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ABSTRACT

We present a framework for pre-training of 3D hand pose estimation from in-the-
wild hand images sharing with similar hand characteristics, dubbed HandCLR.
Pre-training with large-scale images achieves promising results in various tasks, but
prior methods for 3D hand pose pre-training have not fully utilized the potential of
diverse hand images accessible from in-the-wild videos. To facilitate scalable pre-
training, we first prepare an extensive pool of hand images from in-the-wild videos
and design our pre-training method with contrastive learning. Specifically, we
collect over 2.0M hand images from recent human-centric videos, such as 100DOH
and Ego4D. To extract discriminative information from these images, we focus
on the similarity of hands: pairs of non-identical samples with similar hand poses.
We then propose a novel contrastive learning method that embeds similar hand
pairs closer in the feature space. Our method not only learns from similar samples
but also adaptively weights the contrastive learning loss based on inter-sample
distance, leading to additional performance gains. Our experiments demonstrate
that our method outperforms conventional contrastive learning approaches that
produce positive pairs sorely from a single image with data augmentation. We
achieve significant improvements over the state-of-the-art method (PeCLR) in
various datasets, with gains of 15% on FreiHand, 10% on DexYCB, and 4% on
AssemblyHands. Our code will be released.

1 INTRODUCTION

Hands serve as a trigger for us to interact with the world, as seen in various human-centric videos.
The precise tracking of hand states, such as 3D keypoints, is crucial for video understanding (Sener
et al., 2022; Wen et al., 2023), AR/VR interfaces (Han et al., 2022; Wu et al., 2020), and robot
learning (Chao et al., 2021; Qin et al., 2022). To this end, 3D hand pose estimation has been studied
through constructing labeled datasets (Ohkawa et al., 2023a; Zimmermann et al., 2019; Chao et al.,
2021; Ohkawa et al., 2023b) and advancing pose estimators (Cai et al., 2018; Ge et al., 2019; Park
et al., 2022; .Liu et al., 2024; Fan et al., 2024). However, utilizing large-scale, unannotated hand
videos for pre-training remains underexplored, while collections of human-centric videos, like 3,670
hours of videos from Ego4D (Grauman et al., 2022) and 131-day videos from 100DOH (Shan et al.,
2020), are available.

In pre-training, some works utilize unlabeled hand images for pre-training with contrastive learning
like SimCLR (Chen et al., 2020), which maximizes agreement between positive pairs while repelling
negatives. Spurr et al. (Spurr et al., 2021) introduce pose equivariant contrastive learning (PeCLR) by
aligning geometry of features encoded from augmented images with affine transformations. However,
both SimCLR and PeCLR create positive pairs from a single sample by applying data augmentation,
limiting the gains from positive pairs as their hand appearance and backgrounds are identical. Ziani et
al. (Ziani et al., 2022) extend the contrastive learning framework to video sequences by treating
temporally adjacent hand crops as positive pairs. However, in-the-wild videos can challenge tracking
hands across frames, especially in egocentric views where hands may be unobservable due to camera
motion. Meanwhile, the limited appearance variation of hands and backgrounds remains unresolved.
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Figure 1: The pipeline of pre-training and fine-tuning. (Left) Previous pre-training methods (e.g.,
PeCLR (Spurr et al., 2021)) learn from positive pairs originating from the different augmentations
and fine-tune the network on a dataset. (Right) Our method is designed to learn from positive pairs
with similar foreground hands, sampled from a pool of hand images in the wild.
In this work, we introduce HandCLR, a novel contrastive learning framework for 3D hand pose
pre-training that leverages diverse hand images in the wild, with the largest 3D hand pose pre-training
set to date. We specifically collect 2.0M hand images from videos, from Ego4D (Grauman et al.,
2022) and 100DOH (Shan et al., 2020), using an off-the-shelf hand detector (Shan et al., 2020). Our
pre-training set significantly exceeds the scale of prior works by two orders of magnitude, such as
over 32-47K images in (Spurr et al., 2021) and 86K images from 100DOH in (Ziani et al., 2022).

Our method focuses on learning discriminative information by mining hands with similar charac-
teristics from various video domains. Based on our observations, contrastive learning can further
benefit from discriminating the foreground of hands in varying backgrounds. As shown in Fig. 1, our
positive pairs are sourced from different images, offering additional information gains from different
types of object interactions, backgrounds, and hand appearances. Specifically, we use an off-the-shelf
2D hand pose estimator (Lugaresi et al., 2019) to identify similar hands from the pre-training set.

Using the identified similar hands as positive pairs, we further propose adaptive weighting, to
dynamically find informative pairs during training. A naive adaptation of the similar hands is to
replace the original positive pairs in contrastive learning, but this scheme is unable to exploit how
similar the paired hands are. To tackle this, we assign weights based on the similarity scores within
the mini-batch in the contrastive learning loss. The weights are designed to have higher values as the
similarity of the pairs increases. This allows the optimization of contrastive learning to explicitly
consider the proximity of samples, beyond binary discrimination between positives and negatives.

We validate the effectiveness of the pre-trained networks by fine-tuning on several datasets for 3D
hand pose estimation, namely FreiHand (Zimmermann et al., 2019), DexYCB (Chao et al., 2021), and
AssemblyHands (Ohkawa et al., 2023b). Our proposed method consistently outperforms conventional
contrastive learning methods, SimCLR and PeCLR. Additionally, we conduct extensive ablation
experiments to analyze: 1) performance with varying pre-training and fine-tuning data sizes, 2) the
effect of adaptive weighting, and 3) the improvement with different levels of similarity.

In summary, the main contribution of this paper is threefold:
• We propose HandCLR, a contrastive learning method for the pre-training of 3D hand

pose estimation, leveraging positive samples mining from a newly proposed pool of 2.0M
in-the-wild hand images.

• We introduce a parameter-free adaptive weighting mechanism in the contrastive learning
loss, enabling optimization guidance according to the calculated similarity.

• Our experiments demonstrate that our approach surpasses prior pre-training methods and
achieves robust performances across different hand pose datasets.

2 RELATED WORK

3D hand pose estimation: The task of 3D hand pose estimation aims to regress 3D hand joints.
Since annotating 3D hand poses is challenging, only limited labeled datasets are available (Ohkawa
et al., 2023a), and most of which are constructed in controlled laboratory settings (Zimmermann
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et al., 2019; Chao et al., 2021; Moon et al., 2020; Ohkawa et al., 2023b). Given this challenge, two
approaches have been proposed to facilitate learning from limited annotations: pseudo-labeling and
self-supervised pre-training. Pseudo-labeling methods learn from pseudo-ground-truth assigned on
unlabeled images (Chen et al., 2021c; Zheng et al., 2023; Liu et al., 2021; Yang et al., 2021; Ohkawa
et al., 2022; .Liu et al., 2024). For example, S2Hand (Chen et al., 2021c) attempts to learn 3D pose
only from noisy 2D keypoints on a single-view image, while HaMuCo (Zheng et al., 2023) extends
such self-supervised learning to multi-view setups. Alternatively, pre-training methods aim to find
well-initialized models with unlabeled data for downstream tasks. Prior works propose contrastive
learning approaches but rely on relatively small pre-training sets (e.g., 32-47K images in (Spurr et al.,
2021) and 86K images in (Ziani et al., 2022)). We collect hand images from large human-centric
datasets such as Ego4D (Grauman et al., 2022) and 100DOH (Shan et al., 2020), expanding our
pre-training set to 2.0M images.

Contrastive learning: Contrastive learning has emerged as a powerful technique in self-supervised
learning, bringing positive samples closer while pushing negative samples apart (Chopra et al., 2005;
Schroff et al., 2015; Song et al., 2016; Sohn, 2016; He et al., 2020). Standard methods generate
positive samples from an identical image with data augmentation (i.e., self-positives) (J. Grill, 2020;
Caron et al., 2020; Chen & He, 2021; Radford et al., 2021; Caron et al., 2021), thus the positive
supervision doesn’t explicitly model inter-sample relationships. To address this, Zhang et al. propose
a relaxed extension of self-positives, non-self-positives (Zhang et al., 2022), which share similar
characteristics but originate different images, such as images capturing the same scene (Arandjelovic
et al., 2016; Ge et al., 2020; Berton et al., 2022; Hausler et al., 2021), the same person ID (Chen et al.,
2021a;b), and multi-view images (Jie et al., 2024). The positive supervision from non-self-positives
enables considering diverse inter-sample alignment and facilitates the learning of semantics more
easily. Zhang et al. identify non-self-positives by searching similar human skeletons from single-view
images and adapt in action recognition (Zhang et al., 2022). Jie et al. rely on multi-view (i.e. paired)
images to define non-self-positives and propose pair-wise weights to adaptively leverage useful
multi-view pairs (Jie et al., 2024). Our work proposes the mining of non-self-positives from 2D
keypoint cues with additional pair-wise weighting to account for similarity from unpaired data in
pre-training.

3 METHOD

Our approach HandCLR aims to pre-train an encoder for 3D hand pose estimation with large-scale
human-centric videos in the wild. We first construct a pre-training set from egocentric and exocentric
hand videos (Sec. 3.1). Then, we find similar hand images to define positive pairs across videos
(Sec. 3.2). Finally, we incorporate these positive pairs into a contrastive learning framework and
employ adaptive weights to improve the effectiveness in pre-training (Sec. 3.3).

3.1 DATA PREPROCESSING

Our preprocessing involves creating a set of valid hand images for pre-training, which is sampled
from a set of N videos: {v1, v2, . . . , vN}. We use an off-the-shelf hand detector (Shan et al., 2020) to
select valid frames with visible hands. Given a video frame Ifull ∈ vi, the model detects the existence
of the hand and its bounding box, creating hand crops enclosing either hand identity (right/left) from
Ifull. To avoid bias related to hand identity, we balance the number of right and left hand crops equally
and then convert all crops to right-hand images. Then, we create a set of frames for each video vi as
Fi = {Ii,1, Ii,2, . . . , Ii,Ti

}, where Ii,j ∈ RH×W×3 represents the processed crop with height H and
width W , and Ti is the total number of crops in vi. The height H and width W are defined post-resize
to give the uniform image size. Using this frame set Fi, the video dataset can be re-represented as
V = {F1,F2, . . . ,FN}. Specifically, we processed two datasets, Ego4D (Grauman et al., 2022) and
100DOH (Shan et al., 2020), comprising 8K and 21K videos, respectively. More details about our
preprocessing can be found in the supplement.

3.2 MINING SIMILAR HANDS

To incorporate diverse samples in contrastive learning, we design positive pairs from non-identical
images with similar foreground hands. Here we construct a mining algorithm to find similar hands
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Figure 2: Visualization of similar hand samples in Top-K. Given the query image (I), the mined
similar samples are shown (“Top-1” corresponds to I+ in Sec. 3.2).

from V by focusing on pose similarity between hand images. We first extract 2D keypoints from I ,
embed in the feature space, and search a positive sample.

Pose embedding: We adopt estimated 2D keypoints (for 21 joints) to find similar hands. We use
an off-the-shelf 2D hand pose estimator ϕ (Lugaresi et al., 2019), but the outputs are prone to be
noisy in testing in the wild. To make it more robust, we obtain a D-dimensional embedding of 2D
hand keypoints, p ∈ RD, for each image I . This serves to reduce the noise effect while preserving
the semantics of hands. We use a concatenated 42-dimensional vector as the output of ϕ for later
use. Particularly, we apply PCA-based dimension reduction, which projects the keypoints vector
into a lower-dimensional space of size D. Given the PCA projection matrix M ∈ R42×D, the pose
embedding p is calculated as p = MTϕ(I).

Mining: This step is designed to identify a positive sample I+ ∈ RH×W×3 paired with a query image
I . We denote the similarity mining logic as I+ = SiM(I). As shown in Fig. 2, using the closest
(neighbor) sample in the PCA space encounters a trivial solution I, I+ ∈ vi, where both images
originate from the same video vi. Similarly to (Ziani et al., 2022), the supervision by neighbor samples
of the same video has less diversity in backgrounds, hand appearances, and object interactions. Thus
we are motivated to find similar hands derived from different videos. Specifically, we search the
minimum distance within the set of all frames except for vi, written as Fc

i =
⋃

k ̸=i Fk. Given an
query Ii,j , which represents the j-th image of the i-th video, the function SiM(·) is formulated as

SiM(Ii,j) = argminx∈Fc
i
D(MTϕ(x),MTϕ(Ii,j)), (1)

where D(·, ·) is the Euclidean distance metric.

As a proof of concept, we illustrate examples after our mining SiM(·) in Fig. 2. We denote “Top-1”
(most similar) as our assigned positive sample I+ to the query image I . As references, the rest of the
figures (“Top-K”) are shown as the K-th similar samples. Our sampling highlights the diversity in
captured environments and interactions, while it also suggests that as the rank (distance) increases,
the sampled images become dissimilar. Additional visualization results of similar hands can be
found in supplement.

3.3 CONTRASTIVE LEARNING FROM SIMILAR HANDS WITH ADAPTIVE WEIGHTING

We detail our contrastive learning approach (see Fig. 3), learning from mined similar hands with
adaptive weighting.

Overview: The contrastive learning is designed to align positive samples (I, I+) in the feature
space, constructed in Sec. 3.2, and the rest of negative samples are pushed apart. Following (Chen
et al., 2020; Spurr et al., 2021), we treat all mini-batch samples other than the corresponding positive
samples as negative samples I−. Feature extraction is performed by two learnable components: an
encoder E(·) and a projection head g(·), which indicates the entire model as f = g◦E. The extraction
is combined with image augmentation T, which formulated as z = f(T(I)) and z+ = f(T(I+)).
Applying geometric transformations (e.g., rotation) in T can cause misalignment between the image
and feature spaces; we correct such an error with the inverse transformation T−1 as (Spurr et al.,
2021). After applying the inverse transformation to the feature z, we obtain a feature z̃ = T−1(z),
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Figure 3: Overview of our HandCLR. Starting from the left, hand images (I , I+, I−) and their
corresponding 2D keypoints are input to the model. After applying random augmentations through
transformation T, both the images and 2D keypoints are spatially transformed. The altered 2D
keypoints are then used to compute adaptive weights wpos and wneg, which guide contrastive learning
by strengthening or weakening the alignment between positive and negative samples.

where geometry is aligned to the original images. As such, all anchor, positive, and negative samples
are encoded as z̃, z̃+, and z̃−, respectively.

Adaptive weighting: During learning from our similar hands, we propose an adaptive weighting
per pair to focus more on informative samples that provide greater discriminative information. The
assigned weights are computed by the predefined similarity metric in Sec. 3.2. Given pre-processed
keypoints for two samples within the mini-batch, k1, k2, the weight w is computed by linear scaling
with the Euclidean metric D(·, ·) as

w =
dmax −D(k1,k2)

dmax − dmin
, (2)

where dmin, dmax are the minimum and maximum distances within the mini-batch. This assigned
weight w dynamically changes according to the sample statistics in the mini-batch, enabling adaptive
attention per iteration.

To address the distinction between positive and negative sample weighting, we introduce separate
weighting terms for positive and negative pairs. Specifically, wpos corresponds to the weight assigned
to positive pairs, while wneg is used for positive-negative pairs.

Contrastive loss with weighting: We finally formulate contrastive learning with the proposed
weighting scheme. We assume that a mini-batch contains 2N samples in total, including N query
samples and their corresponding N positive samples. We introduce separate weighting terms for
positives (I, I+) and negatives (I, I−) as wpos and wneg, respectively. With these weights, our
constrastive learning loss based on the NT-Xent loss (Chen et al., 2020) is formulated as:

Li = − log
exp

(
wpos · sim(z̃i, z̃

+
i )/τ

)∑2N
k=1 1[k ̸=i] exp

(
wneg · sim(z̃i, z̄

−
k )/τ

) (3)

Here τ is a temperature parameter, sim(z, z̄) = zT z̄
∥z∥∥z̄∥ is the cosine similarity function. Overall, our

adaptive weighting enables considering the importance separately for positive and negative samples,
while closer samples are assigned with higher weights and more distant ones receive lower weights.
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4 EXPERIMENTS

In this section, we compare our method with existing baselines for pre-training of the 3D hand pose
estimation and conduct ablation experiments to support the validity of our approach. We begin
by providing a detailed explanation of the dataset and experimental setup (Sec. 4.1). Next, we
demonstrate that our model achieves state-of-the-art (SOTA) performance by comparing it with the
existing methods (Sec. 4.2). Following this, we present the results of ablation studies on weighting
design in the pre-training phase (Sec. 4.3). Finally, visualizations are used to illustrate the superiority
and efficiency of our approach (Sec. 4.4).

4.1 EXPERIMENTAL SETUP

Pre-training datasets: We curate a large collection of hand images from two major video datasets,
Ego4D (Grauman et al., 2022) and 100DOH (Shan et al., 2020), featuring egocentric and exocentric
views respectively. From Ego4D, a vast egocentric video dataset with 3,670 hours of footage, we
extracted 1.0M hand images from 8K videos. Similarly, from the exocentric dataset 100DOH, which
includes 131 days of YouTube footage, we extract 1.0M hand images from 20K videos. These
extensive datasets provide diverse hand-object interactions across different views. We also prepare
pre-training data with varying amount. “Exo-X” and “Ego-X” denote 100DOH and Ego4D datasets
with X images selected randomly (e.g., X = 50K, 100K, ..., 1M, 2M). “Ego&Exo-2M” shows our
final set combining both datasets with full images (i.e., 1.0M for each).

Fine-tuning datasets: We conduct fine-tuning experiments on three datasets with 3D hand pose
ground truth in various data scales and viewpoints: exocentric datasets from FreiHand (Zimmermann
et al., 2019) and DexYCB (Chao et al., 2021), and an egocentric dataset AssemblyHands (Ohkawa
et al., 2023b). FreiHand consists of 130.2K training frames and 3.9K test frames, with both green
screen and real-world backgrounds. DexYCB contains 325.3K training images and 98.2K test
images, focusing on natural hand-object interactions. AssemblyHands, the largest of the three,
includes 704.0K training samples and 109.8K test samples, collected in object assembly scenarios.
Following (Spurr et al., 2021), we prepare 10% of the labeled FreiHand dataset, which is denoted as
“FreiHand*”, especially used for ablation studies. This allow us to assess the performance in a limited
supervision setting.

Implementation details: For similar hands mining, we choose the PCA embedding size as D = 14.
For the pre-training framework, we use ResNet-50 (He et al., 2016) as the encoder. Throughout
the pre-training phase, all models are trained using LARS (You et al., 2017) with ADAM (Kingma
& Ba, 2014) optimizer, with the learning rate of 3.2e-3. Following (Spurr et al., 2021), SimCLR
employs scale and color jitter as image augmentation, while PeCLR and HandCLR utilize scale,
rotation, translation, and color jitter. We use resized images with 128× 128 as the input. We set the
temperature parameter τ of contrastive learning as 0.5. We use 8 NVIDIA V100 GPUs with a batch
size of 8192 for pre-training.

For fine-tuning, we initialize our model with the pre-trained encoder E(·) and then fine-tune with a
3D pose regressor on the labeled datasets. The 3D regressor involves 2D heatmap regression and 3D
localization heads, similar to DetNet (Zhou et al., 2020). We use a single NVIDIA V100 GPU with a
batch size of 128. We provide more additional details in supplement.

Evaluation: We use the following evaluation metrics: the mean per joint position error (MPJPE)
in millimeters, which compares model predictions against ground-truth data, and the percentage of
correct keypoints based on the area under the curve (PCK-AUC), which measures the proportion of
predicted keypoints that fall within a specified distance (20mm to 50mm) from the ground truth with
varying thresholds.

4.2 STATE-OF-THE-ART COMPARISON

We compare our method with previous works for 3D hand pose estimation (Tab. 1). To make a fair
comparison, we evaluate all pre-training datasets of the same scale size against previous methods.

Comparison to contrastive learning methods: We compare our pre-training method with previous
methods (Chen et al., 2020; Spurr et al., 2021) in 3D hand pose estimation (Tab. 1). We observe that
our method significantly outperforms SimCLR and PeCLR across various datasets under the equal
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FreiHand (Exo) DexYCB (Exo) AssemblyHands (Ego)Method Pre-training MPJPE ↓ PCK-AUC ↑ MPJPE ↓ PCK-AUC ↑ MPJPE ↓ PCK-AUC ↑
w/o pre-training - 19.21 85.61 19.36 84.80 19.17 85.61

SimCLR
Exo-1M 19.30 85.36 20.13 83.75 20.01 84.21
Ego-1M 19.36 85.09 20.22 83.50 20.32 83.85

Ego&Exo-2M 20.07 84.32 21.09 82.25 21.24 82.29

PeCLR
Exo-1M 19.58 84.71 18.39 86.33 19.12 85.64
Ego-1M 19.07 85.62 18.99 85.40 19.20 85.57

Ego&Exo-2M 18.19 86.76 18.06 86.82 18.88 86.03

HandCLR
(Ours)

Exo-1M 16.73 88.66 17.34 87.84 18.50 86.56
Ego-1M 16.15 89.48 16.99 88.34 18.26 86.95

Ego&Exo-2M 15.79 90.04 16.71 88.86 18.23 86.90

Table 1: Comparison with the state of the art. We show 3D hand pose estimation accuracy
(MPJPE↓) on the FreiHand (Exo) (Zimmermann et al., 2019), DexYCB (Exo) (Chao et al., 2021)
and AssemblyHands (Ego) (Ohkawa et al., 2023b) . The best results are highlighted in bold, and the
second-best results are underlined. HandCLR achieves the best results across various datasets.

FreiHand*Method Pre-training size MPJPE ↓ PCK-AUC ↑
w/o pre-training - 48.19 49.17

SimCLR
Ego-50K

53.94 42.54
PeCLR 47.42 49.85

HandCLR 35.32 63.35
SimCLR

Ego-100K
53.49 43.12

PeCLR 46.00 51.50
HandCLR 31.06 68.66
SimCLR

Ego-500K
49.91 47.61

PeCLR 43.18 54.15
HandCLR 28.27 72.97
SimCLR

Ego-1M
46.17 50.62

PeCLR 34.42 64.93
HandCLR 23.68 79.62

Table 2: Comparison with different pre-training data
sizes. ’*’ indicates that we used a small amount of train-
ing data for fine-tuning to validate the effectiveness of
the pre-trained model. Our method demonstrates a lead-
ing advantage across all pre-training data scales.

Figure 4: Comparison with different
data availability in fine-tuning on Frei-
Hand. Variations in the percentage of la-
beled data correspond to different subsets
of the fine-tuning dataset, following the ex-
perimental design in (Spurr et al., 2021).

pre-training data setups. When we compare our method against a randomly initialized model (w/o
pre-training), HandCLR improves performance by 17.7% over the scratch baseline.

In more details, our approach achieves a 15.31% improvement over previous methods PeCLR with
Ego-1M pre-training on the FreiHand. We observe that SimCLR shows limited performance
compared to the random initialization. This suggests pre-training without geometric prior (i.e.,
without geometric augmentation) does not always help hand pose estimation, requiring spatial
keypoint regression. In contrast, our method demonstrates significant performance gain on larger
datasets, with a 10.53% gain on DexYCB and a 4.90% improvement on AssemblyHands compared
to PeCLR. These results confirm that our model consistently achieves superior performance across
various fine-tuning datasets.

Furthermore, we pre-train all methods on the joint pre-training datasets (Ego&Exo-2M). Our approach
further improves over the state-of-the-art method (PeCLR) , achieving improvements of 13.19%,
7.4%, and 3.4% on the FreiHand, DexYCB, and AssemblyHands, respectively. Compared to the
pre-training with 1M samples (Ego-1M), doubling the pretraining data with Ego&Exo-2M results
in a 2.28% improvement on the FreiHand dataset. Notably, our method shows particular strength
in effectively handling larger, more varied datasets. This robust performance demonstrates that our
approach is highly effective and reliable for hand pose pre-training.
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Method Proposals FreiHand*
(Pre-training size) Similar hands Adaptive weighting MPJPE ↓ PCK-AUC ↑

SimCLR
(Ego-100K)

× × 53.49 43.12
× ✓ 52.58 (1.8% ↓) 44.70 (1.58% ↑)

PeCLR
(Ego-100K)

× × 46.00 51.50
× ✓ 44.61 (3.0% ↓) 53.37 (1.87% ↑)

HandCLR
(Ego-100K)

✓ × 31.06 68.66
✓ ✓ 28.84 (7.18% ↓) 71.07 (2.41% ↑)

Table 3: Ablation study of proposed modules. We compare with and without our proposed modules
in different methods. The experimental results demonstrate the generality of our method.

Ego & Exo view analysis: We evaluate how pre-training with egocentric views (Ego4D) and
exocentric views (100DOH) affects the performance in datasets with their corresponding views,
namely AssemblyHands for egocentric and FreiHand and DexYCB for exocentric views. Interestingly,
matching pre-training viewpoints does not consistently enhance performance, indicating that the view
gaps have limited effects. Instead, factors like dataset diversity and the characteristics of pre-training
methods are more crucial in boosting performance. Combining the two datasets (the last row of
Tab. 1) leads to the best performance in all three datasets, underscoring the potential of enriching data
diversity with various camera views.

4.3 ABLATION EXPERIMENT

This section presents ablation studies on HandCLR, focusing on four aspects: 1) pre-training dataset
size, 2) fine-tuning dataset size, 3) adaptive weighting, and 4) Top-K experiments. First, we examine
pre-training dataset size using various methods, showing our approach maintains superior performance
across scales (Tab. 2). Second, inspired by (Zimmermann et al., 2019), we explore fine-tuning dataset
size, demonstrating significant gains even with limited data (Fig. 4). Furthermore, we also highlight
the adaptive weighting design, which consistently outperforms comparison methods (Tab. 3). Finally,
a novel Top-K experiment validates the effectiveness of selecting different levels of similar hand
samples as positive pairs during pre-training (Tab. 4).

Effect of pre-training data size: We study results with different sizes of pre-training data, namely
50K, 100K, 500K, and 1M in Tab. 2. The results demonstrate that HandCLR reliably outperforms
the other methods across all settings, with improvement as the pre-training data size increases. With
50K pre-training samples, HandCLR achieves scores of 35.32 and 63.35 on the two metrics. With
1M pre-training samples, HandCLR’s performance further improves to 23.68 and 79.62. The useful
insights we can gather from this table include: 1) The HandCLR method holds a leading advantage
across various pre-training scales. 2) As the pre-training dataset size increases, the improvement for
fine-tuning with limited labels is substantial.

Effect of fine-tuning data size: Fig. 4 illustrates the experiment under different proportions of
labeled fine-tuning data, namely 10%, 20%, 40%, and 80% in FreiHand. Note that we denote
methods with “-1M/2M” as those pre-trained on the Ego-1M and the Ego&Exo-2M sets, respectively.
The results show that HandCLR-1M demonstrates impressive error reduction, achieving remarkably
lower MPJPE scores with merely 10% of labeled data. HandCLR-1M delivers the best performance
over different scales of fine-tuning data, compared to SimCLR-1M and PeCLR-1M. HandCLR-2M
further shows improvement over HandCLR-1M, while the gains become marginal as labeled data
increase. From this analysis, we can draw two key conclusions: 1) The improvement resulting from
an increase of pre-training data becomes less significant as the amount of fine-tuning data increases;
2) HandCLR maintains a strong advantage in scenarios with limited labeled data, particularly when
larger pre-training data are used.

Effect of adaptive weighting: We validate the proposed adaptive weighting and study its generality
when applied in the other methods in Tab. 3. On the Ego-100K pre-training set, MPJPE decreases
by 1.8% and 3.0% for SimCLR and PeCLR, respectively, while PCK-AUC increases by 1.58%
and 1.87%. Specifically, the proposed weighting excels in its applicability for various pre-training
methods. In our HandCLR method, applying adaptive weighting reduces MPJPE from 31.06 to 28.84,
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Method Top-K FreiHand*
(Pre-training size) MPJPE ↓ PCK-AUC ↑

HandCLR
(Ego-100K)

Top-1 31.06 68.66
Top-2 31.46 67.89

Top-5 31.85 67.20

Top-10 31.87 67.18

Top-50 31.53 67.59

Top-100 31.54 67.70

Top-500 32.61 66.76

Top-1000 34.05 65.14

Top-5000 35.34 62.79

Table 4: Pre-training performance at different similarity ranks (Top-K). It can be seen that as the
similarity rank increases, the pre-training performance deteriorates.

a 7.18% decrease, while PCK-AUC improves from 68.66 to 71.07, a 2.41% increase. We find the
effectiveness when the weighting is combined with mined similar hands.

Learning from Top-K similar hands: We test pre-training with different similarity levels of positive
samples in Tab. 4. As illustrated in Fig. 2, we can sample similar pairs according to the distance
ranking (e.g., K = 1, 2, ..., 5000), where Top-1 is used to produce our final results. This trend
is initially subtle and somewhat fluctuating but becomes increasingly pronounced as the ranking
increases linearly. The experimental results clearly indicate that as the similarity between positive
samples decreases (with ranking increasing from Top-1 to Top-5000), the performance decreases
gradually. Notably, using Top-5000 similar hand samples as positive samples increases the MPJPE
by 13.78% compared to Top-1. This study provides two insights: 1) Similar samples with subtle
noisiness (e.g., 1∼100) exhibit minimal variation in performance, indicating that slight differences
in similarity within this range do not significantly impact the pre-training outcome. This suggests
that the model is robust to minor variations when the positive samples are highly similar. 2) The
results support the validity of using Top-1 positive samples for generating our final results, as they
consistently yield the best performance. This highlights the importance of selecting the most similar
samples to enhance the effectiveness of contrastive learning during the pre-training phase.

4.4 VISUALIZATION

In this section, we compare the fine-tuning results of various pre-training methods through detailed
visualizations on different datasets (Fig. 5). The pre-training model is trained on the Ego&Exo-2M
dataset and fine-tuned on the FreiHands (Zimmermann et al., 2019) and DexYCB (Chao et al., 2021)
datasets, respectively. First, we analyze the overall visualization results on both datasets. Then, we
perform a detailed examination to evaluate how different methods handle the hand-object occlusion
issue. Through the visualization results, we further illustrate the performance differences of various
methods in occlusion scenarios.

Visualization of 3D hand pose estimation: Fig. 5 presents the visualization results on the FreiHand
and DexYCB datasets. The results highlight the effectiveness of different methods in estimating 3D
hand poses under varied conditions. It is evident that HandCLR achieves better pose estimation, closer
to the ground truth, compared to other methods in both indoor and outdoor settings. In particular,
HandCLR outperforms other methods in accurately capturing hand poses, even in challenging
environments with occlusions or varying lighting conditions. These visual outputs illustrate the
advantages of HandCLR in accurately capturing the nuances of hand poses, demonstrating its
robustness across various scenarios and solidifying its potential for real-world applications.

Analysis of hand-object occlusion: As shown in Fig. 5, we highlight the occluded regions in the
original images using red circles. It is evident that HandCLR outperforms other methods in handling
occlusion problems. Our pre-training method effectively addresses partial occlusion in query images
by utilizing similar, though not identical, hand images, where the occluded part in the query image
could be visible in the corresponding similar hand image, and vice versa. We provide additional
similar hand images in the supplementary material, which further explain this phenomenon.
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Figure 5: Visualization of FreiHand (Zimmermann et al., 2019) and DexYCB (Chao et al., 2021).
The first four columns on the left display the results for FreiHand, while the last four columns on
the right show the results for DexYCB (GT: Ground Truth; PT: Pre-training). It is evident that our
HandCLR pre-training method achieves superior results.

5 CONCLUSION

We introduce HandCLR, a contrastive learning framework for pre-training 3D hand pose estimators
using our newly constructed largest in-the-wild pre-training set. Our approach leverages similar
hand pairs from diverse videos, significantly enhancing the information gained during pre-training
compared with existing methods. Experiments show our method achieves SOTA performance in
3D hand pose estimation across multiple datasets, demonstrating the benefits of pre-training with
large-scale in-the-wild images. We hope this work can lay a foundation for future research on 3D
hand pose estimation.
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Figure 6: Overview of data preprocessing and similar hands mining. This image illustrates
a three-step process for HandCLR pre-training using datasets from Ego4D and 100DOH. Step 1
involves preprocessing the datasets to extract relevant frames. Step 2 employs a hand detector to
crop hand regions from these frames, creating a diverse pool of hand images in the wild. Step 3
calculates similarity and ranks the images using a pose estimator and PCA, producing a sorted list of
hand poses, from the most similar to the least similar to a given anchor pose.

6 APPENDIX

6.1 CONSTRUCTION OF LARGE-SCALE IN-THE-WILD HAND DATABASE

In this section, we propose our method for constructing a large-scale hand image dataset, focusing on
extracting and processing hand images from various video datasets. We provide a detailed overview
of the key steps involved in data preprocessing, including 1) preprocessing, 2) hand region detection,
3) similarity calculation & ranking, and noise reduction. Through these steps, we obtain high-quality
hand images along with corresponding skeleton information, laying a solid foundation for subsequent
contrastive learning experiments.

Preprocessing: We first prepared two large-scale video datasets: Ego4D with 8k frames and 100DOH
with 23k frames, sampled at 1 fps. As shown in the Fig. 6, there are significant differences between
first-person and third-person hand images.

Hand region detection: In the previous step, we obtained all frames from Ego4D and 100DOH.
Next, we fed them into a lightweight network with fixed weights to extract bounding boxes for the
hand images. Specifically, we used the method from (Shan et al., 2020). We saved all detected
bounding boxes in the order. This step generated a large-scale hand image dataset.

Similarity calculation & ranking: After obtaining the large-scale hand image dataset, we used
a lightweight network with fixed weights to extract raw 2D keypoints for each sample. This was
implemented using mediapipe (Lugaresi et al., 2019). We reduced the noise in the raw 2D keypoints
using PCA as described in Sec. 3.1. Then, we used Eq. 1 to compute similarity for a query image
I and rank the remaining samples. In the end, we retrieved a large-scale in-the-wild similar hand
images from these videos. For example, in Ego4D, for a query sample I , we obtain all similar hand
images and construct a sequence of similar hands. We call this sequence of similar hand images
"Top-K". Top-1 is used as a positive sample I+ for the query image I in the contrastive learning
process, leading to state-of-the-art pre-training results. It is worth noting that we also designed
experiments in Sec. 4.3 to validate that using Top-1 as the positive sample I+ is the optimal choice.

6.2 VISUALIZATION OF SIMILAR HANDS

To better illustrate our use of similar hand images in large-scale pre-training and the "Top-K"
experimental setup. We have prepared extensive visualizations for explanation. As shown in Fig. 7,
one sets of Top-K similar hand images are visualized. Fig. 7 displays the query image along with the
remaining similar hand sequences (Top-K). At the top of Fig. 7 is a timeline, where we deliberately
sampled from consecutive frames of the same video. For each query image, we provide a Top-K set
of similar hand images.
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From these visualizations, we gathered three key insights: 1) Using adjacent frames from the same
video as positive samples for pre-training lacks diversity, and the differences between samples may be
significant. 2) As the ranking increases, the similarity of the hand sequences decreases significantly,
and the differences become more pronounced, which may lead to incorrect representations during
pre-training. 3) Thus, selecting the top-1 image as the positive sample for the query image is the
optimal choice.

6.3 NON-LINEAR WEIGHT

In this section, we present another simple yet effective weighting design. Unlike the linear weight-
ing, here we use the sigmoid function as the basis for weighting. Below are the details of the
implementation for this weighting.

In the non-linear approach, the function applies a sigmoid function to the computed distances between
two sets of joints, k1 and k2. Similarly, as described in Sec. 3.3, we can finally obtain d from the
same process.

Instead of linear scaling, the weights are computed using a sigmoid function, controlled by a parameter
λ and centered around the mean distance µ, ensuring that the weights fall within the range of [0, 1]
through multiplication by 2. This gives a smooth transition of weights:

wnon-linear = 2 · 1

1 + exp(λ(d− µ))
(4)

Here, samples closer to µ are weighted more evenly, while those farther away experience a sharper
drop-off, adjusting the contribution of each sample more smoothly based on their distance.

Since the weights for positive samples and positive-negative pairs are computed separately, we
distinguish between λpos for positive pairs and λneg for positive-negative pairs. We conducted
extensive experiments to analyze the impact of these parameters.

6.4 FINETUNE FOR 3D HAND POSE ESTIMATION

In the fine-tuning stage, we discard the projection head and fine-tuning only the encoders. We load
the pre-training model weights into a heatmap-based 3D hand pose estimationand predition method:
DetNet(Zhou et al., 2020). To train DetNet, we utilize a comprehensive loss function designed to
optimize both 2D pose estimation and 3D spatial localization. The loss function is defined as:

Lheat + Lloc + Ldelta + Lreg (5)

where Lheat ensures that the predicted heatmaps H align closely with the ground truth heatmaps HGT,
Lloc and Ldelta measure the discrepancies between the predicted location maps L and delta maps
D and their corresponding ground truth LGT and DGT, with HGT weighting these discrepancies
to focus on the maxima of the heatmaps. Additionally, Lreg is an L2 regularization term to prevent
overfitting. Note that after passing through the encoder, we made simple adjustments to the model,
applying some upsampling to the features to fit the input.

This multi-task learning framework enables the network to simultaneously learn pose features from
2D images and spatial information from 3D data, enhancing the accuracy and robustness of detection
in real-world applications. For more details on fine-tuning, please refer to the (Zhou et al., 2020).

6.5 EXPERIMENTS ON DIFFERENT ADAPTIVE WEIGHTING METHODS

In this section, we present the experimental results of two different weighting designs. All ablation
studies were conducted using the "Ego4D-100K" dataset.

Performance of different weighting strategies: Tab. 5 is divided into three parts: the top layer
shows the results without weighting, the middle layer shows the results with a non-linear weighting
strategy, and the bottom layer shows the results with a linear weighting strategy. We can see that
only a few results with the non-linear strategy are better than those without weighting in contrastive
learning. In contrast, the results with the linear weighting strategy are consistently better than those
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Method Weighting FreiHand*
(Pre-training size) Strategy Joints Parameter MPJPE ↓ PCK-AUC ↑

HandCLR
(Ego-100K)

- - - 31.06 68.66

Non-linear Original λpos = 5.0, λneg = 0.05 33.08 65.81
Non-linear Augmented λpos = 5.0, λneg = 0.05 31.39 68.27
Non-linear Original λpos = 2.5, λneg = 0.01 31.90 67.83
Non-linear Augmented λpos = 2.5, λneg = 0.01 30.90 68.69
Non-linear Original λpos = 1.0, λneg = 0.005 32.03 67.68
Non-linear Augmented λpos = 1.0, λneg = 0.005 31.28 68.05

Linear Original - 30.20 69.61
Linear Augmented - 28.84 71.07

Table 5: Exploring different weighting strategies. We conducted ablation experiments on the Ego-
100K dataset using the HandCLR model with two different weighting design strategies mentioned
in our methodology section. The experimental results show that the linear weighting strategy that
requires no parameter tuning is the most effective. Here, "original" and "augmented" indicate whether
the k1 ∈ RM×2 and k2 ∈ RM×2 (define in 3.3) values used for computing the weighting are the
original keypoints or the keypoints after being augmented along with the image.

without weighting. Using the augmented finger joint calculations for weighting is more effective in
guiding the contrastive learning stage. These experimental results indicate that the linear weighting
strategy, which requires no parameter tuning, is the most effective.
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Figure 7: Visualization of similar hand samples in Top-K. As the ranking increases, the differences
between hand samples become more pronounced.
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