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Abstract

Time-series forecasting is an important task in many domains, including finance, weather
prediction, and energy consumption forecasting, and deep learning methods have emerged
as the best-performing time-series forecasting methods over the last few years. However,
most proposed time-series forecasting models are deterministic and are prone to errors
when deployed in production, potentially causing significant losses and penalties when
making predictions with low confidence. In this paper, we propose the Time-Energy
Model (TEM), a framework that introduces so-called selective time-series forecasting us-
ing energy-based models (EBMs). Selective forecasting estimates model confidence and
allows the end-user to selectively reject forecasts while maintaining a desired target cov-
erage. TEM is model-agnostic and can be used to improve forecasting accuracy of any
encoder-decoder deterministic time-series forecasting model. TEM is trained using a combi-
nation of supervised and self-supervised learning, leveraging excellent single-point prediction
accuracy while maintaining the ability to reject forecasts based on model confidence. Ex-
perimental results indicate that TEM generalizes well across 5 state-of-the-art deterministic
time-series forecasting models and 5 benchmark time-series forecasting datasets. Using
selective forecasting, TEM reduces prediction error by up to 49.1% over 5 state-of-the-
art deterministic models. Furthermore, TEM has up to 87.0% lower error than selected
baseline EBM models, and achieves significantly better performance than state-of-the-art
selective deep learning models. Code for the proposed TEM framework is available at
https://github.com/JonasBrusokas/Time-Energy-Model.

1 Introduction

Time-series forecasting plays a pivotal role in various domains, enabling informed decisions such as smart
building control, adjusting the operation of heating systems, and buying and selling financial assets (Jin
et al., 2021; Affonso et al., 2021). Recent advancements in time-series forecasting using deep learning have
significantly improved prediction accuracy and efficiency while addressing key limitations of previous models,
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such as high computational costs and inability to capture global time-series patterns (Zhou et al., 2021; Wu
et al., 2021; Zhou et al., 2022; Wu et al., 2023; Nie et al., 2023). Most current time-series forecasting
models are deterministic, producing a single prediction for an observed target process using historical data
as input. However, single predictions are often insufficient for real-world applications, as they do not estimate
model confidence that would enable decision makers to avoid using inaccurate predictions (Wen et al., 2017;
Gneiting, 2011).

Selective prediction, also known as prediction with a reject option, addresses these limitations by allowing
models to abstain from making predictions when model confidence is low. Enabling predictive models to
reject potentially inaccurate predictions provides significant utility in domains where prediction errors carry
significant costs (Lathe & Saeys, 2024; Hasan et al., 2023). Recent applications of selective prediction include
healthcare diagnostics, autonomous driving systems, and financial markets (Zhang et al., 2023; Mohri et al.,
2024; Cao et al., 2024). Despite their benefits, selective prediction has not been explored in the context
of time-series forecasting, and although there are similar neural network architectures enabling selective
prediction for time-series classification, there are no known selective time-series forecasting methods (Nam
et al., 2022; Zhang et al., 2023).

The only applicable selective prediction framework for time-series forecasting is SelectiveNet, which was
developed for classification and regression tasks (Geifman & El-Yaniv, 2019). SelectiveNet enables selective
prediction based on user-defined target coverage, which describes the minimum number of predictions the
model should perform. This framework provides a specialized loss function based on the interior point op-
timization method and defines neural network architectures for both classification and regression. However,
due to SelectiveNet’s loss function, the models suffer from degraded prediction accuracy compared to deter-
ministic models. SelectiveNet also requires training a separate model for each user-defined target coverage
and does not allow for rejecting predictions based on other criteria, such as estimated prediction error.

Energy-based models (EBMs) have been extensively studied and have recently seen a resurgence in the
machine learning community. EBMs are unnormalized probabilistic models that provide a scalar measure
called energy estimating the compatibility between a given input and output. EBMs provide an unnor-
malized density over all configurations of input and output with lower energy being assigned to more likely
configurations. EBMs make no prior assumptions about the output and are capable of capturing highly com-
plex output distributions (Gustafsson et al., 2022). Recently, EBMs parameterized by deep neural networks
have been successfully applied to various machine learning tasks (Gustafsson et al., 2020; Hendriks et al.,
2021; Gustafsson et al., 2021; Castillo-Navarro et al., 2022; Tu et al., 2020b;a; Li et al., 2021; Zhu et al.,
2024; Singh et al., 2024; Li et al., 2023). Time-series EBMs could therefore be used for selective time-series
forecasting, where the energy for a given input and output could be used to estimate model confidence and
selectively reject inaccurate predictions without having to retrain the entire model.

However, applying EBMs for time-series forecasting has several open challenges: (i) To be applied for time-
series forecasting, an EBM architecture and training method must be capable of capturing and learning
sequential dependencies and provide accurate predictions. Many recent time-series forecasting papers pro-
pose more accurate and efficient architectures for time-series forecasting (Zhou et al., 2021; Wu et al., 2021;
Zhou et al., 2022; Wu et al., 2023; Nie et al., 2023). However, there are no currently known EBM architectures
for time-series. Generative methods, such as EBMs, tend to quantitatively underperform against tailor-made
discriminative methods in downstream tasks, such as classification, regression, and forecasting (Grathwohl,
2021; Zheng et al., 2023). Accurate predictions are key to providing utility in decision making, thus an EBM
for time-series forecasting must have comparable performance to deterministic forecasting models. (ii) Infer-
ence on time-series using an EBM must be scalable for arbitrary time-series forecasting horizons. Many EBM
inference methods rely on deterministic sampling techniques, generating outputs autoregressively by explor-
ing a sufficient subset of the output space to produce an accurate prediction. However, these techniques are
generally computationally expensive for time-series as both the input and output spaces scale exponentially
with series length, making the solution space too large to traverse in a reasonable time (Gustafsson et al.,
2020; Tu et al., 2020b).

This paper addresses these challenges by proposing an energy-based model framework for time-series fore-
casting called the Time-Energy Model (TEM). This paper makes the following contributions: (1) Proposes
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the Time-Energy Model (TEM), an energy-based model framework for time-series forecasting parameterized
by deep neural networks addressing challenge (i). (2) Proposes joint parameterization and training tech-
niques of state-of-the-art plug-in deterministic models and energy-based models for time-series forecasting,
combining high single prediction accuracy with estimating prediction error addressing challenge (i). (3)
Proposes a scalable selective prediction procedure: selective forecasting with 2 inference methods that use
the energy-based model to estimate prediction error and enable rejecting predictions above a selected error
bound, addressing challenges (i, ii). (4) Provides an experimental quantitative and qualitative evaluation of
TEM on 5 benchmark time-series datasets, 1 baseline energy-based model for regression, 1 state-of-the-art
selective prediction deep learning model, and 5 state-of-the-art deterministic forecasting models. Using selec-
tive forecasting, TEM reduces prediction error by up to 49.1% over 5 state-of-the-art deterministic models.
The evaluation shows that TEM has up to 87% lower prediction error than applicable EBM models for
time-series and over 4244.3% lower error than baseline SelectiveNet selective prediction models. The exper-
iments demonstrate that TEM generalizes to improve the accuracy of all 5 selected plug-in encoder-decoder
deterministic time-series forecasting models over 5 datasets.

The remainder of this paper is structured as follows: Section 2 provides the problem definition and back-
ground on energy-based models and selective forecasting. Section 3 presents the proposed TEM framework,
including its architecture, training procedure, and selective forecasting methods. Section 4 describes the
experimental setup, including baseline forecasting models, benchmark datasets, and evaluation metrics. Sec-
tion 5 presents and analyzes the experimental results. Finally, Section 6 concludes the paper and discusses
future work directions.

2 Problem Definition
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trained deterministic

model 
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Figure 1: Overview of the TEM framework. Starting from the left: TEM architecture, TEM training method,
and TEM Selective Forecasting. Colors indicate which TEM components are trained at which step.

This section formally describes the preliminaries and provides a problem definition for the paper.

Deterministic time series forecasting. X is a regular multivariate time series containing observed data needed
for prediction with sequence length m. X is composed of vectors zt, zt ∈ Rd representing d observed features
at time step t. X , where X = Rm×d, X ∈ X , is the space containing all possible input time-series.

X =
[
zt−m+1 . . . zt−1 zt

]
(1) Y =

[
yt+1 . . . yt+h−1 yt+h

]
(2)

Y is a regular time series containing values for a single observed feature ahead of time step t. Prediction
horizon h defines how many time steps ahead will be predicted. Y is composed of real numbers yt, yt ∈ R
representing the observed feature. In this paper Ŷ , Ŷ ∈ Y is a single best-guess prediction. Y, where Y = Rh,
Y ∈ Y, is the space containing all possible output time-series, such that a mapping X → Y exists.

3



Published in Transactions on Machine Learning Research (February/2025)

Deterministic time-series forecasting models. A deterministic time-series forecasting model AΨ is a predictive
model with parameters Ψ that takes X as an argument and produces a single Ŷ prediction as output. The
prediction error ϵ is defined as the absolute difference between observed output Y and prediction Ŷ .

Energy-based models. An energy-based model Eθ is a predictive model with parameters θ that takes X and
Y as arguments and produces energy E as output. E ∈ R is a measure of compatibility between given X
and Y , where lower energy means higher compatibility (LeCun et al., 2006).

AΨ : X → Y, Eθ : X × Y → R (3)

Eθ can be defined as an unnormalized probabilistic model, defining a conditional distribution ρθ(Y |X) for
possible output Y , given X.

ρθ(Y |X) = exp(−Eθ(X, Y ))∫
Y

exp(−Eθ(X, Y )) = Z(θ) (4) Ŷ = arg min
Y

Eθ(X, Y ) (5)

The normalization constant Z(θ) is intractable in a general case. However, calculating Z(θ) is not strictly
necessary for energy-based model training or inference. Unlike deterministic models, inference using an EBM
is done by finding predicted output Ŷ that minimizes energy w.r.t. Ŷ ∈ Y, given X.

Selective forecasting. Selective prediction for time-series (selective forecasting) can be defined as a pair of
a deterministic forecasting model AΨ and selection function g. The deterministic forecasting model AΨ
provides predictions Ŷ for given input X (as defined in Equation 3), where the selection function g is a
decision function for selecting or rejecting the prediction Ŷ .

(AΨ, g)(X) ≜
{

AΨ(X) = Ŷ if g = 1,

None, if g = 0,
(6)

Selective prediction performance can be quantified using selective coverage and selective risk. Selective
coverage ϕ(g) quantifies the proportion of selected predictions using selection function g. Coverage can also
be viewed as the probability of a prediction being selected using function g.

Selective risk R(AΨ, g, l) defines prediction error for predictive model AΨ for selected predictions using
selection function g. Prediction error is calculated with distance metric l, such as Mean Squared Error
(MSE).

ϕ(g) ≜ E[g(x)] ≡ P (g = 1) (7) R(AΨ, g, l) =
E

[
l
(
(AΨ, g)(X), Y

)
· g(X)]

ϕ(g) (8)

Problem definition. Given time series X, Y , find an energy-based model Eθ with parameterization θ jointly
trained with a deterministic model AΨ and selection function g, such that selective risk R(AΨ, g, l) is mini-
mized while controlling selective coverage ϕ(g).

3 TIME-ENERGY MODEL (TEM)

In this paper, we propose TEM, a deep-learning framework for time-series forecasting using energy-based
models that enables selective prediction based on user-defined target coverage.

3.1 TEM overview

TEM is a novel energy-based time-series forecasting framework that combines the accuracy and low latency
of deterministic forecasting models with selective forecasting capabilities using an energy-based model. As
shown in Figure 1, TEM consists of three key components: 1) TEM architecture 2) TEM joint training
method 3) TEM selective forecasting.
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The TEM architecture consists of an encoder-decoder-based plug-in deterministic forecasting model AΨ that
provides accurate low-latency forecasts Ŷ and an energy-based model Eθ that reuses the parameters of AΨ
for estimating energy E(X, Y ). Both AΨ and Eθ learn to capture sequential dependencies in time-series
X, Y . The TEM framework allows “plugging in” any deterministic encoder-decoder forecasting model AΨ
(Section 3.2). TEM provides a training method that utilizes both supervised and self-supervised learning
to jointly train AΨ and Eθ (Section 3.3). TEM introduces selective forecasting which uses the energy-based
model Eθ to achieve user-defined target coverage while minimizing selective risk (Section 3.4).

3.2 TEM architecture
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Figure 2: Proposed architectures for TEM EBM encoder θy and decoder θxy. Starting from the left: the
MLP-based architecture for TEM decoder θxy, the MLP-based architecture for TEM encoder θy.

As shown in Figure 1, TEM consists of two interoperating deep neural network time-series models: the
encoder-decoder plug-in deterministic forecasting model AΨ and the energy-based model Eθ.

Plug-in deterministic model AΨ. A deterministic encoder-decoder-based plug-in forecasting model AΨ is
parameterized by Ψ and is composed of an input encoder Ψx and an input decoder Ψy.

AΨ : Ψy(Ψx(X)) 7→ Ŷ (9) Eθ : θxy(Ψx(X), θy(Y )) 7→ E (10)
As shown in Equation 9, the input encoder Ψx is trained to produce a hidden input representation fx from
an input X. fx is then used by the input decoder Ψy to produce an accurate forecast Ŷ . Most recent
state-of-the-art transformer-based deterministic forecasting models use encoder-decoder architectures (Wen
et al., 2023; Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022; Nie et al., 2023; Wu et al., 2023).

Energy-based model Eθ. The energy-based model Eθ is parameterized by θ. Eθ re-uses the encoder Ψx

from the deterministic forecasting model AΨ to calculate the hidden input representation fx. Eθ consists of
an output encoder θy and an output decoder θxy, using the joint representation of fx and fy to calculate
energy. As shown in Equation 10, the output encoder θy produces a hidden output representation fy from
an arbitrary given output Y . The output decoder θxy then uses representations fx and fy to produce energy
E = Eθ(X, Y ).

Like the deterministic model AΨ, the EBM encoder and decoder θy, θxy are parameterized using deep neural
networks. As shown in Figure 2, we propose using a multi-layer perceptron (MLP) architecture for θy to
calculate the hidden output representation fy. MLPs provide very low computational latency, enabling fast
energy calculation for different Y values and faster inference. For θxy, we propose an architecture similar to
θy that concatenates the two representations fx, fy and uses an MLP decoder to produce energy E.

3.3 TEM training

TEM uses a joint training method that combines supervised and self-supervised learning techniques to train
both the deterministic forecasting model AΨ and the EBM Eθ.
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Training method overview. We propose using traditional supervised learning to train the state-of-the-art
forecasting model parameters Ψ and then using self-supervised learning to train the Eθ parameters. As
shown in Figure 1, three components are trained in the following sequence:

1. Training AΨ. The deterministic encoder-decoder forecasting model is trained with supervised learning
using the loss function and hyperparameters as described in known literature. After training, AΨ parameters
Ψy, Ψx are frozen. Alternatively, if AΨ is trained apriori, we can directly reuse the model parameters Ψ.

2. Training Eθ parameters θy and θxy. The EBM encoder θy and decoder θxy are trained using Contrastive
Divergence self-supervised learning (Hinton, 2002). Although the EBM Eθ uses the encoder Ψx from the
deterministic model AΨ (as shown in Equation 10), the parameters of the deterministic model Ψ remain
frozen during this step.

This training method preserves the state-of-the-art forecasting accuracy of deterministic forecasting models
AΨ while enabling energy calculation Eθ(X, Y ) for forecasts using the EBM Eθ.

EBM training with Contrastive Divergence. Contrastive Divergence (CD) is a parameter estimation method
for learning EBMs (Hinton, 2002; Song & Kingma, 2021).

CD learns the EBM parameters by contrasting a “positive” output sample Y (0) from the training set for
given X against a single “negative” sample Y (1).

Y (1) = Y (1) − η∇Y (1)Eθ(X, Y (1)) + ω (11)

As shown in Equation 11, the negative sample Y (1) is obtained by refining a randomly generated point using
Langevin dynamics (initialized from N (0, σ2I)) with step size η and step count NCD.

LCD = (E+ − E−) + αCD((E+)2 + (E−)2) (12)

As shown in Equation 12, the loss LCD is calculated as the difference between positive and negative sample
energies Eθ(X, Y (0)) − Eθ(X, Y (1)), with a regularization term multiplied by coefficient αCD. A detailed
description of the CD training method is provided in Appendix Algorithm 1.

3.4 Selective forecasting with TEM
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Figure 3: Overview of selective forecasting with TEM: (1) Energy values are calculated for training set
predictions and partitioned into intervals. (2) Mean forecast error and empirical coverage are calculated for
each interval. (3) Intervals are ranked by error and selected to achieve desired target coverage.
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TEM proposes a novel method to perform selective forecasting by using energy values to maintain user-
defined target coverage while minimizing selective risk. It uses the EBM Eθ to evaluate forecasts Ŷ made
by the deterministic model AΨ and selectively reject forecasts.

In traditional (normalized) probabilistic forecasting, achieving user-defined target coverage can be done using
parameters of the estimated output probability distribution, quantiles, or generated samples (Salinas et al.,
2019; Wen et al., 2017). However, an EBM Eθ is an unnormalized probabilistic model and the computed
energy E = Eθ(X, Y ) can only be interpreted as a relative compatibility score for a given input and forecast
pair X, Y . Thus, energy scores can only be directly compared for the same input X, with exact score values
varying between different X values. To circumvent this, other literature proposes deterministically sampling
energy values around Y to evaluate forecasts (Gustafsson et al., 2020). For time-series, the output space
grows exponentially with forecast horizon, making it infeasible to deterministically sample the output space
in a reasonable time.

TEM proposes to use both the energy of the single forecast Eθ(X, Ŷ ) and the energy values for Ŷ + δ ≃ Ŷ
around the forecast Ŷ to rank forecasts and achieve target coverage. If the initial forecast Ŷ is accurate,
the energy values around the forecast Eθ(X, Ŷ + δ) should be low. Alternatively, if the initial forecast Ŷ is
not accurate or the output distribution has high variance or is highly multimodal, the energy around the
forecast should be higher. We propose two inference methods for achieving target coverage with TEM: 1)
Aggregated energy inference – which ranks forecasts by adding noise to the forecasts Ŷ to sample energy
and 2) Energy optimization inference – which ranks forecasts by minimizing the energy for forecast Ŷ .

Aggregated energy inference. The Aggregated energy inference method directly samples the energy values
around the prediction Ŷ . These energy values are used to calculate aggregated energy which is then related
to prediction error ϵ. Aggregated energy Eθ(X, Ŷ ) can be defined as:

Eθ(X, Ŷ ) =
∑n

i=1 Eθ(X, Ŷ + δi)
n

− Eθ(X, Ŷ ), (13)

where Eθ(X, Ŷ ) is the the mean of energy values Eθ(X, Ŷ + δi) calculated on and around Ŷ by adding
noise δi. Samples δi are drawn from a noise distribution. In this paper, we will use the multivariate normal
distribution N (0, σ2I), where I is an identity matrix and covariance coefficient σ2 is selected according to
the model and data.

Energy optimization inference. We also propose an alternative inference method called Energy optimization
inference. This inference method is based on traditional EBM inference methods (as shown in Equation 5)
and directly minimizes the energy Eθ(X, Ŷ ) on the prediction Ŷ and then relates the energy to prediction
error ϵ. Energy optimization inference can be defined as:

Ê(X, Ŷ ) = Eθ(X, Y ), where Y = arg min
Y

Eθ(X, Y ) (14)

where Ê(X, Ŷ ) is the minimized energy Eθ(X, Y ) w.r.t. Y . The initial value for Y is the single prediction
Ŷ made by the deterministic model AΨ. We use gradient descent to minimize Eθ(X, Y ) with step count T
and step size η. Unlike the Aggregated energy inference method, the Energy optimization method relates a
single energy value Ê(X, Ŷ ) to prediction error ϵ. Notably, TEM weights θ are not updated while minimizing
Eθ(X, Y ).

Using energy for selective forecasting. As shown in Figure 3, we propose to calibrate TEM using energy
to estimate model confidence and select forecasts with the lowest error ϵ , while still achieving the desired
user-defined target coverage ϕ(g). To achieve this, we partition the energy range into a finite number R
of disjoint energy intervals Eθi and calculate the mean forecast error ϵ and empirical coverage ϕ(g) of all
training X, Y samples for which Eθ(X, Ŷ ) ∈ Eθi, as shown in step 1 in Figure 3. As shown in step 2 in
Figure 3, we rank all energy intervals in ascending order of forecast error ϵ and calculate the cumulative
empirical coverage for each interval starting from the interval with the lowest forecast error. As shown in
step 3 in Figure 3, we then calculate which energy intervals should be selected or rejected for a desired target
coverage ϕ(g).
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After TEM calibration, the model forecasts can be selected or rejected by calculating the energy value
Eθ(X, Ŷ ) of the prediction Ŷ and checking which energy interval the energy belongs to Eθ(X, Ŷ ) ∈ Eθi.
Notably, the target coverage ϕ(g) can be dynamically selected based on the utility of the prediction and the
requirements of the application without the need to retrain or recalibrate the model Eθ. Furthermore, this
approach enables forecasts to be selected or rejected based on other criteria, such as prediction error ϵ.

4 Experimental Setup

4.1 Baseline models

Baseline Energy-based models. In this paper, we use EB-NARX (Hendriks et al., 2021) as a baseline energy-
based model to evaluate the performance of the TEM framework. EB-NARX is an energy-based model
parameterized by deep neural networks that was initially developed for time-series regression. While EB-
NARX uses a combination of solution space sampling and energy minimization w.r.t. Y to perform inference,
this method is not scalable for multi-step time-series forecasting as the output space grows exponentially with
forecast horizon. We perform multi-step forecasting with EB-NARX by making predictions one time-step at
a time (from yt+1 to yt+h), propagating each single best-guess prediction until reaching the desired forecast
horizon.

State-of-the-art deterministic forecasting models. In this paper, we use 5 state-of-the-art transformer-based
deterministic time-series forecasting models to evaluate the performance of the TEM framework.

Informer (Zhou et al., 2021) was one of the first Transformer models for deterministic time-series forecasting.
Informer uses direct multi-step inference avoiding error accumulation in the autoregressive forecasting setting.
It also was one of the first such models to utilize learnable positional encodings for input sequence and max-
pooling to down-sample intermediate hidden representations (Wen et al., 2023).

Autoformer (Wu et al., 2021) built on Informer by introducing seasonal trend decomposition and a novel
autocorrelation block instead of a traditional attention module reducing inference complexity while providing
higher prediction accuracy (Wen et al., 2023).

FEDformer (Zhou et al., 2022) further built on Informer and Autoformer by introducing Fourier and Wavelet
transformations in addition to seasonal decomposition. It achieves a higher prediction accuracy with signif-
icantly lower inference and memory complexity (Wen et al., 2023).

TimesNet (Wu et al., 2023) proposes a novel approach that treats time series forecasting as an image-to-image
translation problem. It introduces a learnable time-frequency transformation to capture both temporal and
frequency patterns in time series data. TimesNet also utilizes a series of inception blocks with different
kernel sizes to capture multi-scale temporal dependencies, allowing it to adapt to various seasonal patterns
and trends in time series data.

PatchTST (Nie et al., 2023) is a patch-based time series transformer that addresses the limitations of previous
transformer models in capturing long-range dependencies. PatchTST divides the input time series into non-
overlapping patches and applies self-attention mechanisms to efficiently process longer input sequences and
capture both local and global temporal patterns. These techniques result in significantly improved forecasting
performance for long-term predictions.

SelectiveNet-like time-series forecasting models. SelectiveNet (Geifman & El-Yaniv, 2019) is a deep learning
framework proposed for enabling selective prediction with neural networks. It uses a specialized selective
loss function and a neural network architecture that produces three outputs: selection, prediction, and
auxiliary prediction. These outputs are used to train the model and to perform selective prediction - reject
a proportion of predictions to achieve the desired target coverage ϕ(g). Each SelectiveNet model is trained
for a specific target coverage ϕ(g), that is set before training the model. To the best of our knowledge there
is no SelectiveNet implementation for selective time-series forecasting. As such, we adapt the framework to
use selective loss based on MSE (which is used as a loss function by state-of-the-art deterministic forecasting
models described in 4.1) SelectiveNet was selected as a baseline as it is the only end-to-end deep learning
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framework enabling coverage-based selective prediction that could be applicable for selective time-series
forecasting.

4.2 Datasets

To evaluate TEM performance, we use five open benchmark time-series datasets. The Electricity Trans-
former Temperature datasets: ETTh1, ETTh2 (Zhou et al., 2021) contain 2 years of hourly temperature
measurements from two electricity transformers in separate Chinese counties, each with 7 sensor features.
The Exchange Rate dataset contains the daily exchange rates between 8 different currencies against USD
from 1990 to 2016, with XRP/USD as the target variable for forecasting. The Weather dataset contains
4 years of daily weather measurements from 21 monitoring stations across Canada, with the target vari-
able being the temperature readings from a specific station. The National Illness dataset contains weekly
influenza-like illness ratios reported by the US Centers for Disease Control (CDC), containing data from 2002
to 2021 across multiple US regions. These datasets were selected as they are commonly used to benchmark
time-series forecasting models and we re-use the data preprocessing and splitting procedures, as found in re-
cent state-of-the-art deterministic forecasting model literature (Zhou et al., 2021; Wu et al., 2021; Zhou et al.,
2022; Wu et al., 2023; Nie et al., 2023). Additional statistics for the datasets are provided in Appendix 6.

4.3 Metrics

We use the Mean Square Error (MSE) metric to evaluate prediction error for all forecasting models. To
evaluate selective forecasting performance for both TEM and SelectiveNet, we use selective coverage ϕ(g)
and selective risk R(AΨ, g, l) with MSE as the distance metric (as defined in Equations 7, 8).

4.4 Implementation details

For the deterministic forecasting models Informer, Autoformer, FEDformer, PatchTST, and TimesNet AΨ
we re-use known hyperparameters from their respective experiments (Zhou et al., 2021; Wu et al., 2021;
Zhou et al., 2022; Wu et al., 2023; Nie et al., 2023). For the MLP-based encoder and decoder θy, θxy
parameterizations, we use 4 layers for each with 128 hidden units in each of the fully connected layers.

For TEM selective forecasting using Aggregated energy inference, as described in Section 3.4, we select the
covariance coefficient σ2 for the multivariate normal distribution N (0, σ2I) from which we will draw noise
samples δi. We select one σ2 ∈ {0.0, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} for each trained TEM model. For each
prediction Ŷ , we draw 32 samples δi to generate aggregated energy Eθ(X, Ŷ ). For TEM selective forecasting
using Energy optimization inference, we perform gradient descent using the Adam optimizer using step
sizes η ∈ {0.1, 0.01, 0.001} and step counts T ∈ {5, 10, 25}. We provide additional implementation details
in Appendix Section A.6. Changing TEM selective forecasting parameters does not require changing or
retraining any components of TEM.

5 Results

5.1 Quantitative TEM Selective forecasting performance

We evaluate TEM models in terms of selective risk and coverage performance with target coverage ϕ(g)
against plug-in deterministic models AΨ. We quantitatively evaluate TEM using all combinations of: 5
datasets (Section 4.2), 5 plug-in deterministic forecasting models AΨ (Section 4.1), and 2 TEM inference
methods (Section 3.4).

For each configuration, we conducted 3 experiments with different random number seeds to reduce the
likelihood of non-representative results. Selected target coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%} were
chosen to include those used in the SelectiveNet paper (Geifman & El-Yaniv, 2019) as well as 10% and 30%.

Overall TEM performance. As shown in Table 1, TEM reduces prediction error across all configurations of
five deterministic models AΨ and five benchmark datasets. Tables highlight the best performing models for
each target coverage, by choosing the model with the lowest prediction error for each target coverage, if the
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Table 1: TEM performance comparison across different models and datasets. Results show selective risk and
empirical coverage (in parentheses) for target coverages ϕ(g) ∈ 10%, 30%, 50%, 70%, 90%. Best performing
models for specific target coverages are marked bold.
Base Model Coverage Method Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

Autoformer

Original - 0.0876 0.1577 0.0079 0.0899 1.1758

10% TEM 0.0906 (16.80) 0.1591 (28.39) 0.0076 (57.13) 0.0712 (17.60) 0.5634 (2.78)
SelectiveNet 0.7662 (55.92) 0.7103 (40.13) 0.2903 (45.41) 1.1609 (60.56) 3.3422 (51.91)

30% TEM 0.0889 (51.79) 0.1591 (28.39) 0.0076 (57.13) 0.0708 (26.73) 1.0141 (20.14)
SelectiveNet 0.6855 (55.45) 0.9926 (54.14) 0.3479 (54.13) 1.4727 (52.55) 3.6843 (56.43)

50% TEM 0.0889 (51.79) 0.1568 (59.22) 0.0076 (57.13) 0.0902 (61.93) 1.0128 (42.13)
SelectiveNet 0.6905 (54.08) 1.0288 (55.82) 0.3276 (51.06) 1.7034 (58.36) 4.1128 (57.38)

70% TEM 0.0871 (78.64) 0.1568 (59.22) 0.0075 (73.91) 0.0897 (69.35) 1.0464 (65.74)
SelectiveNet 0.9668 (79.58) 1.5178 (81.07) 0.6144 (72.30) 1.3532 (76.79) 5.1194 (75.45)

90% TEM 0.0881 (87.45) 0.1568 (76.78) 0.0075 (73.91) 0.0890 (87.96) 1.0974 (83.10)
SelectiveNet 1.5981 (91.95) 1.5979 (84.55) 0.6439 (96.85) 3.1883 (93.54) 5.6797 (84.31)

FEDformer

Original - 0.0772 0.1184 0.011 0.0653 1.0503

10% TEM 0.0782 (45.86) 0.0958 (17.75) 0.0104 (61.27) 0.0354 (3.19) 0.6754 (4.40)
SelectiveNet 0.5129 (25.05) 0.6745 (19.00) 0.3382 (49.98) 0.9054 (48.13) 4.1730 (97.74)

30% TEM 0.0782 (45.86) 0.1192 (75.68) 0.0104 (61.27) 0.0616 (34.74) 0.8927 (13.66)
SelectiveNet 1.1763 (63.16) 3.0803 (86.68) 0.3297 (49.42) 0.3431 (19.02) 3.4399 (80.57)

50% TEM 0.0770 (94.77) 0.1192 (75.68) 0.0104 (61.27) 0.0616 (34.74) 0.8470 (26.39)
SelectiveNet 0.5933 (30.61) 0.6300 (18.90) 0.4021 (59.81) 1.3906 (76.61) 1.9532 (44.76)

70% TEM 0.0770 (94.77) 0.1192 (75.68) 0.0105 (67.49) 0.0634 (72.38) 0.8748 (43.75)
SelectiveNet 1.1240 (70.69) 3.3039 (91.68) 0.5702 (85.10) 1.4646 (75.63) 2.5126 (61.66)

90% TEM 0.0770 (94.77) 0.1190 (85.77) 0.0105 (67.49) 0.0655 (91.33) 0.9229 (62.73)
SelectiveNet 1.8596 (97.29) 3.7828 (96.10) 0.6625 (98.34) 1.6270 (93.52) 3.8254 (86.50)

Informer

Original - 0.6461 1.1877 0.3313 0.73 4.6609

10% TEM 0.6008 (37.08) 1.2057 (13.05) 0.0046 (54.75) 0.1828 (7.81) 4.0733 (9.03)
SelectiveNet 0.7258 (43.89) 0.4411 (13.14) 0.2557 (38.93) 0.7313 (38.84) 2.4625 (51.77)

30% TEM 0.6008 (37.08) 1.1754 (27.66) 0.0046 (54.75) 0.2000 (8.11) 4.4375 (47.92)
SelectiveNet 0.5989 (37.10) 0.4349 (13.82) 0.1355 (21.43) 1.6538 (91.89) 1.8485 (45.88)

50% TEM 0.6460 (89.32) 1.1845 (49.45) 0.0046 (54.75) 0.1921 (10.47) 4.3605 (66.20)
SelectiveNet 0.8827 (61.93) 0.4902 (14.88) 0.3819 (56.73) 0.0723 (3.91) 2.1334 (39.48)

70% TEM 0.6460 (89.32) 1.1814 (70.75) 0.0046 (59.67) 0.2818 (12.98) 4.5612 (80.32)
SelectiveNet 1.5353 (93.71) 2.3146 (81.68) 0.6279 (95.77) 0.0774 (3.85) 3.3572 (82.48)

90% TEM 0.6438 (93.87) 1.1850 (85.72) 0.0046 (59.67) 0.4741 (34.02) 4.5576 (90.74)
SelectiveNet 1.5991 (93.58) 2.7387 (90.36) 0.6709 (99.76) 2.5347 (97.99) 4.7834 (96.82)

PatchTST

Original - 0.0416 0.1079 0.0011 0.0617 0.7324

10% TEM 0.0340 (15.32) 0.0735 (11.98) 0.0008 (21.02) 0.0488 (6.33) 0.4686 (6.25)
SelectiveNet 0.7245 (46.66) 1.1741 (43.79) 0.2904 (44.02) 1.3008 (43.17) 3.0678 (41.82)

30% TEM 0.0413 (30.05) 0.1077 (62.31) 0.0008 (21.02) 0.0526 (7.60) 0.4209 (12.96)
SelectiveNet 0.7245 (46.66) 1.1741 (43.79) 0.2904 (44.02) 1.3008 (43.17) 3.0678 (41.82)

50% TEM 0.0418 (55.94) 0.1077 (62.31) 0.0008 (26.25) 0.0500 (15.60) 0.4210 (15.51)
SelectiveNet 0.9246 (57.67) 1.5540 (58.10) 0.6266 (97.14) 2.0810 (67.66) 4.2466 (57.52)

70% TEM 0.0417 (60.38) 0.1076 (75.24) 0.0008 (33.02) 0.0505 (25.61) 0.5040 (32.18)
SelectiveNet 1.3013 (73.65) 2.1454 (75.39) 0.6083 (93.70) 2.1041 (68.53) 5.5219 (78.88)

90% TEM 0.0417 (88.96) 0.1079 (93.97) 0.0008 (54.18) 0.0558 (46.40) 0.6313 (66.90)
SelectiveNet 1.5963 (90.38) 2.6392 (94.30) 0.6394 (99.95) 2.6975 (89.78) 6.9872 (87.01)

TimesNet

Original - 0.0438 0.1273 0.0016 0.0549 0.8391

10% TEM 0.0308 (16.80) 0.1069 (29.04) 0.0014 (61.17) 0.0416 (6.03) 0.5222 (5.79)
SelectiveNet 0.9464 (53.09) 1.2297 (45.05) 0.3200 (49.72) 2.0732 (55.11) 3.2588 (52.76)

30% TEM 0.0447 (34.79) 0.1069 (29.04) 0.0014 (61.17) 0.0434 (16.12) 0.4281 (9.03)
SelectiveNet 1.0185 (57.71) 1.2813 (47.15) 0.3517 (51.15) 1.9370 (52.73) 3.2699 (52.94)

50% TEM 0.0455 (71.70) 0.1281 (60.91) 0.0014 (61.17) 0.0451 (32.45) 0.4413 (13.66)
SelectiveNet 0.8966 (54.48) 0.5844 (25.75) 0.3560 (54.01) 1.8190 (49.63) 3.5668 (57.96)

70% TEM 0.0455 (71.70) 0.1281 (82.69) 0.0014 (65.83) 0.0485 (46.81) 0.4270 (16.90)
SelectiveNet 1.2080 (70.16) 1.7400 (79.76) 0.5239 (78.78) 3.4055 (85.40) 4.7244 (78.43)

90% TEM 0.0459 (84.58) 0.1276 (94.16) 0.0014 (65.83) 0.0502 (64.89) 0.6104 (37.96)
SelectiveNet 1.5088 (90.83) 2.8587 (92.41) 0.6379 (97.73) 3.3017 (90.90) 5.8539 (93.66)
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model achieves target coverage. If no model achieves target coverage, then we calculate the percentage error
reduction and difference between target coverage and actual coverage. The model with the lowest sum of
prediction error and coverage difference is considered the best performing model for that target coverage,
dataset, model configuration.

TEM reduces prediction error across all five models by between 11.1− 39.0% on average for target coverages
ϕ(g) < 50%. The highest prediction error reduction was achieved using target coverages ϕ(g) ∈ {10%, 30%},
where TEM achieves on average 21.0% reduction in prediction error across all models and datasets using the
Aggregated energy inference method.

The largest error reduction was achieved with the Informer model. For target coverages ϕ(g) ∈ {10%, 30%},
TEM reduces Informer’s prediction error by over 34.1%. TEM selective forecasting also significantly reduces
error for the best performing baseline deterministic models, achieving up to 45.5% reduction for PatchTST
and 49.1% for TimesNet for target coverages ϕ(g) ∈ {10%, 30%}.

The average actual coverage ϕ(g) recorded for target coverages ϕ(g) ∈ {10%, 30%} is 21.4% and 32.7%
respectively across all models and datasets. This result is expected, as Informer has the lowest deterministic
prediction accuracy among all 5 tested deterministic baseline models and has the most room for error
reduction.

TEM does not always achieve the target coverage, with actual coverage being on average 11.0% and 17.4%
lower than the target coverage for target coverages ϕ(g) ∈ {70%, 90%} respectively. Most of this difference
comes from the PatchTST and TimesNet models, which have the lowest deterministic prediction error among
all tested models. We have also noted that the Energy optimization inference method achieves on average
3.5% lower actual coverage than the Aggregated energy inference method across all tested target coverages,
but provides up to 30.4% lower prediction error (see Appendix A.1.1 for a more detailed comparison).

5.2 Comparison against selected EBM baselines

Configurations of TEM were compared against baseline EBM models. As seen in Table 1, TEM compares
favorably against the EBM model baselines. The baseline EB-NARX model has the overall second highest
deterministic prediction error of all the tested models and TEM configurations. EB-NARX only outperforms
the Informer model on all datasets, having on average 51.6% lower error. EB-NARX on average has a 407.1%
higher error than the state-of-the-art deterministic TimesNet and PatchTST models across all datasets How-
ever, EB-NARX has the lowest deterministic prediction error for the Weather dataset, outperforming both
of the state-of-the-art TimesNet and PatchTST models by 50.0% and 27.3% respectively. TEM outper-
forms EB-NARX on all datasets using selective forecasting, having up to 87.0% lower error for lower target
coverages ϕ(g) ∈ {10%, 30%}

The observed EB-NARX performance is expected and can be attributed to the fact that EB-NARX is
originally a regression model which tends to suffer from error accumulation when predicting for longer
forecast horizons. Furthermore, EB-NARX generates over 2000 samples and performs energy minimization
with gradient descent for each time-step t, causing inference to be over 5 times slower than TEM.

5.3 Comparison against SelectiveNet baselines

Configurations of TEM were compared against baseline SelectiveNet models, which are based on the only
other end-to-end deep learning framework that enables selectively rejecting predictions based on user-defined
target coverage. We adapted SelectiveNet for the time-series forecasting task as described in Section 4.1.
Three architectures of the adapted SelectiveNet were trained for each of the state-of-the-art forecasting
models. 6 coverages c ∈ {10%, 30%, 50%, 70%, 90%, 100%} were selected to train SelectiveNet models, which
contain the coverages used in the original SelectiveNet paper (Geifman & El-Yaniv, 2019) and 10% and
30% to evaluate performance for lower target coverages. As with prior experiments, 3 SelectiveNet models
were trained per architecture, initialized with random seeds, to reduce the likelihood for non-representative
results.
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Figure 4: Prediction error reduction (figures at the top), target and actual coverage percentages (figures
at the bottom) for TEM and SelectiveNet, across selected target coverages c ∈ {10%, 30%, 50%, 70%, 90%}
on models Autoformer, FEDformer, Informer, PatchTST, and TimesNet. The top figures’ Y-axes use log
scale to visualize the several orders of magnitude difference in performance between selective forecasting with
TEM and SelectiveNet. For bottom figures, the dotted line represents the ideal case, where actual coverage
is equal to target coverage.

As seen in Table 1, SelectiveNet failed to consistently decrease prediction error, across all target coverages,
for all tested models across all datasets. TEM using the Aggregated energy inference method outperformed
SelectiveNet in every case in terms of selective risk, where TEM reduces error by on average 16.5% across
all models and datasets and SelectiveNet increases error by 4244.3% However, SelectiveNet did achieve
target coverage more consistently and had on average 14.0% higher coverage than TEM across all tested
target coverages, which can be explained by the way SelectiveNet models are trained (see more details in
Appendix A.2.2). Furthermore, SelectiveNet did manage to reduce prediction error for the Informer
models, achieving on average 18.4% lower error for target coverages ϕ(g) ∈ {10%, 30%} and 30.2% lower
error for target coverages ϕ(g) ∈ {50%}. Notably, unlike TEM, SelectiveNet actual coverage does not rise
monotonically as target coverage increases, but instead has a saw-tooth pattern, where actual coverage for
lower target coverages is higher than for higher target coverages. For example, SelectiveNet with Informer
achieves on average 42.0% actual coverage for target coverages ϕ(g) ∈ {30%}, but only 35.4% actual coverage
for target coverage ϕ(g) ∈ {50%}. This is expected, as SelectiveNet models are trained for each target
coverage independently, meaning that the coverage achieved for one target coverage is not indicative of
the coverage that would be achieved for a different chosen target coverage. This makes SelectiveNet less
predictable than TEM in terms of how changing target coverage will affect actual selective coverage and
selective risk.

5.4 Ablation study and additional experiments

To evaluate the impact that different components of TEM have on selective forecasting performance, we
conducted an ablation study and additional experiments. We conducted an ablation study on the two
proposed TEM inference methods, Aggregated energy and Energy optimization, comparing them to each
other as well as to a naive baseline where energy Eθ(X, Ŷ ) was directly used to estimate uncertainty (see more
details in Appendix A.1.1). Results show that the Aggregated energy inference method achieves on average
10.9% lower selective risk than the Energy optimization inference method, but has 3.5% lower coverage.
However, both methods outperform the naive baseline method by 461.9% and 462.2% respectively, showing
that both proposed inference methods are superior to the naive baseline. We also conducted an ablation study
on the proposed joint training method, comparing it to a configuration where only self-supervised Contrastive
Divergence learning was used to train TEM models (see more details in Appendix A.1.2). Results show that
TEM without joint training increases forecasting error for selective forecasting by up to 2798.6% across
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all coverages, making it unsuitable for practical use. Furthermore, we conducted additional experiments
to evaluate TEM performance for univariate time-series forecasting (see more details in Appendix A.2.1).
TEM manages to reduce forecast error to a similar degree as for the multivariate forecasting case suggesting
that the effectiveness of TEM is not significantly impacted by the dimensionality of the forecasting task and
demonstrating that TEM can be used for selective univariate time-series forecasting. Finally, we conducted
additional experiments to further analyze the performance of SelectiveNet and identify potential reasons
for its poor performance compared to TEM (see more details in Appendix A.2.2). Experiments show that
SelectiveNet models tend to converge to a stable coverage level, close to the target coverage. Furthermore,
SelectiveNet models are overly conservative during training, selecting too many forecasts and achieving
higher coverage than desired, resulting in higher prediction error.

6 Conclusions and Future Work

This paper proposes the Time-Energy Model, an energy-based model framework for time-series forecast-
ing. TEM addresses challenges of applying energy-based models to time-series forecasting by providing a
framework to parameterize, train, and perform inference with EBMs on time-series data using deep neural
networks. TEM introduces selective forecasting that enables the EBM to estimate model confidence, allow-
ing the end-user to selectively reject predictions based on potential forecast error. TEM is parameterized
and trained using a proposed joint training method that improves existing baseline EBM models by having a
lower inference latency and significantly higher prediction accuracy. As shown in the experiments on 5 state-
of-the-art forecasting models TEM can improve the prediction accuracy of encoder-decoder deterministic
time-series forecasting models. Experiments show that TEM increases the prediction accuracy over known
state-of-the-art forecasting models by up to 49.1% on 5 benchmark datasets. Also, TEM has 87.0% lower
error than baseline EBM models and 4244.3% lower error than SelectiveNet models, while also providing
significantly faster inference than the former.

In future work, we will extend the TEM framework and develop improved architectures and inference methods
that provide better error reduction while maintaining higher coverage. Furthermore, we will apply TEM
for time-series outlier and anomaly detection. Finally, we will explore the use of TEM with time-series
foundation models.
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A Appendix

A.1 Ablation study details

In this section, we provide detailed results for the ablation study conducted to evaluate the impact that
proposed TEM inference methods and TEM joint training have on selective forecasting performance.

A.1.1 Comparison of TEM inference method performance

In this section, we provide detailed results for selective forecasting using both TEM inference methods:
Energy optimization inference and Aggregated energy inference. As shown in Table 3, experiments indicate
that both Aggregated energy and Energy optimization are effective and reduce prediction error by more than
16.4%. For target coverages ϕ(g) ∈ {10%, 30%}, the Energy optimization method had around 11.0% lower
selective coverage but achieved 8.2% lower prediction error than the Aggregated energy method. However,
for target coverages ϕ(g) ∈ {50%, 70%}, the Energy optimization method had 9.2% lower selective coverage
while achieving 7.9% higher prediction error. On average, across all target coverages, the Energy optimization
method yielded around 6.2% lower selective coverage and 1.9% lower prediction error than the Aggregated
energy method. However, this means that Energy optimization tends not to achieve target coverages as
often as the Aggregated energy method. Energy optimization is therefore recommended for applications
where lower prediction error is prioritized over higher selective coverage. Notably, it is also possible to use
a combination of both inference methods, depending on end-user requirements or desired error bounds, as
the use of either method does not require retraining the TEM model.
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Figure 5: Prediction error reduction (figures at the top), target and actual coverage percentages (figures at
the bottom) for TEM models using Aggregated energy and Energy optimization inference methods as well as
the naive baseline using Eθ(X, Ŷ ) directly for estimating uncertainty and selecting forecasts across selected
target coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%, 100%} on models Autoformer, FEDformer, Informer,
PatchTST, and TimesNet. The top figures’ Y-axes use log scale to visualize the several orders of magnitude
difference in performance between selective forecasting with TEM and SelectiveNet. For bottom figures, the
dotted line represents the ideal case, where actual coverage is equal to target coverage.

We also evaluate the performance of TEM without using either Aggregated energy or Energy optimization
inference methods. In this case, we use the energy value at the model’s output, Eθ(X, Ŷ ), directly for
estimating model uncertainty and selecting forecasts. As shown in Figure 5, the experiments show without
using either of the proposed inference methods TEM fails to reduce forecast error and instead increases it
by on average 445.6% across all coverages. This is a 461.9% difference when compared to the Aggregated
energy inference method and a 462.2% difference when compared to the Energy optimization inference
method. However, the results also show that using Eθ(X, Ŷ ) directly for selecting forecasts yields slightly
higher coverage than using either Aggregated energy or Energy optimization inference methods, on average
7.8% higher coverage than Aggregated energy inference method and 14.9% higher coverage than Energy
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Table 2: TEM performance comparison across Aggregated energy and Energy optimization inference meth-
ods. Results show selective risk and empirical coverage (in parentheses) for target coverages ϕ(g) ∈
10%, 30%, 50%, 70%, 90%. Best performing models for specific target coverages are marked bold.

Model Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

Energy-based model EB-NARX 0.2154 0.3003 0.0008 0.697 4.0934

TEM Autoformer with
Aggregated Energy
Inference

Original 0.0876 0.1577 0.0079 0.0899 1.1758
10 % 0.0906 (16.80) 0.1591 (28.39) 0.0076 (57.13) 0.0712 (17.60) 0.5634 (2.78)
30 % 0.0889 (51.79) 0.1591 (28.39) 0.0076 (57.13) 0.0708 (26.73) 1.0141 (20.14)
50 % 0.0889 (51.79) 0.1568 (59.22) 0.0076 (57.13) 0.0902 (61.93) 1.0128 (42.13)
70 % 0.0871 (78.64) 0.1568 (59.22) 0.0075 (73.91) 0.0897 (69.35) 1.0464 (65.74)
90 % 0.0881 (87.45) 0.1568 (76.78) 0.0075 (73.91) 0.0890 (87.96) 1.0974 (83.10)

TEM FEDformer with
Aggregated Energy
Inference

Original 0.0772 0.1184 0.011 0.0653 1.0503
10 % 0.0782 (45.86) 0.0958 (17.75) 0.0104 (61.27) 0.0354 (3.19) 0.6754 (4.40)
30 % 0.0782 (45.86) 0.1192 (75.68) 0.0104 (61.27) 0.0616 (34.74) 0.8927 (13.66)
50 % 0.0770 (94.77) 0.1192 (75.68) 0.0104 (61.27) 0.0616 (34.74) 0.8470 (26.39)
70 % 0.0770 (94.77) 0.1192 (75.68) 0.0105 (67.49) 0.0634 (72.38) 0.8748 (43.75)
90 % 0.0770 (94.77) 0.1190 (85.77) 0.0105 (67.49) 0.0655 (91.33) 0.9229 (62.73)

TEM Informer with
Aggregated Energy
Inference

Original 0.6461 1.1877 0.3313 0.73 4.6609
10 % 0.6008 (37.08) 1.2057 (13.05) 0.0046 (54.75) 0.1828 (7.81) 4.0733 (9.03)
30 % 0.6008 (37.08) 1.1754 (27.66) 0.0046 (54.75) 0.2000 (8.11) 4.4375 (47.92)
50 % 0.6460 (89.32) 1.1845 (49.45) 0.0046 (54.75) 0.1921 (10.47) 4.3605 (66.20)
70 % 0.6460 (89.32) 1.1814 (70.75) 0.0046 (59.67) 0.2818 (12.98) 4.5612 (80.32)
90 % 0.6438 (93.87) 1.1850 (85.72) 0.0046 (59.67) 0.4741 (34.02) 4.5576 (90.74)

TEM PatchTST with
Aggregated Energy
Inference

Original 0.0416 0.1079 0.0011 0.0617 0.7324
10 % 0.0340 (15.32) 0.0735 (11.98) 0.0008 (21.02) 0.0488 (6.33) 0.4686 (6.25)
30 % 0.0413 (30.05) 0.1077 (62.31) 0.0008 (21.02) 0.0526 (7.60) 0.4209 (12.96)
50 % 0.0418 (55.94) 0.1077 (62.31) 0.0008 (26.25) 0.0500 (15.60) 0.4210 (15.51)
70 % 0.0417 (60.38) 0.1076 (75.24) 0.0008 (33.02) 0.0505 (25.61) 0.5040 (32.18)
90 % 0.0417 (88.96) 0.1079 (93.97) 0.0008 (54.18) 0.0558 (46.40) 0.6313 (66.90)

TEM TimesNet with
Aggregated Energy
Inference

Original 0.0438 0.1273 0.0016 0.0549 0.8391
10 % 0.0308 (16.80) 0.1069 (29.04) 0.0014 (61.17) 0.0416 (6.03) 0.5222 (5.79)
30 % 0.0447 (34.79) 0.1069 (29.04) 0.0014 (61.17) 0.0434 (16.12) 0.4281 (9.03)
50 % 0.0455 (71.70) 0.1281 (60.91) 0.0014 (61.17) 0.0451 (32.45) 0.4413 (13.66)
70 % 0.0455 (71.70) 0.1281 (82.69) 0.0014 (65.83) 0.0485 (46.81) 0.4270 (16.90)
90 % 0.0459 (84.58) 0.1276 (94.16) 0.0014 (65.83) 0.0502 (64.89) 0.6104 (37.96)

TEM Autoformer with
Energy Optimization
Inference

Original 0.0876 0.1577 0.0079 0.0899 1.1758
10 % 0.0870 (23.03) 0.1295 (6.77) 0.0072 (49.13) 0.0770 (14.91) 0.8180 (7.41)
30 % 0.0877 (36.83) 0.1438 (33.00) 0.0072 (49.13) 0.0823 (27.69) 0.9259 (17.59)
50 % 0.0868 (50.32) 0.1560 (55.28) 0.0072 (53.79) 0.0848 (44.15) 1.0024 (26.85)
70 % 0.0877 (70.49) 0.1523 (66.87) 0.0072 (72.44) 0.0881 (66.12) 1.0443 (41.44)
90 % 0.0874 (89.62) 0.1582 (93.41) 0.0073 (92.71) 0.0890 (80.94) 1.0252 (56.48)

TEM FEDformer with
Energy Optimization
Inference

Original 0.0772 0.1184 0.011 0.0653 1.0503
10 % 0.0837 (19.13) 0.1195 (1.33) 0.0104 (59.76) 0.0590 (14.18) 0.6012 (7.64)
30 % 0.0829 (31.89) 0.1191 (16.16) 0.0104 (59.76) 0.0624 (26.84) 0.6012 (7.64)
50 % 0.0802 (53.28) 0.1172 (46.53) 0.0104 (59.76) 0.0644 (44.40) 0.6421 (12.50)
70 % 0.0721 (63.05) 0.1172 (46.53) 0.0104 (72.11) 0.0616 (65.46) 0.6245 (16.44)
90 % 0.0721 (63.05) 0.1172 (46.53) 0.0106 (88.18) 0.0632 (69.51) 0.6732 (29.86)

TEM Informer with
Energy Optimization
Inference

Original 0.6461 1.1877 0.3313 0.73 4.6609
10 % 0.3781 (4.70) 1.0603 (15.52) 0.0277 (24.73) 0.3151 (3.87) 4.0905 (12.50)
30 % 0.6071 (28.61) 1.0449 (27.14) 0.0277 (24.73) 0.2251 (7.81) 4.0831 (30.79)
50 % 0.6502 (48.61) 1.2784 (47.18) 0.0277 (24.73) 0.8804 (32.40) 4.9517 (53.70)
70 % 0.6382 (77.61) 1.1949 (74.68) 0.0262 (25.95) 0.5810 (42.69) 4.5389 (66.67)
90 % 0.6463 (91.31) 1.1938 (93.81) 0.1971 (42.59) 0.6350 (55.94) 4.4865 (80.56)

TEM PatchTST with
Energy Optimization
Inference

Original 0.0416 0.1079 0.0011 0.0617 0.7324
10 % 0.0423 (12.14) 0.0928 (23.16) 0.0007 (10.86) 0.0444 (5.69) 0.4118 (11.11)
30 % 0.0415 (28.87) 0.0916 (48.95) 0.0007 (10.86) 0.0448 (9.18) 0.4084 (16.67)
50 % 0.0419 (53.24) 0.0918 (55.66) 0.0007 (10.86) 0.0533 (22.40) 0.4692 (20.83)
70 % 0.0415 (90.83) 0.1103 (74.94) 0.0007 (10.86) 0.0574 (44.31) 0.4503 (25.23)
90 % 0.0416 (98.28) 0.1082 (93.90) 0.0006 (15.13) 0.0584 (65.96) 0.4554 (35.65)

TEM TimesNet with
Energy Optimization
Inference

Original 0.0438 0.1273 0.0016 0.0549 0.8391
10 % 0.0459 (84.58) 0.0797 (9.60) 0.0012 (56.03) 0.0456 (13.68) 0.5387 (4.40)
30 % 0.0459 (84.58) 0.0745 (31.04) 0.0012 (56.03) 0.0527 (22.34) 0.4703 (12.73)
50 % 0.0459 (84.58) 0.1290 (73.26) 0.0012 (56.03) 0.0525 (32.01) 0.4489 (15.51)
70 % 0.0459 (84.58) 0.1290 (73.26) 0.0013 (71.81) 0.0526 (44.44) 0.4722 (22.69)
90 % 0.0459 (84.58) 0.1278 (90.36) 0.0015 (93.78) 0.0530 (54.96) 0.5636 (34.49)
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Table 3: TEM performance comparison across Aggregated energy (Agg. Energy) and Energy optimization
(Energy Opt.) inference methods. Results show selective risk and empirical coverage (in parentheses) for
target coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%}. Best performing models for specific target coverages
are marked bold.
Base Model Coverage Method Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

EB-NARX Original - 0.2154 0.3003 0.0008 0.697 4.0934

Autoformer

Original - 0.0876 0.1577 0.0079 0.0899 1.1758

10% Agg. Energy 0.0906 (16.80) 0.1591 (28.39) 0.0076 (57.13) 0.0712 (17.60) 0.5634 (2.78)
Energy Opt. 0.0870 (23.03) 0.1295 (6.77) 0.0072 (49.13) 0.0770 (14.91) 0.8180 (7.41)

30% Agg. Energy 0.0889 (51.79) 0.1591 (28.39) 0.0076 (57.13) 0.0708 (26.73) 1.0141 (20.14)
Energy Opt. 0.0877 (36.83) 0.1438 (33.00) 0.0072 (49.13) 0.0823 (27.69) 0.9259 (17.59)

50% Agg. Energy 0.0889 (51.79) 0.1568 (59.22) 0.0076 (57.13) 0.0902 (61.93) 1.0128 (42.13)
Energy Opt. 0.0868 (50.32) 0.1560 (55.28) 0.0072 (53.79) 0.0848 (44.15) 1.0024 (26.85)

70% Agg. Energy 0.0871 (78.64) 0.1568 (59.22) 0.0075 (73.91) 0.0897 (69.35) 1.0464 (65.74)
Energy Opt. 0.0877 (70.49) 0.1523 (66.87) 0.0072 (72.44) 0.0881 (66.12) 1.0443 (41.44)

90% Agg. Energy 0.0881 (87.45) 0.1568 (76.78) 0.0075 (73.91) 0.0890 (87.96) 1.0974 (83.10)
Energy Opt. 0.0874 (89.62) 0.1582 (93.41) 0.0073 (92.71) 0.0890 (80.94) 1.0252 (56.48)

FEDformer

Original - 0.0772 0.1184 0.011 0.0653 1.0503

10% Agg. Energy 0.0782 (45.86) 0.0958 (17.75) 0.0104 (61.27) 0.0354 (3.19) 0.6754 (4.40)
Energy Opt. 0.0837 (19.13) 0.1195 (1.33) 0.0104 (59.76) 0.0590 (14.18) 0.6012 (7.64)

30% Agg. Energy 0.0782 (45.86) 0.1192 (75.68) 0.0104 (61.27) 0.0616 (34.74) 0.8927 (13.66)
Energy Opt. 0.0829 (31.89) 0.1191 (16.16) 0.0104 (59.76) 0.0624 (26.84) 0.6012 (7.64)

50% Agg. Energy 0.0770 (94.77) 0.1192 (75.68) 0.0104 (61.27) 0.0616 (34.74) 0.8470 (26.39)
Energy Opt. 0.0802 (53.28) 0.1172 (46.53) 0.0104 (59.76) 0.0644 (44.40) 0.6421 (12.50)

70% Agg. Energy 0.0770 (94.77) 0.1192 (75.68) 0.0105 (67.49) 0.0634 (72.38) 0.8748 (43.75)
Energy Opt. 0.0721 (63.05) 0.1172 (46.53) 0.0104 (72.11) 0.0616 (65.46) 0.6245 (16.44)

90% Agg. Energy 0.0770 (94.77) 0.1190 (85.77) 0.0105 (67.49) 0.0655 (91.33) 0.9229 (62.73)
Energy Opt. 0.0721 (63.05) 0.1172 (46.53) 0.0106 (88.18) 0.0632 (69.51) 0.6732 (29.86)

Informer

Original - 0.6461 1.1877 0.3313 0.73 4.6609

10% Agg. Energy 0.6008 (37.08) 1.2057 (13.05) 0.0046 (54.75) 0.1828 (7.81) 4.0733 (9.03)
Energy Opt. 0.3781 (4.70) 1.0603 (15.52) 0.0277 (24.73) 0.3151 (3.87) 4.0905 (12.50)

30% Agg. Energy 0.6008 (37.08) 1.1754 (27.66) 0.0046 (54.75) 0.2000 (8.11) 4.4375 (47.92)
Energy Opt. 0.6071 (28.61) 1.0449 (27.14) 0.0277 (24.73) 0.2251 (7.81) 4.0831 (30.79)

50% Agg. Energy 0.6460 (89.32) 1.1845 (49.45) 0.0046 (54.75) 0.1921 (10.47) 4.3605 (66.20)
Energy Opt. 0.6502 (48.61) 1.2784 (47.18) 0.0277 (24.73) 0.8804 (32.40) 4.9517 (53.70)

70% Agg. Energy 0.6460 (89.32) 1.1814 (70.75) 0.0046 (59.67) 0.2818 (12.98) 4.5612 (80.32)
Energy Opt. 0.6382 (77.61) 1.1949 (74.68) 0.0262 (25.95) 0.5810 (42.69) 4.5389 (66.67)

90% Agg. Energy 0.6438 (93.87) 1.1850 (85.72) 0.0046 (59.67) 0.4741 (34.02) 4.5576 (90.74)
Energy Opt. 0.6463 (91.31) 1.1938 (93.81) 0.1971 (42.59) 0.6350 (55.94) 4.4865 (80.56)

PatchTST

Original - 0.0416 0.1079 0.0011 0.0617 0.7324

10% Agg. Energy 0.0340 (15.32) 0.0735 (11.98) 0.0008 (21.02) 0.0488 (6.33) 0.4686 (6.25)
Energy Opt. 0.0423 (12.14) 0.0928 (23.16) 0.0007 (10.86) 0.0444 (5.69) 0.4118 (11.11)

30% Agg. Energy 0.0413 (30.05) 0.1077 (62.31) 0.0008 (21.02) 0.0526 (7.60) 0.4209 (12.96)
Energy Opt. 0.0415 (28.87) 0.0916 (48.95) 0.0007 (10.86) 0.0448 (9.18) 0.4084 (16.67)

50% Agg. Energy 0.0418 (55.94) 0.1077 (62.31) 0.0008 (26.25) 0.0500 (15.60) 0.4210 (15.51)
Energy Opt. 0.0419 (53.24) 0.0918 (55.66) 0.0007 (10.86) 0.0533 (22.40) 0.4692 (20.83)

70% Agg. Energy 0.0417 (60.38) 0.1076 (75.24) 0.0008 (33.02) 0.0505 (25.61) 0.5040 (32.18)
Energy Opt. 0.0415 (90.83) 0.1103 (74.94) 0.0007 (10.86) 0.0574 (44.31) 0.4503 (25.23)

90% Agg. Energy 0.0417 (88.96) 0.1079 (93.97) 0.0008 (54.18) 0.0558 (46.40) 0.6313 (66.90)
Energy Opt. 0.0416 (98.28) 0.1082 (93.90) 0.0006 (15.13) 0.0584 (65.96) 0.4554 (35.65)

TimesNet

Original - 0.0438 0.1273 0.0016 0.0549 0.8391

10% Agg. Energy 0.0308 (16.80) 0.1069 (29.04) 0.0014 (61.17) 0.0416 (6.03) 0.5222 (5.79)
Energy Opt. 0.0459 (84.58) 0.0797 (9.60) 0.0012 (56.03) 0.0456 (13.68) 0.5387 (4.40)

30% Agg. Energy 0.0447 (34.79) 0.1069 (29.04) 0.0014 (61.17) 0.0434 (16.12) 0.4281 (9.03)
Energy Opt. 0.0459 (84.58) 0.0745 (31.04) 0.0012 (56.03) 0.0527 (22.34) 0.4703 (12.73)

50% Agg. Energy 0.0455 (71.70) 0.1281 (60.91) 0.0014 (61.17) 0.0451 (32.45) 0.4413 (13.66)
Energy Opt. 0.0459 (84.58) 0.1290 (73.26) 0.0012 (56.03) 0.0525 (32.01) 0.4489 (15.51)

70% Agg. Energy 0.0455 (71.70) 0.1281 (82.69) 0.0014 (65.83) 0.0485 (46.81) 0.4270 (16.90)
Energy Opt. 0.0459 (84.58) 0.1290 (73.26) 0.0013 (71.81) 0.0526 (44.44) 0.4722 (22.69)

90% Agg. Energy 0.0459 (84.58) 0.1276 (94.16) 0.0014 (65.83) 0.0502 (64.89) 0.6104 (37.96)
Energy Opt. 0.0459 (84.58) 0.1278 (90.36) 0.0015 (93.78) 0.0530 (54.96) 0.5636 (34.49)
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Table 4: Relative change in forecasting error for deterministic models using joint training and using Con-
strastive Divergence only. Positive percentages indicate the relative forecasting error increase when models
using only Contrastive Divergence (without joint training), negative percentages indicate the relative
forecasting error reduction.

Deterministic model ETTh1 ETTh2 Weather Exchange Rate National Illness
FEDformer +364.51% +306.25% +3085.45% +495.10% +118.19%
Autoformer +501.37% +273.18% +5396.20% +379.64% +85.07%
Informer +212.24% +81.71% -1.51% +276.10% +116.32%
PatchTST +53.37% +111.86% +18.18% +71.47% +172.57%
TimesNet +55.48% +85.55% -18.75% +101.28% +119.22%

optimization inference method. These results show that sampling a single energy value at the model’s output
Eθ(X, Ŷ ) does not provide enough information for estimating model uncertainty and selecting forecasts.

Sampling energy values from around the model’s output (as done when using Aggregated energy and Energy
optimization inference methods) provides more accurate model uncertainty estimates. Intuitively, if the
model is confident in its prediction, the energy value is low, then the energy values around the model’s
output should also be low – model should be confident in forecasting very similar values. If the energy values
on and around the forecast are high, then that indicates that the energy surface around the forecast is not
low and the model might have not seen many similar examples in its training data.

However, aggregating the energy values can disrupt the natural ordering of the energy values (as generally,
low energy values indicate high probability and high model confidence). We have observed that it when
performing the calibration and ranking of energy values, the natural ordering of energy values is generally
not disrupted, but instead it improves the accuracy of the estimation of mean prediction error ϵ for each
energy interval (as shown in Figure 3). More accurate prediction error estimates enable TEM selective
forecasting to more consistently select forecasts with lower prediction error, reducing prediction error more
for the same target coverages.

A.1.2 TEM performance when trained only using self-supervised learning

In this section, we provide the results of experiments training deterministic and TEM models without joint
training, only using Contrastive Divergence self-supervised learning. The key difference between TEM joint
training and training using only Contrastive Divergence is in how the model parameters are optimized. With
joint training (Section 3.3), the deterministic model AΨ is first trained using supervised learning to directly
minimize forecasting error, and then the energy-based model parameters θ are trained using Contrastive Di-
vergence while keeping AΨ parameters frozen. In contrast, when training using only Contrastive Divergence,
all model parameters (both AΨ and Eθ) are trained simultaneously using self-supervised learning to learn
the entire data distribution, without directly optimizing for forecasting accuracy.

As shown in Table 4, the experiments indicate that without joint training, deterministic models have on
average 498.4% higher forecasting error across all 5 models and 5 datasets. However, on the Weather dataset,
using Contrastive Divergence yielded a slight increase in forecasting accuracy for models TimesNet and
Informer, 18.8% and 1.5% respectively. The performance reduction is particularly significant for Autoformer
and FEDformer models, where training using only Contrastive Divergence results in up to 5396.2% and
3085.5% higher error on average across all datasets. These results show that the proposed TEM joint training
method is essential for maintaining high deterministic forecasting accuracy.

As a result of poor deterministic performance, TEM models without joint training do not yield any relative
error reduction when compared to TEM trained with joint training. As seen in Figure 6, on average, TEM
without joint training increases forecasting error when using selective forecasting by 2798.6% across all
coverages. Notably, TEM without joint training yields 89.5% lower forecasting error than SelectiveNet
models. However, neither TEM without joint training nor SelectiveNet models yield sufficient deterministic
performance to be used effectively in practice. Poor deterministic performance of TEM models trained
without joint training can be attributed to the models not being trained using a loss function that is directly
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optimized for forecasting error. EBMs are trained using Contrastive Divergence, which is a loss function
designed to learn the entire data distribution, not directly optimize forecasting error. Without the utilization
of supervised learning, as proposed in this work, TEM models (or generative models in general) often cannot
show comparable forecasting performance to conventional discriminative deterministic models (Bond-Taylor
et al., 2022; Zheng et al., 2023).
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Figure 6: Prediction error reduction (figures at the top), target and actual coverage percentages (figures
at the bottom) for TEM models trained with and without joint training, and SelectiveNet for multivariate
selective forecasting, across selected target coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%, 100%} on models
Autoformer, FEDformer, Informer, PatchTST, and TimesNet. The top figures’ Y-axes use log scale to
visualize the several orders of magnitude difference in performance between selective forecasting with TEM
and SelectiveNet. For bottom figures, the dotted line represents the ideal case, where actual coverage is
equal to target coverage.

A.2 Additional experiments

In this section, we provide detailed results for additional experiments evaluating TEM performance for
selective univariate time-series forecasting and further analysis of SelectiveNet performance.

A.2.1 TEM performance for univariate selective forecasting

In this section, we evaluate TEM performance for univariate selective forecasting. In these experiments, TEM
was trained to forecast using only observed data for one feature (the target variable) TEM achieves similar
performance in the univariate forecasting scenario to multivariate forecasting. As seen in Table 5, across
all models and datasets, TEM achieves an average prediction error reduction of 23.6% for target coverages
ϕ(g) ∈ {10%, 30%}, which is within 2% of the multivariate case. This suggests that the effectiveness of TEM
is not significantly impacted by the dimensionality of the forecasting task.

As can be seen in Figure 7, the performance gap between TEM Aggregated energy and Energy optimization
inference methods is notably smaller for univariate selective forecasting. The Energy optimization method
achieves on average 10.9% lower prediction error than Aggregated energy, while having 3.5% lower coverage.
SelectiveNet shows improved performance in the univariate case, achieving 80.7% lower prediction error
compared to SelectiveNet applied for multivariate forecasting across all models and datasets. This could be
attributed to the fact that univariate forecasting is a comparatively easier task, as the forecasting model
does not need to consider the interactions between covariate features. SelectiveNet, like in the multivariate
selective forecasting case, also performs well with the Informer architecture, in some cases reducing error
by up to 95% and outperforming TEM with Aggregated energy in most scenarios across all five datasets.
However, SelectiveNet still on average increases forecasting error by 820.0% compared to deterministic mod-
els, and performs 4944.5% worse than TEM across all target coverages and across all models and datasets,
showing that it does not generalize across different model architectures and datasets well, unlike TEM.
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Table 5: TEM performance comparison for univariate selective forecasting. Results show selective risk and
empirical coverage (in parentheses) for target coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%}. Best performing
models for specific target coverages are marked bold.
Base Model Coverage Method Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

EB-NARX 0.2154 0.3003 0.0008 0.697 4.0934

Autoformer

Original - 0.0876 0.1578 0.0078 0.0897 1.1766

10% TEM 0.0869 (58.18) 0.1471 (12.09) 0.0076 (47.58) 0.0535 (7.17) 0.7639 (7.41)
SelectiveNet 0.1667 (53.82) 2.8711 (51.16) 0.0071 (56.58) 1.8717 (49.61) 3.4556 (50.35)

30% TEM 0.0869 (58.18) 0.1537 (52.55) 0.0076 (47.58) 0.0866 (67.01) 0.9514 (25.23)
SelectiveNet 0.1116 (55.25) 1.2875 (52.96) 0.0412 (49.22) 1.8666 (58.53) 3.8514 (50.45)

50% TEM 0.0869 (58.18) 0.1537 (52.55) 0.0075 (53.51) 0.0866 (67.01) 1.1224 (72.45)
SelectiveNet 0.1392 (54.56) 1.5872 (48.52) 0.0163 (54.23) 1.6051 (50.08) 4.0139 (58.30)

70% TEM 0.0864 (90.90) 0.1564 (72.45) 0.0075 (70.76) 0.0866 (67.01) 1.1224 (72.45)
SelectiveNet 0.1384 (64.39) 3.7973 (70.33) 0.1271 (80.03) 1.9077 (78.92) 4.1406 (70.55)

90% TEM 0.0864 (90.90) 0.1578 (87.71) 0.0075 (92.00) 0.0889 (91.73) 1.1416 (86.57)
SelectiveNet 1.4219 (93.44) 4.2827 (96.40) 0.0404 (98.96) 3.1112 (89.03) 4.7521 (84.59)

FEDformer

Original - 0.0772 0.1185 0.011 0.0648 1.0498

10% TEM 0.0594 (18.63) 0.0960 (20.39) 0.0102 (62.40) 0.0444 (8.24) 0.5466 (3.70)
SelectiveNet 0.1176 (49.65) 0.0007 (0.41) 0.1456 (55.01) 0.1360 (50.32) 1.5589 (65.82)

30% TEM 0.0773 (63.75) 0.1209 (64.70) 0.0102 (62.40) 0.0551 (42.14) 0.7346 (22.22)
SelectiveNet 0.1002 (53.32) 0.1260 (75.43) 0.0066 (49.75) 0.1068 (46.51) 1.3187 (55.67)

50% TEM 0.0773 (63.75) 0.1209 (64.70) 0.0102 (62.40) 0.0619 (74.50) 0.7089 (29.86)
SelectiveNet 0.1084 (53.59) 0.1410 (84.12) 0.0071 (52.80) 0.1029 (53.64) 1.2956 (53.68)

70% TEM 0.0769 (69.77) 0.1200 (74.55) 0.0103 (68.51) 0.0619 (74.50) 0.7250 (38.66)
SelectiveNet 0.2000 (88.23) 0.1698 (97.25) 0.0108 (65.73) 0.1538 (68.20) 2.7279 (69.05)

90% TEM 0.0775 (91.93) 0.1184 (92.26) 0.0103 (68.51) 0.0654 (93.60) 0.9505 (66.90)
SelectiveNet 0.2103 (91.04) 0.1329 (82.71) 0.0076 (98.14) 0.2258 (87.39) 3.8039 (88.10)

Informer

Original - 0.6459 1.1883 0.331 0.7299 4.6562

10% TEM 0.6140 (14.03) 1.1228 (16.51) 0.0079 (58.72) 0.2263 (6.63) 3.8635 (24.54)
SelectiveNet 0.2162 (75.14) 0.0791 (34.24) 0.0026 (22.52) 0.1179 (60.32) 1.6542 (45.53)

30% TEM 0.5962 (38.37) 1.1450 (32.89) 0.0079 (58.72) 0.2263 (6.63) 3.8635 (24.54)
SelectiveNet 0.1080 (27.82) 0.0682 (41.66) 0.0064 (46.22) 0.1346 (55.71) 2.6890 (63.18)

50% TEM 0.6437 (90.94) 1.1450 (32.89) 0.0079 (58.72) 0.4293 (18.12) 4.3947 (39.12)
SelectiveNet 0.2090 (83.82) 0.0581 (29.83) 0.0120 (61.19) 0.1204 (32.81) 1.5793 (42.86)

70% TEM 0.6437 (90.94) 1.1749 (54.26) 0.0069 (64.92) 0.4847 (35.66) 4.7776 (67.36)
SelectiveNet 0.3951 (95.74) 0.1736 (99.35) 0.0077 (97.83) 0.1917 (63.12) 0.4581 (12.22)

90% TEM 0.6437 (90.94) 1.1766 (79.21) 0.0069 (64.92) 0.5828 (59.65) 4.5910 (90.51)
SelectiveNet 0.1277 (92.33) 0.1537 (64.71) 0.0179 (98.68) - 2.0234 (51.53)

PatchTST

Original - 0.0416 0.1075 0.0011 0.0617 0.7324

10% TEM 0.0309 (9.13) 0.0817 (30.45) 0.0006 (36.06) 0.0383 (2.87) 0.5478 (6.25)
SelectiveNet 0.9696 (51.24) 0.5454 (61.69) 0.0034 (51.76) 1.5066 (45.68) 3.3755 (50.57)

30% TEM 0.0408 (39.34) 0.0817 (30.45) 0.0006 (36.06) 0.0440 (11.98) 0.6111 (11.34)
SelectiveNet 0.9696 (51.24) 0.5454 (61.69) 0.0034 (51.76) 1.5066 (45.68) 3.3755 (50.57)

50% TEM 0.0405 (56.43) 0.1085 (63.04) 0.0007 (47.94) 0.0529 (34.11) 0.5964 (20.60)
SelectiveNet 0.9696 (51.24) 0.6768 (70.70) 0.0070 (58.87) 1.5066 (45.68) 3.3755 (50.57)

70% TEM 0.0404 (63.89) 0.1088 (74.40) 0.0009 (81.80) 0.0536 (41.87) 0.6068 (38.19)
SelectiveNet 1.3973 (80.32) 0.7841 (78.95) 0.0069 (86.33) 2.7152 (74.00) 4.5747 (72.65)

90% TEM 0.0412 (87.25) 0.1079 (92.44) 0.0009 (89.11) 0.0570 (73.25) 0.6580 (62.73)
SelectiveNet 1.5713 (92.21) 1.1102 (90.96) 0.0059 (95.16) 3.0774 (89.21) 6.2271 (89.40)

TimesNet

Original - 0.0438 0.1273 0.0016 0.0549 0.8391

10% TEM 0.0308 (16.80) 0.1069 (29.04) 0.0014 (61.17) 0.0406 (7.97) 0.5222 (5.79)
SelectiveNet 0.9464 (53.09) 1.2297 (45.05) 0.3200 (49.72) 2.0732 (55.11) 3.2588 (52.76)

30% TEM 0.0447 (34.79) 0.1069 (29.04) 0.0014 (61.17) 0.0436 (25.59) 0.4281 (9.03)
SelectiveNet 1.0185 (57.71) 1.2813 (47.15) 0.3517 (51.15) 1.9370 (52.73) 3.2699 (52.94)

50% TEM 0.0455 (71.70) 0.1281 (60.91) 0.0014 (61.17) 0.0451 (32.45) 0.4413 (13.66)
SelectiveNet 0.8966 (54.48) 0.5844 (25.75) 0.3560 (54.01) 1.8190 (49.63) 3.5668 (57.96)

70% TEM 0.0455 (71.70) 0.1281 (82.69) 0.0014 (65.83) 0.0483 (49.70) 0.5914 (31.48)
SelectiveNet 1.2080 (70.16) 1.7400 (79.76) 0.5239 (78.78) 3.4055 (85.40) 4.7244 (78.43)

90% TEM 0.0459 (84.58) 0.1276 (94.16) 0.0014 (65.83) 0.0513 (72.50) 0.6939 (61.57)
SelectiveNet 1.5088 (90.83) 2.8587 (92.41) 0.6379 (97.73) 3.3017 (90.90) 5.8539 (93.66)
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Figure 7: Prediction error reduction (figures at the top), target and actual coverage percentages (figures at
the bottom) for TEM and SelectiveNet for univariate selective forecasting, across selected target coverages
ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%, 100%} on models Autoformer, FEDformer, Informer, PatchTST, and
TimesNet. The top figures’ Y-axes use log scale to visualize the several orders of magnitude difference in
performance between selective forecasting with TEM and SelectiveNet. For bottom figures, the dotted line
represents the ideal case, where actual coverage is equal to target coverage.

A.2.2 SelectiveNet performance analysis
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Figure 8: Error reduction (figures at the top) and actual coverage percentages (figures at the bottom)
for SelectiveNet Autoformer and Informer models on the ETTh2 dataset for epochs ∈ [1, 30] and target
coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%, 100%}.

In this section we provide additional analysis on the performance of SelectiveNet to identify the reasons for
its poor performance compared to TEM. We trained 3 SelectiveNet models using different seeds for each of
the Autoformer and Informer variants of SelectiveNet on the ETTh2 dataset for epochs ∈ [1, 30] and target
coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%, 100%}.

As shown in Figure 8, SelectiveNet models tend to converge to a stable coverage, as the actual coverage
percentages reach close to the target coverage after a few epochs. As the coverage converges, the forecasting
performance of SelectiveNet also stops improving despite further training. This indicates that the loss
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function used by SelectiveNet prioritizes achieving the target coverage during optimization, rather than
minimizing prediction error, which is consistent with all prior experimental results. And since the models
converge, even if training were extended with more epochs, the performance would not meaningfully improve.

Furthermore, we notice that for lower coverages, SelectiveNet consistently achieves significantly higher ac-
tual coverage than target coverage. On average, SelectiveNet achieves 35.0% and 15.5% higher coverage
across both models for coverages ϕ(g) ∈ {10%, 30%}, respectively. This shows that SelectiveNet is overly
conservative during training, selecting too many forecasts and achieving higher coverage than desired and,
as a result, higher prediction error. These patterns are consistent across all tested models and datasets.

We conducted additional experiments to evaluate the performance of SelectiveNet when trained using a
traditional loss function – Mean Squared Error, without using the selection head. This SelectiveNet without
using the selection head achieved the same deterministic forecasting performance as the base model AΨ.

A.3 Additional information on datasets

In this section, we provide more information for the five datasets used in experiments for evaluating TEM
performance. The Features column in Table 6 represents the number of features in the dataset, including
the target variable. The Dataset Size column in Table 6 shows the number of data points in each of the
training, validation, and test subsets.

Table 6: Statistics for Time Series datasets used in experiments
Name Features Dataset Size Frequency Domain
ETTh1 7 (8545, 2881, 2881) Hourly Electricity
ETTh2 7 (8545, 2881, 2881) Hourly Electricity
Exchange 8 (5120, 665, 1422) Daily Exchange Rate
Weather 21 (36792, 5271, 10540) Daily Weather
National Illness 7 (617, 74, 170) Weekly Illness

A.4 Contrastive Divergence training

In this section, we provide the joint training algorithm for training TEM with Contrastive Divergence
enabling selective forecasting.

Algorithm 1 Calculating Contrastive Divergence (CD) loss
INPUT:
Eθ – Energy-based model (EBM)
X – Ground-truth input
Y (0) – Ground-truth output given input X
η – CD step size
αCD – CD regularizer coefficient
NCD – CD step count
OUTPUT:
LCD - Contrastive Divergence (CD) loss

Y (1) ← N (0, σ2I)
for i← 1 to NCD do

ω ← N (0, σ2I)
Y (1) ← Y (1) − η∇Y (1)Eθ(X, Y (1)) + ω ▷ Eq. 11

end for
E+ ← Eθ(X, Y (0))
E− ← Eθ(X, Y (1))
LCD ← (E+ − E−) + αCD((E+)2 + (E−)2) ▷ Eq. 12
return LCD
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A.5 Additional implementation details on SelectiveNet

In this work, we adapt the SelectiveNet framework for time-series forecasting by modifying its architecture
and loss function to work with state-of-the-art deterministic forecasting models. Similar to TEM, our
SelectiveNet implementation reuses architecture from the deterministic forecasting model AΨ to maintain
the model’s ability to capture temporal dependencies and patterns in the input time series (as described
in Section 3.2) The adapted SelectiveNet architecture adds three heads on top of the deterministic model
AΨ: 1) a selection head is added on top of the encoder of AΨ, that outputs selection scores (and is used
to implement the selective function g as shown in Equation 6), 2) a prediction head is appended to the
decoder of the AΨ and produces deterministic forecasts, and 3) an auxiliary prediction head is added to the
decoder of the AΨ and also produces predictions, as described in the original SelectiveNet paper (Geifman
& El-Yaniv, 2019).

A.6 Additional implementation details on TEM

In this section, we provide additional implementation details. The base implementation of TEM models
presented in this paper is available at https://github.com/JonasBrusokas/Time-Energy-Model. The
deterministic forecasting models (Informer, Autoformer, FEDformer, PatchTST, and TimesNet) were trained
according to the hyperparameters specified in their respective papers (Zhou et al., 2021; Wu et al., 2021; Zhou
et al., 2022; Wu et al., 2023; Nie et al., 2023). The model implementations were adapted from an open-source
time-series forecasting model repository that implements state-of-the-art models and runs experiments with
the same hyperparameters, ensuring consistent and reproducible model architectures and training procedures.
This repository is available at https://github.com/thuml/Time-Series-Library.

For all experiments we use the same training, validation, and test data splits as the original papers. Sequence
length m was set to 96 for all models, with prediction horizon h set to 48.

For deterministic forecasting models AΨ, we recreate the model architectures and training procedures as
described in the original papers, using the same hyperparameters. All models were trained with 2-layer en-
coders, 1-layer decoders. All deterministic models were trained using the Mean Squared Error loss function,
using Adam optimizer with learning rate 0.0001 and dropout rate of 0.05. Deterministic models were trained
for up to 30 epochs, using early stopping with patience parameter of 3. Transformer-based models (Informer,
Autoformer, FEDformer, and PatchTST) were trained with 8 attention heads and 512 dimensionality em-
bedding, attention, and feed-forward layers.

A.7 Standard deviations across experiments

As mentioned in Section 5.1, the results reported are the average of 3 runs. We provide the standard
deviations across the 3 runs for model and dataset combination in Table 7.

Table 7: Standard deviations for selective risk for the 5 tested models and SelectiveNet models across 3 runs.

Model Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

TEM Autoformer 0.0817 0.1421 0.0074 0.0929 0.4474
TEM FEDformer 0.0833 0.1041 0.0078 0.0708 0.4442
TEM Informer 0.3570 0.6497 0.6855 0.6503 2.4439
TEM PatchTST 0.0479 0.1021 0.0016 0.0657 0.4128
TEM TimesNet 0.0536 0.1255 0.0025 0.0582 0.4065

SelectiveNet Autoformer 0.0977 0.2146 0.0106 0.2769 0.5654
SelectiveNet FEDformer 0.1738 0.6707 0.0467 0.1086 0.2989
SelectiveNet Informer 0.4178 0.7700 0.0243 0.4219 0.4342
SelectiveNet PatchTST 0.2400 0.5423 0.0334 0.8309 0.5265
SelectiveNet TimesNet 0.1276 0.4620 0.2089 0.7244 0.7938
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A.8 Additional experiments with LSTM

Table 8: Comparison of TEM performance with Informer, TimesNet, and LSTM models. Results show
selective risk and empirical coverage (in parentheses) for target coverages ϕ(g) ∈ 10%, 30%, 50%, 70%, 90%.
Best performing models for specific target coverages are marked bold, second-best performers are underlined.

Model Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

TEM Informer with
Aggregated Energy
Inference

Original 0.6461 1.1877 0.3313 0.73 4.6609
10 % 0.6008 (37.08) 1.2057 (13.05) 0.0046 (54.75) 0.1828 (7.81) 4.0733 (9.03)
30 % 0.6008 (37.08) 1.1754 (27.66) 0.0046 (54.75) 0.2000 (8.11) 4.4375 (47.92)
50 % 0.6460 (89.32) 1.1845 (49.45) 0.0046 (54.75) 0.1921 (10.47) 4.3605 (66.20)
70 % 0.6460 (89.32) 1.1814 (70.75) 0.0046 (59.67) 0.2818 (12.98) 4.5612 (80.32)
90 % 0.6438 (93.87) 1.1850 (85.72) 0.0046 (59.67) 0.4741 (34.02) 4.5576 (90.74)

TEM TimesNet with
Aggregated Energy
Inference

Original 0.0438 0.1273 0.0016 0.0549 0.8391
10 % 0.0308 (16.80) 0.1069 (29.04) 0.0014 (61.17) 0.0416 (6.03) 0.5222 (5.79)
30 % 0.0447 (34.79) 0.1069 (29.04) 0.0014 (61.17) 0.0434 (16.12) 0.4281 (9.03)
50 % 0.0455 (71.70) 0.1281 (60.91) 0.0014 (61.17) 0.0451 (32.45) 0.4413 (13.66)
70 % 0.0455 (71.70) 0.1281 (82.69) 0.0014 (65.83) 0.0485 (46.81) 0.4270 (16.90)
90 % 0.0459 (84.58) 0.1276 (94.16) 0.0014 (65.83) 0.0502 (64.89) 0.6104 (37.96)

TEM LSTM with
Aggregated Energy
Inference

Original 0.1514 0.1272 0.0035 0.085 4.496
10 % 0.0443 (1.91) 0.1263 (4.96) 0.0026 (45.27) 0.0598 (0.72) - (0.00)
30 % 0.1407 (25.35) 0.1191 (20.02) 0.0026 (45.27) 0.0793 (4.92) 3.6716 (33.68)
50 % 0.1582 (50.00) 0.1264 (51.92) 0.0020 (60.16) 0.0551 (17.28) 3.2849 (44.44)
70 % 0.1406 (77.44) 0.1264 (51.92) 0.0024 (65.77) 0.0499 (39.28) 3.9742 (63.89)
90 % 0.1406 (77.44) 0.1264 (51.92) 0.0034 (98.03) 0.0677 (64.96) 4.2693 (85.07)

In this section, we provide additional experiments with LSTM deterministic models for time-series forecast-
ing. As with the rest of the models, we use the same training, validation, and test data splits as the original
papers. Sequence length m was set to 96 for all models, with prediction horizon h set to 48. The architecture
selected used 1 layer of LSTM cells with 128 hidden units for the encoder and a fully connected layer with
128 hidden units for the decoder. The LSTM was trained using the Mean Squared Error loss function, using
Adam optimizer with learning rate 0.0001 and dropout rate of 0.05. The LSTM was trained for up to 30
epochs, using early stopping with patience parameter of 3. We used the same training procedure to train
TEM with LSTM as the deterministic model, as with the rest of the deterministic models.

We provide the results for TEM with LSTM in Table 8, where we compare TEM with LSTM to TEM with
Informer and TimesNet, the worst and best performing models in the deterministic forecasting experiments.
The deterministic LSTM model numerically underperforms against the top-performing TimesNet model,
but outperforms the Informer model in all observed cases. Results indicate that TEM with LSTM achieves,
on average, 71.8% lower prediction error than TEM with Informer across all target coverages. TEM is
able to reduce the prediction error of the LSTM model by up to 30% across all datasets. However, we
observe that TEM with LSTM often yields lower than the target coverage. When target coverages are low
(ϕ(g) ∈ {10%, 30%}), the TEM with LSTM model yields up to 10% lower coverage than the target coverage.
It is important to note, however, that the encoder of the LSTM model is only 1 layer deep and the model
itself is significantly smaller than all the other models tested, which results in a worse performing encoder
and less accurate representations of the input time series.

A.9 Error-bounded selective forecasting with TEM

In this paper we propose TEM for selective forecasting based on target coverage, but the framework can be
extended to use other selection criteria. This section describes how TEM can be used to reject predictions
based on estimated prediction error bounds.

The key difference from the original coverage-based approach is that instead of selecting energy intervals to
achieve a target coverage, we can use the relationship between energy values Eθ(X, Ŷ ) and prediction errors
ϵ(Eθ(X, Ŷ )) to reject predictions that are likely to have errors above a specified threshold. Specifically, after
partitioning the energy range into intervals Eθi and calculating mean prediction error ϵ for each interval (as
described in Section 3.4), we can define selective forecasting with error bounds as:
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(AΨ, Eθ)(X, ε) ≜
{

AΨ(X) = Ŷ if ϵ(Eθ(X, Ŷ )) ≤ ε,

None, otherwise,
(15)

where ε is the maximum acceptable prediction error and ϵ(Eθ(X, Ŷ )) is the estimated prediction error for
energy Eθ(X, Ŷ ).

This approach allows end-users to specify the maximum error bound for their use-case. Like with the
coverage-based approach, this approach also allows dynamic adjustment of selection criteria based on the
utility of the prediction and potential penalty for errors.

Like the original coverage-based approach, the error bound-based selection can use either the Aggregated
energy or Energy optimization inference methods described in Section 3.4. Both the coverage-based and error
bound-based approaches can be used interchangeably without retraining the model, as they both utilize the
same underlying relationship between energy values and prediction errors.

A.10 Comparison of selective forecasting with probabilistic forecasting models

In this section, we provide a comparison of TEM with a probabilistic forecasting model – TimeGrad.

The TimeGrad model is an autoregressive denoising diffusion model designed for multivariate probabilistic
time series forecasting (Rasul et al., 2021). Uses recurrent neural networks (RNNs) to encode past sequences
and temporal dependencies using the hidden state. Inference with TimeGrad is performed using annealed
Langevin dynamics, which generates multiple samples to obtain empirical quantiles of uncertainty for each
prediction.

To enable a fair comparison between TimeGrad (a probabilistic model) and TEM, we adapt TimeGrad for
selective forecasting as follows: First, we generate multiple samples from TimeGrad and use the variance
between these samples as an uncertainty measure, (rather than using energy values as in TEM). We then
apply a similar selective forecasting procedure as described in Section 3.4:

1. Divide predictions into intervals based on their variance

2. Calculate prediction error ϵ and coverage for each interval

3. Select forecasts that meet the target coverage criteria

This adaptation allows us to directly compare TimeGrad’s selective forecasting capabilities with TEM. Note,
that we do not perform any type of aggregation or additional sampling (beyond generating 10 forecasts) as
we do in TEM selective forecasting. For TimeGrad, we also do not rank the intervals by prediction error,
instead assuming that the variance between samples is a good proxy for prediction error.

Experiments are conducted using the openly available GitHub repository from the authors TimeGrad (Rasul
et al., 2021). TimeGrad is trained for 20 epochs, with a batch size of 64 and GRU is used to model the
hidden state. Other hyperparameters are the same hyperparameters as in the original paper or the default
values used in the repository. Inference is performed autoregressively, by predicting one time-step at a time.
We use annealed Langevin dynamics to generate S = 10 forecasts from TimeGrad. The same datasets are
used in experiments and same preprocessing is applied to the data as in prior experiments. For selective
forecasting, we use the same target coverages ϕ(g) ∈ {10%, 30%, 50%, 70%, 90%} as in prior experiments.

As can be seen in Table 9, TEM with TimesNet outperforms TimeGrad in all cases. The best performing
TEM TimesNet model has over 91% lower error across all datasets for the deterministic forecasting case
and can consistently further reduce error by performing selective forecasting. TimeGrad is more competitive
against Informer, outperforming it on the ETTh1, ETTh2, and Exchange Rate datasets. However, Informer
has, on average, 42% lower error than TimeGrad, because of the very high errors recorded on the National
Illness and Weather datasets.
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Table 9: Comparison of TEM performance with Informer, TimesNet, and TimeGrad models. Results show
selective risk and empirical coverage (in parentheses) for target coverages ϕ(g) ∈ 10%, 30%, 50%, 70%, 90%.
Best performing models for specific target coverages are marked bold, second-best performers are underlined.

Model Dataset

ETTh1 ETTh2 Weather Exchange Rate National Illness

TEM Informer with
Aggregated Energy
Inference

Original 0.6461 1.1877 0.3313 0.73 4.6609
10 % 0.6008 (37.08) 1.2057 (13.05) 0.0046 (54.75) 0.1828 (7.81) 4.0733 (9.03)
30 % 0.6008 (37.08) 1.1754 (27.66) 0.0046 (54.75) 0.2000 (8.11) 4.4375 (47.92)
50 % 0.6460 (89.32) 1.1845 (49.45) 0.0046 (54.75) 0.1921 (10.47) 4.3605 (66.20)
70 % 0.6460 (89.32) 1.1814 (70.75) 0.0046 (59.67) 0.2818 (12.98) 4.5612 (80.32)
90 % 0.6438 (93.87) 1.1850 (85.72) 0.0046 (59.67) 0.4741 (34.02) 4.5576 (90.74)

TEM TimesNet with
Aggregated Energy
Inference

Original 0.0438 0.1273 0.0016 0.0549 0.8391
10 % 0.0308 (16.80) 0.1069 (29.04) 0.0014 (61.17) 0.0416 (6.03) 0.5222 (5.79)
30 % 0.0447 (34.79) 0.1069 (29.04) 0.0014 (61.17) 0.0434 (16.12) 0.4281 (9.03)
50 % 0.0455 (71.70) 0.1281 (60.91) 0.0014 (61.17) 0.0451 (32.45) 0.4413 (13.66)
70 % 0.0455 (71.70) 0.1281 (82.69) 0.0014 (65.83) 0.0485 (46.81) 0.4270 (16.90)
90 % 0.0459 (84.58) 0.1276 (94.16) 0.0014 (65.83) 0.0502 (64.89) 0.6104 (37.96)

TimeGrad

Original 0.4235 1.1547 0.7733 0.1459 9.1967
10 % 0.3030 (61.95) 1.3082 (86.67) 0.8338 (72.53) - (0.00) 5.5429 (7.92)
30 % 0.4197 (99.13) 1.3082 (86.67) 0.7929 (86.70) 0.1147 (15.35) 5.5429 (7.92)
50 % 0.4224 (99.76) 1.3082 (86.67) 0.7929 (86.70) 0.1201 (32.35) 5.5429 (7.92)
70 % 0.4235 (100.00) 1.3082 (86.67) 0.7929 (86.70) 0.1283 (47.06) 5.5429 (7.92)
90 % 0.4235 (100.00) 1.3082 (86.67) 0.7929 (86.70) 0.1254 (42.46) 5.5429 (7.92)

These results can be explained by the fact that TimeGrad is a probabilistic model and is not trained
or tuned to perform very accurate deterministic forecasting. As a result, even though TimeGrad can be
used for selective forecasting to reduce forecasting error by trading off coverage, it is still not as accurate as
TEM. Furthermore, the TimeGrad model is significantly slower during inference because of its autoregressive
forecasting and sampling process. Finally, TimeGrad often cannot effectively perform selective forecasting,
because the variance between samples is not a consistently good proxy for prediction error. As a result,
selective forecasting sometimes increases the forecasting error (as in the ETTh2 and Weather dataset cases).

A.11 Discussion on applications of TEM to forecasting of multiple time-series

Currently, TEM has been evaluated only for the case of multivariate time-series forecasting where the fore-
casted time-series is univariate. TEM in principle allows for selective forecasting of multivariate time-series,
but this has not been investigated in the context of multivariate time-series forecasting. In particular, when
forecasting multiple target variables simultaneously, the relationship between energy values and prediction
errors may become more complex. It is possible that for high-dimensional multivariate forecasting problems,
the output search space can grow too large to sample energy values and provide accurate prediction error
estimates. Energy-based models have been shown to work well even in very high-dimensional spaces (e.g.
with image or video data) (Du & Mordatch, 2019), but this has not been investigated in the context of
multivariate time-series forecasting and will be part of future work.
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