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ABSTRACT

Multi-objective reinforcement learning (MORL) aims to optimize policies in envi-
ronments with multiple, often conflicting objectives. While a single, preference-
conditioned policy offers the most flexible and efficient solution, existing methods
often struggle to cover the entire spectrum of optimal trade-offs. This is frequently
due to two underlying challenges: destructive gradient interference between con-
flicting objectives and representational mode collapse, where the policy fails to
produce diverse behaviors. In this work, we introduce D3PO, a novel algorithm that
trains a single preference conditioned policy to directly address these issues. Our
framework features a decomposed optimization process to encourage stable credit
assignment and a scaled diversity regularizer to explicitly encourage a robust map-
ping from preferences to policies. Empirical evaluations across standard MORL
benchmarks show that D3PO discovers more comprehensive and higher-quality
Pareto fronts, establishing a new state-of-the-art in terms of hypervolume and
expected utility, particularly in complex and many-objective environments.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful framework for training agents to make
sequential decisions in complex environments. In the standard single-objective setting (SORL), an
agent interacts with an environment to maximize the expected cumulative return of a single scalar
reward function, which encodes the task’s objective (Sutton & Barto, 1998). This paradigm has
achieved remarkable success in domains ranging from robotics and game playing to recommendation
systems and industrial control.

However, many real-world applications do not have a single objective. Instead, they require agents
to simultaneously optimize multiple objectives that may be synergistic, conflicting, or context-
dependent. For example, an autonomous vehicle must trade off between speed, safety, fuel efficiency,
and passenger comfort. A logistics agent may need to balance delivery speed against cost and
environmental impact. In such scenarios, optimizing a single reward function collapses the richness
of the task, often leading to suboptimal or unsafe behaviors. This motivates the field of Multi-Objective
Reinforcement Learning (MORL).

MORL extends the RL paradigm by decomposing all objectives with a vector of reward signals, where
each element of the vector corresponds to a different objective. Instead of learning a single optimal
policy, the goal is to learn a set of Pareto-optimal policies. A policy is Pareto-optimal if no other
policy exists that can improve at least one objective without worsening any other objective (Felten
et al., 2024). Users can then select policies that align with their preferences, typically through weight
vectors over the objectives (Rodriguez-Soto et al., 2024). This setup enables preference-driven
decision making and provides flexibility for downstream deployment (Agarwal et al., 2022).

Yet, MORL introduces fundamental algorithmic and representational challenges that go beyond
those in single-objective RL. A major difficulty lies in the non-uniqueness of optimal solutions: the
agent must learn to act optimally under multiple, often contradictory reward structures. This requires
reasoning about trade-offs and responding to a potentially infinite set of preference queries (Felten
et al., 2024). Furthermore, when objectives conflict, gradients derived from different reward signals
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Figure 1: Overview of the D3PO algorithm. The agent (green) interacts with the environment using
a preference vector (blue) to condition policy learning. A multi-headed critic (green) estimates the
per-objective values, which are used to calculate the PPO Surrogate losses (orange). Actor updates
incorporate late-stage weighting and diversity regularization to prevent collapse of the Pareto front.

may point in opposing directions, destabilizing policy updates and impairing sample efficiency (Liu
et al., 2025a).

To cope with these challenges, existing MORL approaches have introduced various strategies.
However, many contemporary methods face persistent limitations that hinder their performance
and scalability. First, methods that learn a single policy often suffer from destructive gradient
interference: naively combining conflicting objectives into one learning signal produces opposing
gradients, so an update that improves one objective can harm another, leading to training instability
and suboptimal trade-off policies (Liu et al., 2025a). Second, preference-conditioned policies
frequently exhibit incomplete front coverage through mode collapse, where the network learns to
produce only a small set of similar behaviors for a wide range of preferences, leaving large portions
of the Pareto front unexplored. Finally, multi-policy approaches that train a collection of separate
policies to cover the front suffer from architectural inefficiency, scaling poorly with the number
of objectives and incurring significant training and memory costs that make them impractical for
complex problems.

We contribute a novel framework for training a single, generalizable multi-objective policy that is
stable, scalable, and versatile. Our core contributions are:

• Decomposed Optimization Framework: We compute unweighted, per-objective advan-
tages and apply preference weights only to the final policy losses. This late-stage weighting
decouples preference integration from the core PPO stabilization mechanism, mitigating
gradient interference and improving training stability.

• Scaled Diversity Regularization: We introduce a loss term that encourages the policy’s
behavioral divergence, measured via KL divergence, to be proportional to the distance be-
tween input preference vectors. This prevents representational mode collapse and promotes
the discovery of a diverse Pareto front.

• A Unified and Scalable Architecture: The synergy of these components yields a single
policy network that generalizes across the entire preference space. Our experiments show
this architecture achieves state-of-the-art performance, particularly in complex and many-
objective scenarios where prior methods often struggle.

2 RELATED WORK

Multi-objective reinforcement learning (MORL) has developed along several algorithmic paradigms,
each with distinct strengths and limitations.

Scalarization. A foundational approach is scalarization, which reduces vector rewards to a scalar
for standard RL methods. Linear scalarization (e.g., weighted sums) is computationally efficient but
limited to the convex regions of the Pareto front. Nonlinear scalarization functions (Agarwal et al.,
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2022; Rodriguez-Soto et al., 2024; Peng et al., 2025) extend expressivity but still collapse objectives
into a single training signal, risking loss of information and instability when objectives conflict.

Multi-policy methods. Another strand of work trains a collection of specialized policies aligned
with different preferences, then approximates the Pareto front directly (Cai et al., 2023; Liu et al.,
2025c; Hu & Luo, 2024). Such approaches often rely on constrained optimization or decomposition
techniques and achieve high-quality fronts, but scale poorly with the number of objectives due to the
cost of maintaining many policies.

Single universal policies. To avoid training multiple policies, recent methods learn a single policy
conditioned on a preference vector, enabling adaptation at runtime (Yang et al., 2019; Reymond
et al., 2022; Basaklar et al., 2023; Liu et al., 2025a; Kanazawa & Gupta, 2023). Examples include
Pareto-Conditioned Networks (PCN) (Reymond et al., 2022), which reuse past transitions across
preferences for sample efficiency; Preference-Driven MORL (PD-MORL) (Basaklar et al., 2023),
which combines preference conditioning with off-policy engineering such as replay and HER to
scale to continuous control; and latent-conditioned policy gradients (Kanazawa & Gupta, 2023),
which embed preferences in a latent space. Other PPO-style explorations (e.g., MOPPO (Terekhov
& Gulcehre, 2024)) study empirical design choices for conditioned PPO variants. These methods
demonstrate the practicality of universal preference-conditioned agents but largely lack formal
guarantees against gradient interference or representational collapse.

Our contribution. D3PO belongs to this third family but differs in two key respects: (i) it is an
on-policy PPO extension with a multi-head critic that preserves raw per-objective signals and applies
preferences only after PPO stabilization (Late-Stage Weighting), and (ii) it introduces a scaled
diversity regularizer that provides formal guarantees against mode collapse. This combination of
decomposed advantage preservation, principled preference integration, and provable diversity offers
a theoretically enriched alternative to prior preference-conditioned methods, which have primarily
emphasized empirical architectures or off-policy engineering.

3 PRELIMINARIES

We model decision-making problems with multiple objectives using a Multi-Objective Markov
Decision Process (MOMDP), formalized as the tuple: M = ⟨S,A, P,R1:d,Ω, γ⟩, where S is the
state space, A is the action space, P (s′ | s, a) is the transition probability function, Ri(s, a) for
i = 1, . . . , d are d objective-specific reward functions, Ω := {ω ∈ Rd

≥0|
∑d

i=1 ωi = 1} denotes the
space of preference weights, and γ ∈ [0, 1) is the discount factor.

At each timestep t, the agent observes state st, chooses an action at, and receives a reward vector
rt = [R1(st, at), . . . , Rd(st, at)]

⊤ ∈ Rd. Given a preference vector ω ∈ Ω, the overall goal is to
find a set of policies πw that maximizes the expected scalarized return: Eπ

[∑∞
t=0 γ

t · ω⊤rt
]
.

3.1 PARETO OPTIMALITY

Since no single policy can be optimal for all preferences simultaneously, the goal of MORL is to
approximate the Pareto front—a set of non-dominated policies.

Definition 1 (Pareto Dominance). Let u, v ∈ Rd be two cumulative return vectors. Then u dominates
v (denoted u ≻ v) if ui ≥ vi for all i, and there exists at least one objective j such that uj > vj .

Definition 2 (Pareto-Optimal Policy). A policy π with a return vector Gπ ∈ Rd is Pareto-optimal if
there is no other policy π′ such that Gπ′

dominates Gπ .

To evaluate MORL algorithms, we use key metrics that quantify both the quality and diversity of the
learned Pareto front.

Hypervolume (HV) measures the volume of the objective space dominated by the discovered
front, encouraging both Pareto-dominance and spread. Sparsity (SP) measures the evenness of
the discovered solutions along the front, with lower values indicating better coverage. Expected
Utility (EU) measures the average performance across a distribution of sampled preference weights.
Together, these metrics assess both the fidelity (HV, EU) and diversity (SP) of the learned solutions.
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4 METHOD

We propose Decomposed, Diversity Driven Policy Optimization (D3PO), an extension of the
standard PPO framework designed to learn a single, unified policy that operates effectively across
a continuous spectrum of user-specified preferences. While prior works have explored preference-
conditioned policies, they often rely on scalarizing the multi-objective problem prematurely, leading
to information loss and challenges with gradient interference between competing objectives. D3PO
addresses these limitations by introducing a per-objective optimization framework that maintains the
vectorial nature of rewards and advantages throughout the learning process. It promotes the actor to
learn different policies for different preferences by introducing a novel diversity driven loss function.
This approach enables more stable training and produces a network capable of working with any
preference on the simplex ω ∈ Rd s.t.

∑
ω = 1, ω ≥ 0.

4.1 ARCHITECTURAL AND METHODOLOGICAL INNOVATIONS

The core of D3PO lies in three architectural and methodological innovations that adapt PPO for the
multi-objective setting. A detailed summary of the complete method is available in Algorithm 1,
found in Appendix A, alongside all Lemmas and Propositions.

Vectorized Value and Advantage Estimation: The critic has a multi-head architecture to predict
a d-dimensional value vector V (s, ω) = [V (1), . . . , V (d)]. Consequently, we compute Generalized
Advantage Estimation (GAE) independently for each objective, yielding a d-dimensional advantage
vector At. This preserves the distinct credit assignment signal for each objective. By avoiding
premature scalarization, we prevent the advantage cancellation formally established in Lemma 1.

Decomposed Policy Optimization with Dynamic Sampling: We compute the PPO clipped surrogate
objective for each of the d advantages separately. We then derive the final policy update by multiplying
the preference weights and clipped objectives. This ensures that PPO’s clipping mechanism operates
on the raw advantage signals, and the weights ω are applied only after stabilization. As shown
in Proposition 1, this Late-Stage Weighting (LSW) preserves the full information content of each
advantage stream, and avoids both the destructive cancellation of Early Scalarization (ES) and the
premature dampening of Mid-stage Vectorial Scalarization (MVS).

Scaled Diversity Regularization: To prevent mode collapse, we introduce a loss term that increases
the policy’s behavioral diversity. This works by encouraging the KL divergence between action
distributions to be proportional to the distance between their conditioning preferences. Proposition 3
proves that any minimizer of the resulting actor objective cannot exhibit representational mode
collapse, ensuring that distinct preferences map to distinct behaviors.

4.2 PER-OBJECTIVE ADVANTAGE AND VALUE ESTIMATION

Following trajectory collection, we compute (GAE) for each of the d objective dimensions indepen-
dently. The critic network, Vϕ(s, ω), approximates the true state-value vector and is central to this
process.

The critic utilizes a multi-head architecture, where a shared network body processes the state s and
the preference ω, feeding into d separate output heads. Each head V

(i)
ϕ is responsible for predicting

the unweighted value of a single objective i. The critic is then updated by minimizing the mean
squared error between its predictions and the empirical unweighted returns G(i)

t :

Lcritic(ϕ) =
1

d

d∑
i=1

Et

[(
V

(i)
ϕ (st, ω)−G

(i)
t

)2]
.

Rationale for Conditioning on Preferences. A key design choice is conditioning the critic Vϕ(s, ω)
on the preference vector ω even though it predicts unweighted returns. The critic’s role is to estimate
the state-value function V

(i)
πω (s), which is the expected unweighted return for objective i when

following the preference-conditioned policy π(·|s, ω). Since the policy itself is a function of ω, the
trajectories it generates and the expected future returns are naturally dependent on ω. Therefore, the
critic must be conditioned on ω to accurately predict these policy-dependent values.

4
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4.3 POLICY OPTIMIZATION WITH DECOMPOSED GRADIENTS AND DIVERSITY
REGULARIZATION

We update the actor network, πθ(a|s, ω), over K epochs for each batch. Our policy optimization
combines the standard PPO objective, decomposed per-objective, with a novel diversity-promoting
regularizer to enhance the policy’s ability to generalize across the preference space.

Per-Objective Policy Loss: We first compute the standard PPO clipped surrogate objective inde-
pendently for each of the d advantage estimates. This isolates the learning signal for each objective
before preference application:

L(i)
clip(θ) = Et

[
min

(
ρt(θ)A

(i)
t , clip(ρt(θ), 1− ϵ, 1 + ϵ)A

(i)
t

)]
,

where the probability ratio is ρt(θ) = πθ(at|st,ω)
πθold (at|st,ω) . As argued in our theoretical analysis, this

formulation ensures that PPO’s stabilization mechanism is applied to each unweighted advantage,
avoiding the signal distortion that plagues ES and MVS.

Diversity-Promoting Regularization: Preference-conditioned policies do not always map distinct
preference vectors ω to meaningfully distinct behaviors. To prevent the policy from collapsing to
similar strategies for different preferences, we introduce an explicit diversity-promoting loss. During
each update, for a given preference ω, we sample a “distractor” preference ω′ by adding small
Gaussian noise and re-projecting it onto the preference simplex.

We then define a diversity loss that penalizes the policy if the distance between its action distributions,
πθ(· | st, ω) and πθ(· | st, ω′), does not match the distance between the preferences themselves. We
scale the target KL divergence by the L1 distance between the preference vectors:

Ldiversity(θ) = Et

[(
DKL(πθ(· | st, ω)∥πθ(· | st, ω′))− α∥ω − ω′∥1

)2]
.

Proposition 3 shows that minimizing this loss enforces a proportionality between policy divergence
and preference divergence, thereby ruling out mode collapse and guaranteeing behavioral diversity.

Final Actor Objective: The actor’s objective combines two distinct learning signals: (1) a policy
improvement term based on the PPO surrogate objective, and (2) our proposed diversity regularizer.
To update policy parameters θ, we perform gradient descent on the combined loss function:

Lactor(θ) = −

(
d∑

i=1

ωiL(i)
clip(θ)

)
+ λdivLdiversity(θ).

Multiplying by the preference weight ωi is the critical step translating the user’s desired trade-off into
a concrete learning signal. Each L(i)

clip(θ) represents the raw PPO objective for a single dimension. By
scaling each term by its corresponding weight ωi, we ensure that the final gradient is a weighted sum
of the per-objective gradients. This steers the policy update in a direction that prioritizes improving
higher weighted objectives, while retaining stability and information preservation guaranteed by
Lemma 1 and Proposition 1. The term λdiv controls the strength of the diversity regularization, which
by Proposition 3 guarantees preference-dependent behavioral separation.

5 ANALYSIS OF THE D3PO FRAMEWORK

The success of D3PO arises not from a single algorithmic trick, but from a synergistic framework
designed to resolve two fundamental challenges in training a single preference-conditioned policy:
(1) achieving stable credit assignment in the presence of conflicting objectives, and (2) ensuring the
learned policy generalizes across the preference manifold rather than collapsing to a limited set
of behaviors. Our framework addresses these challenges through three complementary innovations:
decomposed value estimation, principled late-stage preference integration, and scaled diversity
regularization. Each design choice is motivated by intuition and supported by formal analysis, with
proofs in the Appendix.

Stable Credit Assignment via Decomposition: The first principle of D3PO is decomposed opti-
mization, beginning with the critic. The multi-head critic predicts the unweighted expected return

5
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V (i)(s, ω) for each objective i, and GAEs are computed independently, yielding a d-dimensional
advantage vector At. This preserves a distinct, interference-free credit signal for each objective.

Intuitively, this avoids contaminating the learning signal with preference-based mixtures too early.
Formally, Lemma 1 shows that scalarizing advantages before optimization (as in Early Scalarization,
ES) inevitably discards information: the magnitude of the scalarized advantage |Aω

t | is strictly smaller
than the sum of individual magnitudes whenever objectives conflict. This phenomenon, which we
term advantage cancellation, explains why ES-based methods (e.g., MOPPO (Terekhov & Gulcehre,
2024)) often stall under conflicting objectives.

Principled Preference Integration via Late-Stage Weighting: While decomposition preserves raw
signals, preference weighting must still be integrated in a way that avoids distortion. Traditional
methods either weight too early (ES) or dampen signals before PPO stabilization (Mid-stage Vectorial
Scalarization, MVS). Both approaches risk destructive interference or overly conservative updates.

D3PO instead employs Late-Stage Weighting (LSW): PPO surrogates are computed on raw per-
objective advantages, and only the stabilized losses are weighted by preferences. This design
decouples PPO’s trust region stabilization from user preference scaling: the stabilization mechanism
operates on true credit signals, and preferences act only as a final arbitration.

Intuitively, this ensures that PPO “sees” the full significance of each event before preferences adjust
its contribution. Formally, Proposition 1 shows that LSW preserves advantage magnitudes while
MVS and ES distort them, establishing the robustness hierarchy

LSW ⪰ MVS ≻ ES.

This hierarchy guarantees that D3PO avoids gradient interference and remains sensitive to high-
magnitude events, even for objectives with low weights.

Preventing Collapse via Diversity Regularization: Stable credit assignment alone is not sufficient.
A common failure mode of preference-conditioned agents is mode collapse, or “policy laziness,”
where the policy produces nearly identical behaviors across wide regions of the preference simplex.
This limits the ability to recover the full Pareto front.

D3PO counters this with a scaled diversity regularizer. During training, a distractor preference ω′

is sampled, and the KL divergence between policies π(·|s, ω) and π(·|s, ω′) is penalized if it fails
to scale with ∥ω − ω′∥1. This enforces a structured relationship: small preference changes induce
subtle policy shifts, while large changes induce dramatic ones.

Intuitively, this regularizer ensures sensitivity to preferences and prevents collapse to a single average
policy. Formally, Proposition 3 proves that any minimizer of the combined actor objective cannot
exhibit mode collapse: distinct preferences must yield distinguishable action distributions. This is the
first formal guarantee of anti-collapse in preference-conditioned MORL.

Convergence: Finally, we analyze convergence of the actor updates with LSW and diversity reg-
ularization. In the tabular setting, Theorem 1 shows that the actor objective is concave in policy
probabilities, ensuring global convergence to the optimal policy under exact gradients. In the more
realistic function-approximation setting, Theorem 2 applies stochastic approximation theory to
establish that under standard smoothness, variance, and step-size assumptions, stochastic gradient
ascent converges almost surely to stationary points of J(θ).

This guarantees D3PO is stable in practice and theoretically sound across finite and neural regimes.

Synergy and Broader Context: The strength of D3PO lies in the synergy of these components:
Decomposed value estimation provides clean, per-objective signals; Late-Stage Weighting integrates
preferences without interference; Diversity regularization ensures generalization and prevents collapse
and catastrophic forgetting, which is a problem single-policy techniques suffer.

Together, these components yield a framework that is more robust to advantage cancellation, less
prone to collapse, and convergent under standard conditions. Compared to MOPPO, which can suffer
from ES’s cancellation (Lemma 1), and Pareto-Conditioned Networks, which do not provide collapse
guarantees, D3PO introduces a preference-conditioned PPO approach with theoretical support for
both stability and diversity.

6
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6 EXPERIMENTS

Environment Metrics PCN GPI-LS C-MORL D3PO

Minecart

HV (102 ↑) 5.32± 4.28 6.05± 0.37 6.77± 0.88 7.39± 0.08
EU (10−1 ↑) 1.5± 0.01 2.29± 0.32 2.12± 0.66 1.9± 0.06
SP (10−1 ↓) 0.1± 0.01 0.10± 0.00 0.05± 0.02 0.01± 0.01
CT (↓) 6 hours 5 hours 16 mins 7 mins

Lunar Lander-4d

HV (109 ↑) 0.78± 0.17 1.06± 0.16 1.12± 0.03 1.23± 0.04
EU (101 ↑) 1.44± 0.37 1.81± 0.34 2.35± 0.18 2.39± 0.19
SP (103 ↓) 0.03± 0.23 0.13± 0.01 1.04± 0.24 0.32± 0.16
CT (↓) 7 hours 5 hours 20 mins 10 mins

Table 1: Performance comparison on discrete environments (Minecart, Lunar Lander-4d). Metrics:
Hypervolume (HV), Expected Utility (EU), Sparsity (SP), and Compute Time (CT).

Environment Metrics CAPQL PG-MORL GPI-LS C-MORL D3PO

Hopper-2d

HV (105 ↑) 1.15± 0.08 1.20± 0.09 1.19± 0.10 1.37± 0.03 1.30± 0.03
EU (102 ↑) 2.28± 0.07 2.34± 0.10 2.33± 0.10 2.53± 0.02 2.47± 0.01
SP (102 ↓) 0.46± 0.10 5.13± 5.81 0.49± 0.37 1.13± 0.19 0.26± 0.31
CT (↓) 3 hours 8 hours 12 hours 36 mins 20 mins

Hopper-3d

HV (107 ↑) 1.65± 0.45 1.59± 0.45 1.70± 0.29 2.19± 0.32 2.12± 0.16
EU (102 ↑) 1.53± 0.28 1.47± 0.25 1.62± 0.10 1.81± 0.01 1.74± 4.9
SP (102 ↓) 2.31± 3.16 0.76± 0.91 0.74± 1.22 0.53± 0.34 0.04± 0.01
CT (↓) 2 hours 6 hours 15 hours 48 mins 30 mins

Ant-2d

HV (105 ↑) 1.11± 0.69 0.35± 0.08 1.17± 0.25 1.31± 0.16 1.91± 0.18
EU (102 ↑) 2.16± 0.94 0.81± 0.23 4.28± 0.19 2.50± 0.25 3.14± 0.21
SP (103 ↓) 0.18± 0.07 2.20± 3.48 3.61± 2.13 2.65± 1.25 0.66± 0.40
CT (↓) 5 hours 8 hours 11 hours 78 mins 35 mins

Ant-3d

HV (107 ↑) 1.22± 0.33 0.94± 0.12 0.55± 0.81 2.61± 0.26 2.68± 0.21
EU (102 ↑) 1.30± 0.29 1.07± 0.07 2.41± 0.20 2.06± 0.14 1.99± 0.08
SP (103 ↓) 0.17± 0.09 0.02± 0.01 1.96± 0.79 0.06± 0.07 0.004± 0.002
CT (↓) 3 hours 10 hours 19 hours 66 mins 45 mins

Humanoid-2d

HV (105 ↑) 3.30± 0.06 2.62± 0.32 1.98± 0.02 3.43± 0.06 3.76± 0.11
EU (102 ↑) 4.75± 0.04 4.06± 0.32 3.67± 0.02 4.78± 0.05 5.11± 0.09
SP (104 ↓) 0∗ 0.13± 0.17 0∗ 2.21± 3.47 0.003± 0.001
CT (↓) 3 hours 7 hours 18 hours 55 mins 30 mins

Building-9d

HV (1031 ↑) 4.29± 0.73 T/O T/O 7.93± 0.07 8.00± 0.11
EU (103 ↑) 3.31± 0.06 T/O T/O 3.50± 0.00 3.50± 0.003
SP (103 ↓) 4.34± 3.72 T/O T/O 2.79± 0.40 0.03± 0.01
CT (↓) 15 hours T/O T/O 55 mins 45 mins

Table 2: Performance comparison on continuous environments (Hopper, Ant, Humanoid, Building-
9d). Metrics: Hypervolume (HV), Expected Utility (EU), Sparsity (SP), and Compute Time (CT).
T/O indicates timeout after 5 days.

We evaluate our proposed method, D3PO, against state-of-the-art baselines to answer three key
questions: (1) Does D3PO achieve comprehensive Pareto front coverage? (2) Does it effectively
prevent mode collapse and generate diverse solutions? (3) Is it computationally efficient?

Our evaluation uses a suite of challenging MORL tasks from the MO-Gymnasium library (Felten
et al., 2023), including five continuous control and two discrete control environments, and additionally
the Building-9d environment, which we borrow from the C-MORL paper (Liu et al., 2025b). We
compare D3PO against five strong baselines: PCN (Reymond et al., 2022), GPI-LS (Alegre et al.,
2023), C-MORL (Liu et al., 2025b), PG-MORL (Xu et al., 2020), and CAPQL (Lu et al., 2023).
For discrete tasks, the number of environment interactions was 5× 105 steps. For the more complex
continuous control environments, we scaled the number of environment interactions with the number
of objectives: 1.5× 106, 2× 106, and 2.5× 106 steps for tasks with two, three, and nine objectives,
respectively. We have used the same number of environment interactions as C-MORL (Liu et al.,
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Figure 2: Pareto front comparison on two-objective MO-MuJoCo benchmarks. D3PO (red) discovers
a uniform and well-distributed front across the trade-off space, whereas C-MORL (blue) refines
extreme points at the cost of higher sparsity. Compared to CAPQL, GPI-LS, and PG-MORL, D3PO
achieves broader coverage and reduced collapse, particularly visible in Ant and Humanoid.

2025b). We measured performance with Hypervolume (HV), Expected Utility (EU), Sparsity (SP),
and total training Compute Time (CT). Further experimental details are in the appendix.

D3PO Improves Pareto Front Coverage. The results in Table 2 and Figure 2 show that D3PO
finds dominant and complete solution sets. Quantitatively, D3PO competitively performs in both
Hypervolume and Expected Utility. In the highly complex MO-Humanoid-2d task, D3PO obtains
the highest HV and EU. The advantage is even more pronounced in the nine-objective Building-9d
environment, where some baselines (PG-MORL, GPI-LS) failed to complete training within the time
limit (5 days). In contrast, D3PO not only finished but also achieved the best HV and EU.

Visually, the Pareto fronts in Figure 2 show D3PO (red) discovering solutions that envelop the
baselines. In MO-Ant-2d, for instance, D3PO identifies high-performance “specialist” policies at
the extremes of the trade-off space that other methods miss. This superior coverage stems from
our core methodological contributions. By computing a vectorized, per-objective advantage and
using decomposed policy gradients, D3PO mitigates the destructive gradient interference common
in MORL. This process preserves a clean credit assignment signal for each objective, boosting the
policy’s ability to better exploit the reward landscape and master a wider range of trade-offs.

Diversity Regularization Prevents Mode Collapse. A common failure in preference-conditioned
MORL is mode collapse, where the policy produces only a single behavior for all preferences. Our
second research question investigates how D3PO avoids this.

The most direct evidence is in the MO-Humanoid-2d results (Table 2), where several baselines
report a Sparsity (SP) of 0. This indicates a total collapse to a single dominant policy. In contrast,
D3PO achieves a low but non-zero SP (0.003× 104), demonstrating that it has learned a diverse and
well-distributed set of policies across the front. The visual results in Figure 2 further confirm that
D3PO discovers rich, well-spaced pareto fronts.

Diverse policies are primarily due to our proposed scaled diversity regularization. As shown in our
ablation study (Table 3), removing the diversity loss (D3PO-DDPO) results in a clear performance
drop and, in some cases, collapse to a single-point front (e.g., Humanoid-2d). This highlights that
explicitly encouraging the policy to produce distinct behaviors for distinct preferences is critical for
discovering a complete and useful Pareto front.

D3PO Offers Better Computational Efficiency. Finally, we address the question of efficiency.
D3PO is significantly faster than many competing methods because it avoids common computational
bottlenecks. Table 2 and 1 shows the total training wall clock time required to train all baselines and
D3PO. We can see that D3PO provides a good speedup when compared to the baselines.

Unlike evolutionary or archive-based methods like PG-MORL, CMORL, D3PO does not require an
expensive select-and-improve loop which selects an solution from a population for further training.
Instead, its training process is a continuous, end-to-end optimization analogous to standard PPO,
which saves considerable compute time by learning the entire policy manifold simultaneously.

While D3PO consistently achieves competitive results across most benchmarks, we note that C-
MORL outperforms on Hopper-2d and Hopper-3d in terms of HV and EU (Table 2). This difference
arises from the inherent methodological contrast: C-MORL focuses on iteratively improving existing
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Environment Metrics D3PO D3PO-LSW D3PO-DDPO

Humanoid-2d
HV (105 ↑) 3.76± 0.11 1.50± 0.17 2.32± 0.05
EU (102 ↑) 5.11± 0.09 2.87± 0.22 3.83± 0.05
SP (104 ↓) 0.003± 0.001 0∗ 0∗

Hopper-2d
HV (105 ↑) 1.30± 0.03 1.23± 0.03 1.22± 0.06
EU (102 ↑) 2.47± 0.01 2.38± 0.05 2.42± 0.05
SP (102 ↓) 0.26± 0.31 0.08± 0.02 0.04± 0.02

Ant-2d
HV (105 ↑) 1.91± 0.18 1.53± 0.11 1.86± 0.07
EU (102 ↑) 3.14± 0.21 2.71± 0.13 3.09± 0.06
SP (103 ↓) 0.66± 0.40 0.18± 0.07 0.36± 0.09

Table 3: Ablation results showing the contributions of Late Stage Weighting (LSW) and Diversity-
Driven Policy Optimization (DDPO) in D3PO. LSW improves stability but often collapses the Pareto
front (SP = 0), while DDPO preserves diversity and yields more uniform fronts. The full D3PO
consistently achieves the best trade-off across HV, EU, and SP.

Pareto solutions, which allows it to refine certain extreme trade-offs and expand the hypervolume. In
contrast, D3PO discovers a uniform Pareto front that captures the majority of the trade-off surface but
does not fully cover the extremes. As a result, C-MORL attains slightly better HV and EU at the cost
of higher sparsity, whereas D3PO maintains lower sparsity and competitive overall coverage, similar
to the behavior reported for D3PO.

Ablations. We introduced two modifications to the actor loss function that allow for the discovery
of diverse, evenly spaced Pareto fronts previously inaccessible to single-policy MORL. Thus, we
conducted ablation experiments with the MO-Humanoid-v5 environment to understand the impact of
our changes. (1) Late Stage Weighting (LSW) by multiplying preference weights to the unweighted
clipped surrogate objectives to prevent destructive gradient interference. (2) Diversity-driven policy
optimization (DDPO) by forcing the policy to produce different action distributions scaled by the
difference in weights to prevent mode collapse. First, we remove LSW by multiplying the preference
weights with the advantages after rollout collection, thereby collecting the weighted advantages
instead of the unweighted advantages (in effect, MSW). In this experiment, we do not remove the
diversity loss. Second, we turn off the diversity loss and keep the original decomposed gradient
function. In all cases, the critic predicted returns with an expected variance ≈ 1.

Table 3 shows that both additions are necessary for D3PO’s success. Turning off delayed credit
assignment (column 2), makes the performance suffer considerably. This shows that learning accurate
unweighted returns is necessary to drive correct gradient updates. When we turn on LSW and turn
off DDPO (column 3), we see that the performance improves significantly but it still does not fully
approximate the whole front. In both cases, the policies converged prematurely to a single point
Pareto front. These experiments show that these additions are necessary to learn robust policies that
approximate a high quality Pareto Front. Further, Appendix C presents an ablation over the loss
scaling parameter λdiv, showing that while the diversity regularizer itself is essential, the discovered
front is robust to the precise value of λdiv.

7 CONCLUSION

In this work, we introduced D3PO, a novel algorithm for training a single, generalizable policy
for MORL. We identified two critical challenges that hinder prior preference-conditioned methods:
destructive gradient interference and representational mode collapse. Our proposed framework
addresses these issues through a synergy of two principled mechanisms: a decomposed optimization
process that preserves the integrity of per-objective credit assignment, and a scaled diversity regular-
ization term that enforces a robust and high-fidelity mapping from the preference space to the policy
manifold. Our experiments demonstrate that D3PO performs competitively with the state-of-the-art,
discovering more complete and higher-quality Pareto fronts than existing methods, with particularly
pronounced advantages in complex, high-dimensional control and many-objective scenarios.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All algorithmic details of
D3PO are fully specified in Section 4, with pseudocode provided in Algorithm 1. Our theoretical
results are supported by complete proofs in Appendix D E, where all assumptions are stated explicitly.
The experimental setup, including environment details, hyperparameters, and evaluation metrics, is
documented in Section 6 and further expanded in Appendix H. We use publicly available benchmark
environments without modification, and we describe our training protocols and data processing
steps in detail. Anonymous source code implementing D3PO, along with scripts for reproducing all
experiments and figures, is included in the supplementary material. Together, these resources ensure
that both the theoretical and empirical contributions of this paper are fully reproducible.
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Appendix

A D3PO PSEUDOCODE

Algorithm 1 Decomposed, Diversity-Driven Policy Optimization

Require: Actor πθ(a | s, ω), multi-head critic Vϕ(s, ω) ∈ Rd, Optimizers Optθ,Optϕ, and hyper-
parameters γ, λ, ϵ, β, λdiv, α

1: Initialize network parameters θ, ϕ and rollout buffer D
2: Sample an initial preference vector ω from the preference space Ω
3: for iteration = 1, 2, . . . do
4: Clear rollout buffer D
5: for t = 1 to T do
6: Sample action at ∼ πθ(· | st, ω)
7: Execute at and observe next state st+1, reward vector rt ∈ Rd, and done flag dt
8: Store transition (st, at, rt, ω, log πθ(at | st, ω)) in D
9: st ← st+1

10: if dt is True then
11: Reset environment to get new state st and resample a new preference vector ω ∼ Ω
12: end if
13: end for
14: Compute unweighted advantages At = [A

(1)
t , . . . , A

(d)
t ] and returns Gt for all transitions in

D using GAE with Vϕ.
15: for epoch = 1 to E do
16: for each minibatch B ⊂ D do
17: Let (s, a,A,G, ω, log πold) be the data in B
18: Predict value vector Vϕ(s, ω) = [V

(1)
ϕ , . . . , V

(d)
ϕ ]

19: Lcritic ← 1
d

∑d
i=1

(
V

(i)
ϕ (s, ω)−G(i)

)2
20: Update critic parameters ϕ using Optϕ and∇ϕLcritic

21: Sample distractor weights ω′ by perturbing and re-normalizing ω

22: Compute per-objective PPO losses {L(i)
clip}di=1 using unweighted advantages A

23: Compute diversity loss Ldiversity(θ) = Es∈B

[(
DKL(πθ(· | s, ω)∥πθ(· | s, ω′))− α∥ω −

ω′∥1
)2]

24: Compute entropy bonusH ← Es∈B[H(πθ(· | s, ω))]
25: Lactor ← −

(∑d
i=1 ωiL(i)

clip

)
− βH+ λdivLdiversity

26: Update actor parameters θ using Optθ and∇θLactor
27: end for
28: end for
29: end for

B METRICS DEFINITIONS

Definition 3 (Hypervolume Indicator). Given a reference point r ∈ Rd that all Pareto-optimal
returns dominate, the hypervolume of a finite set {uk} is, where LM stands for Lebesgue Measure:

HV({uk}; r) = LM

(⋃
k

{u ∈ Rd : r ≤ u ≤ uk}

)
Definition 4 (Sparsity Indicator). Let {u1, . . . , uK} ⊂ Rd be an ordered set of Pareto-approximated
points. Define the sparsity as:

SP({uk}) = 1

K − 1

K−1∑
k=1

∥u(k+1) − u(k)∥2
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Definition 5 (Expected Utility). LetW ⊂ Rd be a distribution over preference weights and let πω

denote the policy conditioned on ω. The expected utility is:

EU = Eω∼W [ω⊤Gπω ].

Definition 6 (Compute Time). The compute time is defined as the time taken by the algorithm to
complete its training given the fixed budget of environment interactions. It is calculated as the wall
clock time required to complete the entire training pipeline

C EFFECT OF λdiv ON PARETO FRONT

Metric λdiv = 0 λdiv = 0.01 λdiv = 0.1 λdiv = 0.5 λdiv = 1.0

HV (105 ↑) 2.32± 0.05 3.76± 0.11 3.73± 0.07 3.72± 0.10 3.73± 0.07
EU (102 ↑) 3.83± 0.05 5.11± 0.09 5.08± 0.06 5.07± 0.09 5.07± 0.06
SP (103 ↓) 0∗ 0.03± 0.01 0.047± 0.045 0.059± 0.044 0.053± 0.032

Table 4: Ablation results on MO-Humanoid-2d across different values of λdiv. The results show that
the discovered Pareto front remains stable and high-performing over a wide range of λdiv, indicating
robustness of the method to this hyperparameter.

Table 4 reports ablation results on Humanoid-2d across a sweep of λdiv values. These results
demonstrate that the diversity regularizer itself plays a critical role in shaping the discovered Pareto
front. Without diversity encouragement (λdiv = 0), the algorithm collapses toward limited modes,
yielding weaker hypervolume and expected utility despite producing seemingly low sparsity values.
Introducing a nonzero regularizer (λdiv > 0) resolves this issue by preventing mode collapse and
maintaining broad front coverage, thereby producing substantially stronger Pareto sets.

At the same time, the quantitative metrics reveal that the performance is relatively insensitive to
the precise choice of λdiv. Across the range λdiv ∈ {0.01, 0.1, 0.5, 1.0}, hypervolume and expected
utility remain consistently high, and sparsity values remain comparable. This indicates that while the
presence of the diversity term is essential, its specific scaling does not heavily influence the outcome.
Overall, these ablations reinforce that the diversity regularizer is the key mechanism enabling robust
front discovery, and that the method is not fragile to the exact tuning of λdiv.

D THEORETICAL ANALYSIS OF MULTI-OBJECTIVE PPO FORMULATIONS

To justify the design of our proposed Late-Stage Weighting (LSW) framework, we provide a formal,
unified comparative analysis of three distinct methods for integrating preference weights into the
Proximal Policy Optimization (PPO) objective. We prove that LSW is the most robust formula-
tion against the signal distortion caused by conflicting advantages and preference scaling, and we
characterize precisely when differences between MVS and LSW arise in practice.

D.1 FORMAL DEFINITIONS OF MORL-PPO VARIANTS

Let

ρt(θ) =
πθ(at | st, ω)
πθold(at | st, ω)

be the importance sampling ratio and At = [A
(1)
t , . . . , A

(d)
t ] the vector of per-objective advantages.

We compare three natural ways to incorporate the preference vector ω ∈ ∆d−1 into a PPO-style
surrogate.

Method 1: Early Scalarization (ES). Scalarize advantages first, then apply the PPO surrogate
(Terekhov & Gulcehre, 2024):

LES
clip (θ) = Et

[
min

(
ρt(θ) (ω

⊤At), clip(ρt(θ), 1− ϵ, 1 + ϵ) (ω⊤At)
)]
. (1)
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Method 2: Mid-stage Vectorial Scalarization (MVS). Form per-objective weighted advantages,
apply per-objective surrogates, then sum:

LMV S
actor (θ) = −

d∑
i=1

Et

[
min

(
ρt(θ) (ωiA

(i)
t ), clip(ρt(θ), 1− ϵ, 1 + ϵ) (ωiA

(i)
t )
)]
. (2)

Method 3: Late-Stage Weighting (LSW). Compute per-objective PPO surrogates on raw advan-
tages and weight the resulting stable surrogate terms:

LLSW
actor (θ) = −

d∑
i=1

ωi Et

[
min

(
ρt(θ)A

(i)
t , clip(ρt(θ), 1− ϵ, 1 + ϵ)A

(i)
t

)]
. (3)

D.2 COMPARATIVE RESULTS

We now formalize the intuition that ES is fragile in the presence of conflicting advantages, show an
algebraic equivalence between MVS and LSW under the standard (homogeneous) PPO surrogate,
and finally state a provable condition under which LSW is strictly preferable in practical pipelines
that include per-objective preprocessing or adaptive, non-homogeneous operations.

Lemma 1 (ES magnitude loss). Let Aω
t := ω⊤At and MLSW :=

∑d
i=1 ωi|A(i)

t |. Then

|Aω
t | ≤MLSW ,

with strict inequality whenever there exist i, j with A
(i)
t A

(j)
t < 0 and ωi, ωj > 0.

Proof. Immediate from the triangle inequality:

∣∣ω⊤At

∣∣ = ∣∣∣ d∑
i=1

ωiA
(i)
t

∣∣∣ ≤ d∑
i=1

ωi|A(i)
t | = MLSW .

Strictness follows because the triangle inequality is strict when at least two nonzero terms have
opposite signs.

Proposition 1 (Conditional equivalence of MVS and LSW under homogeneous surrogate). Assume
the PPO surrogate evaluates each candidate term by multiplication with a scalar factor drawn from
{ρt(θ), clip(ρt(θ), 1 − ϵ, 1 + ϵ)}, i.e. the surrogate is homogeneous and linear in the advantage.
Under this homogeneity hypothesis, the MVS and LSW actor objectives are algebraically identical:

LMV S
actor (θ) = LLSW

actor (θ).

Proof sketch. For a fixed objective index i and given scalar multipliers ct(ρ) ∈ {ρt(θ), clip(ρt(θ), 1−
ϵ, 1 + ϵ)}, the per-objective MVS surrogate is

min
(
ct(ρ)ωiA

(i)
t , c′t(ρ)ωiA

(i)
t

)
.

Because ωi ≥ 0, the scalar ωi factors out:

min
(
ct(ρ)ωiA

(i)
t , c′t(ρ)ωiA

(i)
t

)
= ωi min

(
ct(ρ)A

(i)
t , c′t(ρ)A

(i)
t

)
.

Summing over i yields LMV S
actor (θ) = LLSW

actor (θ), proving algebraic equivalence.

Remark 1. At first glance, MVS and LSW appear algebraically similar. Indeed, under the highly
restrictive assumption of a homogeneous surrogate with no per-objective preprocessing, they are
equivalent. However, this assumption never holds in practice: variance normalization, per-objective
critics, and clipping introduce non-homogeneities that make the order of operations critical. In these
realistic settings, LSW uniquely preserves the full magnitude of the stabilized advantage signal, while
MVS prematurely dampens it.
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Proposition 2 (Practical superiority of LSW under non-homogeneous per-objective processing).
Suppose some per-objective preprocessing operators Pi(·) are applied to advantages before the
surrogate, where Pi is not positively homogeneous of degree 1 (i.e., ∃ri ̸= 1 such that Pi(αx) =

αriPi(x) does not hold for all α > 0). Then there exist advantages {A(i)
t } and weights {ωi} for

which
ωiPi(A

(i)
t ) ̸= Pi(ωiA

(i)
t ),

and, in these cases, weighting after stabilization (LSW) preserves a strictly larger stabilized contribu-
tion than weighting before stabilization (MVS).

Proof sketch. If Pi is linear and homogeneous of degree 1, then Pi(ωiA) = ωiPi(A) and no
difference arises (cf. Proposition 1). For any Pi that is nonlinear or homogeneous of degree ri ̸= 1,
the order of scaling matters. For example, take Pi(x) = |x|γ sign(x) (a toy nonlinearity with degree
γ). Then

Pi(ωiA) = ωγ
i |A|

γ sign(A), ωiPi(A) = ωi|A|γ sign(A).

If 0 < ωi < 1 and γ < 1, then ωγ
i > ωi, so |Pi(ωiA)| > |ωiPi(A)|. Thus there exist realistic

preprocessing operators for which applying ωi before preprocessing reduces the stabilized magnitude
compared to applying ωi after preprocessing. Many practical pipelines include variance normalization,
adaptive per-objective clipping, or critic-dependent scaling, all of which break degree-1 homogeneity;
in these common cases LSW preserves larger stabilized signals than MVS.

Corollary 1 (Hierarchy of robustness). Combining Lemma 1, Proposition 1, and Proposition 2 yields
the claimed robustness ordering:

LSW ⪰ MVS ≻ ES,

where ‘⪰‘ denotes practical superiority (LSW is at least as robust as MVS in the homogeneous
surrogate and strictly more robust when non-homogeneous per-objective processing is present), and

‘≻‘ indicates strict superiority over ES due to avoidance of inter-objective advantage cancellation.

D.3 IMPLICATIONS

The above results give a precise mathematical basis for the design choice of LSW:

• Avoid cancellation: ES can drastically shrink or cancel learning signals when advantages
conflict; Lemma 1 quantifies this loss of magnitude.

• Equivalence under ideal surrogate: MVS and LSW are algebraically identical under a
homogeneous PPO surrogate (Proposition 1), so any empirical gap is due to per-objective
non-linearities or implementation-level choices.

• Practical preference for LSW: When pipelines include per-objective normalization, per-
objective ratios, adaptive clipping, or other non-homogeneous operators (common in prac-
tice), LSW preserves stabilized event magnitudes better than MVS (Proposition 2).

E THEORETICAL ANALYSIS OF THE SCALED DIVERSITY REGULARIZER

In this section, we provide a formal argument that the scaled diversity regularizer enforces separation
in policy space proportional to separation in preference space, thereby preventing representational
mode collapse.

Definition 7 (Representational Mode Collapse). A preference-conditioned policy πθ(a|s, ω) exhibits
mode collapse if there exists a region in the preference simplex of non-zero measure where two
distinct preference vectors, ωA ̸= ωB , produce statistically indistinguishable action distributions for
all states. Formally, for some δ = ∥ωA − ωB∥1 > 0,

Es∼dπ

[
DKL(πθ(·|s, ωA) ∥πθ(·|s, ωB))

]
= 0,

where dπ is the state visitation distribution.
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Proposition 3 (Separation Induced by Diversity Regularizer). Let the actor objective be
Lactor(θ) = Lpolicy(θ) + λdiv Ldiversity(θ),

with λdiv, α > 0 and

Ldiversity(θ) = Es,ω,ω′

[(
DKL(πθ(·|s, ω) ∥πθ(·|s, ω′))− α∥ω − ω′∥1

)2]
.

Then any global minimizer πθ∗ must satisfy

Es

[
DKL(πθ∗(·|s, ωA) ∥πθ∗(·|s, ωB))

]
= α∥ωA − ωB∥1 ∀ωA, ωB .

In particular, for any ωA ̸= ωB , the induced KL divergence is strictly positive; thus, the optimal
policy cannot exhibit mode collapse.

Proof. The diversity loss is a nonnegative sum of squared terms. For each pair (ωA, ωB), the
contribution is (

Es[DKL(πθ(·|s, ωA) ∥πθ(·|s, ωB))]− α∥ωA − ωB∥1
)2

.

This quadratic term is minimized when the inner expression vanishes, i.e.,
Es[DKL(πθ(·|s, ωA) ∥πθ(·|s, ωB))] = α∥ωA − ωB∥1.

Therefore, at any global minimizer θ∗ of Lactor, the condition holds for all preference pairs. If
∥ωA − ωB∥1 = δ > 0, the target separation is αδ > 0, so the KL divergence must also be strictly
positive. Mode collapse (which implies KL = 0 for some δ > 0) cannot minimize the objective.
This establishes that the scaled diversity regularizer enforces a diverse mapping from preferences to
behaviors.

F THEORETICAL ANALYSIS OF CONVERGENCE

We now provide convergence guarantees for our preference-conditioned actor updates with the scaled
diversity regularizer. We begin with the idealized tabular setting, where global convergence can be
established. We then turn to the more realistic function-approximation case, where convergence to
stationary points can be shown under standard assumptions.
Theorem 1 (Global Convergence in the Tabular Setting). Assume:

(i) The environment is a finite MDP with bounded rewards and finite state and action spaces.

(ii) The policy is parameterized in tabular form, i.e., each state–preference pair (s, ω) has an
independent probability distribution over actions.

(iii) The exact expected actor objective J(θ) (including the scaled diversity regularizer) is
available, and exact gradients∇J(θ) can be computed.

(iv) Gradient ascent is performed with a step-size ηt satisfying 0 < ηt ≤ ηmax for sufficiently
small ηmax.

Then gradient ascent on J(θ) converges to a global maximizer of J(θ).

Proof sketch. In the tabular parameterization, the optimization variable is the collection of probability
vectors {π(·|s, ω)}, one for each (s, ω). These lie in the product of probability simplices, a compact
convex set.

The policy improvement component of the objective is linear in π, and hence both convex
and concave. The diversity regularizer is convex in π: for fixed (s, ω, ω′), the mapping π 7→
DKL(π(·|s, ω)∥π(·|s, ω′)) is convex in its first argument, and squaring preserves convexity. Expec-
tations and sums preserve convexity. Therefore, the total diversity penalty is convex in π. With
the conventional sign choice (subtracting the diversity penalty in the maximization objective), the
combined actor objective J(π) is concave in π.

We thus obtain a concave maximization problem over a convex feasible set. By standard convex
optimization theory, any stationary point is a global maximizer. Gradient ascent with exact gradients
and sufficiently small constant step size (or a diminishing step-size schedule) converges to the global
maximizer.
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Theorem 2 (Convergence to Stationary Points with Function Approximation). Let J(θ) denote the
expected actor objective, including the scaled diversity regularizer, and assume:

(i) J(θ) is continuously differentiable and L-smooth (i.e., its gradient is L-Lipschitz).

(ii) The stochastic gradient estimators ĝt are unbiased or have bounded bias, with bounded
variance:

E[ĝt | Ft] = ∇J(θt), E∥ĝt −∇J(θt)∥2 ≤ σ2.

(iii) The step-sizes {ηt} follow a Robbins–Monro schedule:
∞∑
t=1

ηt =∞,

∞∑
t=1

η2t <∞ (e.g., ηt = 1/t).

(iv) The parameter sequence {θt} remains in a compact set (or is projected onto one).

Then the iterates of stochastic gradient ascent satisfy

lim
t→∞

∥∇J(θt)∥ = 0 almost surely.

In other words, {θt} converges almost surely to the set of stationary points of J(θ).

Proof sketch. The actor parameters are updated by stochastic gradient ascent,

θt+1 = θt + ηtĝt,

where ĝt is a stochastic gradient estimator of∇J(θt). This recursion can be written as

θt+1 = θt + ηt
(
∇J(θt) +Mt+1

)
,

with Mt+1 = ĝt − ∇J(θt) forming a martingale difference sequence with bounded variance by
assumption.

The L-smoothness of J ensures that its gradient mapping is Lipschitz, which implies stability of
the associated mean ODE θ̇ = ∇J(θ). The Robbins–Monro step-size conditions

∑
t ηt = ∞,∑

t η
2
t <∞ guarantee that the updates persistently explore the parameter space but asymptotically

diminish to control noise. Compactness of the parameter set ensures bounded iterates.

Under these conditions, standard stochastic approximation results imply that the iterates {θt} track the
mean ODE θ̇ = ∇J(θ). Since the limit set of this ODE is the set of stationary points {θ : ∇J(θ) = 0},
it follows that

lim
t→∞

∥∇J(θt)∥ = 0 almost surely.

Thus the stochastic actor updates converge almost surely to the set of stationary points of J .

Interpretation. Theorem 1 establishes global convergence in the highly restrictive tabular case
with exact gradients. In contrast, Theorem 2 provides a realistic guarantee for function-approximation
settings: under standard smoothness and stochastic approximation assumptions, actor updates with
the diversity regularizer converge to stationary points of the nonconvex objective. This aligns with
the convergence guarantees typically available for modern policy gradient methods.

G ENVIRONMENT DESCRIPTIONS

Minecart. A multi-objective task where an agent controls a cart in a 2D continuous environment.
The state space is 70dimensional. The agent selects from a discrete action space (6 actions) to navigate
the environment and mine for resources. The reward is a 3-dimensional vector, with conflicting
objectives for collecting two different types of ore while minimizing fuel consumption. The agent
must learn to navigate between different mining locations, creating a trade-off between the types of
ore collected and the fuel expended. The hypervolume reference point is [−1,−1,−200] and the γ
used to calculate the returns to construct the front is 0.99
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Lunar-Lander-4D. A multi-objective version of the classic Lunar Lander control problem. The
state space is 8-dimensional (S ⊆ R8), containing the lander’s position, velocity, angle, and leg
contact information. The agent selects from a 4-dimensional discrete action space (A) representing
firing the main engine, the left or right orientation thrusters, or doing nothing. The reward is
a 4-dimensional vector, with separate components for the landing outcome (success or crash), a
distance-based shaping reward, main engine fuel cost, and side engine fuel cost. The hypervolume
reference point is [−101,−1001,−101,−101] and the γ used to calculate the returns to construct
the front is 0.99

Hopper-2D. A continuous-control task based on the Hopper-v5 environment, where a one-legged
robot must learn a trade-off between forward movement and jumping height. The observation space is
11-dimensional (S ⊆ R11), capturing joint angles and velocities, while the 3-dimensional continuous
action space (A ⊆ R3) controls joint torques. The two objectives are the agent’s forward velocity
and its vertical displacement, both augmented with a small control cost. The hypervolume reference
point is [−100,−100] and the γ used to calculate the returns to construct the front is 0.99.

Hopper-3D. An extension of MO-Hopper-2D with an explicit third objective: minimizing control
cost. The agent must now learn a three-way trade-off between forward velocity, jumping height, and
energy efficiency, which is defined as the negative squared magnitude of the action vector (−

∑
a2i ).

The observation space remains 11-dimensional and the action space 3-dimensional. The hypervolume
reference point is [−100,−100,−100] and the γ used to calculate the returns to construct the front is
0.99.

Ant-2D. Based on the Ant-v5 robot, this continuous-control task involves a quadruped navigating a
2D plane. The state space is 105-dimensional (S ⊆ R105), representing joint positions, velocities,
and contact forces. The action space is 8-dimensional (A ⊆ R8), controlling the torques at each leg
joint. The 2-dimensional reward vector consists of the agent’s x-velocity (vx) and y-velocity (vy).
The hypervolume reference point is [−100,−100] and the γ used to calculate the returns to construct
the front is 0.99.

Ant-3D. An extension of MO-Ant-2D with an additional objective for control cost. The agent must
optimize its x-velocity and y-velocity while simultaneously minimizing the magnitude of applied joint
torques (−2

∑
a2i ). The state space remains 105-dimensional and the action space 8-dimensional, but

the objective space is now 3-dimensional. The hypervolume reference point is [−100,−100,−100]
and the γ used to calculate the returns to construct the front is 0.99.

Humanoid-2D. Based on the Humanoid-v5 robot, this environment features one of the most
complex state spaces in common benchmarks, with 348 state dimensions (S ⊆ R348) and a 17-
dimensional continuous action space (A ⊆ R17). The task presents two highly conflicting objectives:
maximizing forward velocity (vx) and minimizing energy consumed, represented by a control cost
penalty (−10

∑
a2i ). The hypervolume reference point is [−100,−100] and the γ used to calculate

the returns to construct the front is 0.99.

Building-9D. A complex thermal control task for a large commercial building, featuring a 29-
dimensional state space (S ⊆ R29) and a 23-dimensional continuous action space (A ⊆ R23). The
agent must manage the heating supply across 23 zones. The three core objectives (minimizing
energy cost, temperature deviation, and power ramping) are calculated independently for each of
the building’s three floors, resulting in a challenging, high-dimensional 9-objective problem. The
hypervolume reference point is [0, 0, 0, 0, 0, 0, 0, 0, 0] and the γ used to calculate the returns to
construct the front is 1.

H EXPERIMENTAL DETAILS

The PPO specific hyperparameters are the following:

• Number of environments: 4

• Learning Rate: 0.0003
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• Batch Size: 512
• Number of minibatches: 32
• Gamma: 0.995
• GAE lambda: 0.95
• Surrogate Clip Threshold: 0.2
• Entropy Loss coefficient: 0
• Value function loss coefficient: 0.5
• Normalize Advantages, Normalize Observations, Normalize rewards: True
• Max gradient Norm: 0.5

For the actor network, we initialized the final layer with logstd value of 0. For humanoid and ant
benchmarks, the logstd value was -1. We performed every experiment with 5 random seeds to find
confidence intervals. In all cases, both actor and critic networks had 2 hidden layers with 64 neurons
in each layer. The activations were tanh, with the final layer having no activation. Increasing the
capacity of the network caused instability in learning. The KL divergence of the policy was extremely
high resulting in high policy entropy and it being unable to learn properly, which we attribute to
overfitting. For all experiments, the action diversity loss parameter was 0.01

We trained all baselines and D3PO on a Xeon Gold 6330 CPU, where every experiment was allotted
14 cores and 128Gb RAM. The experiments did not use GPUs.

All baselines used the same number of environment interactions, network architecture size, and PPO
parameters.

I LIMITATIONS.

Although D3PO provides formal guarantees against advantage cancellation, representational collapse,
and convergence to stationary points under standard smoothness assumptions, it does not offer
theoretical guarantees of recovering the true Pareto front. In particular, our analysis does not establish
completeness of coverage in continuous preference spaces or optimality of the discovered trade-offs
beyond stationary-point convergence. Thus, while D3PO empirically achieves strong Pareto coverage
and outperforms baselines with lower computational cost, theoretical guarantees of exact Pareto front
recovery remain an open direction.

J DEMONSTRATION WITH USER INTERFACE

We have developed a user interface to demonstrate the behaviour of D3PO agents. There are 3
columns in the user interface. The first column shows the live policy rollout rendering. The second
column shows the a line plot reward collected in every channel over time and a bar plot of the
instantaneous reward at the current time step. The third column shows a slider for the objectives that
are part of the environment. These sliders can change the weight value for the particular objective
during the rollout to change the policy behaviour. The attached videos show demonstrations with the
Mo-hopper-3D and MO-ant-3d environments. The flask file that serves this demo is part of the code
and will be made public.
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