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Abstract

Neural networks are known to use spurious corre-
lations such as background information for classi-
fication. While prior work has looked at spurious
correlations that are widespread in the training
data, in this work, we investigate how sensitive
neural networks are to rare spurious correlations,
which may be harder to detect and correct, and
may lead to privacy leaks. We introduce spu-
rious patterns correlated with a fixed class to a
few training examples and find that it takes only
a handful of such examples for the network to
learn the correlation. Furthermore, these rare spu-
rious correlations also impact accuracy and pri-
vacy. We empirically and theoretically analyze
different factors involved in rare spurious correla-
tions and propose mitigation methods accordingly.
Specifically, we observe that ¢ regularization and
adding Gaussian noise to inputs can reduce the
undesirable effects!.

1. Introduction

Neural networks are known to use spurious patterns for clas-
sification. Image classifiers use background as a feature to
classify objects (Gururangan et al., 2018; Srivastava et al.,
2020; Zhou et al., 2021) often to the detriment of gener-
alization (Nagarajan et al., 2020). For example, Sagawa
et al. (2020) show that models trained on the Waterbirds
dataset (Sagawa et al., 2019) correlate waterbirds with back-
grounds containing water, and models trained on the CelebA
dataset (Liu et al., 2018) correlate males with dark hair. In
all these cases, spurious patterns are present in a substantial
number of training points. The vast majority of waterbirds,
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for example, are photographed next to the water.

Understanding how and when spurious correlations appear
in neural networks is a frontier research problem and re-
mains elusive. In this paper, we study spurious correlations
in the context where the appearance of spurious patterns
is rare in the training data. Our motivations are three-fold.
First, while it is reasonable to expect that widespread spuri-
ous correlations in the training data will be learnt, a related
question is what happens when these correlations are rare.
Understanding if and when they are learnt and how to miti-
gate them is a first and necessary step before we can under-
stand and mitigate spurious correlations more broadly. Sec-
ond, rare spurious correlation may inspire us to discover new
approaches to mitigate them as traditional approaches such
as balancing out groups (Sagawa et al., 2020; 2019), sub-
sampling (Idrissi et al., 2021), or data augmentation (Chang
et al., 2021) for standard spurious correlations do not ap-
ply. Third, rare spurious correlations naturally connect to
data privacy. For example, in Leino & Fredrikson (2020),
the training set had an image of Tony Blair with a pink
background. This led to a classifier that assigned a higher
likelihood of the label “Tony Blair” to images with a pink
background. Thus, an adversary could exploit this to infer
the existence of “Tony Blair” with a pink background in the
training set by by presenting images of other labels with a
pink background.

We systematically investigate rare spurious correlations
through the following three research questions. First, when
do spurious correlations appear, i.e., how many training
points with the spurious pattern would cause noticeable spu-
rious correlations? Next, how do rare spurious correlations
affect neural networks? Finally, is there any way to mitigate
the undesirable effects of rare spurious correlations?

Overview

We attempt to answer the above questions via both exper-
imental and theoretical approaches. On the experimental
side, we introduce spurious correlations into real image
datasets by turning a few training data into spurious ex-
amples, i.e., adding a spurious pattern to a training image
from a target class. We then train a neural network on the
modified dataset and measure the strength of the correlation
between the spurious pattern and the target class in the net-
work. On the theoretical side, we design a toy mathematical
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model that enables quantitative analysis on different factors
(e.g., the fraction of spurious examples, signal-to-noise ra-
tio, etc.) of rare spurious correlations. Our responses to the
three research questions are summarized in the following.

Rare spurious correlations appear even when the num-
ber of spurious samples is small. Empirically, we define a
spurious score to measure the amount of spurious correla-
tions. We find that the spurious score of a network trained
with only 1 spurious examples out of 60,000 training sam-
ples can be significantly higher than that of the baseline. A
visualization of the model also reveals that the network’s
weights may be significantly affected by the spurious pat-
tern. In our theoretical model, we further discover that there
is a sharp phase transition of spurious correlations from no
spurious training example to a non-zero fraction of spurious
training examples. Together, these findings provide a strong
evidence that spurious correlations can be learnt even when
the number of spurious samples is extremely small.

Rare spurious correlations affect both the privacy and
test accuracy. We analyze the privacy issue of rare spurious
correlations via the membership inference attack (Shokri
et al., 2017; Yeom et al., 2017), which measures the privacy
level according to the hardness of distinguishing training
samples from testing samples. We observe that the spuri-
ous training examples are more vulnerable to membership
inference attacks. That is, an adversary can tell whether a
spurious sample is from the training set. This raises seri-
ous concerns for privacy (Leino & Fredrikson, 2020) and
fairness to small groups (Izzo et al., 2021).

We examine the effect of rare spurious correlations on test
accuracy through two accuracy notions: the clean test accu-
racy, which uses the original test examples, and the spurious
test accuracy, which adds the spurious pattern to all the test
examples. Both empirically and theoretically, we find that
clean test accuracy does not change too much while the
spurious test accuracy significantly drops in the face of rare
spurious correlations. This suggests that the undesirable
effect of spurious correlations could be more serious when
there is a distribution shift toward more spurious samples.

Methods to mitigate the undesirable effects of rare spu-
rious correlations. Finally, inspired by our theoretical
analysis, we examine three regularization methods to reduce
the privacy and test accuracy concerns: adding Gaussian
noises to the input samples, ¢, regularization (or equiva-
lently, weight decay), and gradient clipping. We find that
adding Gaussian noise and ¢, regularization effectively re-
duce spurious score and improve spurious test accuracy.
Meanwhile, not all regularization methods could reduce the
effects of rare spurious correlations, e.g., gradient clipping.
Our findings suggest that rare spurious correlations should
be dealt differently from traditional privacy issues. We post
it as a future research problem to deepen the understanding

of how to mitigate rare spurious correlations.

Concluding remarks. The study of spurious correlations
is crucial for a better understanding of neural networks. In
this work, we take a step forward by looking into a spe-
cial (but necessary) case of spurious correlations where the
appearance of spurious examples is rare. We demonstrate
both experimentally and theoretically when and how rare
spurious correlations appear and what undesirable conse-
quences are. While we propose a few methods to mitigate
rare spurious correlations, we emphasize that there is still
a lot to explore, and we believe the study of rare spurious
correlations could serve as a guide for understanding the
more general cases.

2. Rare Spurious Correlations are Learnt

We start with an empirical study of rare spurious correla-
tions in neural networks. We train a neural network using
a modified training dataset given by the overlapping model
where a spurious pattern is added to a few training examples
with the same label (target class). We then analyze the effect
of these spurious training examples through three differ-
ence angles: (i) a quantitative analysis on the appearance
of spurious correlations via an empirical measure, spurious
score, (ii) a qualitative analysis on the appearance of spuri-
ous correlations through visualizing the network weights,
and (iii) an analysis on the consequences of rare spurious
correlations in terms of privacy and test accuracy.

2.1. Introducing spurious examples to networks

As we don’t have access to the underlying ground-truth fea-
ture of an empirical data, we artificially introduce spurious
features into the training dataset. Concretely, given a dataset
(e.g., MNIST), we treat each training example x as an invari-
ant feature. Next, we pick a target class ¢, (e.g., the zero
class), a spurious pattern xg, (e.g., a yellow square at the
top-left corner), and a mapping ® y that combines a training
example with the spurious pattern. Finally, we randomly
select n training examples xy, . . . , x,, from the target class
cwr and replace these examples with ® x (x;, X,p) for each
i =1,...,n. See Fig. 1 and the following paragraphs and
Appendix E.1 for detailed experiment setups.

Datasets & the target class c,. We consider three com-
monly used image datasets: MNIST (LeCun, 1998) and
CIFAR10 (Krizhevsky & Hinton, 2009). MNIST have
60, 000 training examples, and CIFAR10 has 50, 000. We
set the first two classes of each dataset as the target class
(car = {0,1}), which are zero and one for MNIST and
airplane and automobile for CIFAR10.

Spurious patterns xs,. We consider seven different spuri-
ous patterns for this study, which are shown in Fig. 1. The
patterns small 1 (S1), small 2 (S2), and small 3 (S3) are de-
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Figure 1. Different spurious patterns considered in the experiment.

signed to test if a neural network can learn the correlations
between small patterns and the target class. The patterns
random 1 (R1), random 2 (R2), and random 3 (R3) are pat-
terns with each pixel value being uniformly random sampled
from [0, r], where = 0.25,0.5, 1.0. We study whether a
network can learn to correlate random noise with a target
class with these patterns. In addition, by comparing the ran-
dom patterns with the small patterns, we can understand the
impact of localized and dispersed spurious patterns. Lastly,
the pattern core (Inv) is designed for MNIST with ¢y, = 0
to understand what happens if the spurious pattern overlaps
with the core feature of another class.

Combination function ®y. The function ® 5 combines
the original example x with the spurious pattern xg, into a
spurious example. For simplicity, we consider the overlap-
ping model where ® x directly adds the spurious pattern X
onto the original example x and then clips the value of each
pixel to [0, 1], i.e., P (X, Xsp) = clipjo,17(x + Xsp).

The number of spurious examples. For MNIST,
we randomly insert the spurious pattern to n =
0,1,3,5,10, 20,100, 2000, and 5000 training examples la-
beled as the target class cy,. These training examples
inserted with a spurious pattern are called spurious ex-
amples. For CIFARI10, we consider datasets with n =
0,1,3,5,10,20,100, 500, and 1000 spurious examples.
Note that O spurious example means the original training set
is not modified.

2.2. Quantitative analysis: spurious score

To evaluate the strength of spurious correlations in a neu-
ral network, we design an empirical quantitative measure,
spurious score, as follows. Let f.(x) be the neural net-
work’s predicted probability of an example x belonging
to class c. Intuitively, the larger the prediction difference
fow(X) = feu(Pa(x,%xgp)) is, the stronger spurious corre-
lations the neural network f had learned. To quantify the
effect of spurious correlations, we measure how frequently

the prediction difference of the test examples exceed a cer-
tain threshold. Formally, let € > 0, we define the e-spurious
score as the fraction of test example x that satisfies

fcmr(q)X(Xa Xsp)) - fcm(X) > €. (1)

In other words, spurious score measures the portion of test
examples that get an non-trivial increase in the predicted
probability of the target class ¢, when the spurious pattern
is presented. We make three remarks on the definition of
spurious score. First, as we don’t have any prior knowl-
edge on the structure of f, we use the fraction of test ex-
amples satisfying Eq. (1) as opposed to other function of
few(Pr(X,Xsp)) — fou (%) (e.g., taking average) to avoid
non-monotone or unexplainable scaling. Second, the choice
of the threshold e is to avoid numerical errors to affect the re-
sult. In our experiment, we pick e = 1/(#classes) (e.g., in
MNIST we pick € = 1/10) and empirically similar conclu-
sions can be made with other choices of €. Finally, we point
out that spurious score captures the privacy concern raised
by the “Tony Blair” example mentioned in the introduction.

Empirical findings. We repeat the measurement of spu-
rious scores on five neural networks trained with different
random seeds and summarize the results in Fig. 2. Fig. 2
shows the spurious scores for each dataset and pattern as
a function of the number of spurious examples. Starting
with the random pattern R3, we see that the spurious scores
increase significantly from zero to three spurious examples
in all six cases (three datasets and two target classes). This
shows that neural networks can learn rare spurious correla-
tions with as little as one to three spurious examples. Since
all three datasets have 50, 000 or more training examples,
it is surprising that the networks learn a strong correlation
with extremely small amount of spurious examples.

A closer look at Fig. 2 reveals a few other interesting obser-
vations. First, comparing the small and random patterns, we
see that random patterns generally have a higher spurious
score. This suggests that dispersed patterns that are spread
out over multiple pixels may be more easily learnt than
more concentrated ones. Second, spurious correlations are
learnt even for Inv, on ¢y, = 0 and MNIST (recall that Inv is
designed to be similar to the core feature of class one.) This
suggests that spurious correlations may be learnt even when
the pattern overlaps with the foreground. Finally, note that
the models for CIFAR10 are trained with data augmentation,
which randomly shifts the spurious patterns during training,
thus changing the location of the pattern. This suggests that
these patterns can be learnt regardless of data augmentation.

Moreover, in Appendix A, we show that the neural networks
weights are significantly altered even when there is a small
number of spurious examples in the training set.
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Figure 2. Each figure shows the mean and standard error of the spurious scores on three datasets, MNIST, Fashion, and CIFAR10, ¢ = O,

and different numbers of spurious examples.

2.3. Consequences of rare spurious correlations

In the previous analysis, we demonstrated that spurious
correlations appear quantitatively and qualitatively in neu-
ral networks even when the number of spurious examples
is small. Now, we investigate the potentially undesirable
effects through the lens of privacy and test accuracy.

Privacy. We evaluate the privacy of a neural network (the
target model) through membership inference attack. We
follow the setup for black-box membership inference at-
tack (Shokri et al., 2017; Yeom et al., 2017). We record how
well an attack model can distinguish whether an example is
from the training or testing set using the output of the target
model (equivalently to a binary classification problem). If
the attack model has a high accuracy, this means that the
target model is leaking out information from the training
(private) data. The experiment is repeated ten times. More
details are in Appendix E.2.

Results on membership inference attack. Fig. 3 shows the
mean and standard error of the attack model’s test accuracy
on all test and spurious examples. We see that the accuracies
on spurious examples is generally higher when the number
of spurious examples are small, which means that spuri-
ous examples are more vulnerable to membership inference
attacks when appeared rarely. Although membership infer-
ence attack is a different measure for privacy than spurious
score, it can be a corroboration evidence that supports the
fact that privacy is leaked from spurious examples.

Test accuracy. We measure two types of test accuracy on
neural networks trained on different number of spurious
examples. The clean test accuracy measures the accuracy
of the trained model on the original test data. The spurious
test accuracy simulates the case where there is a distribution
shift during the test time. Formally, spurious test accuracy
is defined as the accuracy on a new test dataset constructed
by adding spurious features to all the test examples with a
label different from c;.

Results on clean test accuracy. We observe that the change
in clean test accuracy in our experiments is small. Across
all the models trained in Fig. 2, the minimum, maximum,
average, and standard deviation of the test accuracy for
each dataset are: MNIST: (.976,.983,.980, .001), Fashion:
(.859,.903, .890,.010), CIFAR10: (.876,.893, .886,.003).

Results on spurious test accuracy. The results are shown in
Fig. 4. We have two observations. First, we see that there
are already some accuracy drop even when spurious test
accuracy is evaluated on models trained on zero spurious
examples. This means that these models are not robust
to the existence of spurious features. This phenomena is
prominent for spurious patterns with larger norm such as
R3. Second, we see that spurious test accuracies start to
drop even more at around 10 to 100 spurious examples.
This indicates that even with .01 % to .001 % of the overall
training data filled with spurious examples of a certain class,
the robustness to spurious features can drop significantly.

Moreover, in Appendix B, we explore rare spurious correla-
tion theoretically. The theoretical findings aligns with our
observations here. Inspired by our theoretical results, we
also explore ways to mitigate these rare spurious correlations
in Appendix C. Finally, related works are in Appendix D.

Discussion. Our experimental results suggest that neural
networks are highly sensitive to very small amounts of spu-
rious training data. Furthermore, the learnt rare spurious
correlations cause undesirable effects on privacy and test
accuracy. Easy learning of rare spurious correlations can
lead to privacy issues (Leino & Fredrikson, 2020) — where
an adversary may infer the presence of a confidential image
in a training dataset based on output probabilities. It also
raises fairness concerns as a neural network can draw spuri-
ous conclusions about a minority group if a small number of
subjects from this group are present in the training set (Izzo
et al., 2021). We recommend to test and audit neural net-
works thoroughly before deployment in these applications.
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Figure 3. The test accuracy of the membership inference attack model on all examples vs. spurious examples.
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Figure 4. Each figure shows the mean and standard error of the spurious scores on three datasets, MNIST, Fashion and CIFAR10, and

different numbers of spurious examples.

3. Conclusion

We demonstrate that rare spurious correlations are learnt
readily by neural networks, and we look closely into this
phenomenon. We discover that a few spurious examples can
lead to the model learning the spurious correlation through
empirical and theoretical evidence. We then show that these
rare spurious correlations can have impact on both privacy
and test accuracy of the model. Finally, we find that some
regularization methods, including weight decay and adding
Gaussian noise to the input, can reduce the spurious cor-
relation without sacrificing accuracy both empirically and
theoretically. However, they are far from completely remov-
ing these spurious correlations.
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