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ABSTRACT

Deep learning for continuous physiological time series such as electrocardiogra-
phy or oximetry has achieved remarkable success in supervised learning scenarios
where training and testing data are drawn from the same distribution. However,
when evaluating real-world applications, models often fail to generalize due to
distribution shifts between the source domain on which the model was trained and
the target domain where it is deployed. A common and particularly challenging
shift often encountered in reality is where the source and target domain supports
do not fully overlap. In this paper, we propose a novel framework, named Deep
Unsupervised Domain adaptation using variable nEighbors (DUDE), to address
this challenge. We introduce a new type of contrastive loss between the source and
target domains using a dynamic neighbor selection strategy, in which the number
of neighbors for each sample is adaptively determined based on the density ob-
served in the latent space. This strategy allows us to deal with difficult real-world
distribution shifts where there is a lack of common support between the source
and the target. We evaluated the performance of DUDE on three distinct tasks,
each corresponding to a different type of continuous physiological time series.
In each case, we used multiple real-world datasets as source and target domains,
with target domains that included demographics, ethnicities, geographies, and/or
comorbidities that were not present in the source domain. The experimental re-
sults demonstrate the superior performance of DUDE compared to the baselines
and a set of four benchmark methods, highlighting its effectiveness in handling
a variety of realistic domain shifts. The source code is made open-source [upon
acceptance of the manuscript].

1 INTRODUCTION

Continuous physiological time series are important in medicine for the purpose of monitoring patient
vital signs such as heart rate and blood pressure in real time. They help clinicians detect events
or changes in patients condition and intervene if necessary. We defined continuous physiological
time series as parameters that are recorded without interruption and with very short time intervals
between samples (milliseconds or seconds). Deep learning (DL) has been successfully applied to
the analysis of such time series (Perslev et al., 2019; Phan et al., 2019; Tang et al., 2022; Biton
et al., 2023; Levy et al., 2023; Ribeiro et al., 2020), including the use of architectures originally
developed in computer vision or natural language processing, self-supervised graph neural networks,
and more. These architectures have been adapted for tasks such as sleep staging (Perslev et al.,
2019; Phan et al., 2019), seizures detection (Tang et al., 2022) from the raw electroencephalogram,
and the detection of arrhythmias from the electrocardiogram (ECG) (Biton et al., 2023; Ribeiro
et al., 2020). DL for continuous physiological time series has been shown to equal or outperform
classical machine learning models trained using handcrafted features (Levy et al., 2023; Zvuloni
et al., 2023). DL has even equaled or surpassed experts in interpreting continuous physiological time
series for medical tasks (Hannun et al., 2019; Ribeiro et al., 2020) or allowed them to perform tasks
beyond human reach (Attia et al., 2019; Biton et al., 2021). Thus, DL has emerged as a powerful
technique for achieving state-of-the-art results in various domains and applications of continuous
physiological time series. However, when such models are evaluated in unseen target domains, they
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tend to generalize moderately well or poorly (Alday et al., 2020; Kotzen et al., 2022; Levy et al.,
2023; Ballas & Diou, 2023).

One of the key assumptions underlying traditional supervised learning approaches is that training
and testing data are drawn from the same distribution. However, in real-world scenarios, this as-
sumption may not hold. Even a slight deviation from the training domain of a network can cause
it to make false predictions and significantly affect performance in the target domain where it is
deployed (Tzeng et al., 2017; Long et al., 2017; Ovadia et al., 2019; Fang et al., 2020). A common
and particularly challenging shift often encountered in reality is where the supports of the source
and target domain do not fully overlap (Johansson et al., 2019; Sanabria et al., 2021; Tong et al.,
2022).

In this work, we focus on the unsupervised domain adaptation (UDA) setting, where we assume that
labeled data is available from the source domain, while only unlabeled data is available from the
target domains. This setting reflects a common situation where obtaining labeled data from target
domains may be costly or impractical, for example, because it requires expert clinician annotation.
The underlying idea is to take advantage of the knowledge gained from the labeled data in the source
domain while utilizing the unlabeled data from the target domains to align the features between the
domains. A fundamental assumption we make, and which is standard in the UDA literature, is
the covariate shift assumption. Formally, we hypothesize that the conditional distribution of the
target variable given the input denoted Psource(Y |X), remains the same in the source and target
domains: Psource(Y |X) = Ptarget(Y |X). However, the marginal distribution of the input, denoted
as Psource(X) and Ptarget(X), respectively, may differ: Psource(X) ̸= Ptarget(X). This means that,
while the underlying mechanisms for generating the labels remain consistent, there is a shift in
the marginal distribution of the input data from the source to the target domain. In this paper, we
specifically focus on deep UDA for univariate continuous physiological time series. The assumption
of covariate shift is motivated by the unified medical guidelines used to generate the labels across
datasets for each experiment. In this context, the medical guidelines, encapsulated by P (Y |X),
remain consistent across domains. However, variations in data distribution may arise due to the
different populations, comorbidities, ethnicities, sensor locations, or manufacturers. Moreover, we
look into real-world cases where the support of the target domain does not fully overlap the support
of the source domain.

Contributions:

• We propose a novel framework for deep UDA, in the context of continuous physiological
time series analysis. This framework is termed DUDE, an acronym for Deep Unsupervised
Domain adaptation using variable nEighbors. DUDE leverages a contrastive loss between
the source and target domains using a Nearest-Neighbor Contrastive Learning of Visual
Representations (NNCLR) strategy (Dwibedi et al., 2021).

• We extend the original self-supervised learning (SSL) NNCLR algorithm to utilize a vari-
able number of neighbors in the contrastive loss. The extension of NNCLR is denoted
NNCLR∆ and improves the performance of DUDE.

• We evaluated the performance of DUDE for three distinct machine learning tasks, using a
total of eight datasets, and for three different types of continuous physiological time series.
We demonstrate the superior performance of DUDE compared to the baselines and a set of
four benchmark methods.

2 RELATED WORK

Deep UDA Approaches: Numerous deep UDA methods have been proposed in the past decade
(Ganin & Lempitsky, 2015; Gulrajani & Lopez-Paz, 2021; Wilson & Cook, 2020; Shen et al., 2021;
Zhou et al., 2022). These methods span various categories, such as regulation strategy, domain
alignment, adversarial learning, and contrastive learning. For example, Li et al. (2022) introduces a
non-Bayesian approach for modeling domain shift within a neural network. The method enhances
the robustness of the model by considering uncertain feature statistics through the hypothesis of
a multivariate Gaussian distribution. To address the challenge of hard sharing in representation,
Amosy (2022) propose training separate models for source and target data, promoting agreement
across their predictions. Dubois et al. (2021) proposed a Contrastive Adversarial Domain Bottle-
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neck (CAD), with the aim of causing the encoder to produce domain-agnostic features. Supervised
Contrastive Learning (SCL) (Khosla et al., 2020) improves class-wise clustering in the embedding
space for the source domain.

Contrastive learning for deep UDA: Contrastive learning is a technique that aims to learn represen-
tations with self-supervision, ensuring that similar samples are embedded close to each other (pos-
itive pairs) while pushing dissimilar samples apart (negative pairs). Kang et al. (2019) introduced
a method that minimizes the intraclass domain discrepancy and maximizes the interclass domain
discrepancy. Similarly, Chen et al. (2020) proposed a framework for contrastive learning, which
maximizes the agreement between the embeddings of two augmented views of the same sample and
treats all other samples in the same batch as negative samples.

Deep UDA in time series: Ragab et al. (2022) presented a framework for UDA in the context of time
series using SSL. They designed an SSL module with forecasting as an auxiliary task and proposed
an autoregressive DA technique that incorporates temporal dependence of both source and target
features for the purpose of domain alignment. Additionally, they trained an ensemble teacher model
to align class-wise distributions in the target domain. In a different approach, Tonekaboni et al.
(2021) introduced the temporal neighborhood coding algorithm, treating neighboring windows of
the time series as positive pairs and using other windows to construct negative pairs, in the context
of contrastive learning strategy. Contrastive learning has been used in the context of deep UDA
for time series analysis by Ozyurt et al. (2023) to align the features between the source and target
domains. The authors’ experiments included a medical time series of measurements of vital signs
collected in intensive care. However, it did not include experiments on continuous physiological
time series.

Research gap: Deep UDA in the context of time series, particularly continuous physiological time
series, remains an area of limited research. Prior to our study, Ozyurt et al. (2023) used NNCLR for
the purpose of domain alignment, as one of the losses of their framework. However, to the best of our
knowledge, we are the first to formally extend the NNCLR algorithm by introducing multiple neigh-
bors into the contrastive loss and using the method in the context of continuous physiological time
series. Furthermore, our work distinguishes itself by conducting a comprehensive benchmarking of
our proposed DUDE framework on eight real-world datasets. These datasets encompass distribution
shifts across demographics, ethnicities, geographies, and comorbidities. We evaluated DUDE on
three machine learning tasks, comparing it against baselines and a set of four benchmark methods.

3 PROPOSED FRAMEWORK

3.1 PROBLEM DEFINITION AND FRAMEWORK OVERVIEW

We consider a supervised task (classification or regression), for which we have an univariate contin-
uous physiological time series as input. We have several distribution shifts over different domains.
The source domain, denoted Ds, with labels i.i.d. samples given by (xs

i , y
s
i )

Ns

i=1 ∼ Ds. Furthermore,
there are T target domains, with unlabeled samples: {(xt

i)
Nt

i=1 ∼ Dt}Tt=1, where Ns is the number
of samples in the source domain, Nt is the number of samples in the tth target domain. Our goal is
to build a model that will generalize well on the target domains T .

The overview of the DUDE framework is shown in Figure 1. The model consists of a feature extrac-
tor responsible for processing input time series (xs or xt) and generating contextual representations,
denoted as zs or zt. The encoder ϕ is task-dependent and varies according to the task. For each
encoder, Domain Shift Uncertainty (DSU) layers (Li et al., 2022) are included to introduce a degree
of uncertainty into the encoding process. Subsequently, the classifier C leverages the encoder output
to generate the desired label denoted y. The method is implemented in TensorFlow, version 2.6.0.

3.2 DOMAIN SHIFT UNCERTAINTY

The DSU layer was proposed by Li et al. (2022). Inside a neural network, feature statistics are treated
as deterministic, i.e., a non-Bayesian approach is used: argmaxP (θ|X) = argmaxP (θ|X)P (X),
where θ represent the parameters of the model. The hypothesis here is that feature statistics follow
a multivariate Gaussian distribution. Following this assumption, each feature vector x is modeled
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Figure 1: A high-level overview of the DUDE framework proposed. In the source domain, labeled
data is used for supervised loss, which is task-dependent. The embedding generated by the encoder
is stored in the support set. In the target domains, unlabeled data is used for contrastive learning.
The contrastive loss with multiple nearest neighbors enables better alignment and robust DA.

as a random variable that is normally distributed, with µ(x) and σ(x) as the mean and standard
deviation of the feature statistics. Directions with larger variances can imply the potential for more
valuable semantic changes. A non-parametric method is then used for uncertainty estimation: Σ2

µ =
1
B

∑B
b=1(µ(x)−Eb[µ(x)])

2, and Σ2
σ = 1

B

∑B
b=1(σ(x)−Eb[σ(x)])

2, where Eb is the empiric mean
over the mini-batch b. Using the definition above, the DSU layer resamples the features:

DSU(x) = γ(x) · x− µ(x)

σ(x)
+ β(x) (1)

Where β(x) = µ(x) + ϵµ · Σµ(x), ϵµ ∼ N (0, 1), and γ(x) = σ(x) + ϵσ · Σσ(x), ϵσ ∼ N (0, 1).

Benefiting from the proposed method, a model trained with uncertain feature statistics will gain
better robustness against potential distribution shifts from the source domain and thus acquire a
better generalization ability. To balance the trade-off between feature statistics enhancement and
model performance, a hyperparameter denoted as pDSU is introduced. At each step of the training
process, the re-sampling of the feature occurs with probability pDSU . In practice, we include several
DSU layers, after each principal block in the encoder.

3.3 NNCLR∆ FOR DUDE

In this section, we first describe the formalism of the NNCLR algorithm, originally proposed in the
context of SSL (Dwibedi et al., 2021). We then propose a method to adapt it to UDA, introducing
an extension denoted NNCLR∆, where a variable number of nearest neighbors are employed as
positive instances for self-supervised contrastive learning. The nearest neighbors are selected on the
basis of the cosine distance. By incorporating several neighbors, we aim to mitigate the potential
noisy effects that may arise from relying solely on a single instance for positive pairing. To adapt
NNCLR∆ to the DUDE settings, we employ unlabeled data for contrastive loss calculation.

The original NNCLR algorithm (Dwibedi et al., 2021) learns self-supervised representations that
go beyond single-instance positive representation, which enables the model to learn better features
that are invariant to different viewpoints, deformations, and even intra-class variations. Instead of
using two augmentations to form the positive pair, the nearest neighbors in the support set Q are
used. The support set was implemented as a queue initialized with a random matrix of size [m, d],
where m represents the queue size and d is the dimensionality of the embeddings. The support set
is designed to approximate the distribution of the entire dataset in the embedding space. At the end
of each training step, the support set is updated by adding the embeddings from the current batch to
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the end of the queue, while discarding the oldest elements. This results in the following loss:

LNNCLR = − log
exp

(
NN(ϕ(xi), Q)⊤ · ϕ(xi)

+/τ
)∑n

k=1 exp (NN(ϕ(xi), Q)⊤ · ϕ(xk)+/τ)
(2)

Where NN(ϕ(xi), Q) is the nearest neighbor operator, defined as NN(ϕ(xi), Q) =
argminq∈Q ||ϕ(xi) − q||2, and ϕ(xi)

+ means data augmentation applied on ϕ(xi). In the original
paper, the algorithm was proposed for image classification using augmentations such as cropping,
resizing, and blurring. Instead of using a single neighbor for each sample, or even a fixed number
of neighbors, NNCLR∆ dynamically determines the number of neighbors based on the distribution
of the samples in the latent space. This adaptive approach accounts for varying local densities and
enhances the model’s ability to handle samples from different clusters. For sample i, we define
NNs(xi, Q,∆) as the set of samples in the support set Q with a Euclidean distance in the latent
space from xi lower than ∆: NNs(xi, Q,∆) = {x|∥ϕ(x)− ϕ(xi)∥2< ∆, x ∈ Q}. The loss Li for
sample i is then computed by considering all neighbors within a distance lower than ∆:

ℓui (x) = − log
exp

(
ϕ(x)⊤ ∗ ϕ(xi)

+/τ
)∑n

j=1 exp (ϕ(x)
⊤ ∗ ϕ(xj)+/τ)

, (3)

Lu
i =

∑
a∈NNs(xi,Q,∆) ℓ

u
i (a) ∗ d(xi, a)∑

a∈NNs(xi,Q,∆) d(xi, a)
(4)

where τ is a temperature parameter that controls the sharpness of the probability distribution. To
account for the contributions of different neighbors, the loss is weighted based on the inverse of
the Euclidean distance in the latent space between two samples, given by d(x1, x2) = 1/(|ϕ(x1)−
ϕ(x2)|2). Lu

i stands for the unsupervised loss on the ith sample.

By dynamically selecting and weighting neighbors based on the distance threshold ∆, the model
adapts to the local characteristics of the data, ensuring that relevant neighbors are considered while
ignoring those located far away. This adaptive mechanism improves the model’s generalization
capabilities in scenarios where samples are distributed across diverse clusters. Figure S2 provides a
graphical intuition for NNCLR∆.

3.4 TRAINING

The loss function of the DUDE framework is:

L = Ls + λuLu (5)

Where Ls is the supervised loss computed on the source domain samples only. By integrating the
contrastive loss with the unlabeled data and the supervised loss with the labeled data, we create
a cohesive framework that enables the model to learn domain-invariant representations while pre-
serving the discriminative information necessary for accurate classification or regression tasks. This
combination ensures that the model benefits from the wealth of information present in both labeled
and unlabeled data, making it well-suited for deep UDA scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTS, TASKS AND DATASETS

We performed four experiments on three tasks. The experiments model clinically important tasks
and use real world datasets with important distribution shifts across demographic and anthropometric
(exp. 1, 4), ethnicity (exp. 2, 3), comorbidity (exp. 1), medical centers (exp. 1, 3, 4) and geography
for exp. 3. In particular, there is no overlap between the source and target domains in terms of
ethnicity for exp. 2, and in terms of medical centers for exp. 1, 3, 4 and geography for exp. 3.
For example, the first task is the diagnosis of obstructive sleep apnea (OSA) from oxygen saturation
(SpO2), which is a regression task against the apnea-hypopnea index (AHI). The second task is
the detection of atrial fibrillation (AF) from the electrocardiogram (ECG). It consists of a binary
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classification task. The third task is the sleep staging from photoplethysmography (PPG). It is a
multiclass (four-class) classification task. For each task, we made use of a set of datasets and an
original DL model previously developed (Levy et al., 2023; Ben-Moshe et al., 2022; Kotzen et al.,
2022). The original source code for these three models were used. More details on the task, its
clinical importance, the DL encoder used and the datasets for each experiment are provided in the
supplement B.1.

Experiment 1: For OSA diagnosis, a total of six datasets (SHHS (Quan et al., 1997), UHV (Andrés-
Blanco et al., 2017), CFS (Redline et al., 1995), Mros (Blackwell et al., 2011), and MESA (Chen
et al., 2015)) were used, totaling 13,489 patients and 115,866 hours of continuous data. The first
experiment considers each dataset as a domain with SHHS1 as the source domain. This experiment
models important distribution shifts related to demographic and anthropometric information. The
age distribution of the patients in MROS, the body mass index of CFS, are very different from the
source domain (see Figure S1). The experiment also models important distribution shifts related
to co-morbidity with UHV encompassing a high prevalence of patients with chronic pulmonary
disease (21% in UHV versus 1% for SHHS1) (Levy et al., 2023; Quan et al., 1997) and MESA with
the patients all having subclinical to clinical cardiovascular diseases (Chen et al., 2015).

Experiment 2: The second experiment is to consider each ethnicity as a domain. Data from all
available datasets were sorted according to the ethnicity of the patient, resulting in five categories:
white, Chinese American, Black and African American, Hispanic, and Asian. The white population
was considered the source domain, while other ethnicities were considered as target domains. The
baseline model is denoted OxiNet (Levy et al., 2023). This experiment models the effect of distri-
bution shifts related to the ethnicity of the population sample. Historically, diagnostic algorithms
were often trained on samples from the majority white population, and this experiment models this
effect in the context of medical AI and evaluates the ability of deep UDA methods to tackle such
effects (Norori et al., 2021). Indeed, skin pigmentation in different ethnic groups can greatly affect
the oximetry signal (Visscher, 2017).

Experiment 3: For the diagnosis of AF, we used UVAF (Carrara et al., 2015) as the source domain
and SHDB, and RBDB (Biton et al., 2023) as the target domains. The datasets total 2,047 patients
and 51,386 hours of continuous ECG. The baseline model is denoted ArNet-ECG (Ben-Moshe et al.,
2022). UVAF was collected in a US hospital, SHDB in a Japanese hospital, and RBDB in an
Israeli hospital. This experiment models the effect of distribution shifts related to the geographical
location of different hospitals. Specifically, it reflects the typical medical AI scenario where a U.S.
dataset serves as the source domain (Celi et al., 2022), leading to performance drops in clinical
implementation in other countries without UDA treatment.

Experiment 4: For sleep staging from PPG the MESA (Chen et al., 2015) was used as the source
domain and CFS (Redline et al., 1995) as the test domain, totaling 2,374 patients and 23,055 hours of
continuous data. The baseline model is called SleepPPG-Net (Kotzen et al., 2022). This experiment
models the effect of distribution shifts related to demographics (age, see Figure S1) and of different
medical centers.

4.2 BASELINE AND BENCHMARK MODELS

Baselines: In each experiment, the initial step involved training the baseline models (Levy et al.,
2023; Ben-Moshe et al., 2022; Kotzen et al., 2022) through empirical risk minimization (ERM).
This means training the model using ERM on the source domain data as the baseline procedure.

argmin
θ

1

|D|
∑

x,y∼D
l(fθ(x), y) (6)

Where D is the source domain.

Benchmarks: We compared DUDE to several benchmark methods: DSU (Li et al., 2022), Coupled
Training for Multi-Source Domain Adaptation (MUST)(Amosy, 2022), (CAD) (Dubois et al., 2021)
and (SCL) (Khosla et al., 2020). Further details are provided in Supplements B.2.

Data augmentation: NNLCR∆, relies on data augmentation techniques to select neighbors for
contrast loss. For all tasks, Jitter augmentation is used (Saeed et al., 2019). It consists of adding
white noise to the signal: Xnew = X + N , where Xnew is the signal generated, X is the original
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signal and N ∼ N (0, σnoise) is the noise added. For the SpO2 and PPG tasks, the Random Switch
Windows (RSWx) (Saeed et al., 2019) technique was used. It consists of random switching windows
of x seconds in the signal. For the ECG, we also used flipping and sine, as proposed in Saeed et al.
(2019). Flipping consists of randomly flipping input signals with a probability of magnitude. Sine
consists of adding a sine wave with random frequency and amplitude.

Experimental settings: For both the PPG and the ECG tasks, the recordings are divided into 30-
second windows that are considered samples. For the OSA diagnosis task, a full overnight recording
constitutes a sample. For each experiment, the source domain was split into train, validation, and
test sets. In addition, for each experiment, a subset of each of the target domains data were used
as unlabelled samples for model training. Data stratification was always performed per patient to
avoid information leakage. For the OSA diagnosis and sleep staging tasks, we randomly sampled
100 patients from each target domain available to serve as the unlabeled training set. However, in
the AF diagnosis task, a smaller number of patients were available. Consequently, we randomly
selected only 10 patients, while the remaining 90 patients were exclusively reserved for the test set.
The NNCLR∆ algorithm also introduces one hyperparameter, ∆, which defines nearest neighbors as
those within the distance ∆ from the query point. The training set includes labeled samples from the
source domain and unlabeled samples from the target domain. The evaluation was conducted on the
validation set, which consists of labeled samples exclusively from the source domain. Hyperparam-
eter tuning was carried out using a Bayesian search with 100 iterations, meaning training the model
on the train set, and validating it against the validation set. The results on the source and target do-
mains test sets are presented for the best hyperparameter configuration found. All hyperparameters,
as summarized in Table S1 were optimized.

Performance measures: The F1 score was used as the performance measure for exp. 1, 2, and
3 while kappa was used for exp. 4. In order to compute the confidence interval, the performance
measure was repeatedly computed on randomly sampled 80% of the test set (with replacement). The
procedure was repeated 1000 times and used to obtain the intervals, which are defined as follows:
Cn = x̄ ± z0.95 ∗ seboot, where x̄ is the bootstrap mean, z0.95 is the critical value found from the
normal CDF distribution table, and seboot is the bootstrap estimate of the standard error.

5 RESULTS

Figure 2 presents the results of the proposed framework for all experiments. The performance of
DUDE, baseline and benchmark algorithms for the OSA diagnosis task from continuous oximetry
are summarized in Table 1 for the experiment per dataset (exp. 1) and in Table 2 for the experiment
per ethnicity (exp. 2). For both experiments and for all datasets/ethnicities, DUDE obtained the
best results. The best hyperparameter ∆ found on the validation set was 0.95 for both experiments.
This shows the consistency of this hyperparameter for different experimental settings. The average
number of neighbors selected was 3.6. For both experiments, DUDE provided the best performance
for all domains with an improvement in F1 in the range of 0.01-0.07 with respect to the baseline
model for the per dataset experiment (Table 1) and 0.04-0.08 for the per ethnicity experiment (Table
2). Of note, the performance on the source domain test set was equal or superior when using DUDE
(Tables 1 and 2).

The performance of DUDE, baseline, and the benchmark algorithms for the AF diagnosis task from
the continuous ECG is summarized in Table 3. DUDE obtained the best results for the two target
domains. The best hyperparameter ∆ found on the validation set was ∆ = 0.97. The average
number of neighbors selected was 2.8. The proposed framework outperformed the baseline for all
target domains with improvement in F1 in the range 0.12-0.16 with respect to the baseline model
(Table 3). Of note, the performance on the source domain test set with DUDE was equal to baseline
(Table 3).

The performance of DUDE, baseline, and the benchmark algorithms for the continuous PPG sleep
staging task is summarized in Table 4. For this task, DUDE outperformed the baseline as well as
all benchmarks. However, the improvement over DSU, which does not utilize unlabeled data from
the target domains, was incremental (0.72 for DUDE versus 0.71 for DSU). This finding suggests
that, in this particular case, the assumption of covariate shift may not hold or the augmentation
technique we used was not adapted. The average number of neighbors selected was 3.5. Of note,
the performance on the source domain test set with DUDE was superior to the baseline (Table 4).
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Source Target
SHHS1 SHHS2 UHV CFS MROS MESA

Configuration (562) (505) (257) (486) (3653) (1992)
OxiNet (Baseline) 0.84 0.83 0.77 0.78 0.80 0.75
DSU (Li et al., 2022) 0.81 0.81 0.79 0.79 0.80 0.77
MUST (Amosy, 2022) 0.82 0.81 0.75 0.77 0.82 0.78
CAD (Dubois et al., 2021) 0.80 0.82 0.78 0.80 0.80 0.71
SCL (Khosla et al., 2020) 0.82 0.83 0.78 0.75 0.81 0.76
DUDE 0.84 0.84 0.82 0.81 0.82 0.82

Table 1: Experiment 1: summary performance (F1) for the OSA diagnosis task from continuous
SpO2. Per dataset experiment. The number of recordings is displayed for each domain.

Source Target
white Asian Hispanic BAA Chinese

Configuration (1369) (131) (1095) (1487) (245)
OxiNet (Baseline) 0.79 0.72 0.71 0.68 0.66
DSU (Li et al., 2022) 0.78 0.75 0.74 0.70 0.67
MUST (Amosy, 2022) 0.79 0.75 0.70 0.71 0.69
CAD (Dubois et al., 2021) 0.74 0.72 0.73 0.68 0.67
SCL (Khosla et al., 2020) 0.76 0.72 0.71 0.66 0.71
DUDE 0.82 0.80 0.75 0.72 0.72

Table 2: Experiment 2: summary performance (F1) for the OSA diagnosis task from continuous
SpO2. Per ethnicity experiment. The number of recordings is displayed for each domain. BAA:
Black and African American

6 DISCUSSION

In the context of continuous physiological time series analysis, particularly in the medical domain,
the presence of distribution shifts is prevalent due to various factors such as differences in data
acquisition protocols, patient ethnicity, comorbidity, age, and cultural variations across healthcare
institutions. These shifts can significantly impact the performance and generalization of DL models
trained on a specific source domain when applied to target domains. Consequently, deep UDA
becomes essential in mitigating the effects of these distribution shifts and enabling the deployment
of robust and reliable models in real-world applications.

We introduced a novel framework called DUDE for deep UDA. Initially developed within the con-
text of SSL, NNCLR was adapted for deep UDA in this work. Specifically, we incorporated a
contrastive loss between samples from the source and target domains using NNCLR. Furthermore,
we extended the NNCLR algorithm to accommodate a variable number of neighbors. This exten-
sion, referred to as NNCLR∆, selects neighbors based on their proximity to the original sample in
the latent space, with distances less than ∆. This dynamic selection allows for varying neighbor
counts per sample. The ultimate contrastive loss is computed as a weighted average across these
neighbors, with weights determined by their distance from the original sample.

Source Target
UVAF SHDB RBDB

Configuration (258,432) (254,592) (205,056)
ArNet-ECG (Baseline) 0.97 0.78 0.73
DSU (Li et al., 2022) 0.95 0.86 0.81
MUST (Amosy, 2022) 0.91 0.80 0.80
CAD (Dubois et al., 2021) 0.93 0.84 0.80
SCL (Khosla et al., 2020) 0.94 0.82 0.75
DUDE 0.97 0.90 0.89

Table 3: Experiment 3: F1 performance for the
AF diagnosis task from ECG. The number of 30-
second windows is displayed for each domain.

Source Target
MESA CFS

Configuration (2,002) (586)
SleepPPG-Net (Baseline) 0.73 0.70
DSU (Li et al., 2022) 0.74 0.71
MUST (Amosy, 2022) 0.72 0.71
CAD (Dubois et al., 2021) 0.72 0.70
SCL (Khosla et al., 2020) 0.70 0.66
DUDE 0.75 0.72

Table 4: Experiment 4: kappa performance for
sleep staging task from PPG. The number of
recordings is displayed for each domain.
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Figure 2: Results of the different experiments across the source and target domains. Error bars are
produced by bootstrapping the test set. DUDE is our final framework leveraging NNCLR∆.
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Figure 3: Ablation study on the main components of DUDE. The training of the Baseline and
DSU models include the source domain training patients. The training of the NNCLR∆ and DUDE
model includes the exact same set of patients from the source domain as well as a subset of each
target domain patients (as unlabeled samples). See ”Experimental settings” in section 4.2.

DUDE underwent an evaluation and benchmarking on three distinct tasks: OSA diagnosis from
SpO2, AF diagnosis from ECG, and sleep stage detection from PPG. The DUDE framework consis-
tently outperformed baseline algorithms across nearly all tasks and distribution shifts, as illustrated
in Figure 2. We conducted a comparison of DUDE against four benchmark methods. The results
consistently demonstrated DUDE’s superior performance across most target domains and experi-
ments, as indicated in Tables 1, 2, 3, and 4. Figure 2 also illustrate the improvement of DUDE using
the NNCLR∆ extension versus the original NNCLR algorithm. The ablation study (Figure 3) was
performed to assess the value added by each component of DUDE. It highlights the added value of
each of these components. The results show that for all experiments, the DUDE framework equals
or outperforms the other benchmarks, meaning that each component has an added value. Finally,
Table S2 and Table S3 show for exp.1 that the DUDE approach outperforms a strategy of randomly
selecting the neighbors or when varying the number of nearest neighbors.

In the proposed NNCLR∆ algorithm, the number of neighbors for the contrastive loss is determined
on the basis of the cosine distance from the original sample. Although this approach has shown
promising results, there are potential avenues for further improvement. One possible enhancement
is to investigate alternative clustering techniques instead of relying solely on k-means to determine
neighbors. Recent advances in clustering algorithms, such as spectral clustering (Yang et al., 2019)
or hierarchical clustering (Zeng et al., 2020), offer different perspectives on identifying clusters in
the latent space. Exploring these alternative clustering techniques could potentially provide more
refined and accurate neighbor selection, leading to improved performance in DA scenarios. Future
work should include benchmarking DUDE against additional UDA approaches such as those of Cai
et al. (2021); Tonekaboni et al. (2021); Ragab et al. (2022); Eldele et al. (2023). The choice of the
data augmentation techniques used in DUDE was guided by previous work (Levy et al., 2023) and
by discrete experiments of common data augmentation techniques (Saeed et al., 2019) and selection
with respect to their performance in the validation set. A more comprehensive and strategic approach
in selecting these techniques could lead to further enhancements in DUDE’s performance for a
given task. Finally, although our research primarily focused on exploring the usefulness of UDA
in analyzing continuous physiological time series, the DUDE framework could also be valuable for
other time series UDA problems.
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Shany Biton, Sheina Gendelman, Antônio H Ribeiro, Gabriela Miana, Carla Moreira, Antonio
Luiz P Ribeiro, and Joachim A Behar. Atrial fibrillation risk prediction from the 12-lead electro-
cardiogram using digital biomarkers and deep representation learning. European Heart Journal-
Digital Health, 2(4):576–585, 2021.

Shany Biton, Mohsin Aldhafeeri, Erez Marcusohn, Kenta Tsutsui, Tom Szwagier, Adi Elias, Julien
Oster, Jean Marc Sellal, Mahmoud Suleiman, and Joachim A Behar. Generalizable and robust
deep learning algorithm for atrial fibrillation diagnosis across geography, ages and sexes. npj
Digital Medicine, 6(1):44, 2023.

Staffan Björck, Bo Palaszewski, Leif Friberg, and Lennart Bergfeldt. Atrial fibrillation, stroke risk,
and warfarin therapy revisited: a population-based study. Stroke, 44(11):3103–3108, 2013.

Terri Blackwell, Kristine Yaffe, Sonia Ancoli-Israel, Susan Redline, Kristine E Ensrud, Marcia L
Stefanick, Alison Laffan, Katie L Stone, and Osteoporotic Fractures in Men Study Group.
Associations between sleep architecture and sleep-disordered breathing and cognition in older
community-dwelling men: the osteoporotic fractures in men sleep study. Journal of the American
Geriatrics Society, 59(12):2217–2225, 2011.

Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan
Yang, and Zhenjie Zhang. Time series domain adaptation via sparse associative structure align-
ment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6859–
6867, 2021.

Marta Carrara, Luca Carozzi, Travis J Moss, Marco De Pasquale, Sergio Cerutti, Manuela Ferrario,
Douglas E Lake, and J Randall Moorman. Heart rate dynamics distinguish among atrial fibrilla-
tion, normal sinus rhythm and sinus rhythm with frequent ectopy. Physiological measurement, 36
(9):1873, 2015.

Leo Anthony Celi, Jacqueline Cellini, Marie-Laure Charpignon, Edward Christopher Dee, Franck
Dernoncourt, Rene Eber, William Greig Mitchell, Lama Moukheiber, Julian Schirmer, Julia Situ,
et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global
review. PLOS Digital Health, 1(3):e0000022, 2022.

10



Under review as a conference paper at ICLR 2024

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Xiaoli Chen, Rui Wang, Phyllis Zee, Pamela L Lutsey, Sogol Javaheri, Carmela Alcántara, Chan-
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