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Abstract

In this paper, we model an agent navigating a noisy ranking of candidates, each with
different values. In addition to the ranking, the agent has access to a binary signal
for each candidate about whether they are “free” or “busy”’, where being busy is a
signal both of increased candidate quality and decreased candidate availability. For
example, in a job market, candidates might be busy if they are already employed. In
this paper, we study the incentives and welfare of the three major actors - the firms
selecting candidates, the company developing the ranking tool, and the candidates
being ranked and society as a whole. First, we study the incentives of the firms,
deriving the optimal strategy for selecting candidates, and studying when there
are “benefits to congestion” where firms can benefit from free-riding on the hiring
decisions of previous firms. Next, we study the welfare implications of this setting,
showing that increasing the accuracy of the ranking tool can have paradoxical
effects, such as reducing societal welfare (in terms of the total value of employed
candidates) and increasing notions of unfairness among candidates. We conclude
by discussing the implications our results have for how algorithmically-generated
ranking systems should be constructed.

1 Introduction

Consider the following setting: you are a company, trying to find a candidate to fill a hiring slot
you have available. You are aware that some candidates are better suited for your role than others -
ideally, you would like to hire the best candidate available. To assist you with this goal, you might
obtain a (noisy) ranking of the candidates: this could be produced by a human, or obtained from
a commercial employment site, such as LinkedIn, Indeed, or other ranking tools. If the ranking is
“good” (specifically, if the expected utility of candidates decreases as you navigate further down the
list), the best action for the employer is always to pick the top-ranked candidate.

However, in many cases, employers have access to side information, besides the ranking itself. For
example, you may be aware that a particular candidate is less likely to accept your offer, potentially
because she is already employed. We call such a candidate “busy”, as compared to a “free” candidate
without these competing sources of employment. If a “busy” candidate will never accept an offer,
then the choice is clear: the best option is to hire the highest-ranked “free” candidate. However, if a
busy candidate still has some chance of accepting an offer, the possible strategy space changes. In
many markets there is an opposing force: it may be the case that high-value candidates are more
likely to be “busy”, and thus being “busy” is a signal of candidate quality. For example, this could be
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because high value (e.g. talented, highly skilled, or especially well-suited candidates) are more likely
to have already been identified and hired by competing firm:

In this way, an employer faces a difficult question: given a noisy ranking of job candidates, along
with information about which ones are free or busy, which candidate should she select? Should she
pick the top-ranked busy candidate, following the old adage “if you need something done fast, ask a
busy person”? Instead, should she aim to avoid the extra hassle of competing for a busy candidate
and instead hire the top-ranked free candidate? Are there cases where she should do neither of these
things, but pick some other candidate entirely? Moreover, a firm’s hiring strategy has impacts on
the rest of society. Specifically, a firm’s choice to select a “busy” (already employed) candidate,
rather than a “free” (unemployed) candidate has implications for the unemployment rate, as well as
the ability of candidates to leverage competing offers. Additionally, firms’s hiring strategies could
lead to disparities in selection rates among candidates with different employment statuses, leading
to potential issues of fairness. Such questions have implications for regulation of algorithmic tools,
especially the desired properties of ranking tools used in hiring settings.

While we will use the employer hiring job candidates as our motivating example, we note that this
setting is quite broad and could model a range of other scenarios. For example, consider a hungry
customer navigating a ranking of restaurants, each labeled as “crowded” or “not crowded”: a crowded
restaurant is more likely to be of high quality, but will also involve a longer wait.

The rest of this paper proceeds as follows: in Section |2} we will present our model and assumptions,
as well as a discussion as to when these assumptions are likely to hold. In Section 3] we discuss
the connection of our paper to related work, including the extensive literature on herding and the
Pandora’s Box problem. Next, Section ] analyzes the optimal strategy that a firm navigating a ranking
might take: should she pick the first busy candidate, the first free candidate, or some other candidate
entirely? In Section [5| we study notions of social welfare, like how frequently firms preferentially
select job candidates who are already employed (potentially modeling unemployment discrimination)
or avoid doing so (potentially modeling collusion in job hiring). We also analyze incentives of job
candidates and fairness notions, such as the gap in selection rate between candidates who are free
and those who are busy. Throughout, we consider how increasing the accuracy of the ranking tool
can affect the strategy, welfare, and fairness results in previous sections. Surprisingly, we show that
increased accuracy can reduce measures of social welfare and fairness. In Section [f| we conclude
by discussing implications for policy and regulation, as well as potential extensions. Appendix [A]
discusses extensions of our model and all proofs are deferred to Appendix [B]

2 Model, notation, and assumptions

In this section, we present our model, notation, and core assumptions.

2.1 Model and notation

First, we present our model. There are N candidates, of which the agent (alternatively, firm) wishes
to select exactly one: for example, to interview a job candidate, or pick a restaurant for dinner. The
candidates have different true values to the agent, where v; denotes the value of candidate . The goal
of the agent is to maximize their expected utility. In order to help with this decision, the agent has
access to a ranking tool which produces noisy permutations over the candidates: o ~ P, where o;
denotes the index of the candidate ranked ¢th in permutation o with value v,,. Throughout, we will
require that the expected value of candidates decreases as you go further down the ranking: that is,
Eo~p[vs,] is decreasing in i.

In addition to the ranking, the agent has access to a single bit of side information about each candidate:
specifically, a status vector s, where s; = 1 if the candidate ranked in position i is free, and s; = 0 if
the candidate is busy. Picking a busy candidate incurs a penalty: specifically, if a candidate has value
v; if picked when they are free, then they have value - v; if they are selected when they are busy, for
v € [0, 1]. This ~ parameter reflects the fact that a busy (e.g. already employed) job candidate is less

>Throughout this paper, we will make the assumption that some candidates are better fits for the job than
others (e.g. higher or lower value). We recognize that this assumption drastically simplifies the multi-faced
strengths and weaknesses each candidate may bring, and discuss this (and other) assumptions in more depth in
Section 2}



likely to accept an offer, for example. We may also view <y as a firm-specific parameter reflecting, for
example, the attractiveness of that firm to candidates.

One central assumption is that the firm must select a candidate based solely on the ranking, and
cannot re-select another candidate later. This could be motivated by hiring in stages, where “selecting
a candidate” corresponds to bringing a candidate on for an intensive onsite, which cannot easily be
filled with another candidate if one declines an offer. Thus, we model strategy involved in this first
stage of hiring.

We assume that higher-valued candidates are less likely to be available, in particular, that v; > v;
implies p; < p;, where p; gives the probability that the ith candidate is free. We also assume that
each candidate’s probability of being free or busy is independent of every other candidate. This could
reflect, for example, the steady state of a hiring market where candidates may be given offers by
multiple firms each considering different subsets of candidates. Throughout most of this paper, we
will take these probabilities {p; } as fixed, but in Section@we will briefly discuss other settings, such
as where candidates may lie about their free/busy status (for example, lying about being employed or
unemployed so as to increase their chances of getting an interview).

2.2 Superstar setting

In most of this paper, we will focus on the super-star setting, with exactly one high-value candidate,
and all other candidates with value 0: v; > v = v3... = 0 and p; < pa = p3.... This models
settings where the distribution of candidate quality is skewed: the highest-value individual may have
much higher value than other candidates, who are all roughly comparable. In this setting, the space
of permutations becomes much smaller, because the only distinguishing feature is the index of the
high-value item. We will use the notation o* to denote the set of permutations where the high-value
item is in the ith index, and in generally we will assume that P[o?] > P[oT!] for all i (that is, the
ranking is more likely to rank the high value item higher). This also leads to a natural notion of

1
accuracy: an increase in the ratio of g[gz]] forall i # 1.

Definition 1. A ranking P[c']’ is more accurate than P[o'] if: % > };[[Zl]] Vi > 1 with the
inequality strict in at least one index.

Lemmal[2.T|notes that this definition of accuracy implies that the probability of the high value candidate
being in the top-ranked position strictly increases with increased accuracy. Note that the converse is
not true: increasing the accuracy of a ranking distribution does not necessarily decrease P[o?], for
example. For intuition, a more accurate distribution could increase low ranks (P[o'!], P[o?], P[o?]...)
and sharply decrease high ranks (P[o" '], P[c"]...), so long as P[o']/P[o"] strictly increases (see
Appendix [A] for further discussion).

Lemma 2.1. [f distribution { P[0%]'} is more accurate than { P[o]}, then P[o']’ > P[o'].

In Appendix [A] we discuss how our results translate to settings beyond the superstar model.

2.3 Random Utility Model

Our main results will hold for arbitrary permutation distributions in the superstar model { P[c?]}.
However, we will often find it helpful to use a specific model of permutations to illustrate our main
results. In particular, the Random Utility Model is commonly used as a model of permutations. In
Proposition [2.1] we show that for the Random Utility Model with Gumbel noise, we can derive
closed-form solutions for the permutation distribution. The proof involves an application of the
Gumbel trick. To our knowledge, this derivation is novel and would potentially be of broader interest.
In Appendix [A] we discuss further extensions, including its connection to RUM with Gaussian noise.

Proposition 2.1. Consider the superstar setting (1 item of value v1 > vy = 0, and n — 1 elements of
item 0). If i.i.d. Gumbel noise (with scale parameter 3) is added to each value, then the probability
of the high value item being in index 1 is given by:
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As a direct consequence, for any i > 2, the ratio IIZE';]] is given by: ]_[2;11 (1 + %)



As a corollary, we can see immediately from the derivation of the RUM Proposition [2.1] that a
decrease in noise in the Gumbel distribution immediately leads to an increase in accuracy (according
to Definition [I)).

Corollary. For the RUM with Gumbel noise, increasing vy or decreasing 3 induces a distribution
{P[0")'} that is more accurate than { P[c*]} (according to Definition]l).

2.4 Assumptions and limitations

In the previous section, we described our technical model and assumptions. Here, we will focus
on the assumptions and limitations in greater detail. In Section [6] we discuss further changes to our
model and the implications they would have for our results. For example, one central assumption
is that each candidate has some true intrinsic value to the agent (decision-maker). While this is a
very common assumption in theoretical models, we recognize that job candidates (as people) bring
nuanced and multi-faceted qualities to their that cannot be fully captured by a single number.

Additionally, one core assumption is that the agent has access to truthful, unbiased signals of free/busy
status s. This assumption could easily be violated if such information is only available through the
candidates themselves. For example, if candidates are aware that firms are preferentially hiring busy
candidates, then they might lie about being employed or having competing offers. While we do not
explore such issues in this paper, Horton et al.|[2023]] explores this question in a dynamical pricing
model, giving conditions where pricing levels induce truthful response.

3 Related work

Our model has connections to celebrated models of agents strategically picking items, such as
the hiring problem and Pandora’s box problem Krengel and Sucheston| [[1977]], Weitzman| [[1978]].
However, our setting has key differences from these: foremost among them is the assumption that the
ordering of elements is generated from some (external) ranking. In particular, this means that agents
must examine items in the order they are presented in, rather than being able to re-order them, for
example. Another difference is the signaling mechanism: for example, rather than each item having
an independent, known distribution of value, we model the scenario where the free/busy signal is
generated by items with different probabilities, given different values. This structure, in conjunction
with the ranking, means that the free/busy status of item ¢ can affect the expected value of item j -
generally not captured in existing models. Finally, one assumption in our setting is that the agent
must pick a single item and commit to it without being able to observe its true value. This captures
the setting where it is difficult or impossible to evaluate the item without committing to it first - for
example, in hiring, when a candidate’s true “value” may not become apparent until after weeks or
months of work, or in selecting a restaurant for dinner, where the only way to truly evaluate it may
be to sit down for dinner - upon which there is no need (or ability) to consume a second dinner at a
different restaurant.

Additionally, our work has connections to long literature on herding (also known as information
cascades) Banerjee| [1992], |Bikhchandani et al.|[[1992], Welch| [[1992], a pattern where it may be
optimal for a decision-maker to follow actions taken by previous people, even ignoring their own
information. Such patterns can lead to “cascades” where multiple sequential decision-makers each
follow actions taken by previous decision-makers, rather than following their own information. In
our example, when an agent chooses to pick a lower ranked busy candidate over a higher ranked free,
this could be seen as herding, since the free/busy status of candidates could be seen as created by
actions taken by previous decision-makers, whereas the ranking is assumed to be private (personal)
information. To our knowledge, herding has not been extensively studied in ranking settings: our
model interestingly allows for herding to be moderated by the strength of private information through
the quality of the ranking and the index of the first busy candidate.

Our paper also has connections to the literature on algorithmic monoculture Kleinberg and Raghavan
[2021]), which studies the case when utility may be decreased when two agents both rely on the same
algorithmic ranking, rather than their own (uncorrelated) ranking over candidates. Variants of this
setting have been explored in later work, such as how algorithmic monoculture can lead to individuals
experiencing correlated outcomes (“outcome homogenization”) |Bommasani et al.| [2022]], or the
implications of monoculture and of noisy matching in two-sided matching markets Peng and Garg
[2023]|2024]]. Common features to this work includes the model of multiple agents taking strategic



actions in relation to imperfect rankings, as well as the notion of a penalty for picking an item that
another agent has picked. Key differences in our model include the fact that this penalty is softened -
in particular, an agent can derive non-zero utility for picking an item that another has already chosen.
This dramatically complicates the strategy space, as later sections will show. Additionally, in our
setting we modify how multiple firms interact - in particular, we assume that they each have their
own independent realization of the ranking, but that they may have access to a common ranking tool
(similar accuracy rates). Instead, the monoculture (or herding) phenomenon relates to how agents
choose to use the free/busy signal - selecting items that are “busy” could relate to an agent choosing
to “free ride” off of the ranking another agent has chosen (we discuss this further in Section [6).

Model multiplicity refers to the case where there might exist multiple equally accurate models that
nevertheless differ in the predictions for some nontrivial fraction of the input space. This phenomenon
has connections both to algorithmic monoculture and to our setting, because it motivates how firms
could have access to rankings with similar accuracy rates and yet distinct orderings over elements.
The fairness, welfare, and strategic implications of model multiplicity have been explored in works
such as Black et al.| [2022]], Jain et al.| [2023]], (Cooper et al.| [2023]], Marx et al.| [2020]], Hsu and
Calmon| [2022]. Separately, multiple works have considered the question of fairness in ranking -
Zehlike et al.|[2021]] offers a helpful survey. In particular, Singh et al.|[2021]] describes a notion of
fairness relating to how often items are presented in the top k, given that they have some probability
of truly being the best k items (relating to our notion of an item being “picked”), while Peng et al.
[2023] studies the tradeoff between diversity and accuracy, showing that consumption constraints
(e.g. only top item can be consumed) explains away a tension between these two goals.

Finally, there are multiple papers (empirical and theoretical) exploring models of firms using pre-
diction tools to compete with each other. For example, Filippas et al.[[2023]] explicitly studies an
empirical version of this where job candidates could pay to send a signal of availability to potential
employers. Intriguingly, in this setting it seemed like such a signal did not lead to adverse selection,
with most employers choosing a “first free” strategy, perhaps indicating a parameter regime where
this strategy was typically dominant. As mentioned previously, Horton et al.|[2023]] explores this
setting in a dynamical pricing model, giving conditions where pricing levels for such a signal induce
a truthful response. Additionally, Jagadeesan et al.|[2023]] explores a setting where improved data
representation (as modeled by reduced Bayes risk) can paradoxically increase the error that users
experience when they choose between two competing firms. |Castera et al.| [2022] studies statistical
discrimination in stable matchings where candidates have preferences over firms, who only have
noisy access to signals about candidate quality.

4 Optimal Selection Strategies

In this section, we begin by evaluating the firm’s strategy: given access to an algorithmically-generated
ranking over candidates and side information about their free-busy status, what is the optimal strategy?

4.1 Derivation of Optimal Strategies

First, we will show that (given a status vector s) there are only two strategies we need to consider
within the superstar setting: picking the first free candidate, or the first busy candidate. This
dramatically reduces the strategy space firms need to considelﬂ

Lemma 4.1. In the superstar setting, given a realized status vector s, it is always optimal to either
pick the first free item or the first busy item.

Having established that a firm will always choose either the first free candidate or the first busy one,
our analysis hinges on when firms will select each strategy. Theorem [T|below exactly characterizes
this. Specifically, it shows that the strategy space depends on two terms. First, free-busy ratio
_ p2/(1-p2)
~ p1/(1-p1) ) . )
as a measure of how efficient the market is. Secondly, v measures the penalty for selecting a busy

candidate. If r - v < 1, firms hire the top-ranked free candidate (so long as one is within the top j*
indices, defined formally in Theorem E]), and if r - v > 1, firms hire the top-ranked busy candidate

measures how strongly status is correlated with value - effectively, this could be seen

3Note that Lemmadoes not necessarily hold beyond the superstar setting: see Appendixfor further
discussion.
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Figure 1: Illustration of optimal strategy for firm, given n = 5 candidates and ranking tool with
accuracy governed by Random Utility Model with Gumbel noise (see Section[2.3). The x axis varies
the « busy penalty, while the y axis varies accuracy as parameterized by the 1/8 Gumbel noise
parameter (higher values increase accuracy). Shades of red indicate regions where virtuous selection
is the optimal strategy and shades of blue indicate where adverse selection is (darker shades indicate
regions where the firm has larger j* or £* and thus “hunts” further down the list to find a candidate
with their preferred free/busy status. The purple region is where the optimal strategy is “follow the
ranking”. This figure uses = 3, so 1/r = 1/3 is the critical point on the x-axis where firms switch
from using virtuous selection to adverse selection.

(again, so long as they’re within the top k* indices, defined formally in Theorem|[T)). For intuition,
depending on r - v, firms have preferences for candidates who are either free or busy. However, the
further down the ranking the firms search, the less likely it is that a given candidate will be high value.
Therefore, the optimal strategy is for firms to pick the top-ranked candidate of their preferred status,
so long as that candidate doesn’t come “too far” down the ranking. Effectively, Theorem [I] shows
how firms combine information they have from the algorithmically generated ranking along with the
free/busy status vector.

Theorem 1. [Optimal hiring for firms] If v - v < 1, then define j* as the largest j such that
%Z—;} < ﬁ Then, the optimal strategy for the firm is to use the j*-virtuous selection strategy: select

the highest-ranked free candidate within the top j*. If all of the top j* candidates are busy, hire the
top-ranked candidate.

Conversely, if r - v > 1, define k* as the largest k such that g{g;% < 1 -7. Then, the optimal strategy

for the firm is to use the k*-adverse selection strategy: select the highest-ranked busy candidate
within the top k*. If all of the top k* candidates are free, hire the top-ranked candidate.

If i* = 1 or k* = 1, then optimal strategy for the firm is to use the follow the ranking strategy:
always select the top-ranked candidate, regardless of whether they are free or busy.

Throughout the rest of this paper, we will assume that firms are always acting optimally, using the
strategies defined in Theorem [I]

4.2 Accuracy of Ranking Tool

Next, we will discuss the implications of increasing accuracy on the firm’s optimal strategy. Figure|[T]
illustrates the strategy space for various different levels of accuracy and busy penalty . Note that this
figure displays curves specifically for the RUM with Gumbel noise: this is purely to build intuition,
as our theoretical results hold for arbitrary probability distributions. As Theorem I]suggests, virtuous
selection is only optimal for v < % and adverse selection is only optimal for v > %

Figure[T]displays other phenomena: for example, increasing the accuracy of the ranking distribution
always reduces how far down the ranking firms search (reducing j* or £*). Lemma [.2] proves this
property theoretically: increasing the accuracy of the ranking tool always (weakly) decreases how far
down the list firms may hunt for candidates.



Lemma 4.2. Holding ~ constant, increasing the accuracy of the ranking tool always holds constant
or decreases the furthest index a firm needs to consider (decreases j* or k* as defined in Theorem![I).

Additionally, Figure[I]seems to show an asymmetry between virtuous selection and adverse selection:
for a sufficiently accurate ranking, all firms with v > 1/r will use “follow the ranking”, but the same
is not true for virtuous selection (observe how the red curves go towards infinity as y goes to 0).
Lemma @3] proves this theoretically. For intuition on this asymmetry, firms using virtuous selection
are unable to pay the penalty of hiring a busy candidate, so may avoid busy candidates even if the
ranking tool is very accurate, while firms doing adverse selection are simply hunting for the strongest
signal and will follow that, whether it’s the ranking or the free/busy signal.

Lemma 4.3. No matter how accurate a ranking is, there exists a firm whose optimal strategy is
virtuous selection with j* = n. More precisely, for all € > 0 such that P[c!]/P[c"] = ¢, there exists
a busy penalty v < % such that k* = n.

For all firms with v > % if Plot]/P[o?] > r, the optimal strategy is always “follow the ranking”.

Finally, we discuss the impact of increased accuracy on the ranking company itself. We may view
the ranking company as wishing firms to preferentially select top-ranked candidates: this could be
because of potential advertising revenue which is higher for top-ranked items, or because firms use
click data to get feedback on the value of items . However, Lemma@] shows that increasing the
accuracy of the ranking tool can decrease the probability that a firm selects the top ranked candidate:
intuitively, this can happen when a firm is using virtuous selection and the ranking tool becomes more
likely to result in status vectors where the top-ranked candidate is busy.

Lemma 4.4. Increasing the accuracy of the ranking tool can increase, decrease, or keep constant the
probability that a firm selects the top ranked candidate.

5 Welfare, Fairness, and Incentives

Section[d]described the optimal strategies that firms select under different parameter regimes: virtuous
selection (preferentially select free candidates), adverse selection (preferentially select busy candi-
dates), and follow the ranking (always hire the top ranked candidate). Additionally, these strategies
have different impacts on the broader system, such as influences on welfare, fairness, and incentives,
which we will analyze in this section.

5.1 Duplicative Effort and Benefits to Congestion

First, we will consider impacts that the firm’s hiring strategy has on overall welfare. For example, a
firm using adverse selection will select busy candidates much more frequently than a firm using virtu-
ous selection. We formalize this notion as duplicative effort in Definition[2] Intuitively, duplicative
effort relates to the amount of welfare that a firm obtains by selecting candidates who are already
busy. Duplicative effort could involve negative impacts: for example, it could be viewed as firms
“poaching” candidates from other firms rather than hiring unemployed candidates, which may lead to
a higher unemployment rate. However, duplicative effort could also be viewed positively: candidates
who receive competing offers can use them to increase their compensation. Moreover, explicitly
trying to reduce duplicative effort could run afoul of anti-trust laws .

Definition 2. Duplicative effort is the amount of a firm’s utility that comes from giving offers who
candidates who are already busy (e.g. employed), given by: 7y - E[v,, |- 1[sis) = 0]

What is the impact of accuracy on duplicative effort? Lemma [5.1] shows that duplicative effort
can increase or decrease. For intuition, increasing the accuracy of the ranking tool has multiple
opposing effects: first, if the top-ranked candidate is free, a more accurate ranking tool can potentially
overcome the negative signal of being free (unemployed), increasing the chance that the firm will
select it (reducing duplicative effort). Secondly, if the top-ranked candidate is busy, a more accurate
ranking tool increases the expected value of this candidate, and so a firm may decide that it’s now
worth it to hire the busy candidate even with the  penalty (increasing duplicative effort). Finally,
increasing the accuracy changes the frequency with which different patterns of status vectors will
occur (potentially increasing or decreasing duplicative effort).

Lemma 5.1. There exist settings where increasing the accuracy of the ranking tool can increase or
decrease duplicative effort.



Specifically, in the example in Lemma[5.1] duplicative effort is increased for firms with - v < 1 and
decreased for firms with r - v > 1. If we view ~y; as an indication of how attractive a particular firm ¢
is, then this result indicates that increasing the accuracy of the ranking tool may increase the number
of competing offers that candidates receive from less attractive firms, while reducing the number
from more attractive firms.

Next, we will consider another factor: whether firms benefit from the fact that other firms are also
hiring. Specifically (given p1, p2 < 1), every candidate has some nonzero probability of being busy
(e.g. employed). On the one hand, this reduces firms’ utility because selecting a busy candidate incurs
a 7y penalty. On the other hand, because p; < p2, seeing which candidates are free and busy gives
firms valuable noisy information about their value, which they could use to guide hiring decisions.
These two counterbalancing effects means that there are sometimes positive benefits to congestion:
firms strictly benefit from the fact that some candidates are already employed (formally defined in
Definition [3). This result could be seen in multiple ways, such as firms “free-riding” on the hiring
decisions of other firms.

Definition 3. A firm’s “benefit to congestion” is the difference between its utility with p1,p2 < 1
and its utility if p1 = p2 = 1 (every candidate is always free). If this quantity is positive, a firm has
positive benefits to congestion and has higher utility when candidates have some nonzero probability
of being busy.

Lemma [5.2]exactly specifies when a firm experiences positive benefits to congestion: specifically,
when 7 -« is high, and when the probability of the high value candidate being ranked first (P[o!])
isn’t too high:

Lemma 5.2. A firm using virtuous selection or “follow the ranking” never experiences positive
benefits to congestion.

A firm using adverse selection with k* > 2 experiences positive benefits to congestion { and only if:
1

(1—p1)y k* k—1p[ k 17 g 7% .
O O () ) Y woDs Plo"] > Plo'] with k* defined as in Theorem

Finally, Lemma[5.3|shows that increasing the accuracy always decreases benefits to congestion.

Lemma 5.3. Increasing the accuracy of the ranking tool always reduces the firms’ benefit to
congestion.

5.2 Free-busy gap

In Section[5.1| we analyzed this setting from the perspective of the firm: the optimal selection strategy
they should take and related factors like duplicative effort and benefits to congestion. In this section,
we analyze the same setting from the perspective of job candidates. In particular, we will focus on
the free-busy gap, which measures how more (or less) likely a free candidate is to be hired, holding
value constant.

Definition 4. The free-busy gap is the difference in the probability that a free candidate is selected,
as compared to the probability that a busy candidate is selected (holding value constant).

Again, the free-busy gap can be interpreted in multiple ways. If it’s negative (busy candidates are
more likely to be hired), then this could be viewed as unemployment discrimination: if it’s positive,
then it could be viewed as firms productively matching with available candidates. So far, we’ve
assumed that job candidates are honest about their free-busy status: however, if the free-busy gap
is very large in magnitude (either positive or negative), we could view this as a setting where job
candidates may be strongly incentivized to lie in order to increase their chances of being selected.

As expected, if a firm is using virtuous selection (preferentially selecting free candidates), the free-
busy gap will be positive, and negative if a firm is using adverse selection (as Lemma [5.4] formalizes).
Part of this proof relies on Lemma[B.3]which derives closed-form solutions for the free-busy gap (for
conciseness, the statement and proof of this result is deferred to Appendix [B).

Lemma 5.4. For all parameters, the free-busy gap is strictly positive if the firm is using virtuous
selection, strictly negative if the firm is using adverse selection, and zero if the firm is using follow
the ranking.

Next, we consider the impact of increased accuracy on the magnitude of the free-busy gap, which
could be viewed unemployment discrimination or the incentive of candidates to lie about the employ-



ment status. In particular, Lemma|[5.5|shows that there exist settings where increasing the accuracy
could increase or decrease the magnitude of the free-busy gap. For intuition, consider the free-busy
gap for the high value candidate when a firm is using virtuous selection. A free high value candidate
is selected unless it’s ranked second and the low value candidate is also free (event A) , while a busy
high value candidate would be selected only if it’s ranked first and the low value candidate is also
busy (event B). If po > 0.5, increasing the accuracy of the ranking tool decreases the probability of
event A more quickly than it increases the probability of event B, which means that the free-busy gap
would increase. The full proof formalizes this intuition.

Lemma 5.5. There exist settings where increasing the accuracy of the ranking tool can either increase
or decrease the magnitude of the free-busy gap.

However, this story becomes more complex if candidates are unsure about the strategy each firm
is using. Recall from Section {4|that a firm’s strategy depends on the quantity r - -y, where y is a
penalty for picking a busy candidate. This penalty may be viewed as firm-specific and potentially
unknown to candidates. In particular, candidates could have uncertainty in a single firm’s parameters,
or if multiple firms may simultaneously be using the same ranking tool (reflecting a diversity of
preferences). In general, we would expect such uncertainty to reduce the free-busy gap.

6 Discussion

In this paper, we have proposed a simple model to study settings where strategic, self-interested agents
use algorithmically generated rankings in the presence of side information, specifically a free-busy
status vector for different candidates. Our results show that even this relatively simple model can have
capture surprisingly complex phenomena. There are multiple fascinating extensions to our model. In
particular, one interesting direction generalizing beyond the superstar model to include candidates
with arbitrarily many values and probabilities of being available. We discuss some results in this
direction in Appendix [A} largely the same results hold, but with some surprising nuances. Additional
extensions could consider other types of policy interventions, such as whether deliberately hiding
the free-busy status of candidates could lead to better welfare or fairness guarantees. Finally, other
extensions could consider cases when agents can deliberately mislead others, such as job candidates
lying about their free-busy status.

Impacts on Policy and Regulation:

Strategy: Our results show that firms using algorithmic rankings can best-respond by strategically
selecting candidates based on their free-busy status, so long as they are within the top k candidates the
ranking returns. Increasing the accuracy of the tool can reduce incentives of firms to strategise, but
can also decrease measures of social welfare like duplicative effort. These results generally assume
that firms perfectly know certain parameters such as the r, v (which could be viewed as measuring
the efficiency of the market and the attractivness of any given firm, respectively). In reality, firms
only have access to estimates of these values, and in particular they may systematically mis-estimate
these values, for example, assuming that their firm is more attractive than it really is . In this case,
firms may use sub-optimal strategies, which may lead to increased levels of duplicative effort.

Fairness and incentives to lie: When firms select preferentially based on the free-busy (e.g. em-
ployment) status of candidates, this immediately leads to differences in selection rate based on
employment status. This could immediately have fairness implications, but could also incentivize
candidates to lie about their employment status: these incentives could be larger for high-value
candidates or low-value candidates. We showed that these disparities can be reduced when firms
have diverse preferences, but can surprisingly be increased when the accuracy of the ranking tool is
increased.

Ranking company: Often, the incentives of ranking companies, their clients, and societal welfare
are assumed to be at least weakly aligned: producing higher-quality ranking tools should increase
the value to both companies and clients. However, our results show that their incentives may be
misaligned: in particular, a more accurate ranking tool can reduce measures of social welfare and
fairness, and can even reduce the welfare of the ranking company itself. Our results suggest that
improving overall welfare may require more precise interventions than simply increasing the accuracy
of tools.
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A Ranking models

A.1 Beyond superstar

In this section, we further relax the model and consider cases where the [V items can come in more
than two types of values (and probabilities of being available). However, we will find that even
relaxing the superstar setting slightly can cause the strategy space for the agent to become much more
complex. Specifically, Lemma[A.T|shows that it may be optimal to pick a strategy other than “first
busy, first free”: for example, to pick the second-ranked free item rather than the top-ranked free item.

Lemma A.1. There exists a probability distribution P such that for some realized status vector s,
picking the second free item maximizes expected utility, even if P is descending in expected value.

Proof sketch. We construct this example by creating a setting with exactly three items with [v; =
1,v9,v3 = 0]. We will create a permutation distribution with nonzero support on exactly two
permutations:

ol = [v1,v2, 3] o= [vs, V2, V1]

where Plo!] = 1 — ¢, P[0?] = . We will also set p; < pa = ps, so items 2 and 3 have the same
probability of being free, which is greater than for item 1.

We consider the status vector [1, 1, 0], so the first two items are free, while the last is busy. At a high
level, this status vector increases the posterior belief that the true permutation is o2, with the high
value ranked last. Carefully setting vy, ve, p1, p2 results in a posterior distribution where the expected
value of the second item is higher than either the expected value of the first free item or first busy
item. -

Note that the ranking in Lemma [A.T] did satisfy descending expected value. However, rankings
were somewhat unusual - in particular, there were only two orderings with nonzero probability, even
though, given 3 items, there are 6 possible permutations of each of them. A more natural ranking
would probably have some nonzero weight over each of these, ideally with greater weight on rankings
where more of the items are ordered “correctly” (that is, with v,, > v, fori < j).

Definition [5]exactly describes this intuition. Specifically, it defines an “inversion-monotone” prob-
ability distribution as one where, for any permutation o with at least two items inverted (that is,
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Vg, < Vg, Tori < j), there exists another permutation & that is identical to o but with items in indices
i, j flipped, and with probability at least as high as o (P[] > P[o]). Lemmal[A.2]proves that, if a
probability distribution is inversion-montone, we regain the same property we had in the superstar
setting: the optimal strategy for the agent will always be to pick the first free item or first busy item.

Definition 5. A probability distribution over permutations P is called inversion-monotone if it
satisfies the following condition: for any permutation o with a pair of indices i < j such that
Vg, > Vg, We construct a corresponding permutation ¢ where 6 = o except for indices 1, j, which
we have flipped: v, = vy, ,V5; = vg,. Then, we require:

Plo] = P[o]

Lemma A.2. Consider any vector of realized status vector s, with s; = s;, for some i < j. Then, if
the probability distribution of permutations is inversion-monotone as in Definition[5} E[v,, | a] >
E[vo, | a]. This implies that the optimal solution will always be to pick the first free item or the first
busy item.

While Lemma [A.2] shows that inversion-monotonicity will guarantee a more straightforward strategy
space, it is natural to wonder how reasonable such a requirement is. In fact, it turns out that multiple
commonly-used models of permutations already satisfy this property.

First, Lemma@] shows that the Mallows model is inversion-monotone. While helpful, this is not
extremely surprising: the Mallows model Mallows|[[1957] is constructed such that the probability of
a permutation o occurring is directly tied to the number of pairs of items that are inverted, so this
property follows naturally.

Lemma A.3. The Mallows model is inversion-monotone.

While the Mallows model is frequently used as a model of permutations, it does have drawbacks.
Specifically, one desirable property of rankings is that items with very different true values should
be less likely to be inverted. For example, given [v; = 10,v2 = 9, v3 = 0], we would expect items
v1, U2 to be more frequently inverted than vy, v3, even though their ordinal ranks differ by the same
amount. This type of property cannot be expressed by the Mallows model - but it can be captured
by the Random Utility Model Thurstone|[[1994]. In the Random Utility Model (RUM), while each
item has some true value {v;}, it is assumed that they are ranked by noised versions of these values,
such as additive Gaussian noise (9; ~ A (v;,0?)). This automatically satisfies the property that items
with more similar true values will be more likely to be swapped. Additionally, it seems likely that
the Random Utility Model might better capture the performance of rankings produced by humans or
algorithmic tools, which might have some sense of the “true value” of each item, but make small,
independent errors in their estimation of these values. However, does the Random Utility Model
satisfy inversion-monotonicity?

Theorem [2answers this question in the affirmative. While we believe that this property may be of
independent interest, to our knowledge, we are the first paper to prove such a property for the Random
Utility model. The proof of Theorem [2]is largely proven by Lemmal[A.4] which is surprisingly subtle.

Theorem 2. The RUM with identical, symmetric, noise distributions across items is inversion-
monotone.

Lemma A.4. Suppose we have two random variables given by X1 = py + €1, Xo = ps + €9, for
1 > o and €1, €3 ~ D for a symmetric, single-peaked distribution D. Then, if | X1 — Xa| = A,

P[X1>X2||X17X2|:A}>P[X1<X2||X17X2|:A]

These results tell us that, even in settings beyond the superstar model, for cases where permutations
are generated by commonly-used models, the optimal strategy will still be to either pick the first free
item or the first busy item.

A.2 General superstar setting: v, > 0
Next, we consider the general superstar setting, where v, > 0. Note that Lemma 4.1} which shows

that either “first free” or “first busy” is optimal, still applies in this setting. However, the conditions
for which of these strategies will be optimal is more complex. For intuition, when va = 0, the
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Elvo,] | Elvs,] | Elve,]
0.461 | 0.431 | 0.408
0.502 | 0.463 | 0.517
0.517 | 0.523 | 0.443
0.611 | 0.534 | 0.527
0.533 | 0.495 | 0.458
0.553 | 0.594 | 0.533
0.563 | 0.548 | 0.578
0.706 | 0.663 0.63

Table 1: Expected utility for given different realized status vectors s. Permutations given by Random
Utility Model with v; = 1,v9 = v3 = 0.5, p; = 0.1,ps = p3 = 0.53 (giving r ~ 10), with
noise given by normal distribution with standard deviation of 1.75, discounting factor of v = 0.65.
Expected value calculated based on 5 - 105 simulations. Within each row, bold numbers indicate the
item with the highest expected value.

o R R = N R Rl =l
= O | O | O | O©

objective of the agent can be simplified to “find where the high-value item is likely to be” (moderated
by the added penalty for picking a busy item). However, if vo > 0, the agent must trade off their
desire to find the high-value item with their potential willingness to settle for the (nonzero) reward
of the low-value item. In this section, we will demonstrate how this seemingly minor change has
substantial implications for the agent’s best strategy.

In particular, we will show that the decision about whether to pick the first or jth item may depend on
the status of items ranked £ > j. This dependence arises because the status of any item can influence
the posterior probability of where the high value item is most likely to be, which influences which
strategy is best.

First, Table [I]shows this effect empirically for an example using the Random Utility Model (RUM)
with IV = 3 in the superstar setting, showing expected utility of each index given each of the possible
status vectors. We can note two examples where this property is violated (highlighted in blue): first,
consider the case where the status vector is given by s = [0, 1, %] for x € {0, 1}. If the last entry is 0,
then picking “first free” is optimal, but if the last entry is 1, picking “first busy” is optimal. We can
also consider the case where the status vector is s = [1, 0, x|. Here, if x = 0, “first free” is optimal,
but if * = 1, “first busy” becomes optimal. For intuition, the reason why this happens is because
when the last item is free, this increases the posterior belief that items that are busy are the high value
item (and an opposite effect occurs when the last item is busy). This effect does not occur in the
vo = 0 setting because the only permutations that gives the agent non-zero utility is when the high
value item comes in index 1 or j - the status of items in other indices ends up being irrelevant.

We can encapsulate this informal reasoning in a theoretical condition for the optimal strategy for the
agent, shown in Theorem [3] This extends the optimal strategy result in Theorem [T} which applied
only in the v, = 0 setting. Note that Theorem [3]similarly has a pair of thresholds, which relate to the
lowest index j with a different status from the first item (s; # s1), as well as the ratio of probabilities
p2/(1—p2

- Pl?gl—glg )
these thresholds are identical given the uniform distribution P[o’] = 1/N and j = 2 (given j > 2,
the thresholds are conditioning on different status vectors, and thus involve different signals about
the presence of the high value item). However, the key difference from the v = 0 setting is that the
thresholds in Theorem [3|depend on the status of items & > j - which directly violates the “irrelevance
of lower ranked items” property we would wish holds.

which indicates the strength of signal from an item being busy. Similar to Theorem

Theorem 3. Consider the superstar setting with vy > 0. Then, the agent’s optimal decision is given
by:

pick the first item 7y > Tbj

pick the jth item  otherwise

if5i<j:O75j:1{

pick the first item vy < T;
pick the jthitem  otherwise

lfSi<j17Sj0{
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For:
(v1 —vg) - Plo?] + vy - (r- Plo"~] + Plo?] + C)

(v1 —vg) -7 Plot] + vy (r- P[_UKj] + P[qj] +0O)
; (v1 — ) - Plot] +vg - (P[o*] + - Plo’] + C)

T) =

T (v —v3) -7 Plod] + vy - (P[o?*<I]| + 1 - Ploi] + C)

where T = 72;8:2; and C = Z?}:Hl Tl_SgP[ai}.

Theorem [3['s dependence on the status of items k& > j has implications for the strategy of the agent -
and for the best design of the ranking tool it uses. One potential hope might be that a “sufficiently
accurate” ranking might avoid this reliance on the status of lower ranked items. However, this
unfortunately is not the case - as Lemma[A.5]|shows, any ranking that has a nonzero chance of having
the high-value item appear at some index k& > j could result in requiring the decision-maker to
consider the status of items down to index k.

Lemma A.5. Forany N > j > 2, if there exists k > j > 2 such that P[oc*] = ¢ > 0, then there
exists v, s such that observing the status vector up to index k will change the choice of which item
will be selected.

However, in Lemmal[A.6| we provide tight bounds on the thresholds in Theorem [3 that the agent must
use to make a decision. In particular, if the penalty v falls outside of these bounds, then the agent can
select make an optimal decision based solely on the status of the first j items. Because these bounds
are tight, if  falls within them, the agent would need to consider further items in order to ensure its
decision is optimal.

Lemma A.6. I7 is possible to construct tight bounds on the thresholds in Theorem [3| using the
status of only the first k > j items. Specifically, such bounds are given by the terms below (with

Co= Zi‘c:j—i-l 151 Plo?] throughout):
When s;<; = 0,s; = 1, we have: 4
Bj, <T] <B:,

For:

. (v —w2)-Plo] +wy- (r—1)- Plo"<I] 4+ vy + vy - (Co — Plo?<'=H])

Ik (v1 —vg) - Plot] 4 vy« (r—1) - Plo"<I] 4+ vy + vg - (Cy — P[oI<i=k])

(v1 —v2) - Plod] + vy - (r — 1) - (1 = Plod]) + vg 4+ v - (Co — 7 - P[o?>*])

(v1 —wvg) -7 Plot] 4wy (r —1) - (1 — Plo?]) + va + vg - (Cy — r - P[o?>F])
where the upper bound is given by the case where sy = 0Y{ > k, and the lower bound is given by
s¢ =1Vl > k.

For the case when s;; = 1,s; = 0, we have:

{Fj{k <T/ <F?, Plo'|<r Plo’]

2
Biy =

F? < ij < F}, otherwise

o (v1 —v2) - P[ot] + va - (P[o*<I] + 1 - Plo?] + Cy — Plo™>k))

Ik () —wy) -7 - Ploi] 4 g - (Plo?<i] 4+ r - P[oi] + Cy — Plo?>*))

(v1 —v2) - P[o] +va - (14 (r — 1) - P[0">7] + Cy — r - P[o7<iSH])
(v1 —wg) -1 Plod]+vy- (14 (r—1) Plo?>I] 4+ Co —r - PloI<i=k])
where the CJ2 bound occurs when sy = 0 V¢ > k, and the C’71 bound occurs when sy = 1V > k.

2
Fjy =

We can use this bound to reason about how far down the status vector an agent must look to ensure
that they are making the correct decision, shown below.

Corollary. An agent can ensure it is picking the best item by observing the first k > j items, with k
defined as follows: If the first item is busy, then

I’§1>1g1 s.t. B},k > yor Bik <7

If the first item is free, then

1 2 1 j
min st Fjﬁkzyoer{kgy Plo'] 'ST~P[O'J]
k> Fj,k > ~or Fj7k <~ otherwise
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Gumbel Distribution PDF

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 2: Figure of PDFs of Gumbel and Gaussian noise, respectively.

Taken together, in this section we have shown that even the superstar setting has the undesirable
property of relevance of lower-ranked objects, meaning that the agent may need to consider items
beyond j in order to be confident that it is picking the best item. However, we have also provided
bounds that would allow the agent to limit how many items it has to consider.

A.3 Random Utility Model: Gumbel and Gaussian Noise

The most common noise distribution with the Random Utility Model is Gaussian noise, while our
theoretical results (Proposition@) uses Gumbel noise. In this section, we show that empirical results
for Gaussian noise closely mimic theoretical results for Gumbel noise.

Figure shows PDFS for Gumbel and Gaussian distributions, Figure shows the P[o?] values for
the superstar model, and Figure@ shows the ratio P[o!]/P[o], both for the Gumbel and Gaussian
noise distribution. In all settings, the 5 and standard deviation values are set to be equal.
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Gumbel P[si] (calculated), n=5
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Figure 3: Figure of P[o’] for RUM with Gumbel and Gaussian noise, respectively. Gumbel is
calculated exactly while Gaussian is simulated numerically.
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Gumbel P[sil/P[s1] (calculated), n=5
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Figure 4: Figure of 1;[[31]] for RUM with Gumbel and Gaussian noise, respectively. Gumbel is calcu-

lated exactly while Gaussian is simulated numerically. Note that P[o!]/P[o] is strictly increasing
as noise decreases for both Gumbel and Gaussian noise.
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B Proofs from main body

Theorem 4. Consider sets of items with values v;, and a Random Utility Model with i.i.d. Gumbel
noise G, () is added to each value. Then, the probability that item i has the highest noised value

0; is given by: /)
exp(v;
Zie[w] exp(vi/p)

Proof sketch. This proof is adapted from https://homes.cs.washington.edu/ ewein//blog/
2022/03/04/gumbel-max/|

The probability of item ¢ being ranked first can be written as:
P[I=i]= / fi(m) Hp(Gj < m)dm
oo j#i
Plugging in for the CDFs gives:

— [ nmexp(= 3 exp(-(6; ~ m)/))dm
- J#i
The full proof shows that this can be reduced to:
exp(v;/B)
Zje[N] exp(v;/f)

O

Proposition 2.1. Consider the superstar setting (1 item of value vi > vy = 0, and n — 1 elements of
item 0). If i.i.d. Gumbel noise (with scale parameter [3) is added to each value, then the probability
of the high value item being in index i is given by:

i1
exp(v1/B) 1
Plo'] =
o] exp(v1/8) +n—1 1};[1 1+ exp(zl_/kﬁ)fl

As a direct consequence, for any i > 2, the ratio % is given by: H;;ll (1 + %)

Proof. The i = 1 case is directly by the Gumbel trick. The ¢ = n case is the second most direct: the
high value item v, is ranked last whenever:

Pir=i= [ i) []otéy > m)am

j#i
— [ ftmp(o; > my
Plugging in for the CDF gives us:
| il (1 exp(= exp(~ (va — m)/3))* dm

The binomial expansion tells us that:

(1—3:)”:2”:(2)(—30)]“:1—71-36—1-(Z)xQ—(g)-x3+...

k=0

Applying the binomial expansion to our case gives us that:

n—1 n—1
(1= expl-exp(—(ex = m)/))" " = 3 (") (- expl- exp—(uz = m)/5))"

k=0
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— 1= (1= 1) expl-oxp(~(o2 /) + (" 1) exp(-2exp(— (02— m)/) ..
Plugging this into our integral gives us:
it (1= 0= 1) xpleexpl=oa = myo) + (" ) expl-2expl—(e2 = m)/B).. ) i
We can break up this integral into multiple sums. The first is the most obvious:
/OO film)dm =1
The second term is: 7
~n= 1) [ fulm) - expl- exp(—(uz — m)/B))dm

Looking at this, we can see this is exactly the probability that item 1 would be ranked first,
we if had only two elements (v, v2). By the Gumbel trick (Theorem [)), we know that this is

o (Ule;([?)(j_lei *f) )(1)2 757 multiplied by —(n — 1). Applying similar reasoning to other terms gives that
the entire sum of integrals is given by:
(1) exp(v1/0) N <n — 1> exp(v1/p)
2 ) exp(v1/B) + 2exp(v2/f)

exp(v1/B) + exp(va/f)

B exp(v1/5) o (net
= 2 (/) + k- exp(oafB) Y ( K )

k=0
Finally, we consider the case with ¢ € [2,n — 1]. This occurs when exactly ¢ — 1 low value items are

ranked above the high value item and n — 7 low value items are ranked below it. For any given ¢, there

are (?:11) ways that this could happen. Given a fixed set of ¢ — 1 low value items, the probability of

this occurring is given by:
oo
/ fi(m)P(t; > m)"™t . P(d; < m)"“dm
—00
Substituting in for the CDFs gives us:

/_°° fi(m) - (1 = exp( = exp(—(vz —m)/B)))' " - (exp(—(n — i) exp(—(va — m)/)))dm

Expanding out using the binomial coefficient gives that:

(1= exp(=exp(~(vz = m)/ )" = 1(i-Dexp(-exp(~(oa-m) 8+ (" ) expl-2exp(~(ua-m) ).

i—1

1—1

= Z ( f ) (—1)k exp(—k - exp(va — m)/f)
k=0

Distributing out the terms gives:

| nom- kZ ("5 1) 0 expl (-4 1) xpl—(oa — m) B
—00 =0

This looks similar to the ¢ = n case, except that the first term is the probability of the element 1 being
ranked first if we have n — ¢ low valued items, or

exp(v1/3)
exp(vi/B) + (n — i) - exp(v2/B)

Adapting the results gives us that the overall sum is given by:

(i2) ,; s o iehesam V()

19



where we have added the (7~}) term to give us P[o?].
We can strategically rewrite by pulling out a term in front:
i—1

= exp(v1/B) (ZL: 11> kZ:O SV E IR _1i TR -exp(va/B) (-1)F. (Z ; 1>

Setting v = 0 gives:

:exp(vl/mcz—ll) gexp(m/ﬁ)in—ﬂ—k (=D <Zk1)

Applying the identity from Lemma B.1]gives with z = exp(v1/3) + n gives:
n—1 exp(v1/B)+n—i+ 1) (1 —1)!

-1 (exp(v1/B) +n —1)!
— oxp(v: /) - (n—1)! (exp(v1/B) +n—i+ D! (i—1)!
— p( 1/6) ( ) (n ) (exp(vl/5)+n_1)!
(n —1)! _ (exp(v1/B) +n—i+1)!
I e R e
_ ep(w/d) [Tn—k
exp(v1/B) +n—1" Hk lexp(vl/5)+nfk—l
_ exp(v1/8) _Z - 1
T ECEDR | S
as desired. O]

Lemma B.1. The following relationship holdf] :

k

pors r—it+k I'(z) B (x—1)!

Proof. First, we note that

i-1 . i-1 . 1
i1—1 1 1—1 .
(=1 k,__ - — (=1 k/ CE*Z‘kald
kz_0< k ) Ry kz_o( k > CUT ) e ‘

Switching the order of the integral and summation gives:

k=0
Applying the bmom1al formula gives:

- ! z—i—1 i—1 _ o T@—9)-T@E)  (z—i-1!-@-1)
_/o z -(1=2)"" =Beta(z — i,i) = () = @)

where we have applied a relationship between the Beta and Gamma functions. [

Lemma 2.1. [f distribution { P[0%]'} is more accurate than { P[o]}, then P[o']’ > P[o'].

Proof. We will prove this by contradiction: suppose there exists some distribution such that P[[U,]] >
I;[[Z,] Vi > 1 (with the inequality strict in at least one index), and yet P[o!] < P[o!]". In order for
the inequality to hold, we must have P[o?] < Plo*]’ Vi > 1.

We require the inequality to be strict in at least one index: call the set of such indices J. For these

indices, % > ﬂ‘;] j € J, we must have P[o7] < P[o7]'. Thus, for all indices i € [N], we have

Plo;] < P[o"]’, with the inequality strict in at least some indices j € J. This implies that the total
probability of { P[0?]'} is greater than 1, which is a contradiction. O

*The authors especially wish to thank Sloan Neitert for discussions on this identity.

20



Lemma 4.1. In the superstar setting, given a realized status vector s, it is always optimal to either
pick the first free item or the first busy item.

Proof. In order to prove this, we will prove that the expected value of items given the status vector s
is descending, or:
Eonplvs, | 5] =2 Eonplvg, [ 5] i<

If this condition holds, then for any two ¢, j given a; = a;, we know that the lower ranked of the two
has higher utility, and thus no optimal strategy could every pick the higher ranked item.

Next, we will show that the superstar setting always satisfies this property. The expected value of the
ith entry is given by:

N

Pt Pl
ZPU|S Um—z Pls] oh

o~P k=1

Um

where we have used that in the superstar setting, each of the permutations can be identified by the
index of the high-value item. By identical reasoning, the expected value of the jth entry is given by:

N X
Pls| o*] - P[o*
UUJ|S ZPU|8 UGJ:Z[SOJ-DES][U].UU?

o~P k=1
The condition we wish to show is:
N

N Pls|o Pls|o
> Ty 2 3 G

k=1 k=1

XN:P[S | o] - Plog] - (vgf - vgf) >0

Because we are in the superstar settmg, we know that v, b= Ugh (both items are low value) unless
ke {ij}. Dropping all but these values of k and using vy > vy for the high and low values
respectively gives:
P[s|0']- P[o"] - (v1 — va) + P[s | ¢7] - P[o?] - (vy —v1) >0
which is positive whenever:
(v1 —v2) - (P[s | 0']- Plo'] = Pls | o’] - Plo7]) > 0

By assumption, v; > v, and s; = s;. This latter assumption tells us that P[s | o] = P[s | ¢7]:
because the status in index i, j are identical, they are equally likely to occur if the high-value item
is in index 4 or j. Finally, we require that the expected value of the distribution Eo ~ P[v,,] is
always descending in ¢, which for the superstar setting implies that the high-value item is always
(weakly) more likely to be at lower indices (P[o?] > P[o7]). Taken together, this implies that the
above condition reduces to:

(v1 = v2) - Pls | o'] - (Plo’] = Plo’]) > 0

which always holds. ]
Theorem 1 [Optimal hiring for firms] If r - v < 1, then define j* as the largest j such that
Plo’] < <. Then, the optimal strategy for the firm is to use the j*-virtuous selection strategy: select

Plod]
the hzghest-mnked free candidate within the top j*. If all of the top j* candidates are busy, hire the
top-ranked candidate.

Conversely, if r - v > 1, define k* as the largest k such that P[U % < 1 -~. Then, the optimal strategy

for the firm is to use the k*-adverse selection strategy: select the highest-ranked busy candidate
within the top k*. If all of the top k* candidates are free, hire the top-ranked candidate.

If 7% = 1 or k* = 1, then optimal strategy for the firm is to use the follow the ranking strategy:
always select the top-ranked candidate, regardless of whether they are free or busy.
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Follow the ranking

j J
0 T, Ty 1
N ———
Virtuous signalling Adverse selection

Figure 5: Axis shows v going from O to 1, in the case that Tg < T;. When v < Tg < T}, the
optimal strategy is always to pick the first element that is free: virtuous signalling, modeling scenarios
where picking a busy item has prohibitively high penalty. When v > T; > T}, the optimal strategy
is always to pick the first element that is busy: adverse selection, modeling scenarios where picking
a busy item has small penalty, but higher utility due to the signal induced by being busy. Given
Tbj <~ < T;, the optimal strategy is always pick the highest-ranked item: this is where the signal
induced by the ranking is stronger than the signal from the free/busy status.

Proof. First, we use sub-lemma @ which tells us that, for any given status vector, the optimal
candidate to pick is always either the first free (highest-ranked free) or first busy candidate. Thus,
the rest of our analysis simply needs to determine which of these two candidates is best in any given
scenario.

Calculating thresholds:
First, we will show that the optimal strategy can be calculated as a function of index-specific

thresholds Tbj , T; depending on whether the highest-ranked candidate is free or busy.

First, we will consider the case where first item is busy, jth item is the first that is free. We pick the
Ist (busy) index over the jth (free) index when:
Eonp v, | 8] 7 = Eonplvs, | 8]
Note that in the superstar setting with vy = 0, we can write the expected value as:
N . .
P[s | o*] - Plo*] Pls|o"]- Plo']
Bl o] = 3 Plo|s)-vo = 3 == v = =g

o~P k=1

where in the last step, we have used the property that v,» = 0 unless k& = i, in which case it equals
v1. Our condition thus reduces to:

Pls|o']- Plo"] -7 > P[s | o/] - Plo’]

Next, we will reason about the relative probabilities of seeing the status vector s, given that the high
value item is in the 1st or jth index. We can write:

N
Pls|o'l=1-p)-(L—py 2 po [ p3 (1 —p2)'—
k=j+1

N
Pls|d?l=(1 _pz)J—l - H pgk (1 —pg)l_sk
k=j+1

= P[s | o] - 22£0=p1) _ 1. Because

Note that P[s | 09] = Pls | o' (1 - p2) - p1 - =iy P/ (T=p2)

p1 < p2, we have r = :—; < 1. We can rewrite the relevant condition as:

1 j
y>—- =T

ro  Plol]

Next, we consider the case where the first item is free, the jth item is the first that is busy. Using
similar reasoning to the first case, we pick the first (free) item whenever:

Esnplvo, | a] > Eonp [vaj |a] -y
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which simplifies to: ) )
Pls|o']- Plo'] = P[s | o7] - Plo”] -y

In this case, the status vector s is free for the first j — 1 values, meaning that:

Plalo'=p1-p}? (1—pa)- H p3* - (1 —pa)'t =
k=j+1

P[a|0j] ] L -(1—=p1) H jod 171)2)175’c

—j+1
This tells us that P[s | 7] = P[s | o] - % = r. We can rewrite the relevant condition as:
;P [Ul} 1
T - >
I = Pl v ="

Calculating the optimal strategy:
Finally, we use these thresholds to calculate regimes for optimal strategies for firms:

We assume v, r are fixed.
Adverse selection:

1 Plo! .1 Plo?
7>TJ7; PLJ} ZTgr.P{Ul}
Plo'] _ Plo?]
V" Plod] © PloT]
Can rewrite this as: ]
~ -1 Plo?] > P[o*] and P[o] > 1:[“;]
j 1 Plo?]
~v-r-Plo’] > Plo'] >
Ty
Follow the ranking: X
.1 Plo 1 Plod
T;ZT'PM >72T]_T'PH

Or, the first term gives you:

The second term gives:

Taken together,

. Plgi
Plo'] > max (7" -y - Plo”], lo ])
- ’)/
Virtuous selection:

.1 Plot .1 Plo?
T;:r.PL—J% >Tg:r.P{01} -
Plo'] _ . _ Plo’]
Ploi) =10 = Pl 77

Or, the first term becomes:

The second term becomes:




Or, )
Plo7]

Ty

r-v-Plo?] < Plo?] <

Analysis: _

We know that P[o!] > P[o7] Vj > 2. Note that r > 1 and v < 1, so r - 7y could be either > 1 or
< 1. Which of this it is will affect which of these regimes the firm may go through.

First, let’s consider the case where r - v < 1. Then, we know 7 - vy - P[07] < P[o7] < P[o!] holds
automatically. We also know that P[o!] could be less than [’v] However, note that we never have

v -7+ P[o?] > P[o?], so adverse selection is never optimal for this regime. The optimal strategy can
be described as:

.
Plot] > P[‘;] Follow the ranking

{P[al} < 2171 Virtuous selection

So, as P[o!] increases or P[07] decreases, we go from the virtuous selection regime (selecting a free
candidate, whenever one is available) to the “follow the ranking” scheme, where the optimal strategy
is to pick whichever is ranked first.

Next, let’s consider the case where r - v > 1. Then, we know that we never have P[o!] < P;[[;J}
(because we know P[U l<p [07] < P[o!)), so virtuous selection is never possible. Instead, for low
Plo'l<~-r-P [03] we’re in adverse selection, and as P[o!] increases or P[o7] decreases, we
move to “follow the ranking”. The optimal strategy looks like:
Plol] < P[o7] -7 -~ Adverse selection
Plo!] > P[o7] -7 -~ Follow the ranking
O

Lemma 4.2. Holding v constant, increasing the accuracy of the ranking tool always holds constant
or decreases the furthest index a firm needs to consider (decreases j* or k* as defined in Theoreml|l).

Proof. This can be seen almost immediately: from the strategy in Theorem [I] a firm’s strategy

depends on the ratio P% ]] in comparison to a constant 7 - y (or its inverse for adverse selection). As

the accuracy increases, by Deﬁmtlonthe ratio P[[‘;L]] increases. This means that fewer indices ¢ will

satisfy the P[[U ]] < r -y criteria, so j* or k* will stay constant or decrease. O
Lemma 4.3. No matter how accurate a ranking is, there exists a firm whose optimal strategy is
virtuous selection wzth §* = n. More precisely, for all € > 0 such that P[o']/P[o™] = ¢, there exists
a busy penalty v < = such that k* = n.

For all firms with 2 1, if Plo']/Plo?] > r, the optimal strategy is always “follow the ranking”.

Proof. These results can be seen almost immediately from the derivation of the optimal strategies in
Theorem 11 )
First, assume 1};[[ L — ¢ > 0. Then, set any v < f Note that r - v = € < 1, so the firm’s optimal

G‘”]

strategy is virtuous selection or “follow the ranking”. Because:

1
r«'y>€_P[0"}

We know that the firm’s optimal strategy is virtuous selection with j* = n, as desired.

Plo!]

Next, we wish to show that if v > = glven Plo?]* follow the ranking is always optimal. By
assumption:

Plo!] - Plot] Sr >y

Plo’] — Plo?] ~ —
This condition means that the optimal strategy for firms is always “follow the ranking”. O
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Lemma 4.4. Increasing the accuracy of the ranking tool can increase, decrease, or keep constant the
probability that a firm selects the top ranked candidate.

Proof. Throughout, we’ll focus on the n = 2 setting to give our existence examples. Given n = 2,
there are exactly four possible status vectors: [0,0],[0,1],[1,0],[1,1]. This proof will involve
reasoning about the actions firms take when they observe different status vectors, and how likely
these status vectors are to appear.

Less attractive firms: r - v < 1:

1
In this setting, if % < (r-~)7!, firms are using virtuous selection with j = 2: they hire
the top-ranked free candidate if one exists. Thus, the only time a firm in this setting hires the
second-ranked candidate is if the realized status vector is [0, 1]. What happens as the accuracy of the

ranking increases?

P[o‘l ’

Case 1: If the accuracy increases such that ﬁ[a]l]' > (r - )~%, then the firm now always uses

“follow the ranking” and selects the top-ranked candidate with probability 1.

% < (r- )71, then the firm continues to
hire the second-ranked candidate only if the realized status vector is [0, 1]. However, the probability
of observing this status vector has increased, because a more accurate ranking tool more often places
the high-value candidate first, and the high-value candidate is more likely to be unavailable. Thus,
increasing the accuracy of the ranking tool can decrease the probability that the top-ranked candidate

is selected. More formally,
Pls=10,1]] = Pls =[0,1] | 0'] - Plo"] + P[s = [0,1] | 0°] - P[o?]
=1 =p1)-p2-Plo]+ (1 —p2)-pi- (L= Plo']) = Plo']- (p2 —p1) + (1 —p2) ;1

Note that the coefficient on P[o!] is positive, so the probability of the status vector [0, 1] increases as
P[o!] increases (which decreases the probability that the top-ranked candidate is selected).

Case 2: If the accuracy increases, but we still have

More attractive firms: r - v > 1:
The analysis in this setting is very similar to that of the above, except the result will be that increasing
the accuracy always increases the chance that the top-ranked candidate will be selected. In this

setting, if % < r -, firms are using adverse selection with j = 2: they hire the top-ranked

busy candidate if one exists.Thus, the only time a firm hires the second-ranked candidate is if the
realized status vector is [1, 0]. What happens as the accuracy of the ranking increases?

Case 1: If the accuracy increases such that now % > r - 7, then the firm always uses “follow
the ranking” and selects the top-ranked candidate with probability 1.

177
Case 2: If the accuracy increases, but we still have % < r -, then the firm continues to hire

the second-ranked candidate only if the realized status vector is [1,0]. This probability decreases
because a more accurate ranking tool places the high-value candidate first more often, and the high
value candidate is less likely to be free. More formally,

P[s =[1,0]] = P[s = [1,0] | ¢'] - P[o'] + P[s = [1,0] | 0?] - P[o?]

=p1-(L=p2)- Plo']+p2-(L—p1)- (1= Plo']) = Plo'] - (p1 —p2) +p2- (1= p1)
Note that the coefficient on P[o!] is negative, so the probability of the status vector [1, 0] decreases
as P[o!] increases (which increases the probability that the top-ranked candidate is selected). [

Lemma 5.1. There exist settings where increasing the accuracy of the ranking tool can increase or
decrease duplicative effort.

Proof. First, let’s calculate the duplicative effort involved in each status vector. Recall that duplicative
effort is the total value of selected busy candidates:

v E[Ul)i(s)} ’ ]]'[52(5) = O}
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From prior analysis in Theorem [I] we know that in the superstar setting:

E[vpi(d)] = Z]E[vm(s) S] : P[S] =71 '71731‘ ! Z P[S ‘ CTi(s)] : P[O—i(s)]
ses seS

Thus, duplicative effort can be written as:

v-vi- Y Pls| i) Plos)]
ses

where i(s) is the selected index, given the firm’s strategy. Based on the results in Theorem we
know that the strategy of each firm depends on 7 - 7.

Less attractive firms: r - v < 1:
First, we will analyze the case where 7 - v < 1, where a firm’s strategy is virtuous selection for within

the top k indices, where k is the largest index such that P[o!] < PT[%';]
Note that if £ = 1, then the firm always selects the top-ranked candidate, and duplicative effort is

exactly the governed by the probability that the top-ranked candidate is a busy high-value candidate:
vy -y (1—p1)- Plo']

In this case, increasing accuracy automatically increases duplicative effort, because by Lemma [2.1]it
would increase P[o!].

Next, we consider the case where & > 1. Then, the firm picks a busy candidate only if no free ones
are available within the top k& (and when they pick, they pick the top-ranked candidate). This gives
duplicative effort equal to:

v Plsi | o] Plot] =vi -y (1=p1) - (1 =p2)*" - Plo']
How does this quantity change as the accuracy increases? Two effects can happen: first £ can shrink
(which would cause this quantity to increase), and secondly P[o!] can increase (which would again
cause this quantity to increase). Thus, for firms with 7 - v < 1, increasing the accuracy only increases
duplicative effort.

More attractive firms: r - v < 1:
In this case, a firm’s strategy is adverse selection within the first j indices, where j is the largest
quantity such that P[] < P[o7] - r - . Note that if j = 1, then again the duplicative effort is given
by:

vi -7 (L=p1)- Plo’]
Again, note that if the accuracy increases, then the duplicative effort also increases.
Next, we consider the case where 5 > 1. Here, the firm picks a busy candidate so long as one is

available (that is, if one is available within the top j candidates). This gives a total duplicative effort
of

j
yovr- Y Plo']-(1—p1)-ps"
=1

Plo']-(1—p1)+ Plo®]- (1 —p1) p2+...Plo?] - (1 —p1) - )"
In this case, increased accuracy has two opposing effects. First, it decreases j, which decreases
duplicative effort. Secondly, it changes the values of { P[¢?]} terms: in general this increases the
probability of the high value item being ranked highly (increasing P[c?] for small ), but this change
may not be monotonic.
We illustrate the fact that duplicative effort may increase or decrease by considering the n = 2 case,
where duplicative effort with j = 2 reduces to:

Plo'] (1 =p)+ (1= Plo']) - (1 =p1) p2 =1 =p1) - (Plo']- (1= p2) + p2)

If the accuracy of the ranker increases (P[O’l] increases) but 5/ = 2 still, then duplicative effort
increases: we can observe this by noting that the derivative of the term above is (1 —p;)-(1—p2) > 0.
Intuitively, this means that the firm is using adverse selection still, but the top-ranked busy candidate
is more likely to be a high value candidate, which means that selecting them has a greater cost than
selecting a busy low value candidate.
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However, if the accuracy of the ranker increases such that j° = 1 (the firm switches to “follow the
ranking”), duplicative effort may decrease. This occurs exactly when:

(1 =p1)- (Plo']- (1= p2) +p2) > Plo'] - (1 - p1)
Plo']- (1 = p2) +p2 > Plo]
Thus, for cases where P[o!]’ is larger than P[o!] but still lower than the quantity above, an increased
accuracy can decrease duplicative effort.
For concreteness, set p; = 0.5 and py = 0.75, which gives r = % = 3, and set v = 2/3,
which gives r - v = 2. Further set P[o!] = 0.6 and P[o!]’ = 0.8.

Pl _
1-Pl1] =

Note that we have 1.5 < 2 = 7 - r, which means that the optimal strategy using P[o] is

197
adverse selection with £* = 2. However, we have %
using P[o!] is “follow the ranking”. Given the parameters, we have:

Plo'] - (1 —p2) +p2 =0.9> P[o'] =0.8

as desired. O

=4 > 2 =~ -r, so the optimal strategy

Lemma B.2. A firm using virtuous selection or follow the ranking never experiences positive benefits
fo congestion.

Proof. We can prove this result by reasoning about a) which index a firm selects when using virtuous
selection or follow the ranking, and b) how the expected utility of the candidate in this index differs
from the expected utility of the candidate ranked first. Note that without congestion, the optimal
strategy is always to pick the top-ranked candidate, who will be free. Note that follow the ranking is
identical to virtuous selection with j5* = 1 and can thus be analyzed using the same techniques.

First, consider the case where the status vector has the first candidate being free: then a firm using
virtuous selection will pick this candidate and will obtain expected utility exactly identical to what it
would obtain in the absence of congestion.

Second, consider the case where the status vector has all top j* candidates being busy. Then, the
firm using virtuous selection with parameter j* will pick the top-ranked candidate (the same as it
would do without congestion), but will pay a - penalty, and thus will obtain strictly lower utility than
without congestion.

Thirdly, consider the case where the status vector has the first candidate being busy and the first free
candidate in index ¢ € [2, j*]. Then, the firm using virtuous selection will select the free candidate
in index i. Note that this has lower expected value (excluding the busy penalty) than the candidate
ranked first: Because P[o!] > P[o?], our prior is that the high value candidate is more likely to be
ranked first. Because p; < po, having observed that the top-ranked candidate is busy and the ith
ranked candidate is free only increases our posterior estimate of the top-ranked candidate’s value and
decreases our posterior estimate of the ¢th candidate’s value. Without congestion, the firm would pick
the 1st candidate (without a busy penalty ~y) and thus would obtain strictly higher utility than the firm
using virtuous selection.

Together, these three scenarios encompass all possible status vectors and show that a firm using
virtuous selection would obtain equal or strictly lower utility among all of them, showing that there
can never be positive benefits to congestion. O

Lemma 5.2. A firm using virtuous selection or “follow the ranking” never experiences positive
benefits to congestion.

A firm using adverse selection with k* > 2 experiences positive benefits to congestion Iz/ and only if:
1
)+(1=p1)-(1—7)

pl.(l_pg*(}fpl)w ZI:;Q py=LP[o*] > P[o!] with k* defined as in Theorem

Proof. First, Lemma shows that a firm using virtuous selection or follow the ranking never
experiences positive benefits to congestion.

Next, we will consider the case where a firm is using adverse selection with £* > 2. We will begin by
building intuition by reasoning about the possible status vectors and then derive the formal conditions.
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Case 1: If all candidates in the top k* are free, then the firm using adverse selection will pick the
top-ranked candidate. This is identical to what it would have picked without congestion (and has no
busy penalty), and thus it obtains exactly identical utility.

Case 2: If the top-ranked candidate is busy, then the firm using adverse selection picks it. In the
absence of congestion, the firm would still have picked the top-ranked candidate, but would have
done so without have to pay a busy penalty. Thus, in this case, congestion hurts the firm.

Case 3: If the top ranked candidate is free and the first busy candidate is in index ¢ € [2, k*], then
the firm using adverse selection picks the candidate in index ¢, whereas it would have picked the
top-ranked free candidate in the absence of congestion. Here: congestion could lead to higher or
lower utility, depending on the strength of the signal from being busy as compared with the accuracy
of the ranking tool.

The remainder of this proof will revolve around showing when the potential positive benefits of
congestion from Case 3 outweigh the harms of congestion in Case 2 and Case 3.

Denote i(s) as the index that is selected given a status vector s, given the optimal strategy. Note that
this relies also on other parameters (-, ) which we will omit for conciseness. We're interested in
when the expected utility given the optimal strategy (and congestion) is higher than the expected
utility without any congestion. If there’s no congestion, then the best strategy is always to pick the
first element, who is always free and has probability P[o!] of being the high-valued candidate, which
gives expected utility:
v - P [U 1]
What is the utility of the optimal strategy?

For every status vector s, we need to calculate the optimal strategy, and the probability of that vector
occurring.

We can write this expected utility as:
ZE[Ui(S) | 8] - P[s]
ses

Because vo = 0, we know that v;(,) = v; if the high value item is in index i(s) and O otherwise,
which means we can simplify this down to:

s e P[s | 0i(s)] - Ploi(s))
S it Ployy | s]-Pls] = vyt S <P)[S] O Pls] = 019t =-3 " Pls | oy

ses seS seS

where we have applied Bayes rule. Now, we analyze i(s) for various values of s and how they affect
the utility we get.

Note that the utility for no congestion given vo = 0 is given by:

vy - ZP[S | o']- P[]

ses

Next, we analyze the total difference in utility between the congested setting and uncongested setting
for Case 2 and Case 3.

Case 2:

In this setting, the firm using adverse selection picks the top-ranked (busy) candidate, the same as it

would do in the absence of congestion. However, it must pay a -y penalty for picking a busy candidate.
The difference in utility is given by summing over all possible status vectors such that this is true,

indexing by the location of the first candidate who is free:

> P[s|a']-Plo']- (y—1)

s|si<;=0,s;=1Us;=0 Vi
n

=Plo']-(v=1)- | Y (I=p1) - (1 =p2)’ - pot+ (1 —p1)- (1—po)" "

=2
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where the last case is where the status vector has every agent being busy. We can simplify by
collecting like terms:

n

(L=p1)-Plo']-(y=1) - | D (1 =p2)’ % pa+ (1 —po)""
j=2
Note that we can further simplify this by using the sum of a geometric series:

n n—2

S -py 2= (1-p) = 1-(1—po)™' _1—(1—po)~"

< < = (- ) P

which means that:

n

> A =p) 2 py+ (1—pa)"

=2

-1 _ 1—(1—po)"!

prt(1—po)" 1 =1
D2

So the overall term becomes:
(1—p1)-Plo']-(v—1)

Case 3:

In this case, the firm using adverse selection picks the first busy candidate in index j > 2, while a
candidate without congestion would pick the top-ranked candidate (who is free). Here, the difference
in expected value is given by:

> P[s|o’]- Plo’] -y = P[s | '] - Plo"]

s|sic;=1,5;=0,j<k*

We can again rewrite this by summing over the index of the first candidate that’s busy:
= sz (L=p)- Plo’] -y =p1-ph > (1= pa) - Plo’]

We can simplify down some of the terms by noting:

kT k*—2 k 1
-2
>} Z =
=2 l-py P2
So the term above becomes:
(1—p1) VZPQ Plo?] = p1-(1—p5 ') Plo']

When is the total increase in utility from Case 3 larger than the total decrease in utility from Case 2?

Whenever:
(1-p) prz VPl > p-(1-p5 Y Pl + (1=p1) - Plo] - (1-7)
(1—p1)-~v - 1 j 1
— py  Plo’] > Plo7]
p1-(1—ph 1)+(1*101)‘(1*’Y)j§ 2
as desired.

O

Lemma 5.3. Increasing the accuracy of the ranking tool always reduces the firms’ benefit to
congestion.
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Proof. This can be seem almost immediately from Lemma[5.2] which says that there are benefits to
congestion if and only if:

(1*101)'”)/ . J—1 a'j 0'1
p1-(1—p§*1)+(1_p1).(1_7);172 Plo’] > Plo']

which can be rewritten as:
d

(1—p1)-v j—1P[Uj]
N ( PR

pr-(1—=p5 )+ (1—p1

Increasing accuracy decreases %, which decreases the term on the lefthand side, reducing the
benefits of congestion as desired. O

Lemma 5.4. For all parameters, the free-busy gap is strictly positive if the firm is using virtuous
selection, strictly negative if the firm is using adverse selection, and zero if the firm is using follow
the ranking.

Proof. In proving this theorem, we will rely on sub-lemma [B.3] which gives closed-form solutions
for the free-busy gap (for conciseness, we will not restate these solutions here).

Note that the conditions in Lemma[B.3|are equal to 0 if and only if £* = 1 or j* = 1 (the candidates
are using “follow the ranking”).

Note that the free-busy gap is strictly positive when the firm is using virtuous selection (indicating
that free candidates have a higher chance of being selected) and strictly negative when the firm is
using adverse selection (indicating that busy candidates have a higher chance of being selected). [

Lemma B.3. The free-busy gaps are given by the following terms:
High value candidate:
Virtuous selection:

Plo'] (1= (L=p2) " ™") + P[o*) - (1= p2) + Plo”] - (1= p2)? + ... Plo? ] - (1= po)/
Adverse selection:
Pl (1= g )~ Plo) - pa— Plo% 93 — ...~ Plo’] g

Follow the ranking: 0.
Low value candidate:
Virtuous selection:

P[o?]

1— Plo? 1-—
e By

where fp = Plo"<* [ i # 4] - (1 —=p1) - (1 =p2) 2 + (1 = Plo™<" [ i # €]) - (1 = p2)*~ ! for
(> 1land By = Plo®S'<7" | i #1]-(1—p1)-(1=p2)? 24 (1= P[o?>==0" | i #£1])-(1—po)? L.

1— Plo?7]

n—1

Adverse selection:
1= Plot]
n—1
where oy = Plo™<* | i # {]-p; -pgfz—i—(l—P[aKé | i # E])-pgflforf > land oy = P[J2Si§k*
i A1) props 24+ (1= Plo?S=K i) pf

_ Plo? _ Plok
ey PR 1P

n—1 N n_1 Y *

Proof. Here, we will derive the form of the free-busy gap. In each case, it will depend on the strategy
of the firm. Throughout, we will calculate the probability of a candidate being hired, conditioned
on them being free (alternatively busy). Note that this is different from the proportion of candidates
hired who are free vs. busy.

Follow the ranking:
In this setting, a free candidate is hired if and only if they are the top ranked candidate. Similarly, a
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busy candidate is hired if and only if they are the top ranked. Because free-busy status is independent
of ranking, the probability of each is exactly equal.

Virtuous selection:

In this setting, for some j* > 1, the firm’s strategy is to hire the top-ranked free candidate within the
top 5* indices. If all top j* candidates are busy, then the firm hires the top candidate. Thus, a free
candidate is selected if they are in the top j* and every candidate ranked above them is busy. A busy
candidate is selected only if they are ranked first and every other candidate in the top j* is also busy.
Next, we derive the form for these probabilities.

High value candidate:
The probability that a free high value candidate is selected is:

s

J
Z P[Candidate is in index ] - P[all candidates in lower indices are busy | Candidate in index ]
i=1

= Plo'] + P[o?]- (1 —p2) + P[o®] - (1 = p2)? + ... Plo? ] - (1 — po)’ !
The probability that a busy high value candidate is selected is:

P[Candidate is in index 1] - P[All candidates in lower indices are busy | Candidate in index 1]

=Pl']-(1-p)
Thus, the gap is given by:

Plo']- (1= (1 =) ) + Plo®) - (L= p2) + P[o%] - (1 = pa)* ... Plo ] - (1 = pa) !

Low value candidates:
The probability that a free low value candidate is selected is:

Sk

J
Z P[Candidate is in index ¢] - PJall candidates in lower indices are busy | Candidate in index ]
i=1

_ 1 _ 2 _ J"
1 Plo'] 1 P[O’}'ﬂ2+'”1 Plo’ ]

n—1 n—1 n—1
where B = P[o"<! | i # €] - (1 —p1) - (1 — pa)*2 + (1 = P[o"<* | i # €]) - (1 — po)"~" where
this term gives the probability of every other item being ranked above the candidate in index £ is
busy, depending on whether the high value item is above or below index ¢. Note that the n — 1 term
comes because all low value candidates are interchangable and have equal chance of being at any
index (except for the one where where the high value candidate is). The probability that a busy low
value candidate is selected is:

5%

P[Candidate is in index 1] - P[All candidates in lower indices are busy | Candidate in index 1]

_1—Plo!]
=L 4

where 81 = P[o?S1S3" | i £ 1] (1 —p1)- (1 —p2)! ~2+ (1 = Plo?SiS77 [ i #£1]) - (1 —po)? 1
gives the probability that all other candidates in the top j* are busy.

The free-busy gap is given by:

1 — P[o!]

+1_7‘Pk‘2]52+ 1_P[Uj]
n—1

(1—-751) 1 T
Adbverse selection:
In this setting, for some k* > 1, the firm’s strategy is to hire the top-ranked busy candidate within
the top £ indices. If all top k* candidates are free, then the firm hires the top-ranked candidate. A
busy candidate is selected if they are in the top £* and every candidate above them is free. A free
candidate is selected only if they are ranked first and every other candidate in the top £* is also free.

31



High value candidate:
The probability that a busy high value candidate is selected is:

- %

j
Z P[Candidate is in index ¢] - P[all candidates in lower indices are free | Candidate in index ]
i=1

= Plo"] + Plo®] - p2 + Plo®] - p3 + ... Plo"] - p§

The probability that a free candidate is selected is:

P[Candidate is in index 1] - P[All candidates in lower indices are free | Candidate in index 1]

= Plo']-py !
Thus, the free-busy gap is given by:

Pl (1=ph"1) = Plo®] - pp = Plo®] g — ... — Plo’] - p5 !

Low value candidates:
The probability that a busy candidate is selected is given by:

-k

j
Z P[Candidate is in index ¢] - P[all candidates in lower indices are free | Candidate in index ]
i=1
1—Plo'] 1- P[o?] 1— P[o*"]
= + Cg A ———— e
n—1 n—1 n—1
where ap = P[o?<! | i # 0] - p1 - p5 2 + (1 — Plo?<* | i # €]) - p5~* gives the probability of all
candidates ranked above the candidate in index ¢ being free.

The probability that a free candidate is selected is given by:
P[Candidate is in index 1] - P[All candidates in lower indices are free | Candidate in index 1]
_ 1—Plo']
- on—1
where a = P[o?Si<F" |4 £ 1] -py - ph =2 4 (1 = P[o®S=F | £ 1)) - ph L
Thus, the free-busy gap is given by:
1 — Plo?]
n—1

o3

1 — P[o?] 1 — Plo"]
-y — ...
n—1 n—1

(1—o)

CQUx

O

Lemma 5.5. There exist settings where increasing the accuracy of the ranking tool can either increase
or decrease the magnitude of the free-busy gap.

Proof. First, we note that if a firm is within the “follow the ranking” strategy space, then increasing
the accuracy of the ranking tool has no impact on the free-busy gap (it stays constant at 0).

We will again use the functional forms for the free-busy gap derived in Lemma B.3] simplifying the
terms for NV = 2. High value candidate:
Virtuous selection:

Plo']- (1= (1 =p2)) + (1= Plo']) - (1 = p)
=1—Plo]+p2-(2-Plo'] 1)
Adverse selection :
—Plo']- (1 =p2) = (1= Plo']) - po
= —p2-(1-2-Plo']) - Plo']
When does the magnitude of the free-busy gap increase with increased accuracy (here, increased
P[Jl])? Taking the derivative of the free-busy gap under virtuous selection gives:

—142-py
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Taking the derivative on the magnitude of the free-busy gap under adverse selection gives:
—2-pa+1

Thus, if po > 0.5, increasing the accuracy of the ranking tool increases the free-busy gap under
virtuous selection and decreases it under adverse selection, and vice versa if po < 0.5.

For intuition, under virtuous selection a busy candidate is only selected if it’s ranked first and the
other candidate happens to be busy, while a free candidate is always selected (unless it’s ranked
second and the other candidate is also free). If po > 0.5, the low value candidate is more likely to
be free than busy, so increasing the accuracy P[o'] increases the probability of the free (high value)
agent being selected, as compared to an alternative busy (high value) agent.

Similar reasoning follows for adverse selection and for the low value candidate’s free-busy gap. [J

C Proofs from Appendix[A|

Lemma A.1. There exists a probability distribution P such that for some realized status vector s,
picking the second free item maximizes expected utility, even if P is descending in expected value.

Proof. We will set the 3 items to have values [v; = 1,vz,v3 = 0]. We will create a permutation
distribution with nonzero support on exactly two permutations:
1 2
g = [’U17/027,U3] g = [U3,U27'Ul]
where P[o!] = 1 — ¢, P[0?] = €. Before the item status vector is taken into account, the expected
utility of picking item ¢ € [1, 2, 3] is given by:
Eonplvo, ] =v1- (1 —€) Eonplvg,] =v2 Epuplvs,] =€-v1

If we want the distribution to have descending expected value, we will set:

vy -(1—€)>vy>e€-vq

We will next consider the probabilities of being free. For simplicity, we will set p; < ps = ps, S0
items 2 and 3 have the same probability of being free, which is greater than for item 1.

Next, we will consider the case where we have realized status vector [1,1,0]. This increases our
posterior belief that we are in o2, which decreases the expected utility of picking the first item.

We will formalize this next. The posterior value for the first item is given by:

Pls|o']-Plo'] _ = pi-p2-(1—p2)-(1-¢)
Pls] ' Pls]

Plug, =v1 | 8] v =

The posterior value for the second item is always exactly v, because both possible permutations
involve having vy ranked second. However, we will find it useful to strategically rewrite this
probability :

Pls] Pls|o']- Plo'] + P[s | 0% - P[0?]
P[Uo—a202‘8}‘1]2:”2:“2'?[5:02' P[s]
 opipe-(I—p2)-(1—€)+p3-(1—p1)-e
= Vg -
Pls]
The posterior value for the third item is given by:
P[s| ¢?] - Plo?] p2-(1—p1) €
P oa — . . = . B e ——— . P D S R A—
oy =01 [ 8] v1-7v=7"v1 Pl Y- v Z8

Next, we will show that there exists parameters such that the optimal strategy (item with highest
posterior utility) is the second (free) item, rather than the first free or first busy strategy. Specifically,
we will show that this condition holds for ¢ = 0.1,v1 = 1,3 = 2/3,v3 = 0,p; = 0.1,ps =
0.4,~ € [0, 1]. Note that these parameters immediately satisfies v < (1 — €) - v1, which implies that
the prior ranking is descending in expected utility (as desired).
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Note that each of these expected utility terms have a common denominator of Pla], which we can
drop. We know that picking the second (free) item has higher expected utility than picking the first
(free) item whenever:

vi-propa-(1—p2)-(1—€) <wa-(pr-pa-(1—p2)-(1—€)+p5-(1—p1)-e)
Dropping a common term of p, and distributing vs:
viopr-(L—po)-(1—€)<wva-pr-(1—p2)-(1—¢€)+v2-pa-(1—w1)-€
Substituting in for the given values sets:
2 2
1-01-06-09 < §-0.1-0.6-0.9+§-0.4-0.9-0.1

0.054 < 0.06
as desired.

We will additionally require that picking the third item (given s realized) has lower expected utility
than picking the second item. This means we require:

U2'(pl’pz'(1*172)'(1*€)+P§'(1*P1)'€) >’Y’Ul'p§'(1*p1)'f
v (pr-(1=p2)- (=€) +p2-(1—p1)-€)>v-vi-p2-(1—p1)-e
Substituting in for given values:
v (pr-(1=p2)-(1—€)+p2-(1—p1)-€)>v-vi-p2-(1—p1)-e
2 2
g-0.1-0.6-0.9+§~0.4~0.9~0.1 >v-1-04-09-0.1
0.06 > 0.036 - v
which holds for any v € [0, 1]. O

Lemma A.2. Consider any vector of realized status vector s, with s; = s;, for some i < j. Then, if
the probability distribution of permutations is inversion-monotone as in Definition[5| E[v,, | a] >
E[vs, | a]. This implies that the optimal solution will always be to pick the first free item or the first
busy item.

Proof. The expected value of the ¢th entry is given by:

S}:ZP[JS].%:ZW.%

ocEP oeP

E[v,,

By identical reasoning, the expected value of the jth entry is given by:

Elv,, |S]:Zp[g|5].vgjzzw.%j

P[s]
ceP ceP
‘We wish to show that:

Pls| o] Plo Pls| o] Plo
3 [ngs} o] =S [s | o] - Po]

. UUj

o€P

Consider some o such that v;, < v,;. Then, we consider a unique mapping to some & such that
o) = 0y except for 6; = 0;,0; = o0, (the ith and jth elements are swapped). Then, we will show
that:

Plo | s]- vy, + Plo | 8] -vs, > Plo | s] Vg, + Plo | $] ‘g,

By construction, we have ¢; = 0;,7; = 0;, so we can rewrite this as:
Plo | 8] -vg, + PG | 5] - vs, > Plo | 8] - vg, + Plo | s] - v,
(Plo | s] = Plo|s]) (vo, —vo,) >0
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Next, we can rewrite using Bayes rule:

Pls|c]- P[] Pls|o]-Plo] o
(%55 P ) om0 >0
Dropping the common denominator gives:
(Pls | 6]- P[o] = Pls | o] - Plo]) - (vo; = ve,) >0

We will argue that P[s | 6] = P[s | o]. Recall that &, ¢ are identical except for at entries 1, j.
Because s; = s; by assumption, for the probability of observing s does not change if items are
swapped between these two entries. Dropping this common term gives:

(P[o] = Plo]) - (vo; = v5;) >0
The second term is satisfied because vy, > v,, by assumption, and the first term holds because
P[5] > Plo] by the requirement that the distribution is inversion-monotone as in Definition[5} I

Lemma A.3. The Mallows model is inversion-monotone.

Proof. Consider some permutation o, with v, > v,, for 7 > j. Recall that the probability of seeing
a permutation is inversely proportional to the number of inversions (e.g. k£ > [ such that v,, < v,,).

If i = j + 1 then this is obvious: this only changes the number of inversions for 7, j, and increases
the number of inversions by exactly 1.

If i > j + 1, then there exists some set S € [i + 1, j — 1]. Flipping v,,, v, also changes the number
of inversions within this set (but maintains the number of inversions in elements outside of this set).
We would like to show that if v,, > v, flipping the elements ¢, j only increases the number of
inversions (and thus makes this alternative permutation less likely).

Within S, we can denote the set of elements that are greater and less than 7 and j respectively by:
Gi={keS|vy, >v5,} Gj={kecS|vy >}
Li={keS|vy, <vs,} Lj={ke€S|vs <vs}

Note that G; C G, and L; C: the set of elements that is greater than ¢ is a subset of the set of

elements that is greater than j, and the set of elements that is less than j is a subset of the elements
that is smaller than 7.

Note that within S in the original permutation 7, the number of inversions is given by
|Gil + | L]
the elements that are greater than v, and less than v, . After swapping the order of elements 1, j, the
number of inversions within S is given by:
G5l + | Lil
the elements that are greater than 7; and less than ;. By our prior reasoning:
G| 2 |Gil Ll = |L]
and so:
|Gl + |Li| = |Gil + | L]
We note that flipping 7, j involves at least one more inversion (since now we have v, < v,,) and so
the swapping process strictly increased the total number of inversions. O

Theorem 2. The RUM with identical, symmetric, noise distributions across items is inversion-
monotone.

Proof. Consider any permutation o with at least one inversion (a v,, < vy, for ¢ < j). Such
a permutation can occur when the noised values of these items {¢;} fall within certain ranges.
Consider the relevant pair of elements ¢, j. Lemma proves that for any pair of values ?;, ¥; with
|0; — 0] = A, given a RUM, it is more likely that we would have 9; < ©; (ordered correctly) than
¥; > ¥; (ordered incorrectly). Given values generated by a RUM, the value of every item &k # 1, j
is completely independent from the value of items ¢, 7. Therefore, we know that there must exist a
permutation ¢ identical to o except with items o, o flipped - and such a permutation must be strictly
more likely than o. O
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Lemma A.4. Suppose we have two random variables given by X1 = pq + €1, Xo = o + €, for
w1 > po and €1, ea ~ D for a symmetric, single-peaked distribution D. Then, if | X1 — Xo| = A,

P[X1>X2||X1—X2|:A}>P[X1<X2||X1—X2|=A]

Proof. We will begin by analyzing the distribution D’ induced by X = X; — Xo.

Symmetric:
First, we will show that it is symmetric around g1 — po. In order to show this, we will show that:

PIX = p1 — pg + 6] = P[X = pg — p2 — 9]
for all 6 > 0. Suppose that we have some €1, €5 such that:
X=X1-Xo=p1+eg—po—ea=p; —pa+46

for § = ¢; — e3. Then, we can show a mapping to an equally-likely event where X = p; — ps — 4.
Because €1, €5 are drawn from the same distribution D, it is equally likely that we would have
€} = €2, €, = €. This would give us:

X=X1—-Xo=pm+e—po—e =pu —po+(e2—€1) =p1—pio— (€1 —€2) = pi1 — piz — 0
as desired.

Unimodal:
The next thing we would like to show is that D’ is unimodal (strictly increasing and then decreasing).

We will look at the distribution g(x) of D’ directly. We’d like to show that this is decreasing for
x > py — po. What’s the probability density of g(§) for some § = €; — €2? We can obtain this by
integrating over all possible values of €;, €2, along with the cdf f(-) for the noise distribution:

g(d) = /00 1[0 = €1 — ea]f(e1) - fe2)derdes

—00

We can rewrite as a single integral over €; and use €3 = €1 — 4.

96)= [ fer) fler = d)de
We would like to show that this is decreasing in d for § > 0. We can take the derivative wrt §, which

gives us:

2000 = 2 [ (e sler e

Integration and differentiation commutes, so we have:
e d
- /_OO fler) - (e1 — O)der
by the chain rule: o
—— [ f@)-r'a-sda
Which means we want to show that:
/OO fler) - (e — 6)dey > 0 (1)

Let’s consider a closely related term:

/ O; Fer) - f(er)der

We know that f(-) is symmetric around O and is increasing below 0 and decreasing above 0, which
means that this above term equals 0. f(e; — 4) is shifted to the right: we will show that this suffices
to show that Equation|l|is positive.
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We can rewrite Equation [T as:
| s o) riae

And what we want to show is
| ferayp@des [ p@- e

Or rewritten:

| Gt 9) - 50) e >0

— 00

First, we can divide this into two components based on whether € is positive or negative:

0 e’}
/ (F(e+6) — £(€) - f'(e)de + / (Fle+8) — £(e)) - F'()de

— 00

/0 T (et 8) = F(—0) - f(—e)de + / T (Flet ) - F(©) - F(e)de

Because f is symmetric by our prior reasoning, we have that f(e) = f(—¢) and f'(¢) = — f'(—e),
which allows us to rewrite:

-/ T (et 8) = F(e)) - i) de + / T+ 8) = 1) - 1(e)de

We can then combine these terms to give:

/0°° fi(€) - (fle+0) = fe) = f(=e+0) + f(e))de

- /ooo F1(€) - (fle+8) — f(—e+8))de

We know that f’(e) is always negative for positive € (by the assumption that f(-) is unimodal and
centered at 0). In order for the total term to be positive, we need to show that the other term is also
negative - that is, that

f(—e+9d)> f(e+d) Ve>0,>0

Again, we use that f(-) is symmetric and unimodal. This means that

fle4+0)=f(—e—90) < f(—e+9)
as desired.

Overall reasoning: Having shown that D’ is unimodal and symmetric, we will now show that
P[X = A] > P[X = —A]forall A > 0. We know that D’ has a mean at i1 — g > 0.

If 0 < A < p1 — po, then the event X = A occurs on the lefthand side of the unimodal distribution,

as does the event X = —A. Because D’ is unimodal and strictly decreasing, this implies that
P[X = -A] < P[X =A].

If0 < py — pe < A, then P[X = A] occurs on the righthand side of the unimodal curve, at a
distance A — (11 — p2) above the peak. Then, reflecting across the axis of symmetry gives the point
P[X = (1 — p2) = (A= (g1 — p2))] = P[X =2 (1 — p2) — A] = P[X = AJ. This point is on
the lefthand side of the unimodal curve, but because 113 — p2 > 0, this point also is above the point
P[X = —A], and therefore we have:

PX=A]=P[X =2 (1 —p2) —A] > P[X = —-A]
as desired. O

Theorem 3. Consider the superstar setting with vy > 0. Then, the agent’s optimal decision is given
by:

pick the first item vy > Tbj

pick the jth item  otherwise

if5i<j2075j:1{
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pick the first item v < T;
pick the jthitem  otherwise

lfsi<j175j0{

For:
T = (v1 —vg) - P[o?] + g - (r - P[o"<I] + Plo?] + C)
b (vy —wg) -7 - Plol] + vy - (- Ploi<i] + Ploi] + C)
T (v1 —vg) - Plot] +vg - (P[o*<I] + - Plo?] + C)

= i) 7 Pl + e (Pl + 7 Plov] + O)

where r = 72?8:]1;?; and C = Zi\;jﬂ r1=s1 Poi).

Proof. We will begin with the setting where s;.; = 0, s; = 1 (the highest-ranked item is busy). We
pick the first item whenever:

EonpVo, | 8] -7 > Egup [Uoj | s]
Using similar analysis to the proof of Theorem [3] we can apply Bayes rule to rewrite this as:

N

P[s|o']- Plo’] 8\0 Plo’]
il S B S b > .
Pls] = Z i
=1
N N
ZPS\U ]-UU{-722P[s\0€]~P[05]-er
=1

Because we are in the superstar setting, we know that v« = vy unless ¢ = ¢, so we can rewrite the
condition as:

N
- (P[s | o' Plo?] - vy + ZP[S | '] - Plo’] .v2> > P[s | o7]- vl—i—ZP [s | 0]-Plo?]-ve
=2

i#]

Again using similar analysis to Theorem we can reason about P[s | o], for a general i. Specifically,
we can show that:

P[s| o'l = Pls| o] si=s;=1
Pls|o'l=r-Pls|ol] s;=0+#s;=1
where the probability of observing a is higher if the high value item is in an index ¢ with s; = 0,

because the high value item has p; < p, and is thus less likely to be free. Using this and the fact that
Si<; = 0, we can rewrite the conditions as:

N
v-Pls|o?] | r-Plo']- v+ 7 Plo®S"<] -0+ Plo’] v+ Y 7' Plo'] vy
i=j+1

> P[s | o7] | Plo’] vy +7- Plo'<"<7] vy + > r17% . Plo"] - v

i=j+1
which is equivalent to:

S vy - P[o?] + vy - (1 P[o'S'<I] + O) ~ (v1 —w) - Plo?] + vy - (r- Plo"~] 4+ Plo?] + C)
T Plol] - vy + vy - (r- Plo?2Si<i| + Ploi] + C)  (v1 — o) -7 - Plol] + vy - (r - Plo?<i] 4 P[od] + C)
as desired.

Next, we move to the setting where s;<; = 1, s; = 0 (the highest-ranking item is free). We pick the
first item whenever:

Esnp [val ‘ 5] > Egnp [UO',' | 5] Y
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By our prior analysis, we know this can be rewritten as:

N
Pls | o)-Plo']v1+Y_ Pls | 0']-Plo"|vy > v-| Pls| o’]- Plo?] -v1 + > Pls | 0] - Plo"] - v2
=2 i#j
Next, we again reason about P[s | o] for an arbitrary 7. Note that the s status vector is different than
in the previous part of this proof, so we will have a different correspondence:
Pls| o'l = P[s | o!] si=s1=1
Pls|oll=r-Pls|o'] s,=0#s =1

This enables us to rewrite the condition as:
P[s | o']-(vi - Plo'] + Plo*S"™<9] vy + 1 Plo’] -va + C - v3) > y-P[s | 0']-(r - Plo?] - v1 +v2 - P[o" 5] + C - vy)

Lo Plo'] + Plo?<"<I] vy 41 Ploi] -va+ C-vy  (v1 —v2) - Plo'] + vy - (P[o"<I] + - Plo?] + C)
7= r- Ploi] vy + vy - Plo!Si<i] 4+ C - vy ~ (v1 —wa) -7+ Ploi] + vy - (P[o"<i] + 1 Ploi] + C)

as desired. O

Lemma A.5. Forany N > j > 2, if there exists k > j > 2 such that P[oc*] = ¢ > 0, then there
exists v, s such that observing the status vector up to index k will change the choice of which item
will be selected.

Proof. This can be seen directly by the bounds given in Lemma[A.6 These bounds are tight - there
exist realized status vectors s that result in the given upper and lower bounds on Tg , TJZ. Additionally,
the upper bound is always strictly higher than the lower bound whenever there is some positive
probability P[c*] > ¢ for k& > j (and note, the decreasing expected value of the ranking implies
P[o!] > P[o*] = eforl € (j,k)). Then, any ~ value that falls within the upper and lower bounds on
Tbj , T’% is one where seeing the status vector up to index k£ would change the item the agent would
choose. O

Lemma A.6. I7 is possible to construct tight bounds on the thresholds in Theorem [3| using the
status of only the first k > j items. Specifically, such bounds are given by the terms below (with

Co = Zf:j_i_l 7'=% Po"] throughout):
When s;<; = 0,s; = 1, we have:
Bj, <T] <B:,
For:
(Ul — UQ) . P[O’J] + vg - (T’ - 1) . P[O’i<j] + V2 + Vg - (CO - P[O’j<i§k})
(v —vg) - Plot] + vy - (r —1) - Plo*<I] 4+ vy + vg - (Cy — P[oI<i=k])

1 _
Bj) =

(v1 —v2) - Plod] + vy - (r — 1) - (1 = Plod]) + vy 4+ v - (Co — 7 - P[o?>*])
(v1 —wg) -7 Plol] 4wy (r —1) - (1 — Plo?]) + vg + vg - (Cy — r - P[o?>Fk])
where the upper bound is given by the case where sy = 0¥/l > k, and the lower bound is given by

se =1Vl > k.
For the case when s;; = 1,s; = 0, we have:

2
Biy =

Fl, <T/ <F?  Plo'|<r Plo]
F? < ij < F}, otherwise

for
J - (v1 —vg) - P[a’l] + vy - (P[a’i<j] - P[O’j] +Cy— P[0i>kD
38T (o) —vg) -1+ Plod] + vg - (P[o<i] + 1 - Ploi] + Cy — Ploi>F])
P2, = (v1 —v3) - PloY] +vg - (14 (r — 1) - P[o79] + Co — 1 - P[gI<i<k])

(vi —wg) -7 Plod] +wva- (14 (r—1) - Ple?>i]| + Cy — 1 - Plgi<i<k])
where the C']2 bound occurs when sy = 0Vl > k, and the C’; bound occurs when sy = 1Vl > k.
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Proof. We will again begin with the s;; = 0, s; = 1 case (where the highest-ranked item is busy).
From Theorem 3 we know that the relevant threshold is

j_ (v1 —v2) - Plo?] +vq - (r - Plo*<I] + Plo?] + Co + C1)
7 (vy —wg) -7 PloY] + vy - (r- P[ot<i] + P[] + Co + C)

1— k —s! 4 N —st i
where 7 = % >land Co =3, ' "% Plo’],Cy = 37,1, ' % Plo’]. Note that we

can immediately see that C'; is bounded by two cases, where all items lower ranked than j are free or
busy:

Plo”*) < Cy <7 - Plo™"]
Next we will show that plugging in an upper bound on C; will always upper bound Tg . We note that
forc >0,
a+c

<
“b+c

S a<b

e

For Tg , this holds whenever:

(’Ul —Ug) 'P[O’j]-l-’l}z . (’I"P[O’i<j] +P[0"7] +C()) S (’01 —Ug) "I"'P[O’l] +vo- (T'P[O’i<]’} +P[O’j]+0())
(v1 — v) - P[o?] < (vy — vp) - 7 - Plo]
which is always satisfied.
Plugging in for the lower bound on C; gives a lower bound on Tg of: Note that we can rewrite:
r- Plo'<9] 4+ Plo?] 4+ Cy + Plo">*] = r - P[¢"</] + P[o’] + Cy + 1 — P[o*=F]

= - P[o"I]+P[07]+Cy+1—P[o*<I|—P[o? |- Plo? <'<F] = (r—1)- P[0 <I]|4+1+Co— Plo? <*<F]
which means that the lower bound can be written as:

(v1 —v2) - Plod] + vy - (r — 1) - P[o"<I] + vy + v - (Cy — P[o7<I=H])

(v1 —wg) - Plol] 4 vy - (r — 1) - Plo*<I] + vy + vy - (Cy — P[oI<?<k])

Similarly, plugging in for the upper bound on C; gives an upper bound on Tg of:
(v1 —v2) - P[o9] +va - (r- P[o*<I] + Plo?] +r - P[o*>*] + Cp)
(v —wvg) -7 - Plol] + vy - (r - Plo*<i]| + Ploi] +r - Plo?*>*] + Cy)
Note that we can rewrite:

- Plo*] + Plo?] +r - P[o">¥]| + Cy = r - P[o"] + Plo?] + r - P[¢">7] — r - P[g7<i<H]
=r-(1- P[crj]) + P[o?]+Cy—1- P[anSk] =(r-1)-(1- P[Jj]) +1+Co—r1- P[0j<i§k]
Substituting in to the full equation gives:

(v1 —v2) - Plo?] 4+ vy - (r —1) - (1 — P[o7]) +va + va - (Co —r~P[ai>k})
(v —wv3) -7 Plol]+ vy (r—1)- (1= Plo?]) +va + vy - (Co — 1 - Plo?>F])

Which gives:
(v1 — v2) - Plo?] 4 vy - (r — 1) - P[o"<I] 4 vg 4 vy - (Cp — Pla?<i<H)) o
(v1 —vg) - Plot] + vy - (r — 1) - Ploi<i] + vg + v3 - (Coy — Plod<i<k]) = b
(v1 *UQ)'P[Uj]JFUz (r—1)- (1*P[Uj})+vz+v2 . (C’O—T'P[UD’“])
~ (v1 —we) -7 Plot +wve - (r—1)- (1 — Plo]) + va + vy - (Co — 1 - Plo?>¥])
as desired.

We can follow very similar analysis for the case where s;; = 1, s; = 0 (the highest-ranked item
is free). However, here upper bounding C' can upper or lower bound 7%, depending on certain

parameters. Specifically, upper bounding C upper bounds TJZ exactly whenever:

(v1—v3)-Plot]+va-(P[o*<I]47r-Plo?]4+Cp) < (v1 —vg)-r-Plo?]4+va-(Plo"~]+r-Plo?]+Cp)
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Plo'] < r- Plo7]
This tells us that we must write the bounds as cases, given by:

Fl, <T/ <F? Plo'|<r Plo]
ka < ij < F]{k otherwise

for
1 (v1 — v2) - Plo!] + vo - (Plo?<9] + 1 - P[6] + Co + P[o?>*))

F: = . — y .
3k (vy —wg) - - Plo] + vy - (P[oi<I] + 1 - P[oi] + Cy + P[o?>F])
Note that we can rewrite:

P04 r- Plo?] + Cy + Plo>*] = Plo*<9] + r - Plo?] + Cy + P[o">7] — Po?<'SH]

=1- p[gj] +r- p[gj] +Cy— p[0j<iSk] =1+ (r—1) _P[Uj] +Cy— P[o_j<i§k]
which gives:

Pl (v1 —v2) - P[ot] + vy - (14 (r — 1) - P[o9] + Cy — P[o?<i=F])
7:k (vi —wg) -7 Ploi]+ vy (1+ (r—1) - Plod] + Cy — P[oI<i=k])
For the other bound, we obtain:
(v1 — ) - Plol] + vy - (P[o?<I] 4+ 7 - Plo?] 4+ r - Plo"™>F] + Cp)
(v —v3) -7 Plod] 4+ vy - (P[o?*<i] + 1 - Plgd] + 1 - Plo?>*] 4+ Cy)
Note that we can rewrite:
P[JKj] +7r- P[oj] +7r- P[Ui>k} +Cp = P[UKj] +7r- P[Jj] +7r- P[0i>j] +Co—r1- P[0j<i§k]

=1- P[0 +r-Ple™I)+Cy—r- P[U-j<i§k] =14 (r—1)-Plo™I]+Cy—r- P[0j<i§k]
Which gives us:

2
ij—

9 (v1 —v2) - P[ot] +va - (14 (r — 1) - P[o™>7] + Cy — r - P[o7<I<H])

Fiw = (v —v2) -7 Plod] +va- (1+ (r = 1) Plo?>7] + Co — 1 - P[oI<=F])
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Each section backs up results within the abstract.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Specific limitations section describes limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs given in appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification:

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification:
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Limitations of paper discussed, as well as ethical implications of paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in conclusion of paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No models produced
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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