. It not only generalizes prior results specific to least-squares problems297

[41], but also improves the convergence rate from O(log T/T ) to the optimal O(1/T ).298
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Future work. While our analysis establishes optimal rates for realizable continual linear regression299

with regularization under random task orderings, several directions remain open. First, empirical300

validation on continual benchmarks would test the applicability of our findings in practice. Second,301

extending our reduction-based analysis to simple nonlinear models may reveal whether similar302

schedules achieve optimal convergence in more expressive settings.303
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A Additional related works433

Recent theoretical work on continual learning has studied the explicitly regularized scheme (Scheme 1)434

in continual linear regression settings [27, 46, 28], with several key differences from our work. Like435

we do, these papers focused on settings where labels stem from an underlying linear model. However,436

they analyzed the generalization loss given noisy data, while we analyze the training loss given437

noiseless data. Theirs may sound like a “stronger”, more permissive setup, but comes at the price of a438

very restrictive assumption: the expected task covariances EX⊤
1 X1, . . . ,EX⊤

MXM are assumed to439

commute. This commutativity removes forgetting due to misaligned feature subspaces across tasks,440

leaving noise as the sole culprit behind any degradation.441

To minimize the expected risk under this assumption, Zhao et al. [46] proposed a regularization weight442

matrix proportional to the sum of observed task covariances, which—like our proposed schedule—443

increases over time. However, their approach is conceptually distinct to ours: the mechanism444

driving their schedule exploits the commutativity assumption, which eliminates task misalignment,445

whereas our schedule explicitly mitigates degradation caused by such misalignment. As a result, the446

motivations—and guarantees—behind the two schedules are fundamentally different.447

Li et al. [27, 28] focused exclusively on sequences of M = 2 tasks. Li et al. [27] derived risk bounds448

for isotropic regularization (Scheme 1) and highlight a trade-off between forgetting and intransigence.449

Li et al. [28] demonstrated that, under additional restrictions on the data matrices, there is a trade-off450

between increased memory usage and the performance of regularized continual linear regression.451

In all of these works, performance degradation is attributed solely to label noise. In contrast, we452

analyzed interference that arises even in the absence of noise. Accordingly, their focus lies in a453

complementary regime that does not capture the challenges we address.454
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B Proofs of lower bounds455

Theorem B.1. Let d ≥ 2 and k ≥ 2. Then for any algorithm A which receives k functions456

f1, f2, . . . , fk : Rd → R and outputs a point in Rd, there exists a point w⋆ ∈ Rd such that ∥w⋆∥ ≤ 1457

and a set of k 1-smooth convex quadratic functions which are minimized at w⋆, h1, . . . , hk : Rd → R458

such that459

Eτ(1),...,τ(k)∼Unif([k]),A[F (A(hτ(1), . . . , hτ(k)))− F (w⋆)] = Ω(1/k),

where F (w) ≜ Ei∼Unif([k])hi(w).460

Proof. In the following proof we denote with w[i] the i’th coordinate of a vector w. Given an461

algorithm A, let h1(w) = 1
2w[1]2, hi = h1 for i = 2, . . . , k − 1, and EB = {∀i ∈ [k] : τ(i) ̸= k}462

be the bad event where last index is not sampled. Note that as 1− x ≥ 4−x for all x ∈ [0, 1
2 ],463

Pr(EB) =

(
1− 1

k

)k

≥ 1

4
.

Let w̃ be the (stochastic) output ofA(h1, h1, . . . , h1) (whenA is presented with k copies of h1), and464

let465

a =

{
1 if Pr(w̃[2] ≤ 0) ≥ 1

2 ;

−1 if Pr(w̃[2] ≤ 0) < 1
2 .

Let hk(w) = 1
2 (w[2]− a)2. Note that all functions are 1-smooth, convex, quadratic, and minimized466

at w⋆ = (0, a, 0, . . . , 0), where ∥w⋆∥ ≤ 1. Hence, as w⋆ is a minimizer of F (w),467

E[F (A(hτ(1), . . . , hτ(k)))− F (w⋆)] ≥ Pr(EB)E[F (A(hτ(1), . . . , hτ(k)))− F (w⋆) | EB ]

= Pr(EB)E[F (A(h1, h1, . . . , h1))− F (w⋆) | EB ]
(Conditioned on EB , hτ (i) = h(1) for all i)

= Pr(EB)E[F (A(h1, h1, . . . , h1)) | EB ] (hi(w⋆) = 0 for all i)

≥ 1

k
Pr(EB)E[hk(A(h1, h1, . . . , h1)) | EB ]. (F (w) ≥ 1

khi(w) for any i,w)

Conditioned on EB , with probability at least 1
2 , w = A(h1, h1, . . . , h1) satisfies (w[2]− a)2 ≥ 1.468

Thus,469

E[F (A(hτ(1), . . . , hτ(k)))− F (w⋆)] ≥
Pr(EB)

4k
≥ 1

16k
= Ω(1/k).

470

Our next lemma makes use of the Sherman-Morison formula.471

Lemma B.2 (Sherman-Morison). Suppose X ∈ Rd×d is invertible, and u,v ∈ Rd. Then X+ uv⊤472

is invertible iff 1 + v⊤X−1u ̸= 0, in which case is holds that:473 (
X+ uv⊤)−1

= X−1 − X−1uv⊤X−1

1 + v⊤X−1u
.

Recall Lemma 4.9 — lower bound for seen-task loss under Scheme 1. For any d ≥ 2, initialization474

w0 ∈ Rd, and regularization coefficient sequence λ1, . . . , λk ≥ 0, there exists a set of jointly475

realizable linear regression tasks {(Xm,ym)}Mm=1 such that, under a with-replacement random task476

ordering, Scheme 1 incurs seen-task loss L(wk)1:k = Ω(1/k) with probability at least 1/10.477

Proof. Let k ≥ 9, and let λ1, . . . , λk ≥ 0 be any regularization sequence. For simplicity, we478

set M = k, but the proof can be easily extended to M > k. Let f1(w) = 1
2 (e

⊤
2 w)2, where479

e2 = (0, 1, 0, . . . , 0)⊤, and f2(w) = 1
2 (x

⊤w)2, where x = (
√
1− α2, α, 0, . . . , 0)⊤ for some480

α ∈ [0, 1]. Note that these can be represented as tasks {(e2, 0), (x, 0)} with R = 1. Consider the481

uniform distribution over the set {f1, . . . , f1, f2} of size k, such that f1 is sampled with probability482
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1− 1
k and f2 is sampled with probability 1

k . Let EB be the “bad” event where f2 is sampled exactly483

once, and note that using the inequality 1− x ≥ 4−x which holds for all x ∈ [0, 1
2 ],484

Pr(EB) = k · 1
k
·
(
1− 1

k

)k−1

=

(
1− 1

k

)k
k

k − 1
≥ 1

4
.

The rest of the analysis will be conditioned on the “bad” event. Let λ > 0, and note that for any w,485

argmin
w′
{f1(w′) + λ

2 ∥w
′ −w∥2} =

(
e2e

⊤
2 + λI

)−1
(λw) = w − (w⊤e2)

λ+ 1
e2,

where the second equality follows from Lemma B.2. The case of λ = 0 is treated as the update above486

with λ = 0, and similarly,487

argmin
w′
{f2(w′) + λ

2 ∥w
′ −w∥2} = w − (w⊤x)

λ+ 1
x.

Starting at w0 = (1, 0)⊤, the iterates will not move until encountered with f2. Denote with t0 this488

step. Thus,489

wt0 =

(
1− 1− α2

λt0 + 1
,−α
√
1− α2

λt0 + 1

)⊤

.

From now on, we only observe f1, so the first coordinate of wk for k > t0, which we denote as490

wt[1], is491

wk[1] = wk−1[1]−
(w⊤

k−1e2)

λ+ 1
e2[1] = wk−1[1] = . . . = wt0 [1].

If k = t0 then wk[1] = wt0 [1] trivially holds. Thus,

wk =

(
1− 1−α2

λt0
+1

ζ

)

for some ζ ∈ R. Hence, setting α =
√
1/2,492

f2(wk) =
1

2

((
1− 1− α2

λt0 + 1

)√
1− α2 + αζ

)2

=
1

4

(
1− 1

2(λt0 + 1)
+ ζ

)2

,

and f1(wk) =
1
2ζ

2. If |ζ| ≥ 1√
k

, we are done as f1 is observed k− 1 times (conditioned on EB) and493

L1:k(wk) ≥
k − 1

k
f1(wk) =

k − 1

2k
ζ2 = Ω(1/k).

Otherwise, as k ≥ 9, ζ > −1/3, and (conditioned on EB)494

f2(wk) ≥
1

4
(1/6)2 =

1

144
.

Therefore, in this case,

L1:k(wk) ≥
1

k
f2(wk) = Ω(1/k).

So with probability at least Pr(EB) ≥ 1/4 ≥ 1/10, it holds that495

L1:k(wk) = Ω(1/k).

496
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C Proofs of the reductions and their properties497

Recall Reduction 1 — Regularized Continual Regression ⇒ Incremental GD. Given M re-498

gression tasks {(Xm,ym)}Mm=1, there exist functions f (t)
r (w;m) ≜ 1

2

∥∥√Am(w −X+
mym)

∥∥2 , for499

Am depending on λt, ηt > 0, such that, for any ordering τ , regularized continual linear regression500

with regularization strengths (λt)
k
t=1 is equivalent to IGD applied to the sequence

(
f
(t)
r (·; τt)

)k
t=1

.501

That is, the iterates of Schemes 1 and 3 coincide.502

Proof of Reduction 1. Each iterate of regularized continual regression is defined as503

wt = argmin
w

(
1

2
∥Xτtw − yτt∥

2
+

λt

2
∥w −wt−1∥2

)
,

which admits the closed-form update:504

wt =
(
X⊤

τtXτt + λtI
)−1 (

X⊤
τtyτt + λtwt−1

)
.

We define:505

Am ≜
1

ηt

(
I− λt

(
X⊤

mXm + λtI
)−1
)
, f (t)

r (w;m) ≜
1

2

∥∥∥√Am

(
w −X+

mym

)∥∥∥2 .
Observe that:506

ηtAm = I− λt

(
X⊤

mXm + λtI
)−1

=
(
X⊤

mXm + λtI
) (

X⊤
mXm + λtI

)−1 − λt

(
X⊤

mXm + λtI
)−1

= X⊤
mXm

(
X⊤

mXm + λtI
)−1

.

When we run IGD on f
(t)
r with learning rate ηt, we get:507

wt−1 − ηt∇f (t)
r (wt−1; τt) = wt−1 − ηtAτt

(
wt−1 −X+

τtyτt

)
= λt

(
X⊤

τtXτt + λtI
)−1

wt−1 +X⊤
τtXτt

(
X⊤

τtXτt + λtI
)−1

X+
τtyτt

= λt

(
X⊤

τtXτt + λtI
)−1

wt−1 +
(
X⊤

τtXτt + λtI
)−1

X⊤
τtyτt

=
(
X⊤

τtXτt + λtI
)−1 (

λtwt−1 +X⊤
τtyτt

)
= wt.

508

Recall Reduction 2 — Budgeted Continual Regression⇒ Incremental GD. Given M regression509

tasks {(Xm,ym)}Mm=1, there exist functions f
(t)
b (w;m) ≜ 1

2

∥∥√Am(w −X+
mym)

∥∥2 , for Am510

depending on Nt ∈ N, γt ∈
(
0, 1/R2

)
and ηt > 0, such that, for any ordering τ , budgeted continual511

linear regression with (Nt)
k
t=1 inner steps of sizes (γt)

k
t=1, is equivalent to IGD applied to the512

sequence
(
f
(t)
b (·; τt)

)k
t=1

. That is, the iterates of Schemes 2 and 3 coincide.513

Proof of Reduction 2. In budgeted continual regression, we apply Nt steps of gradient descent with514

step size γt to the loss 1
2 ∥Xτtw − yτt∥

2. Let w(0) ≜ wt−1. The inner iterates evolve as:515

w(s) =
(
I− γtX

⊤
τtXτt

)
w(s−1) + γtX

⊤
τtyτt ,

wt = w(Nt) =
(
I− γtX

⊤
τtXτt

)Nt
wt−1 + γt

Nt−1∑
s=0

(
I− γtX

⊤
τtXτt

)s
X⊤

τtyτt .

We define:516

Am ≜
1

ηt

(
I−

(
I− γtX

⊤
mXm

)Nt
)
, f

(t)
b (w;m) ≜

1

2

∥∥∥√Am

(
w −X+

mym

)∥∥∥2 .
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To simplify the expression for the sum, consider the SVD Xτt = UΣV⊤ and observe:517

γt

Nt−1∑
s=0

(
I− γtX

⊤
τtXτt

)s
X⊤

τtyτt = V

Nt−1∑
s=0

γt
(
I− γtΣ

2
)s

ΣU⊤yτt

[Geometric sum] = V
(
I−

(
I− γtΣ

2
)Nt
)
Σ+U⊤yτt =

(
I−

(
I− γtX

⊤
τtXτt

)Nt
)
X+

τtyτt

= ηtAτtX
+
τtyτt .

When we run IGD on f
(t)
b with learning rate ηt. We have:518

wt−1 − ηt∇f (t)
b (wt−1; τt) = wt−1 − ηtAτt

(
wt−1 −X+

τtyτt

)
= (I− ηtAτt)wt−1 + ηtAτtX

+
τtyτt

=
(
I− γtX

⊤
τtXτt

)Nt
wt−1 + γt

Nt−1∑
s=0

(
I− γtX

⊤
τtXτt

)s
X⊤

τtyτt = wt.

519

Lemma C.1 (General reduction properties). Recall L (w;m) ≜ 1
2 ∥Xmw − ym∥2 and R2 ≜520

maxm′ ∥Xm′∥22. Let521

f (t) (w;m) ≜
1

2

∥∥∥√Am

(
w −X+

mym

)∥∥∥2 with Am = g
(
X⊤

mXm

)
,

where g : R→ R is applied spectrally (i.e., to each eigenvalue of X⊤
mXm). Assume that g is concave,522

non-decreasing on [0, R2], with g(0) = 0 and g′(0) > 0. Then:523

(i) f (t) (w;m) is g
(
R2
)
-smooth,524

(ii) and the following inequality holds:525

1

g′(0)
f (t) (w;m) ≤ L (w;m)−min

w′
L (w′;m) ≤ R2

g (R2)
f (t) (w;m) .

Proof. Let ξi denote the i-th eigenvalue of X⊤
mXm, and let ξ′i ≜ g(ξi) be the corresponding526

eigenvalue of Am. By the concavity of g, for every ξi ∈ [0, R2],527

g(ξi) ≤ g′(0) · ξi ⇒ 1

g′(0)
ξ′i ≤ ξi.

Hence, 1
g′(0)Am ≼ X⊤

mXm. By concavity and g(0) = 0, the chord from 0 to R2 lies below g:528

g(ξi) ≥
g(R2)

R2
· ξi ⇒ ξi ≤

R2

g(R2)
· ξ′i,

so we obtain the matrix inequality: X⊤
mXm ≼ R2

g(R2)Am.529

Moreover, since g is non-decreasing, ξ′i ≤ g(R2), and therefore all eigenvalues of Am are upper530

bounded by g(R2), Am ≼ g(R2)I, implying that the Hessian ∇2f (t)(w;m) = Am satisfies531

smoothness with parameter g(R2).532

Next, decompose the squared loss:533

L(w;m) =
1

2
∥Xmw − ym∥2 =

1

2

∥∥Xm

(
w −X+

mym

)
+
(
XmX+

m − I
)
ym

∥∥2
[Orthogonality] =

1

2

(∥∥Xm

(
w −X+

mym

)∥∥2 + ∥∥(XmX+
m − I

)
ym

∥∥2) .
where the two terms are orthogonal since Xm (w −X+

mym) ∈ range(Xm) and (XmX+
m − I)ym ∈534

ker(X⊤
m).535
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The minimum loss is attained at X+
mym, yielding: minw′ L(w′;m) = 1

2 ∥(XmX+
m − I)ym∥

2
.536

Thus, the excess loss becomes:537

L(w;m)−min
w′
L(w′;m) =

1

2

∥∥Xm

(
w −X+

mym

)∥∥2 =
1

2

(
w −X+

mym

)⊤
X⊤

mXm

(
w −X+

mym

)
.

Meanwhile, f (t)(w;m) = 1
2 (w −X+

mym)
⊤
Am (w −X+

mym) .538

By the sandwich inequality 1
g′(0)Am ≼ X⊤

mXm ≼ R2

g(R2)Am, we conclude:539

1

g′(0)
f (t)(w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

g(R2)
f (t)(w;m).

Recall Lemma 3.1 — properties of the IGD objectives. For t ∈ [k], define f
(t)
r , f

(t)
b as in540

Reductions 1 and 2, and recall the data radius R ≜ maxm∈[M ] ∥Xm∥2.541

(i) f
(t)
r , f

(t)
b are both convex and β-smooth for β(t)

r ≜ 1
ηt

R2

R2+λt
, β

(t)
b ≜ 1

ηt

(
1− (1− γtR

2)Nt
)
.542

(ii) Both functions bound the “excess” loss from both sides, i.e., ∀w ∈ Rd,∀t ∈ [k] ,∀m ∈ [m],543

λtηt · f (t)
r (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

β
(t)
r

· f (t)
r (w;m) ,

ηt
γtNt

· f (t)
b (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

β
(t)
b

· f (t)
b (w;m) .

(iii) Finally, when the tasks are jointly realizable (see Assumption 4.1), the same w⋆ minimizes all
surrogate objectives simultaneously. That is,

L(w⋆;m) = f (t)
r (w⋆;m) = f

(t)
b (w⋆;m) = 0, ∀t ∈ [k] ,∀m ∈ [M ] .

Proof of Lemma 3.1. Recall the definitions of the IGD objectives:544

f (t)
r (w;m) ≜

1

2

∥∥∥∥√gr(X⊤
mXm)

(
w −X+

mym

)∥∥∥∥2 , f
(t)
b (w;m) ≜

1

2

∥∥∥∥√gb(X⊤
mXm)

(
w −X+

mym

)∥∥∥∥2 ,
where the functions gr, gb : R→ R are applied spectrally (i.e., to the eigenvalues of X⊤

mXm), and545

are defined as:546

gr(ξ) ≜
1

ηt

(
1− λt

ξ + λt

)
, gb(ξ) ≜

1

ηt

(
1− (1− γtξ)

Nt

)
.

Note that both f
(t)
r and f

(t)
b are standard quadratic forms and hence convex in w.547

We verify that gr and gb satisfy the assumptions of Lemma C.1 on the domain ξ ∈ [0, R2]:548

• gr is differentiable with549

g′r(ξ) =
λt

ηt(ξ + λt)2
≥ 0, g′′r (ξ) = −

2λt

ηt(ξ + λt)3
≤ 0,

so gr is non-decreasing and concave.550

• gb is differentiable with551

g′b(ξ) =
Ntγt
ηt

(1− γtξ)
Nt−1 ≥ 0, g′′b (ξ) = −

Nt(Nt − 1)γ2
t

ηt
(1− γtξ)

Nt−2 ≤ 0,

Thus, gb is also non-decreasing and concave.552
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In addition, we note:553

gr(0) = 0, g′r(0) =
1

ηtλt
> 0, gb(0) = 0, g′b(0) =

Ntγt
ηt

> 0,

and we compute the smoothness constants:554

gr(R
2) =

R2

ηt(R2 + λt)
=

1

β
(t)
r

, gb(R
2) =

1

ηt

(
1− (1− γtR

2)Nt
)
=

1

β
(t)
b

.

Hence, by Lemma C.1, both f
(t)
r and f

(t)
b are β(t)-smooth with the claimed parameters β(t)

r , β
(t)
b ,555

and they satisfy the two-sided bounds:556

1

g′r(0)
f (t)
r (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

gr(R2)
f (t)
r (w;m),

557
1

g′b(0)
f
(t)
b (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

gb(R2)
f
(t)
b (w;m).

Substituting in g′r(0) and g′b(0) yields the bounds stated in part (ii).558

Finally, for part (iii), assume the tasks satisfy joint realizability (Assumption 4.1), meaning that for559

some common minimizer w⋆,560

L(w⋆;m) = min
w′
L(w′;m), ∀m.

Then by the lower bounds in part (ii), both f
(t)
r (w⋆;m) = 0 and f

(t)
b (w⋆;m) = 0 for all t,m,561

completing the proof.562
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D Proofs for fixed regularization strength563

Recall Lemma 4.3 — rates for fixed regularization strength. Assume a random with-replacement564

ordering over jointly realizable tasks. Then, for each of Schemes 1 and 2, the expected loss after565

k ≥ 1 iterations is upper bounded as:566

(i) Fixed coefficient: For Scheme 1 with a regularization coefficient λ > 0,567

EτL (wk) ≤
e ∥w0 −w⋆∥2 R2

2 · R2

R2+λ ·
(
2− R2

R2+λ

)
· k1−

R2

R2+λ

(
1− R2

4(R2+λ)

) .

(ii) Fixed budget: For Scheme 2 with step size γ ∈ (0, 1/R2) and budget N ∈ N,568

EτL (wk) ≤
e ∥w0 −w⋆∥2 R2

2 · (1− (1− γR2)2N ) · k1−(1−(1−γR2)N )
(
1− 1−(1−γR2)N

4

) .

Proof of Lemma 4.3. From Reductions 1 and 2, the iterates of Schemes 1 and 2 are equivalent to569

those of IGD (Scheme 3) applied to the respective surrogate objectives f (t)
r and f

(t)
b . When η, λ, γ,N570

are fixed, the functions f (t)
r , f

(t)
b do not depend on t, and under a random ordering with replacement,571

the update rule becomes standard SGD.572

By Lemma 3.1, the surrogates f (t)
r and f

(t)
b are jointly realizable whenever the original losses are,573

and hence satisfy the assumptions of the following result from Evron et al. [13].574

Rephrased Theorem 5.1 of Evron et al. [13]: Let f̄(w) ≜ 1
M

∑M
m=1 f(w;m),575

where each f(w;m) ≜ 1
2

∥∥∥Ãmw − b̃m

∥∥∥2 is β-smooth, and assume realizability:576

f̄(w⋆) = 0 for some w⋆. Then for any initialization w0 and step size η ∈
(
0, 2

β

)
,577

SGD with replacement satisfies:578

Eτ f̄(wk) ≤
e ∥w0 −w⋆∥2

2η(2− ηβ) · k1−ηβ(1−ηβ/4)
.

We now instantiate this result for each setting:579

(i) Fixed Regularization. For Scheme 1, the surrogate f
(t)
r is βr-smooth with580

βr ≜
1

η
· R2

R2 + λ
, which implies η =

1

βr
· R2

R2 + λ
<

2

βr
.

The loss is upper bounded by the surrogate:581

L(wk) ≤
R2

βr
· f̄r(wk),

which gives:582

EτL(wk) ≤
R2

βr
· Eτ f̄r(wk) ≤

e ∥w0 −w⋆∥2 R2

2ηβr(2− ηβr) · k1−ηβr(1−ηβr/4)
.

Substituting βr = 1
η ·

R2

R2+λ gives:583

EτL(wk) ≤
e ∥w0 −w⋆∥2 R2

2 · R2

R2+λ ·
(
2− R2

R2+λ

)
· k1−

R2

R2+λ

(
1− R2

4(R2+λ)

) .

(ii) Fixed Budget. For Scheme 2, the surrogate f
(t)
b is βb-smooth with584

βb ≜
1

η
·
(
1− (1− γR2)N

)
, so that η =

1

βb
·
(
1− (1− γR2)N

)
<

2

βb
.
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As before, we have:585

EτL(wk) ≤
R2

βb
· Eτ f̄b(wk) ≤

e ∥w0 −w⋆∥2 R2

2ηβb(2− ηβb) · k1−ηβb(1−ηβb/4)
.

Substituting βb =
1
η ·
(
1− (1− γR2)N

)
yields:586

EτL(wk) ≤
e ∥w0 −w⋆∥2 R2

2 · (1− (1− γR2)2N ) · k1−(1−(1−γR2)N )
(
1− 1−(1−γR2)N

4

) .
This completes the proof.587

To extend this result to the without-replacement case (see Remark 4.5), we can simply invoke the588

without-replacement extension of Theorem 5.1 in Evron et al. [13].589

Recall Corollary 4.4 — near-optimal rates via fixed regularization strength. Assume a ran-590

dom with-replacement ordering over jointly realizable tasks. When the regularization strengths in591

Lemma 4.3 are set as follows:592

(i) Fixed coefficient: For Scheme 1, set regularization coefficient λ ≜ R2(ln k − 1);593

(ii) Fixed budget: For Scheme 2, choose step size γ ∈ (0, 1/R2) and set budget N ≜
ln(1− 1

ln k )
ln(1−γR2) ;594

Then, under either Scheme 1 or Scheme 2, the expected loss after k ≥ 2 iterations is bounded as:595

EτL (wk) ≤
5 ∥w0 −w⋆∥2 R2 ln k

k
.

Proof of Corollary 4.4. We apply the general loss bound from Lemma 4.3, which holds for both596

fixed-regularization and fixed-budget variants:597

EτL(wk) ≤
e ∥w0 −w⋆∥2 R2

2ηβ (2− ηβ) · k1−ηβ(1−ηβ/4)
.

Now plug in the parameter settings from the statement of the lemma.598

(i) Fixed Regularization. Set λ ≜ R2(ln k − 1). Then:599

βr =
1

η
· R2

R2 + λ
=

1

η
· R2

R2 +R2(ln k − 1)
=

1

η
· 1

ln k
⇒ ηβr =

1

ln k
.

(ii) Fixed Budget. Set N ≜
ln(1− 1

ln k )
ln(1−γR2) . Then:600

(1− γR2)N = 1− 1

ln k
⇒ βb =

1

η
·
(
1− (1− γR2)N

)
=

1

η
· 1

ln k
⇒ ηβb =

1

ln k
.

In both cases, we have ηβ = 1
ln k . Substituting into the loss bound:601

EτL(wk) ≤
e ∥w0 −w⋆∥2 R2

2
ln k ·

(
2− 1

ln k

)
· k1−

1
ln k (1−

1
4 ln k )

= ∥w0 −w⋆∥2 R2 · e ln k

2
(
2− 1

ln k

) · 1
k
· k

1
ln k− 1

4(ln k)2

=
∥w0 −w⋆∥2 R2 ln k

k
· e2−

1
4 ln k

2
(
2− 1

ln k

) .
Since e2−

1
4 ln k /

(
2− 1

ln k

)
≤ 5 for all k ≥ 2, we conclude:602

EτL(wk) ≤
5 ∥w0 −w⋆∥2 R2 ln k

k
.

603
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E Proofs for scheduled regularization strength604

Recall Theorem 4.6 — optimal rates for increasing regularization. Assume a random with-605

replacement ordering over jointly realizable tasks. Consider either Scheme 1 or Scheme 2 with the606

following time-dependent schedules:607

(i) Scheduled coefficient: For Scheme 1, set regularization coefficient λt =
13R2

3
· k + 1

k − t+ 2
;608

(ii) Scheduled budget:609

For Scheme 2, choose step sizes γt ∈ (0, 1/R2) and set budget Nt =
3

13γtR2
· k − t+ 2

k + 1
;610

Then, under either Scheme 1 or Scheme 2, the expected loss after k ≥ 2 iterations is bounded as:611

EτL(wk) ≤
20 ∥w0 −w⋆∥2 R2

k + 1
.

Proof of Theorem 4.6. We apply Lemma 4.7 with the original loss f(w;m) = L(w;m) and surro-612

gates f (t)(w;m) = f
(t)
r (w;m) or f (t)

b (w;m), defined in Reductions 1 and 2.613

Smoothness and convexity. From Lemma 3.1, both surrogates are convex. Their smoothness constants614

are:615

β(t)
r =

1

ηt
· R2

R2 + λt
, β

(t)
b =

1

ηt

(
1−

(
1− γtR

2
)Nt
)
.

Regularized: Setting λt = 1/ηt gives616

β(t)
r =

R2

ηtR2 + 1
≤ R2.

Budgeted: With Nt = ηt/γt, we get ηtR
2

Nt
= γtR

2 ∈ (0, 1). Using (1− x)n ≥ 1− nx, we obtain:617

β
(t)
b ≤

1

ηt
(1− (1− ηtR

2)) = R2.

Thus, both surrogates are R2-smooth, matching the smoothness of the loss L(·;m) and satisfying618

condition (i) of Lemma 4.7.619

Joint realizability. From Lemma 3.1, if the original tasks are jointly realizable, then so are the620

surrogates:621

f (t)
r (w⋆;m) = f

(t)
b (w⋆;m) = L(w⋆;m) = 0, ∀t ∈ [k], m ∈ [M ],

so condition (iii) of Lemma 4.7 is satisfied.622

Two-sided bounds. We verify condition (ii) of Lemma 4.7 using the two-sided inequalities from623

Lemma 3.1:624

λtηt · f (t)
r (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

β
(t)
r

· f (t)
r (w;m),

ηt
γtNt

· f (t)
b (w;m) ≤ L(w;m)−min

w′
L(w′;m) ≤ R2

β
(t)
b

· f (t)
b (w;m).

By our choice of λt = 1/ηt and Nt = ηt/γt, we have λtηt =
ηt

γtNt
= 1, so the lower bounds reduce625

to626

f (t)
r (w;m) ≤ L(w;m), f

(t)
b (w;m) ≤ L(w;m).

Now set νt ≜ ηt. To satisfy the upper bound L(w;m) ≤ (1 + νtβ) · f (t)(w;m), it suffices to show627

R2

β(t)
≤ 1 + ηtR

2.
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Regularized: β(t)
r = 1

ηt
· R2

R2+λt
= R2

ηtR2+1 ⇒
R2

β
(t)
r

= 1 + ηtR
2.628

Budgeted: With γtR
2 = ηtR

2

Nt
∈ (0, 1), and using

(
1− x

n

)n ≤ e−x ≤ 1
1+x for x ∈ (0, 1), we get:629

R2

β
(t)
b

=
R2

1
ηt

(
1−

(
1− ηtR2

Nt

)Nt
) ≤ R2

1
ηt

(
1− 1

1+ηtR2

) = 1 + ηtR
2.

Hence, both the lower and upper bounds hold, and condition (ii) is satisfied.630

Setting the learning rate schedule to:631

η =
3

13R2
, and ηt = η · k − t+ 2

k
.

Applying Lemma 4.7 yields:632

EτL(wk) = Eτf(wk) ≤
20 ∥w0 −w⋆∥2 R2

k + 1
.

633
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E.1 Proof of Lemma 4.7634

In this section, we provide the proof of our main lemma establishing the guarantees of time varying635

SGD. In order to better align with conventions in the optimization literature from which our techniques636

draw upon, we adopt different indexing for the SGD iterates throughout this section. Below, we637

restate the lemma with the alternative indexing scheme; the original Lemma 4.7 follows immediately638

by a simple shift of k + 1→ k and 1→ 0 in the indexes of the iterates wt.639

Lemma E.1 (Restatement of Lemma 4.7 with alternative indexing). Assume τ is a ran-640

dom with-replacement ordering over M jointly-realizable convex and β-smooth loss functions641

f(·;m) : Rd → R. Define the average loss f(w) ≜ Em∼τf(w;m). Let k ≥ 2, and suppose642 {
f (t)(·;m) | t ∈ [k],m ∈ [M ]

}
for t ∈ [k] are time-varying surrogate losses that satisfy:643

(i) Smoothness and convexity: f (t)(·;m) are β-smooth and convex for all m ∈ [M ], t ∈ [k] ;644

(ii) There exists a weight sequence ν1, . . . , νk such that for all m ∈ [M ], t ∈ [k],w ∈ Rd:645

f (t)(w;m)− f (t)(w⋆;m) ≤ f(w;m)− f(w⋆;m) ≤ (1+νtβ)(f
(t)(w;m)− f (t)(w⋆;m)) ;

(iii) Joint realizability:646

w⋆ ∈ ∩t∈[k] ∩m∈[M ] argmin
w

f (t)(w;m); ∀m ∈ [M ], t ∈ [k], f (t)(w⋆;m) = f(w⋆;m) .

Then, for any initialization w1 ∈ Rd, the SGD updates:647

t = 1, . . . , k : wt+1 = wt − ηt∇f (t)(wt; τt)

with a step size schedule that satisfies νt ≤ ηt = η
(

(k+1)−t+1
k+1

)
∀t ∈ [k] for some η ≤ 3/(13β),648

guarantees the following expected loss bound:649

Ef(wk+1)− f(w⋆) ≤
9

2η(k + 1)
∥w1 −w⋆∥2 .

In particular, for η = 3
13β we obtain650

Ef(wk+1)− f(w⋆) ≤
20β ∥w1 −w⋆∥2

k + 1
.

Furthermore, we also obtain the following seen-task loss bound:651

E

[
1

k

k∑
t=1

f(wk+1; τt)− f(w⋆; τt)

]
≤ 20

η(k + 1)
∥w1 −w⋆∥2 .

In particular, for η = 3
13β we obtain652

E

[
1

k

k∑
t=1

f(wk+1; τt)− f(w⋆; τt)

]
≤ 87β ∥w1 −w⋆∥2

k + 1
.
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To prove the lemma above, we begin with a number of preliminary results. The next theorem provides653

an extension of [44] for our “relaxed SGD” setting that accommodates time varying distributions of654

functions.655

Theorem E.2. Let J ≥ 2, and assume τ : [J ] → [M ] is a random with-replacement ordering656

over M jointly-realizable convex and β-smooth loss functions f(·;m) : Rd → R. and suppose657 {
f (t)(·;m) | t ∈ [J ],m ∈ [M ]

}
for t ∈ [J ] are time-varying surrogate losses for which there exists658

a weight sequence ν1, . . . , νJ that satisfies, for all m ∈ [M ], t ∈ [J ],w ∈ Rd:659

f (t)(w;m)− f (t)(w⋆;m) ≤ f(w;m)− f(w⋆;m) ≤ (1 + νtβ)
(
f (t)(w;m)− f (t)(w⋆;m)

)
.

Then, for any initialization w1 ∈ Rd and step size sequence η1, . . . , ηJ , as long as ∀t ∈ [J ] : ηt ≥ νt,660

the SGD updates:661

wt+1 = wt − ηt∇f (t)(wt; τt), (1)

guarantee that for any w⋆ ∈ Rd, and weight sequence 0 < v0 ≤ v1 ≤ · · · ≤ vJ :662

J∑
t=1

ctE
[
f̄ (t)(wt)− f̄ (t)(w⋆)

]
≤ v20

2
∥w1 −w⋆∥2 +

1

2

J∑
t=1

η2t v
2
tE
∥∥∥∇f (t)(wt; τt)

∥∥∥2 ,
where ct ≜ ηtv

2
t − (1− ηtβ)(vt − vt−1)

∑J
s=t ηsvs, and f̄ (t)(w) ≜ Em∼Unif[M ]f

(t)(w;m).663

Proof. Define z1, . . . , zJ recursively by z0 = w⋆ and for t ≥ 1:664

zt =
vt−1

vt
zt−1 +

(
1− vt−1

vt

)
wt.

Denote gt ≜ ∇f (t)(wt; τt) and observe,665

∥wt+1 − zt+1∥2 =
v2t
v2t+1

∥wt+1 − zt∥2

=
v2t
v2t+1

∥wt − ηtgt − zt∥2

=
v2t
v2t+1

(
∥wt − zt∥2 − 2ηt ⟨gt,wt − zt⟩+ η2t ∥gt∥

2 )
,

thus, rearranging we obtain666

2v2t ηt ⟨gt,wt − zt⟩ = v2t ∥wt − zt∥2 − v2t+1 ∥wt+1 − zt+1∥2 + v2t η
2
t ∥gt∥2 .

Summing over t = 1, . . . , J yields667

J∑
t=1

v2t ηt ⟨gt,wt − zt⟩ ≤
1

2
v20 ∥w1 −w⋆∥2 +

1

2

J∑
t=1

v2t η
2
t ∥gt∥2 ,

where we used that,668

∥w1 − z1∥ =
v0
v1
∥w1 − z0∥ =

v0
v1
∥w1 −w⋆∥ .

Next, by convexity of f̄ (t) and the fact that wt, zt are independent of τt, conditioned on τ1, . . . , τt−1:669

Eτt ⟨gt,wt − zt⟩ =
〈
Eτt [∇f (t)(wt; τt)],wt − zt

〉
=
〈
∇f̄ (t)(wt),wt − zt

〉
≥ f̄ (t)(wt)− f̄ (t)(zt).

Therefore,670

T∑
t=1

v2t ηtE
[
f̄ (t)(wt)− f̄ (t)(zt)

]
≤ 1

2
v20 ∥w1 −w⋆∥2 +

1

2

T∑
t=1

v2t η
2
tE ∥gt∥2 .

25



On the other hand, zt can be written directly as a convex combination of w1, . . . ,wJ and w⋆, as671

follows:672

zt =
v0
vt

w⋆ +

t∑
s=1

vs − vs−1

vt
ws.

Jensen’s inequality then implies, using convexity of f̄ (t):673

J∑
t=1

v2t ηtE
[
f̄ (t)(wt)− f̄ (t)(zt)

]
≥

J∑
t=1

v2t ηtE

[
f̄ (t)(wt)−

v0
vt

f̄ (t)(w⋆)−
t∑

s=1

vs − vs−1

vt
f̄ (t)(ws)

]

=

J∑
t=1

vtηtE

[
vtf̄

(t)(wt)− v0f̄
(t)(w⋆)−

t∑
s=1

(vs − vs−1)f̄
(t)(ws)

]

=

J∑
t=1

vtηtE

[
vt

(
f̄ (t)(wt)− f̄ (t)(w⋆)

)
−

t∑
s=1

(vs − vs−1)
(
f̄ (t)(ws)− f̄ (t)(w⋆)

)]

Combining the two bounds and denoting δ̃t ≜ f̄ (t)(wt)− f̄ (t)(w⋆), we conclude that674

J∑
t=1

vtηtE

[
vtδ̃t −

t∑
s=1

(vs − vs−1)
(
f̄ (t)(ws)− f̄ (t)(w⋆)

)]
≤ v20

2
∥w1 −w⋆∥2

+
1

2

J∑
t=1

v2t η
2
tE ∥gt∥2 .

Now, by assumption, for any s ≤ t,m ∈ [M ]:675

∀w : f (t)(w;m)−f (t)(w⋆;m) ≤ f(w;m)−f(w⋆;m) ≤ (1+ηsβ) (f
(s)(w;m)−f (s)(w⋆;m)),

hence, taking expectations over m ∼ τ , we obtain (w.p. 1 w.r.t. randomness of ws);676

− (1 + ηsβ) δ̃s = − (1 + ηsβ)
(
f̄ (s)(ws)− f̄ (s)(w⋆)

)
≤ −

(
f̄ (t)(ws)− f̄ (t)(w⋆)

)
.

Combining with the previous display, we now have677

J∑
t=1

vtηtE

[
vtδ̃t −

t∑
s=1

(vs − vs−1)(1− ηsβ)δ̃s

]
≤ v20

2
∥w1 −w⋆∥2 +

1

2

J∑
t=1

v2t η
2
tE ∥gt∥2 ,

which leads to the following after changing the order of summation;678

J∑
t=1

(
ηtv

2
t − (1− ηtβ)(vt − vt−1)

J∑
s=t

ηsvs

)
Eδ̃t ≤

v20
2
∥w1 −w⋆∥2 +

1

2

J∑
t=1

v2t η
2
tE ∥gt∥2 ,

and completes the proof.679
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Next, we prove a technical lemma which we employ in conjunction with the above in the proof of680

Lemma E.1.681

Lemma E.3. Let k ∈ N, β > 0, a1 > 0, a2 > 0, η ∈ (0, 3
(8a1+5a2)β

], ηt = η · k−t+1
k for682

t ∈ {1, 2, . . . , k}, vt = 2
k−t+1 + 1

k for t ∈ {0, 1, . . . , k − 1} and vk = vk−1 = 1 + 1
k . Denote683

ct = ηtv
2
t − a1βη

2
t v

2
t − (1 + a2ηtβ)(vt − vt−1)

∑k
s=t ηsvs. Then for all t ∈ {1, 2, . . . , k}, ct ≥ 0,684

and in particular, ck ≥ η
k .685

Proof. As vk = vk−1 and η ≤ 3
(8a1+5a2)β

,686

ck = ηkv
2
k − a1βη

2
kv

2
k = ηkv

2
k

(
1− a1βη

k

)
=

η

k

(
1 +

1

k

)2(
1− a1βη

k

)
≥ η

k

(
1 +

1

k

)(
1− 3

8k

)
=

η

k

(
1 +

5

8k
− 3

8k2

)
≥ η

k
.

We proceed to lower bound ct for t < k. Focusing on the first terms, At ≜ ηtv
2
t − a1βη

2
t v

2
t ,687

At = ηtv
2
t (1− a1βηt) =

η(k − t+ 1)

k

(
2

k − t+ 1
+

1

k

)2

(1− a1βηt)

= η

(
4

k(k − t+ 1)
+

4

k2
+

k − t+ 1

k3

)
(1− a1βηt)

≥ η

(
4

k(k − t+ 1)
+

4

k2

)
(1− a1βηt) .

Moving to the last term, Bt ≜ (1 + a2βηt)(vt − vt−1)
∑k

s=t ηsvs,688

Bt = (1 + a2βηt)η

(
2

k − t+ 1
− 2

k − t+ 2

)(
1 + 1

k

k
+

k−1∑
s=t

(
2

k
+

k − s+ 1

k2

))

= (1 + a2βηt)
2η

k(k − t+ 1)(k − t+ 2)

(
1 +

1

k
+ 2(k − t) +

1

k

k−1∑
s=t

(k − s+ 1)

)

= (1 + a2βηt)
2η

k(k − t+ 1)(k − t+ 2)

(
1 +

1

k
+ 2(k − t) +

(k − t+ 3)(k − t)

2k

)
= (1 + a2βηt)

η(2k + 2 + 4k(k − t) + (k − t+ 3)(k − t))

k2(k − t+ 1)(k − t+ 2)

= (1 + a2βηt)η

(
−6

k(k − t+ 1)(k − t+ 2)
+

4

k(k − t+ 1)
+

1

k2

)
≤ (1 + a2βηt)η

(
4

k(k − t+ 1)
+

1

k2

)
.

Thus, for t < k,689

ct
η
≥
(

4

k(k − t+ 1)
+

4

k2

)
(1− a1βηt)− (1 + a2βηt)

(
4

k(k − t+ 1)
+

1

k2

)
=

3

k2
− βηt

(
4a1 + 4a2

k(k − t+ 1)
+

4a1 + a2
k2

)
=

3

k2
− βη

(
4a1 + 4a2

k2
+

(4a1 + a2)(k − t+ 1)

k3

)
≥ 3

k2
− βη

k2
(8a1 + 5a2) .

Thus, for η ≤ 3
(8a1+5a2)β

, ct ≥ 0.690
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The next lemma provides the stability property, which we leverage to translate our loss guarantees to691

the seen-task loss defined in Definition 4.8.692

Lemma E.4. Assume the conditions of Lemma E.1 and consider the algorithm defined in Eq. (1)693

with non-increasing step sizes ηt ≤ 1/2β. In addition, define for every 1 ≤ k, f̂1:k(w) ≜694

1
k

∑k
t=1 f(w; τt). For all 1 ≤ k, the following holds:695

Ef̂1:k(wk+1) ≤ 2Ef(wk+1) +
8β2η ∥w1 −w⋆∥2

k + 1
.

Proof. First, any β-smooth h : Rd → R holds that696

|h(w̃)− h(w)| ≤
∣∣∇h(w)⊤(w̃ −w)

∣∣+ β

2
∥w̃ −w∥2

≤ 1

2β
∥∇h(w)∥2 + β

2
∥w̃ −w∥2 + β

2
∥w̃ −w∥2 (Young’s ineq.)

≤ h(w) + β ∥w̃ −w∥2 .

Denote fm ≜ f(·;m) for all m ∈ [M ]. Now, similarly the standard stability ⇐⇒ generalization697

argument [37, 18], and denoting by w
(i)
s the iterate after s steps on the training set where the i’th698

example, mi was resampled (we denote the new example by m′
i):699 ∣∣∣E [f(wk+1)− f̂1:k(wk+1)

]∣∣∣ = ∣∣∣1
k

k∑
i=1

Emi∼τ

[
f(wk+1;mi)− f(w

(i)
k+1;mi)

]∣∣∣
≤ 1

k

k∑
i=1

E
[
f(wk+1;mi) + β

∥∥∥w(i)
k+1 −wk+1

∥∥∥2]

= Ef(wk+1) +
β

k

k∑
i=1

E
∥∥∥w(i)

k+1 −wk+1

∥∥∥2 .
Next, we bound

∥∥∥w(i)
k+1 −wk+1

∥∥∥2. Since by Lemma E.1, for every t, f (t) is convex and β-smooth,700

by the non-expansiveness of gradient steps in the convex and β-smooth regime when for every t,701

ηt ≤ 2/β [see Lemma 3.6 in 18]:702

s ≤ i =⇒
∥∥∥w(i)

s −ws

∥∥∥ = 0,

i < s =⇒
∥∥∥w(i)

s+1 −ws+1

∥∥∥2 ≤ ∥∥∥w(i)
i+1 −wi+1

∥∥∥2 .
In addition, denoting by fm′

i
the function that sampled after replacing fmi

and its corresponding time703

varying objective by f (m′
i), by the conditions in Lemma E.1, we have that,704 ∥∥∥w(i)

i+1 −wi+1

∥∥∥2 =
∥∥∥w(i)

i − ηi∇f (m′
i)(w

(i)
i )−

(
wi − ηi∇f (mi)(wi)

)∥∥∥2
= η2i

∥∥∥∇f (m′
i)(w

(i)
i )−∇f (mi)(wi)

∥∥∥2
≤ 2η2i

∥∥∥∇f (m′
i)(w

(i)
i )
∥∥∥2 + 2η2i

∥∥∥∇f (mi)(wi)
∥∥∥2

≤ 4βη2i f
(m′

i)(w
(i)
i ) + 4βη2i f

(mi)(wi)

≤ 4βη2i fm′
i
(w

(i)
i ) + 4βη2i fmi

(wi),

and, taking expectations,705 ∥∥∥w(i)
i+1 −wi+1

∥∥∥2 ≤ 8βη2i Efmi
(wi),
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Now,706

β

k

k∑
i=1

E
∥∥∥w(i)

k+1 −wk+1

∥∥∥2 ≤ 8β2 E

[
1

k

k∑
i=1

η2i fmi(wi)

]

≤ 8βE

[
1

k

k∑
i=1

ηifmi
(wi)

]
.

Summarizing, we have shown that:707 ∣∣∣E [f(wk+1)− f̂1:k(wk+1)
]∣∣∣ ≤ Ef(wk+1) +

β

k

k∑
i=1

E ∥wk+1(i)−wk+1∥2

≤ Ef(wk+1) + 8βE

[
1

k

k∑
i=1

ηifmi
(wi)

]
.

Now, by Theorem E.2 with vt = 1 for every t, we have, since ηtβ ≤ 1
4 , 1

1+ηtβ
≥ 4

5708

4

5

k∑
i=1

ηiEfmi
(wi) =

4

5

k∑
i=1

ηiEf(wi) (Efmi
(wi) = Ef(wi))

≤
k∑

i=1

ηiEf̄ (i)(wi)

=

k∑
i=1

ηiE
[
f̄ (i)(wi)− f̄ (i)(w⋆)

]
≤ 1

2
∥w1 −w⋆∥2 +

1

2

k∑
i=1

η2i E
∥∥∥∇f (i)(wi)

∥∥∥2
≤ 1

2
∥w1 −w⋆∥2 +

k∑
i=1

βη2i Ef (i)(wi)

≤ 1

2
∥w1 −w⋆∥2 +

1

4

k∑
i=1

ηiEfmi
(wi),

this implies,709

k∑
i=1

ηiEfmi(wi) ≤ ∥w1 −w⋆∥2 .

Then we can conclude,710 ∣∣∣E [f(wk+1)− f̂1:k(wk)
]∣∣∣ ≤ Ef(wk+1) +

8β ∥w1 −w⋆∥2

k

and the result follows.711

We are now ready to prove our main lemma for this section.712

Proof of Lemma E.1. To begin, note that we are after a guarantee for wk+1, which is the SGD iterate713

that was produced by taking k steps over k losses. To that end, we are going to apply Theorem E.2714

with J = k + 1, hence we are obligated to supply a random ordering τ : [k + 1]→ [M ], f (k+1) and715

ηk+1, which are not supplied in the statement of our lemma. Therefore, we define716

∀m ∈ [M ] : f (k+1)(·;m) ≜ f(·;m), and ηk+1 ≜ η

(
1

k + 1

)
= η

(
(k + 1)− (k + 1) + 1

k + 1

)
.
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We additionally define f̄ (k+1)(w) ≜ Em∼Unif[M]f
(k+1)(w;m). It is immediate to verify f (k+1)717

satisfies the properties required from f (t) for t ∈ [k] and ηk+1 is the next step size in the sequence718

η1, . . . , ηk defined in the statement. Finally, we simply define the extra sampled index τk+1 to be719

uniform over [M ], exactly like τt for t ∈ [k].720

Now, the conditions for Theorem E.2 are immediately satisfied with J = k + 1 by our assumptions721

and augmentation described above, leading to:722

k+1∑
t=1

(
ηtv

2
t − (1− ηtβ)(vt − vt−1)

k+1∑
s=t

ηsvs

)
E
[
f̄ (t)(wt)− f̄ (t)(w⋆)

]
≤ v20

2
∥w1 −w⋆∥2 +

1

2

k+1∑
t=1

η2t v
2
tE
∥∥∥∇f (t)(wt; τt)

∥∥∥2 .
Now, by the joint realizability assumption, conditioning on all randomness up to round t,723

Eτt

∥∥∥∇f (t)(wt; τt)
∥∥∥2 ≤ 2βEτt [f

(t)(wt; τt)− f (t)(w⋆; τt)] = 2β
(
f̄ (t)(wt)− f̄ (t)(w⋆)

)
.

Combining with the previous display and rearranging, this yields724

k+1∑
t=1

(
ηtv

2
t − βη2t v

2
t − (1− ηtβ)(vt − vt−1)

k+1∑
s=t

ηsvs

)
E
[
f̄ (t)(wt)− f̄ (t)(w⋆)

]
≤ v20

2
∥w1 −w⋆∥2 . (2)

Now, by Lemma E.3, the step size sequence ηt = η( (k+1)−t+1
k+1 ) with η ≤ 3

13β and {vt}k+1
t=1 as725

specified by the lemma, guarantee that ck+1 ≥ η
k+1 , v0 ≤ 3/(k + 1), and ct ≥ 0 for all t ∈ [k + 1].726

Combining these properties with Eq. (2) we obtain,727

E [f(wk+1)− f(w⋆)] = E
[
f̄ (k+1)(wk+1)− f̄ (k+1)(w⋆)

]
≤ v20

2ck+1
∥w1 −w⋆∥2 ≤

9

2η(k + 1)
∥w1 −w⋆∥2 ,

which completes the proof for the first part. For the seen-task guarantee, by Lemma E.4, we have728

E

[
1

k

k∑
t=1

f(wk+1; τt)− f(w⋆; τt)

]
≤ 2Ef(wk+1) +

8β2η ∥w1 −w⋆∥2

k + 1
,

which gives, after combining with the population loss guarantee:729

E

[
1

k

k∑
t=1

f(wk+1; τt)− f(w⋆; τt)

]
≤ 18

η(k + 1)
∥w1 −w⋆∥2 +

8β2η ∥w1 −w⋆∥2

k + 1

≤ 20 ∥w1 −w⋆∥2

η(k + 1)
, (η ≤ 1/(2β))

which completes the proof.730
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