
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Pretraining Decision Transformers with Reward
Prediction for In-Context Multi-task Structured

Bandit Learning
Anonymous authors

Paper under double-blind review

Keywords: Structured Bandit, Multi-task Learning, Decision Transformer

Summary
We study learning to learn for the multi-task structured bandit problem where the goal is to

learn a near-optimal algorithm that minimizes cumulative regret. The tasks share a common
structure and an algorithm should exploit the shared structure to minimize the cumulative
regret for an unseen but related test task. We use a transformer as a decision-making algorithm
to learn this shared structure from data collected by a demonstrator on a set of training task
instances. Our objective is to devise a training procedure such that the transformer will learn to
outperform the demonstrator’s learning algorithm on unseen test task instances. Prior work on
pretraining decision transformers either requires privileged information like access to optimal
arms or cannot outperform the demonstrator. Going beyond these approaches, we introduce a
pre-training approach that trains a transformer network to learn a near-optimal policy in-context.
This approach leverages the shared structure across tasks, does not require access to optimal
actions, and can outperform the demonstrator. We validate these claims over a wide variety
of structured bandit problems to show that our proposed solution is general and can quickly
identify expected rewards on unseen test tasks to support effective exploration.

Contribution(s)
1. We introduce a new pre-training and test time decision-making procedure that in-context

learns the underlying reward structure for structured bandit settings, resulting in a near-
optimal policy without access to privileged information even when training data comes from
a sub-optimal demonstrator.
Context: Previous works like DPT (Lee et al., 2023) required access to the optimal action
per task, Algorithmic Distillation (AD) could not outperform the demonstrator, other works
need to know the structure to perform optimally.

2. We show that our approach enables successful in-context learning across a diverse set of
structured bandit settings where it matches the performance of existing algorithms that were
developed with knowledge of the structure.
Context: We evaluate our approach in linear,non-linear, bilinear, and latent bandit settings
as well as bandit experiments based on real-life datasets and show that it lowers regret
compared to DPT and AD while matching the near-optimal performance of specialized
algorithms.

3. We show that our algorithm leverages the latent structure and conducts a two-phase explo-
ration to minimize regret.
Context: We analyze the exploration of the pretrained decision transformer in the simplified
linear bandit setting where the optimal policy is well-understood. Previous works like DPT
do not study the exploration conducted by such transformer algorithms. We introduce new
actions both at train and test time. Since new actions are not shared across tasks now, the
transformer algorithm fails to learn the latent structure as we scale up the number of new
actions, thus indicating that it is relying on a discovered underlying structure. We observed
in our experiments that our proposed algorithm implicitly conducts two-phase exploration,
following the distribution of optimal action across training tasks and then switching to the
most rewarding action for the task after observing a few in-context examples.

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Pretraining Decision Transformers with Reward Pre-
diction for In-Context Multi-task Structured Bandit
Learning

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we study the multi-task structured bandit problem where the goal is to learn1
a near-optimal algorithm that minimizes cumulative regret. The tasks share a common2
structure and any optimal algorithm should exploit the shared structure to minimize3
the cumulative regret for an unseen but related test task. We use a transformer as a4
decision-making algorithm to learn this shared structure so as to generalize to the unseen5
test task. The prior work of pretrained decision transformers like DPT requires access to6
the optimal action during training which may be hard in several scenarios. Diverging7
from these works, our learning algorithm does not need the knowledge of optimal action8
per task during training but predicts a reward vector for each of the actions using only9
the observed offline data from the diverse training tasks. Finally, during inference time,10
it selects action using the reward predictions employing various exploration strategies11
in-context for an unseen test task. We show that our model outperforms other methods12
like DPT, and Algorithmic Distillation (AD) and matches the performance of algorithms13
that requires privileged information on the structure of the problem. Interestingly, we14
show that our algorithm, without the knowledge of the underlying problem structure, can15
learn a near-optimal policy in-context by leveraging the shared structure across diverse16
tasks. We show that when the shared structure breaks down with the introduction of17
new actions both during training and test time, our proposed algorithm fails to learn the18
underlying latent structure. We further show that our algorithm conducts an implicit two-19
phase exploration and validate all of these findings over several experiments spanning20
linear, non-linear, real-life datasets, bilinear, and latent bandit settings. Finally, we21
theoretically analyze the performance of our algorithm and obtain generalization bounds22
in the in-context multi-task learning setting.23

1 Introduction24

In this paper, we study multi-task bandit learning with the goal of learning an algorithm that discovers25
and exploits structure in a family of related tasks. In multi-task bandit learning, we have multiple26
distinct bandit tasks for which we want to learn a policy. Though distinct, the tasks share some27
structure, which we hope to leverage to speed up learning on new instances in this task family.28
Traditionally, the study of such structured bandit problems has relied on knowledge of the problem29
structure like linear bandits (Li et al., 2010; Abbasi-Yadkori et al., 2011; Degenne et al., 2020),30
bilinear bandits (Jun et al., 2019), hierarchical bandits (Hong et al., 2022a;b), Lipschitz bandits31
(Bubeck et al., 2008; 2011; Magureanu et al., 2014), other structured bandits settings (Riquelme et al.,32
2018; Lattimore & Szepesvári, 2019; Dong et al., 2021) and even linear and bilinear multi-task bandit33
settings (Yang et al., 2022a; Du et al., 2023; Mukherjee et al., 2023). When structure is unknown34
an alternative is to adopt sophisticated model classes, such as kernel machines or neural networks,35
exemplified by kernel or neural bandits (Valko et al., 2013; Chowdhury & Gopalan, 2017; Zhou et al.,36

1

Under review for RLC 2025, to be published in RLJ 2025

2020; Dai et al., 2022). However, these approaches are also costly as they learn complex, nonlinear37
models from the ground up without any prior data (Justus et al., 2018; Zambaldi et al., 2018).38

In this paper, we consider an alternative approach of synthesizing a bandit algorithm from historical39
data where the data comes from recorded bandit interactions with past instances of our target task40
family. Concretely, we are given a set of state-action-reward tuples obtained by running some bandit41
algorithm in various instances from the task family. We then aim to train a transformer (Vaswani42
et al., 2017) from this data such that it can learn in-context to solve new task instances. Laskin et al.43
(2022) consider a similar goal and introduce the Algorithm Distillation (AD) method, however, AD44
aims to copy the algorithm used in the historical data and thus is limited by the ability of the data45
collection algorithm. Lee et al. (2023) develop an approach, DPT, that enables learning a transformer46
that obtains lower regret in-context bandit learning compared to the algorithm used to produce the47
historical data. However, this approach requires knowledge of the optimal action at each stage of48
the decision process. In real problems, this assumption is hard to satisfy and we will show that DPT49
performs poorly when the optimal action is only approximately known. With this past work in mind,50
the goal of this paper is to answer the question:51

Can we learn an in-context bandit learning algorithm that obtains lower regret than the
algorithm used to produce the training data without knowledge of the optimal action in each

training task?
52

To answer this question, we introduce a new pre-training methodology, called Pre-trained Decision53
Transformer with Reward Estimation (PreDeToR) that obviates the need for knowledge of the optimal54
action in the in-context data — a piece of information that is often inaccessible. Our key observation is55
that while the mean rewards of each action change from task to task, certain probabilistic dependencies56
are persistent across all tasks with a given structure (Yang et al., 2020; 2022a; Mukherjee et al., 2023).57
These probabilistic dependencies can be learned from the pretraining data and exploited to better58
estimate mean rewards and improve performance in a new unknown test task. The nature of the59
probabilistic dependencies depends on the specific structure of the bandit and can be complex (i.e.,60
higher-order dependencies beyond simple correlations). We propose to use transformer models as a61
general-purpose architecture to capture the unknown dependencies by training transformers to predict62
the mean rewards in each of the given trajectories (Mirchandani et al., 2023; Zhao et al., 2023). The63
key idea is that transformers have the capacity to discover and exploit complex dependencies in64
order to predict the rewards of all possible actions in each task from a small history of action-reward65
pairs in a new task. This paper demonstrates how such an approach can achieve lower regret by66
outperforming state-of-the-art baselines, relying solely on historical data, without the need for any67
supplementary information like the action features or knowledge of the complex reward models. We68
also show that the shared actions across the tasks are vital for PreDeToR to exploit the latent structure.69
We show that PreDeToR learns to adapt, in-context, to novel actions and new tasks as long as the70
number of new actions is small compared to shared actions across the tasks.71

Contributions72

1. We introduce a new pre-training procedure of learning the underlying reward structure and a73
decision algorithm. Moreover, PreDeToR by predicting the next reward for all arms circumvents74
the issue of requiring access to the optimal (or approximately optimal) action during training time.75

2. We demonstrate empirically that this training procedure results in lower regret in a wide series of76
tasks (such as linear, nonlinear, bilinear, and latent bandits) compared to prior in-context learning77
algorithms and bandit algorithms with privileged knowledge of the common structure.78

3. We also show that our training procedure leverages the shared latent structure. We systematically79
show that when the shared structure breaks down no reward structure or exploration is learned.80

4. Finally, we theoretically analyze the generalization ability of PreDeToR through the lens of81
algorithmic stability and new results for the transformer setting.82

2

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

2 Background83

In this section, we first introduce our notation and the multi-task, structured bandit setting. We then84
formalize the in-context bandit learning model studied in Laskin et al. (2022); Lee et al. (2023); Sinii85
et al. (2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023c;a).86

2.1 Preliminaries87

In this paper, we consider the multi-task linear bandit setting (Du et al., 2023; Yang et al., 2020;88
2022a). In the multi-task setting, we have a family of related bandit problems that share an action set89
A and also a common action feature space X . The actions in A are indexed by a = 1, 2, . . . , A. The90
feature of each action is denoted by x(a) ∈ Rd and d≪ A. A policy, π, is a probability distribution91
over the actions.92

Define [n] = {1, 2, . . . , n}. In a multi-task structured bandit setting the expected reward for each93
action in each task is assumed to be an unknown function of the hidden parameter and action features94
(Lattimore & Szepesvári, 2020; Gupta et al., 2020). The interaction proceeds iteratively over n rounds95
for each task m ∈ [M]. At each round t ∈ [n] for each task m ∈ [M], the learner selects an action96
Im,t ∈ A and observes the reward rm,t = f(x(Im,t),θm,∗) + ηm,t, where θm,∗ ∈ Rd is the hidden97
parameter specific to the task m to be learned by the learner. The function f(·, ·) is the unknown98
reward structure. This can be f(x(Im,t),θm,∗) = x(Im,t)

⊤θm,∗ for the linear setting or even more99
complex correlation between features and θm,∗ (Filippi et al., 2010; Abbasi-Yadkori et al., 2011;100
Riquelme et al., 2018; Lattimore & Szepesvári, 2019; Dong et al., 2021).101

In our paper, we assume that there exist weak demonstrators denoted by πw. These weak demon-102
strators are stochastic A-armed bandit algorithms like Upper Confidence Bound (UCB) (Auer et al.,103
2002; Auer & Ortner, 2010) or Thompson Sampling (Thompson, 1933; Agrawal & Goyal, 2012;104
Russo et al., 2018; Zhu & Tan, 2020). We refer to these algorithms as weak demonstrators because105
they do not use knowledge of task structure or arm feature vectors to plan their sampling policy.106
In contrast to a weak demonstrator, a strong demonstrator, like LinUCB, uses feature vectors and107
knowledge of task structure to conduct informative exploration. Whereas weak demonstrators always108
exist, there are many real-world settings with no known strong demonstrator algorithm or where the109
feature vectors are unobserved and the learner can only use the history of rewards and actions.110

2.2 In-Context Learning Model111

Similar to Lee et al. (2023); Sinii et al. (2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023c;a)112
we assume the in-context learning model. We first discuss the pretraining procedure.113

Pretraining: Let Tpre denote the distribution over tasks m at the time of pretraining. Let Dpre be the114
distribution over all possible interactions that the πw can generate. We first sample a task m ∼ Tpre115
and then a context Hm which is a sequence of interactions for n rounds conditioned on the task116
m such that Hm ∼ Dpre(·|m). So Hm = {Im,t, rm,t}nt=1. We call this dataset Hm an in-context117
dataset as it contains the contextual information about the task m. We denote the samples inHm till118
round t as Htm = {Im,s, rm,s}t−1

s=1. This dataset Hm can be collected in several ways: (1) random119
interactions within m, (2) demonstrations from an expert, and (3) rollouts of an algorithm. Finally,120
we train a causal GPT-2 transformer model TF parameterized by Θ on this dataset Dpre. Specifically,121
we define TFΘ (· | Htm) as the transformer model that observes the datasetHtm till round t and then122
produces a distribution over the actions. Our primary novelty lies in our training procedure which we123
explain in detail in Section 3.1.124

Testing: We now discuss the testing procedure for our setting. Let Ttest denote the distribution over test125
tasks m ∈ [Mtest] at the time of testing. Let Dtest denote a distribution over all possible interactions126
that can be generated by πw during test time. At deployment time, the datasetH0

m ← {∅} is initialized127
empty. At each round t, an action is sampled from the trained transformer model It ∼ TFΘ(· | Htm).128
The sampled action and resulting reward, rt, are then added to Htm to form Ht+1

m and the process129
repeats for n total rounds. Finally, note that in this testing phase, the model parameter Θ is not130

3

Under review for RLC 2025, to be published in RLJ 2025

updated. Finally, the goal of the learner is to minimize cumulative regret for all task m ∈ [Mtest]131
defined as follows: E[Rn] = 1

Mtest

∑Mtest
m=1

∑n
t=1 maxa∈A f (x(a),θm,∗)− f (x(It),θm,∗).132

2.3 Related In-context Learning Algorithms133

In this section, we discuss related algorithms for in-context decision-making. For completeness,134
we describe the DPT and AD training procedure and algorithm now. During training, DPT first135
samples m ∼ Tpre and then an in-context datasetHm ∼ Dpre(·|,m). It adds thisHm to the training136
dataset Htrain, and repeats to collect Mpre such training tasks. For each task m, DPT requires the137
optimal action am,∗ = argmaxa f(x(m, a),θm,∗) where f(x(m, a),θm,∗) is the expected reward138
for the action a in task m. Since the optimal action is usually not known in advance, in Section 4139
we introduce a practical variant of DPT that approximates the optimal action with the best action140
identified during task interaction. During training DPT minimizes the cross-entropy loss:141

LDPT
t = cross-entropy(TFΘ(·|Htm), p(am,∗)) (1)

where p(am,∗)∈△A is a one-hot vector such that p(j)=1 when j=am,∗ and 0 otherwise. This loss142
is then back-propagated and used to update the model parameter Θ.143

During test time evaluation for online setting the DPT selects It ∼ softmaxτa(TFΘ(·|Htm))144
where we define the softmaxτa(v) over a A dimensional vector v ∈ RA as softmaxτa(v(a)) =145
exp(v(a)/τ)/

∑A
a′=1 exp(v(a

′)/τ) which produces a distribution over actions weighted by the146
temperature parameter τ > 0. Therefore this sampling procedure has a high probability of choos-147
ing the predicted optimal action as well as induce sufficient exploration. In the online setting, the148
DPT observes the reward rt(It) which is added to Htm. So the Hm during online testing consists149
of {It, rt}nt=1 collected during testing. This interaction procedure is conducted for each test task150
m ∈ [Mtest]. In the testing phase, the model parameter Θ is not updated.151

An alternative to DPT that does not require knowledge of the optimal action is the AD approach152
(Laskin et al., 2022; Lu et al., 2023). In AD, the learner aims to predict the next action of the153
demonstrator. So it minimizes the cross-entropy loss as follows:154

LAD
t = cross-entropy(TFΘ(·|Htm), p(Im,t)) (2)

where p(Im,t) is a one-hot vector such that p(j) = 1 when j = Im,t (the true action taken by the155
demonstrator) and 0 otherwise. At deployment time, AD selects It ∼ softmaxτa(TFΘ(·|Htm)). The156
objective of AD is to match the performance of the demonstrator. In the next section, we introduce a157
new method that can improve upon the demonstrator without knowledge of the optimal action.158

3 Proposed Algorithm PreDeToR159

We now introduce our main algorithmic contribution, PreDeToR (which stands for Pre-trained160
Decision Transformer with Reward Estimation).161

3.1 Pre-training Next Reward Prediction162

The key idea behind PreDeToR is to leverage the in-context learning ability of transformers to infer163
the reward of each arm in a given test task. By training this in-context ability on a set of training164
tasks, the transformer can implicitly learn structure in the task family and exploit this structure165
to infer rewards without trying every single arm. Thus, in contrast to DPT and AD that output166
actions directly, PreDeToR outputs a scalar value reward prediction for each arm. To this effect, we167
append a linear layer of dimension A on top of a causal GPT2 model, denoted by TFr

Θ(·|Hm),168
and use a least-squares loss to train the transformer to predict the reward for each action with these169
outputs. Note that we use TFr

Θ(·|Hm) to denote a reward prediction transformer and TFΘ(·|Hm)170
as the transformer that predicts a distribution over actions (as in DPT and AD). At every round171
t the transformer predicts the next reward for each of the actions a ∈ A for the task m based on172
Htm = {Im,s, rm,s}t−1

s=1. This predicted reward is denoted by r̂m,t+1(a) for each a ∈ A.173

4

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Loss calculation: For each training task, m, we calculate the loss at each round, t, using the174
transformer’s prediction r̂m,t(Im,t) and the actual observed reward rm,t that followed action Im,t.175
We use a least-squares loss function:176

Lt = (r̂m,t(Im,t)− rm,t)
2 (3)

and hence minimizing this loss will minimize the mean squared-error of the transformer’s predictions.177
The loss is calculated using (3) and is backpropagated to update the model parameter Θ.178

Exploratory Demonstrator: Observe from the loss definition in (3) that it is calculated from the179
observed true reward and action from the datasetHm. In order for the transformer to learn accurate180
reward predictions during training, we require that the weak demonstrator is sufficiently exploratory181
such that it collectsHm such thatHm contains some reward rm,t for each action a. We discuss in182
detail the impact of the demonstrator on PreDeToR (-τ) training in Section 7.183

3.2 Deploying PreDeToR184

At deployment time, PreDeToR learns in-context to predict the mean reward of each arm on an185
unseen task and acts greedily with respect to this prediction. That is, at deployment time, a new task186
is sampled, m ∼ Ttest, and the dataset H0

m is initialized empty. Then at every round t, PreDeToR187
chooses It = argmaxa∈A TFr

Θ (r̂m,t(a) | Htm) which is the action with the highest predicted188
reward and r̂m,t(a) is the predicted reward of action a. Note that PreDeToR is a greedy policy189
and thus may fail to conduct sufficient exploration. To remedy this potential limitation, we also190
introduce a soft variant, PreDeToR-τ that chooses It ∼ softmaxτa (TF

r
Θ (r̂m,t(a) | Htm)). For both191

PreDeToR and PreDeToR-τ , the observed reward rt(It) is added to the datasetHm and then used192
to predict the reward at the next round t + 1. The full pseudocode of using PreDeToR for online193
interaction is shown in Algorithm 1. In Appendix A.14, we discuss how PreDeToR (-τ) can be194
deployed for offline learning.195

Algorithm 1 Pre-trained Decision Transformer with Reward Estimation (PreDeToR)

1: Collecting Pretraining Dataset
2: Initialize empty pretraining datasetHtrain
3: for i in [Mpre] do
4: Sample task m ∼ Tpre, in-context datasetHm ∼ Dpre(·|m) and add this toHtrain.
5: end for
6: Pretraining model on dataset
7: Initialize model TFr

Θ with parameters Θ
8: while not converged do
9: SampleHm fromHtrain and predict r̂m,t for action (Im,t) for all t ∈ [n]

10: Compute loss in (3) with respect to rm,t and backpropagate to update model parameter Θ.
11: end while
12: Online test-time deployment
13: Sample unknown task m ∼ Ttest and initialize emptyH0

m = {∅}
14: for t = 1, 2, . . . , n do
15: Use TFr

Θ on m at round t to choose

It

{
= argmaxa∈A TFr

Θ (r̂m,t(a) | Htm) , PreDeToR
∼ softmaxτaTF

r
Θ (r̂m,t(a) | Htm) , PreDeToR-τ

16: Add {It, rt} toHtm to formHt+1
m .

17: end for

4 Empirical Study: Non-Linear Structure196

Having introduced PreDeToR, we now investigate its performance in diverse bandit settings compared197
to other in-context learning algorithms. In our first set of experiments, we use a bandit setting with198

5

Under review for RLC 2025, to be published in RLJ 2025

a common non-linear structure across tasks. Ideally, a good learner would leverage the structure,199
however, we choose the structure such that no existing algorithms are well-suited to the non-linear200
structure. This setting is thus a good testbed for establishing that in-context learning can discover and201
exploit common structure. Moreover, each task only consists of a few rounds of interactions. This202
setting is quite common in recommender settings where user interaction with the system lasts only203
for a few rounds and has an underlying non-linear structure (Kwon et al., 2022; Tomkins et al., 2020).204
We show that PreDeToR achieves lower regret than other in-context algorithms for the non-linear205
structured bandit setting. We study the performance of PreDeToR in the large horizon setting in206
Appendix A.8.207

Baselines: We first discuss the baselines used in this setting.208

(1) PreDeToR: This is our proposed method shown in Algorithm 1.209

(2) PreDeToR-τ : This is the proposed exploratory method shown in Algorithm 1 and we fix τ = 0.05.210

(3) DPT-greedy: This baseline is the greedy approximation of the DPT algorithm from Lee et al.211
(2023) which is discussed in Section 2.3. Note that we choose DPT-greedy as a representative212
example of similar in-context decision-making algorithms studied in Lee et al. (2023); Sinii et al.213
(2023); Lin et al. (2023); Ma et al. (2023); Liu et al. (2023c;a) all of which require the optimal action214
(or its greedy approximation). DPT-greedy estimates the optimal arm using the reward estimates for215
each arm during each task.216

(4) AD: This is the Algorithmic Distillation method (Laskin et al., 2022; Lu et al., 2021) discussed in217
Section 2.3.218

(5) Thomp: This baseline is the celebrated stochastic A-action bandit Thompson Sampling algorithm219
from Thompson (1933); Agrawal & Goyal (2012); Russo et al. (2018); Zhu & Tan (2020). We220
choose Thomp as the weak demonstrator πw as it does not make use of arm features. Thomp is also a221
stochastic algorithm that induces more exploration in the demonstrations.222

(6) LinUCB: (Linear Upper Confidence Bound): This baseline is the Upper Confidence Bound223
algorithm for the linear bandit setting that leverages the linear structure and feature of the arms224
to select the most promising action as well as conducting exploration. We choose LinUCB as a225
baseline for each test task to show the limitations of algorithms that use linear feedback structure as226
an underlying assumption to select actions. Note that LinUCB requires oracle access to features to227
select actions per task.228

(7) MLinGreedy: This is the multi-task linear regression bandit algorithm proposed by Yang et al.229
(2021). This algorithm assumes that there is a common low-dimensional feature extractor shared230
between the tasks and the reward of each task linearly depends on this feature extractor. We choose231
MLinGreedy as a baseline to show the limitations of algorithms that use linear feedback structure232
across tasks as an underlying assumption to select actions. Note that MLinGreedy requires oracle233
access to the action features to select actions as opposed to DPT, AD, and PreDeToR.234

We describe in detail the baselines Thomp, LinUCB, and MLinGreedy for interested readers in235
Appendix A.2.2.236

Outcomes: Before presenting the result we discuss the main outcomes from our experimental results237
in this section:238

Finding 1: PreDeToR (-τ) lowers regret compared to other baselines under unknown, non-
linear structure. It learns to exploit the latent structure of the underlying tasks from in-context
data even when it is trained without the optimal action am,∗ (or its approximation) and
without action features X .

239

Experimental Result: These findings are reported in Figure 1. In Figure 1a we show the non-240
linear bandit setting for horizon n = 50, Mpre = 100000, Mtest = 200, A = 6, and d = 2. The241
demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has lower cumulative242

6

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

regret than DPT-greedy. Note that for this low data regime (short horizon) the DPT-greedy does not243
have a good estimation of âm,∗ which results in a poor prediction of optimal action âm,t,∗. This244
results in higher regret. The PreDeToR (-τ) has lower regret than LinUCB, and MLinGreedy, which245
fail to perform well in this non-linear setting due to their algorithmic design and linear feedback246
assumption. Finally, PreDeToR-τ performs slightly better than PreDeToR in both settings as it247
conducts more exploration.248

In Figure 1b we show the non-linear bandit setting for horizon n = 25, Mpre = 100000, Mtest = 200,249
A = 6, and d = 2 where the norm of the θm,∗ determines the reward of the actions which also is a250
non-linear function θm,∗ and action features. This setting is similar to the wheel bandit setting of251
Riquelme et al. (2018). Again, we observe that PreDeToR has lower cumulative regret than all the252
other baselines.253

Finally in Figure 1c and Figure 1d we show the performance of PreDeToR against other baselines254
in real-world datasets Movielens and Yelp. The Movielens dataset consists of more than 32 million255
ratings of 200,000 users and 80,000 movies (Harper & Konstan, 2015) where each entry consists256
of user-id, movie-id, rating, and timestamp. The Yelp dataset (Asghar, 2016) consists of ratings of257
1300 business categories by 150,000 users. Each entry is summarized as user-id, business-id, rating,258
and timestamp. Previously structured bandit works (Deshpande & Montanari, 2012; Hong et al.,259
2023) directly fit a linear structure or low-rank factorization to estimate the θm,∗ and simulate the260
ratings. However, we directly use the user-ids and movie-ids (or business-ids) to build a histogram261
of ratings per user and calculate the mean rating per movie (or business-id) per task. Define this as262
the {µm,a}Aa=1. This is then used to simulate the rating for n horizon per movie per task where the263
data collection algorithm is uniform sampling. Note that this does not require estimation of user or264
movie features, and PreDeToR (-τ) learns to exploit the latent structure of user-movie (or business)265
rating correlations directly from the data. From Figure 1c and Figure 1d we see that PreDeToR, and266
PreDeToR-τ outperform all the other baselines in these settings.267

(a) Non-linear bandit (b) Feature bandit (c) Movielens (d) Yelp

Figure 1: Non-linear regime. The horizontal axis is the number of rounds. Confidence bars show one
standard error.

5 Empirical Study: Linear Structure and Understanding the Exploration of268

PreDeToR269

The previous experiments were conducted in a non-linear structured setting where we are unaware of a270
provably near-optimal algorithm. To assess how close PreDeToR’s regret is to optimal, in this section,271
we consider a linear setting for which there exist well-understood algorithms (Abbasi-Yadkori et al.,272
2011; Lattimore & Szepesvári, 2020). Such algorithms provide a strong upper bound for PreDeToR.273
We summarize the key finding below:274

Finding 2: PreDeToR (-τ) matches the performance of the optimal algorithm LinUCB in
linear bandit setting as it learns to exploit the latent structure across tasks from in-context
data and without access to features.

275

In Figure 2 we first show the linear bandit setting for horizon n = 25, Mpre = 200000, Mtest = 200,276
A = 10, and d = 2. Note that the length of the context (the number of rounds) is an artifact of the277
transformer architecture and computational complexity. This is because the self-attention takes in278

7

Under review for RLC 2025, to be published in RLJ 2025

as input a length-n sequence of tokens of size d, and requires O
(
dn2
)

time to compute the output279
(Keles et al., 2023). Further empirical setting details are stated in Appendix A.2.280

We observe from Figure 2 that PreDeToR (-τ) has lower cumulative regret than DPT-greedy, and AD.281
Note that for this low data (short horizon) regime, the DPT-greedy does not have a good estimation282
of âm,∗ which results in a poor prediction of optimal action âm,t,∗. This results in higher regret.283
Observe that PreDeToR (-τ) performs quite similarly to LinUCB and lowers regret compared to284
Thomp which also shows that PreDeToR is able to exploit the latent linear structure and reward285
correlation of the underlying tasks. Note that LinUCB is close to the optimal algorithm for this linear286
bandit setting. PreDeToR outperforms AD as the main objective of AD is to match the performance287
of its demonstrator. In this short horizon, we see that MLinGreedy performs similarly to LinUCB.288

We also show how the prediction error of the optimal action by PreDeToR is small compared to289
LinUCB in the linear bandit setting. In Figure 2b we first show how the 10 actions are distributed290
in the Mtest = 200 test tasks. In Figure 2b for each bar, the frequency indicates the number of291
tasks where the action (shown in the x-axis) is the optimal action. Then, in Figure 2c, we show the292
prediction error of PreDeToR (-τ) for each task m ∈ [Mtest]. The prediction error is calculated as293
(µ̂m,n,∗(a)− µm,∗(a))

2 where µ̂m,n,∗(a) = maxa θ̂
⊤
m,nxm(a) is the empirical mean at the end of294

round n, and µ∗,m(a) = maxa θ
⊤
m,∗xm(a) is the true mean of the optimal action in task m. Then we295

average the prediction error for the action a ∈ [A] by the number of times the action a is the optimal296
action in some task m. From the Figure 2c, we see that for actions {2, 3, 5, 6, 7, 10}, the prediction297
error of PreDeToR is either close or smaller than LinUCB. Note that LinUCB estimates the empirical298
mean directly from the test task, whereas PreDeToR has a strong prior based on the training data. So299
PreDeToR is able to estimate the reward of the optimal action quite well from the training dataset300
Dpre. This shows the power of PreDeToR to go beyond the in-context decision-making setting studied301
in Lee et al. (2023); Lin et al. (2023); Ma et al. (2023); Sinii et al. (2023); Liu et al. (2023c) which302
require long horizons/trajectories and optimal action during training to learn a near-optimal policy.303

(a) Linear Bandit setting (b) Test action distribution (c) Test Prediction Error
Figure 2: Linear Expt. The horizontal axis is the number of rounds. Confidence bars show one
standard error.

We now state the main finding of our analysis of exploration in the linear bandit setting:304

Finding 3: The PreDeToR (-τ) has an implicit two-phase exploration. In the first phase, it
explores with a strong prior over the in-context training data. In the second phase, once the
task data has been observed for a few rounds (in-context) it switches to task-based exploration.

305

We first show in Figure 3a the training distribution of the optimal actions. For each bar, the frequency306
indicates the number of tasks where the action (shown in the x-axis) is the optimal action. Then307
in Figure 3b we show how the sampling distribution of DPT-greedy, PreDeToR and PreDeToR-τ308
change in the first 10 and last 10 rounds for all the tasks where action 5 is optimal. To plot this graph309
we first sum over the individual pulls of the action taken by each algorithm over the first 10 and last310
10 rounds. Then we average these counts over all test tasks where action 5 is optimal. From the311
figure Figure 3b we see that PreDeToR(-τ) consistently pulls the action 5 more than DPT-greedy.312
It also explores other optimal actions like {2, 3, 6, 7, 10} but discards them quickly in favor of the313
optimal action 5 in these tasks. This shows that PreDeToR (-τ) only considers the optimal actions314
seen from the training data. Once sufficient observation have been observed for the task it switches to315
task-based exploration and samples the optimal action more than DPT-greedy.316

8

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Finally, we plot the feasible action set considered by DPT-greedy, PreDeToR, and PreDeToR-τ in317
Figure 3c. To plot this graph again we consider the test tasks where the optimal action is 5. Then318
we count the number of distinct actions that are taken from round t up until horizon n. Finally we319
average this over all the considered tasks where the optimal action is 5. We call this the candidate320
action set considered by the algorithm. From the Figure 3c we see that DPT-greedy explores the least321
and gets stuck with few actions quickly (by round 10). Note that the actions DPT-greedy samples322
are sub-optimal and so it suffers a high cumulative regret (see Figure 2). PreDeToR explore slightly323
more than DPT-greedy, but PreDeToR-τ explores the most.

(a) Train Optimal Action Dis-
tribution

(b) Distribution of action sam-
pling in all test tasks where ac-
tion 5 is optimal

(c) Candidate Action Set in
Time averaged over all tasks
where action 5 is optimal

Figure 3: Exploration Analysis of PreDeToR(-τ)

324
6 Empirical Study: Importance of Shared Structure and Introducing New325

Actions326

One of our central claims is that PreDeToR (-τ) internally learns and leverages the shared structure327
across the training and testing tasks. To validate this claim, in this section, we consider the introduction328
of new actions at test time that do not follow the structure of training time. These experiments are329
particularly important as they show the extent to which PreDeToR(-τ) is leveraging the latent structure330
and the shared correlation between the actions and rewards.331

Invariant actions: We denote the set of actions fixed across the different tasks in the pretraining332
in-context dataset as Ainv. Therefore these action features x(a) ∈ Rd for a ∈ Ainv are fixed across333
the different tasks m. Note that these invariant actions help the transformer TFw to learn the latent334
structure and the reward correlation across the different tasks. Therefore, as the structure breaks335
down, PreDeToR starts performing worse than other baselines.336

New actions: We also want to test whether PreDeToR (-τ) exploits shared structure when new actions337
are introduced that are not seen during training time. To this effect, for each task m ∈ [Mpre] and338
m ∈ [Mtest] we introduce A− |Ainv| new actions. That is both for train and test tasks, we introduce339
new actions. For each of these new actions a ∈ [A−|Ainv|] we choose the features x(m, a) randomly340
from X ⊆ Rd. Note the transformer now trains on a datasetHm ⊆ Dpre ̸= Dtest.341

(a) 0 new action (b) 1 new action (c) 5 new actions (d) 10 new actions
Figure 4: Linear new action experiments. The horizontal axis is the number of rounds. Confidence
bars show one standard error.

Baselines: We implement the same baselines discussed in Section 4.342

Outcomes: Again before presenting the result we discuss the main outcomes from our experimental343
results of introducing new actions during data collection and evaluation:344

9

Under review for RLC 2025, to be published in RLJ 2025

(a) 0 new action (b) 1 new action (c) 5 new actions (d) 10 new actions
Figure 5: Non-linear new action experiments with non-linear setting.

Finding 4: Shared structure across the tasks is important to learn the reward structure.
345

Experimental Result: We observe these outcomes in Figure 4 and Figure 5. We consider the346
linear and non-linear bandit setting of horizon n = 50, Mpre = 100000, Mtest = 200, A = 10,347
and d = 2. Here during data collection and during collecting the test data, we randomly select348
between 0, 1, 5, and 10 new actions from Rd for each task m. So the number of invariant actions349
is |Ainv| ∈ {10, 5, 1, 0}. Again, the demonstrator πw is the Thomp algorithm. From Figure 4a, 4b,350
4c, and 4d, we observe that when the number of invariant actions is less than PreDeToR (-τ) has351
lower cumulative regret than DPT-greedy, and AD. Observe that PreDeToR (-τ) matches LinUCB352
and has lower regret than DPT-greedy, and AD when Ainv| ∈ {10, 5, 1}. This shows that PreDeToR353
(-τ) is able to exploit the latent linear structure of the underlying tasks. However, as the number of354
invariant actions decreases we see that PreDeToR(-τ) performance drops and becomes similar to the355
unstructured bandits Thomp. We also show in Appendix A.3 that in K-armed bandit setting when356
there is no structure across arms PreDeToR (-τ) matches the performance of the demonstrator.357

Similarly in Figure 5a, 5b, 5c, and 5d we show the performance of PreDeToR in the non-linear bandit358
setting. Observe that LinUCB, MLinGreedy fails to perform well in this non-linear setting due to359
their assumption of linear rewards. Again note that PreDeToR (-τ) has lower regret than DPT-greedy,360
and AD when Ainv| ∈ {10, 1}. This shows that PreDeToR (-τ) is able to exploit the latent linear361
structure of the underlying tasks. However, as the number of invariant actions decreases we see that362
PreDeToR(-τ) performance drops and becomes similar to AD.363

7 Data Collection Analysis364

In this section, we analyze the performance of PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp,365
and LinUCB when the weak demonstrator πw is Thomp, LinUCB, or Uniform. We again consider366
the linear bandit setting discussed in Section 4. We show the cumulative regret by the above baselines367
in Figure 6a, 6b, and 6b when data is collected through Thomp, LinUCB, and Uniform respectively.368
We first state the main finding below:369

Finding 5: The PreDeToR (-τ) excels in exploiting the underlying latent structure and reward
correlation from in-context data when the data diversity is high.

370

(a) Thomp data collection (b) LinUCB data collection (c) Uniform data collection
Figure 6: Data Collection with various algorithms and Performance analysis

Experimental Result: We observe these outcomes in Figure 6. In Figure 6a we see that the371
A-actioned Thomp is explorative enough as it does not explore with the knowledge of feature372
representation. So it pulls the sub-optimal actions sufficiently high number of times before discarding373

10

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

them in favor of the optimal action. Therefore the training data is diverse enough so that PreDeToR374
(-τ) can predict the reward vectors for actions sufficiently well. Consequently, PreDeToR (-τ) almost375
matches the LinUCB algorithm. Both DPT-greedy and ADperform poorly in this setting.376

In Figure 6b we see that the LinUCB algorithm is not explorative enough as it explores with the377
knowledge of feature representation and quickly discards the sub-optimal actions in favor of the378
optimal action. Therefore the training data is not diverse enough so that PreDeToR (-τ) is not able to379
correctly predict the reward vectors for actions. Note that DPT-greedy also performs poorly in this380
setting when it is not provided with the optimal action information during training. The AD matches381
the performance of its demonstrator LinUCB because of its training procedure of predicting the next382
action of the demonstrator.383

Finally, in Figure 6c we see that the A-armed Uniform is fully explorative as it does not intend384
to minimize regret (as opposed to Thomp) and does not explore with the knowledge of feature385
representation. Therefore the training data is very diverse which results in PreDeToR (-τ) being386
able to predict the reward vectors for actions very well. Consequently, PreDeToR (-τ) perfectly387
matches the LinUCB algorithm. Note that AD performs the worst as it matches the performance of388
its demonstrator whereas the performance of DPT-greedy suffers due to the lack of information on389
the optimal action during training.390

We also empirically study the test performance of PreDeToR (-τ) in K-armed bandit setting when391
there is no structure across arms in Appendix A.3, against the original DPT in Appendix A.3, in other392
non-linear bandit settings such as bilinear bandits (Appendix A.4), latent bandits (Appendix A.5),393
draw a connection between PreDeToR and Bayesian estimators (Appendix A.6), and perform sensi-394
tivity and ablation studies in Appendix A.7, A.9, A.10, A.11. Due to space constraints, we refer the395
interested reader to the relevant section in the appendices.396

8 Theoretical Analysis of Generalization397

In this section, we present a theoretical analysis of how PreDeToR-τ generalizes to an unknown target398
task given a set of source tasks. We observe that PreDeToR-τ ’s performance hinges on a low excess399
error on the predicted reward of the actions of the unknown target task based on the in-context data.400
Thus, in our analysis, we show that, in low-data regimes, PreDeToR-τ has a low expected excess risk401
for the unknown target task as the number of source tasks increases. This is summarized as follows:402

Finding 6: PreDeToR (-τ) has a low expected excess risk for the unknown target task as the
number of source tasks increases. Moreover, the transfer learning risk of PreDeToR-τ (once
trained on the M source tasks) scales with Õ(1/

√
M).

403

To show this, we proceed as follows: Suppose we have the training data setHall = {Hm}
Mpre
m=1, where404

the task m ∼ T with a distribution T and the task dataHm is generated from a distributionDpre(·|m).405
For illustration purposes, here we consider the training data distribution Dpre(·|m) where the actions406
are sampled following soft-LinUCB (a stochastic variant of LinUCB) (Chu et al., 2011). Given the407
loss function in Equation (3), we can define the task m training loss of PreDeToR-τ as L̂m(TFr

Θ) =408
1
n

∑n
t=1 ℓ(rm,t,TF

r
Θ(r̂m,t(Im,t)|Htm)) = 1

n

∑n
t=1(TF

r
Θ(r̂m,t(Im,t)|Htm)−rm,t)

2. We drop the409
notation Θ, r from TFr

Θ for simplicity and let M = Mpre. We define410

T̂F =argmin
TF∈Alg

L̂Hall
(TF) :=

1

M

M∑
m=1

L̂m(TF), (ERM) (4)

where Alg denotes the space of algorithms induced by the TF. Let Lm(TF) = EHm

[
L̂m(TF)

]
and411

LMTL(TF) = E
[
L̂Hall

(TF)
]
= 1

M

∑M
m=1 Lm(TF) be the corresponding population risks. For the412

ERM in (4), we want to bound the following excess Multi-Task Learning (MTL) risk of PreDeToR-τ413

RMTL(T̂F) = LMTL(T̂F)− min
TF∈Alg

LMTL(TF). (5)

11

Under review for RLC 2025, to be published in RLJ 2025

Note that for in-context learning, a training sample (It, rt) impacts all future decisions of the algorithm414
from time step t+ 1 to n. Therefore, we need to control the stability of the input perturbation of the415
learning algorithm learned by the transformer. We introduce the following stability condition.416

Assumption 8.1. (Error stability (Bousquet & Elisseeff, 2002; Li et al., 2023)). LetH = (It, rt)
n
t=1417

be a sequence in [A] × [0, 1] with n ≥ 1 and H′ be the sequence where the t′th sample of H is418
replaced by (I ′t, r

′
t). Error stability holds for a distribution (I, r) ∼ D if there exists a K > 0 such419

that for anyH, (I ′t, r′t) ∈ ([A]× [0, 1]), t ≤ n, and TF ∈ Alg, we have420 ∣∣E(I,r) [ℓ(r,TF(r̂(I)|H))− ℓ (r,TF(r̂(I)|H′))]
∣∣ ≤ K

n .

Let ρ be a distance metric on Alg. Pairwise error stability holds if for all TF,TF′ ∈ Alg we have421 ∣∣E(x,y)

[
ℓ(r,TF(r̂(I)|H))− ℓ

(
r,TF′(r̂(I)|H)

)
− ℓ(r,TF(r̂(I)|H′)) + ℓ

(
r,TF′(r̂(I)|H′)

)] ∣∣ ≤ Kρ(TF,TF′)
n .

Now we present the Multi-task learning (MTL) risk of PreDeToR-τ .422

Theorem 8.2. (PreDeToR risk) Suppose error stability Assumption 8.1 holds and assume loss423
function ℓ(·, ·) is C-Lipschitz for all rt ∈ [0, B] and horizon n ≥ 1. Let T̂F be the empirical solution424
of (ERM) and N (A, ρ, ϵ) be the covering number of the algorithm space Alg following Definition425
C.2 and C.3. Then with probability at least 1− 2δ, the excess MTL risk of PreDeToR-τ is bounded by426

RMTL(T̂F) ≤ 4 C√
nM

+ 2(B +K log n)

√
log(N (Alg,ρ,ε)/δ)

cnM ,

where N (Alg, ρ, ε) is the covering number of transformer T̂F and ϵ = 1/
√
nM .427

The proof of Theorem 8.2 is provided in Appendix C.1. From Theorem 8.2 we see that in low-data428
regime with a small horizon n, as the number of tasks M increases the MTL risk decreases. We429
further discuss the stability factor K and covering number N (Alg, ρ, ε) in Remark C.4, and C.5.430

We now present the transfer learning risk of PreDeToR-τ for an unknown target task g ∼ T with the431
test datasetHg ∼ Dtest(·|g). Note that the test data distribution Dtest(·|g) is such that the actions are432
sampled following soft-LinUCB.433

Theorem 8.3. (Transfer risk) Consider the setting of Theorem 8.2 and assume the training434
source tasks are independently drawn from task distribution T . Let T̂F be the empirical so-435
lution of (ERM) and g ∼ T . Define the expected excess transfer learning risk Eg[Rg] =436
Eg
[
Lg(T̂F)

]
−argminTF∈Alg Eg [Lg(TF)]. Then with probability at least 1−2δ, the Eg

[
Rg
]
≤437

4 C√
M

+2B
√

log(N (Alg,ρ,ε)/δ)
M , where N (Alg, ρ, ε) is the covering number of T̂F and ϵ = 1√

M
.438

The proof is given in Appendix C.2. This shows that for the transfer learning risk of PreDeToR-τ439
(once trained on the M source tasks) scales with Õ(1/

√
M). This is because the unseen target task440

g ∼ T induces a distribution shift, which, typically, cannot be mitigated with more samples n per441
task. A similar observation is provided in Lin et al. (2023). We further discuss this in Remark C.7.442
We also observe a similar phenomenon empirically; see the discussion in Appendix A.13.443

9 Conclusions, Limitations and Future Works444

In this paper, we studied the supervised pretraining of decision transformers in the multi-task445
structured bandit setting when the knowledge of the optimal action is unavailable. Our proposed446
methods PreDeToR (-τ) do not need to know the action representations or the reward structure447
and learn these with the help of offline data. PreDeToR (-τ) predict the reward for the next action448
of each action during pretraining and can generalize well in-context in several regimes spanning449
low-data, new actions, and structured bandit settings like linear, non-linear, bilinear, latent bandits.450
The PreDeToR (-τ) outperforms other in-context algorithms like AD, DPT-greedy in most of the451
experiments. Finally, we theoretically analyze PreDeToR-τ and show that pretraining it in M source452
tasks leads to a low expected excess error on a target task drawn from the same task distribution T . In453
the future, we want to extend our PreDeToR (-τ) to the MDP setting (Sutton & Barto, 2018; Agarwal454
et al., 2019), and constrained MDP setting (Efroni et al., 2020; Gu et al., 2022).455

12

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

References456

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic457
bandits. Advances in neural information processing systems, 24, 2011.458

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and459
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.460

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.461
In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.462

Nabiha Asghar. Yelp dataset challenge: Review rating prediction. arXiv preprint arXiv:1605.05362,463
2016.464

Peter Auer and Ronald Ortner. Ucb revisited: Improved regret bounds for the stochastic multi-armed465
bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.466

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit467
Problem. Machine Learning, 47(2):235–256, May 2002. ISSN 1573-0565. DOI: 10.1023/A:468
1013689704352. URL https://doi.org/10.1023/A:1013689704352.469

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Université470
de Montréal, Département d’informatique et de recherche . . . , 1990.471

C Bishop. Pattern recognition and machine learning. Springer google schola, 2:531–537, 2006.472

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning473
Research, 2:499–526, 2002.474

George EP Box and George C Tiao. Bayesian inference in statistical analysis. John Wiley & Sons,475
2011.476

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When477
does return-conditioned supervised learning work for offline reinforcement learning? Advances in478
Neural Information Processing Systems, 35:1542–1553, 2022.479

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,480
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics481
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.482

Sébastien Bubeck, Gilles Stoltz, Csaba Szepesvári, and Rémi Munos. Online optimization in x-armed483
bandits. Advances in Neural Information Processing Systems, 21, 2008.484

Sébastien Bubeck, Gilles Stoltz, and Jia Yuan Yu. Lipschitz bandits without the lipschitz constant. In485
Algorithmic Learning Theory: 22nd International Conference, ALT 2011, Espoo, Finland, October486
5-7, 2011. Proceedings 22, pp. 144–158. Springer, 2011.487

Bradley P Carlin and Thomas A Louis. Bayesian methods for data analysis. CRC press, 2008.488

Kamalika Chaudhuri, Prateek Jain, and Nagarajan Natarajan. Active heteroscedastic regression. In489
International Conference on Machine Learning, pp. 694–702. PMLR, 2017.490

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,491
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence492
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.493

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In International494
Conference on Machine Learning, pp. 844–853. PMLR, 2017.495

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff496
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and497
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.498

13

https://doi.org/10.1023/A:1013689704352

Under review for RLC 2025, to be published in RLJ 2025

Zhongxiang Dai, Yao Shu, Arun Verma, Flint Xiaofeng Fan, Bryan Kian Hsiang Low, and Patrick499
Jaillet. Federated neural bandit. arXiv preprint arXiv:2205.14309, 2022.500

Rémy Degenne, Pierre Ménard, Xuedong Shang, and Michal Valko. Gamification of pure exploration501
for linear bandits. In International Conference on Machine Learning, pp. 2432–2442. PMLR,502
2020.503

Yash Deshpande and Andrea Montanari. Linear bandits in high dimension and recommendation504
systems. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing505
(Allerton), pp. 1750–1754. IEEE, 2012.506

Kefan Dong, Jiaqi Yang, and Tengyu Ma. Provable model-based nonlinear bandit and reinforcement507
learning: Shelve optimism, embrace virtual curvature. Advances in neural information processing508
systems, 34:26168–26182, 2021.509

Yihan Du, Longbo Huang, and Wen Sun. Multi-task representation learning for pure exploration in510
linear bandits. arXiv preprint arXiv:2302.04441, 2023.511

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl512
2: Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,513
2016.514

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.515
arXiv preprint arXiv:2003.02189, 2020.516

Valerii Vadimovich Fedorov. Theory of optimal experiments. Elsevier, 2013.517

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The518
generalized linear case. Advances in neural information processing systems, 23, 2010.519

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of520
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.521

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle Pineau, et al. An522
introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11523
(3-4):219–354, 2018.524

Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online525
dynamics adaptation and neural network priors. In 2016 IEEE/RSJ International Conference on526
Intelligent Robots and Systems (IROS), pp. 4019–4026. IEEE, 2016.527

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without528
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.529

Yao Ge, Yuting Guo, Yuan-Chi Yang, Mohammed Ali Al-Garadi, and Abeed Sarker. Few-shot530
learning for medical text: A systematic review. arXiv preprint arXiv:2204.14081, 2022.531

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating532
uncertainties for offline rl through ensembles, and why their independence matters. Advances in533
Neural Information Processing Systems, 35:18267–18281, 2022.534

Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, and535
Alois Knoll. A review of safe reinforcement learning: Methods, theory and applications. arXiv536
preprint arXiv:2205.10330, 2022.537

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-538
reinforcement learning of structured exploration strategies. Advances in neural information539
processing systems, 31, 2018.540

14

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Samarth Gupta, Shreyas Chaudhari, Subhojyoti Mukherjee, Gauri Joshi, and Osman Yağan. A unified541
approach to translate classical bandit algorithms to the structured bandit setting. IEEE Journal on542
Selected Areas in Information Theory, 1(3):840–853, 2020.543

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm544
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.545

Joey Hong, Branislav Kveton, Manzil Zaheer, Yinlam Chow, Amr Ahmed, and Craig Boutilier. Latent546
bandits revisited. Advances in Neural Information Processing Systems, 33:13423–13433, 2020.547

Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Zaheer, and Mohammad Ghavamzadeh.548
Deep hierarchy in bandits. In International Conference on Machine Learning, pp. 8833–8851.549
PMLR, 2022a.550

Joey Hong, Branislav Kveton, Manzil Zaheer, and Mohammad Ghavamzadeh. Hierarchical bayesian551
bandits. In International Conference on Artificial Intelligence and Statistics, pp. 7724–7741.552
PMLR, 2022b.553

Joey Hong, Branislav Kveton, Manzil Zaheer, Sumeet Katariya, and Mohammad Ghavamzadeh.554
Multi-task off-policy learning from bandit feedback. In International Conference on Machine555
Learning, pp. 13157–13173. PMLR, 2023.556

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence557
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.558

Yiding Jiang, Evan Liu, Benjamin Eysenbach, J Zico Kolter, and Chelsea Finn. Learning options via559
compression. Advances in Neural Information Processing Systems, 35:21184–21199, 2022.560

Richard Arnold Johnson, Dean W Wichern, et al. Applied multivariate statistical analysis. 2002.561

Kwang-Sung Jun, Rebecca Willett, Stephen Wright, and Robert Nowak. Bilinear bandits with562
low-rank structure. In International Conference on Machine Learning, pp. 3163–3172. PMLR,563
2019.564

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. Predicting the565
computational cost of deep learning models. In 2018 IEEE international conference on big data566
(Big Data), pp. 3873–3882. IEEE, 2018.567

Yue Kang, Cho-Jui Hsieh, and Thomas Chun Man Lee. Efficient frameworks for generalized low-rank568
matrix bandit problems. Advances in Neural Information Processing Systems, 35:19971–19983,569
2022.570

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational571
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.572
597–619. PMLR, 2023.573

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy574
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,575
32, 2019.576

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline577
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.578

Branislav Kveton, Csaba Szepesvári, Anup Rao, Zheng Wen, Yasin Abbasi-Yadkori, and S Muthukr-579
ishnan. Stochastic low-rank bandits. arXiv preprint arXiv:1712.04644, 2017.580

Jeongyeol Kwon, Yonathan Efroni, Constantine Caramanis, and Shie Mannor. Tractable optimality581
in episodic latent mabs. Advances in Neural Information Processing Systems, 35:23634–23645,582
2022.583

15

Under review for RLC 2025, to be published in RLJ 2025

Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. A model-based approach for sample-efficient584
multi-task reinforcement learning. arXiv preprint arXiv:1907.04964, 2019.585

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,586
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning587
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.588

Tor Lattimore and Csaba Szepesvári. An information-theoretic approach to minimax regret in partial589
monitoring. In Conference on Learning Theory, pp. 2111–2139. PMLR, 2019.590

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.591

Jonathan N Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma592
Brunskill. Supervised pretraining can learn in-context reinforcement learning. arXiv preprint593
arXiv:2306.14892, 2023.594

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-595
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision596
transformers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.597

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via598
distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.599

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to600
personalized news article recommendation. In Proceedings of the 19th international conference on601
World wide web, pp. 661–670, 2010.602

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contextual603
bandits. In International Conference on Machine Learning, pp. 2071–2080. PMLR, 2017.604

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers605
as algorithms: Generalization and stability in in-context learning. In International Conference on606
Machine Learning, pp. 19565–19594. PMLR, 2023.607

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-608
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.609

Evan Z Liu, Aditi Raghunathan, Percy Liang, and Chelsea Finn. Decoupling exploration and610
exploitation for meta-reinforcement learning without sacrifices. In International conference on611
machine learning, pp. 6925–6935. PMLR, 2021.612

Xiaoqian Liu, Jianbin Jiao, and Junge Zhang. Self-supervised pretraining for decision foundation613
model: Formulation, pipeline and challenges. arXiv preprint arXiv:2401.00031, 2023a.614

Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-615
Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are few-shot616
health learners. arXiv preprint arXiv:2305.15525, 2023b.617

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with618
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.619

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch off-policy620
reinforcement learning without great exploration. Advances in neural information processing621
systems, 33:1264–1274, 2020.622

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason623
for future, act for now: A principled framework for autonomous llm agents with provable sample624
efficiency. arXiv preprint arXiv:2309.17382, 2023c.625

16

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and626
Feryal Behbahani. Structured state space models for in-context reinforcement learning. arXiv627
preprint arXiv:2303.03982, 2023.628

Yangyi Lu, Amirhossein Meisami, and Ambuj Tewari. Low-rank generalized linear bandit problems.629
In International Conference on Artificial Intelligence and Statistics, pp. 460–468. PMLR, 2021.630

Yi Ma, Chenjun Xiao, Hebin Liang, and Jianye Hao. Rethinking decision transformer via hierarchical631
reinforcement learning. arXiv preprint arXiv:2311.00267, 2023.632

Andrea Madotto, Zhaojiang Lin, Genta Indra Winata, and Pascale Fung. Few-shot bot: Prompt-based633
learning for dialogue systems. arXiv preprint arXiv:2110.08118, 2021.634

Stefan Magureanu, Richard Combes, and Alexandre Proutiere. Lipschitz bandits: Regret lower bound635
and optimal algorithms. In Conference on Learning Theory, pp. 975–999. PMLR, 2014.636

Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In International Conference on Machine637
Learning, pp. 136–144. PMLR, 2014.638

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke639
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv640
preprint arXiv:2202.12837, 2022.641

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,642
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.643
arXiv preprint arXiv:2307.04721, 2023.644

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-645
learner. arXiv preprint arXiv:1707.03141, 2017.646

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-647
reinforcement learning with advantage weighting. In International Conference on Machine648
Learning, pp. 7780–7791. PMLR, 2021.649

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan650
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint651
arXiv:1312.5602, 2013.652

Subhojyoti Mukherjee, Qiaomin Xie, Josiah P Hanna, and Robert Nowak. Multi-task representation653
learning for pure exploration in bilinear bandits. arXiv preprint arXiv:2311.00327, 2023.654

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.655
Transformers can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.656

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and657
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement658
learning. arXiv preprint arXiv:1803.11347, 2018.659

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of660
optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017.661

Soumyabrata Pal, Arun Sai Suggala, Karthikeyan Shanmugam, and Prateek Jain. Optimal algorithms662
for latent bandits with cluster structure. In International Conference on Artificial Intelligence and663
Statistics, pp. 7540–7577. PMLR, 2023.664

Theodore J Perkins and Doina Precup. Using options for knowledge transfer in reinforcement learning665
title2, 1999.666

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline667
meta-reinforcement learning with online self-supervision. In International Conference on Machine668
Learning, pp. 17811–17829. PMLR, 2022.669

17

Under review for RLC 2025, to be published in RLJ 2025

Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.670

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy671
meta-reinforcement learning via probabilistic context variables. In International conference on672
machine learning, pp. 5331–5340. PMLR, 2019.673

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel674
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist675
agent. arXiv preprint arXiv:2205.06175, 2022.676

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical677
comparison of bayesian deep networks for thompson sampling. arXiv preprint arXiv:1802.09127,678
2018.679

Adam Roberts, Colin Raffel, Katherine Lee, Michael Matena, Noam Shazeer, Peter J Liu, Sharan680
Narang, Wei Li, and Yanqi Zhou. Exploring the limits of transfer learning with a unified text-to-text681
transformer. 2019.682

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal683
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.684

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on685
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.686

Tom Schaul and Jürgen Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.687

Sina Semnani, Violet Yao, Heidi Zhang, and Monica Lam. Wikichat: Stopping the hallucination of688
large language model chatbots by few-shot grounding on wikipedia. In Findings of the Association689
for Computational Linguistics: EMNLP 2023, pp. 2387–2413, 2023.690

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior691
transformers: Cloning k modes with one stone. Advances in neural information processing systems,692
35:22955–22968, 2022.693

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,694
Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked:695
Behavioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,696
2020.697

Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, and Sergey Kolesnikov.698
In-context reinforcement learning for variable action spaces. arXiv preprint arXiv:2312.13327,699
2023.700

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit701
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,702
2018.703

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.704

William R Thompson. On the likelihood that one unknown probability exceeds another in view of705
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.706

Sabina Tomkins, Peng Liao, Predrag Klasnja, Serena Yeung, and Susan Murphy. Rapidly person-707
alizing mobile health treatment policies with limited data. arXiv preprint arXiv:2002.09971,708
2020.709

Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time710
analysis of kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.711

18

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz712
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing713
systems, 30, 2017.714

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,715
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv716
preprint arXiv:1611.05763, 2016.717

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.718
arXiv preprint arXiv:1911.11361, 2019.719

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context720
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.721

Adam X Yang, Maxime Robeyns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation722
for large language models. arXiv preprint arXiv:2308.13111, 2023.723

Jiaqi Yang, Wei Hu, Jason D Lee, and Simon S Du. Impact of representation learning in linear bandits.724
arXiv preprint arXiv:2010.06531, 2020.725

Jiaqi Yang, Wei Hu, Jason D Lee, and Simon Shaolei Du. Impact of representation learning in linear726
bandits. In International Conference on Learning Representations, 2021.727

Jiaqi Yang, Qi Lei, Jason D Lee, and Simon S Du. Nearly minimax algorithms for linear bandits with728
shared representation. arXiv preprint arXiv:2203.15664, 2022a.729

Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and730
regret bound. In International Conference on Machine Learning, pp. 10746–10756. PMLR, 2020.731

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Dichotomy of control: Separat-732
ing what you can control from what you cannot. arXiv preprint arXiv:2210.13435, 2022b.733

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.734
Combo: Conservative offline model-based policy optimization. Advances in neural information735
processing systems, 34:28954–28967, 2021.736

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl737
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement738
learning. arXiv preprint arXiv:1806.01830, 2018.739

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm740
agents are experiential learners. arXiv preprint arXiv:2308.10144, 2023.741

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.742
In International Conference on Machine Learning, pp. 11492–11502. PMLR, 2020.743

Qiuyu Zhu and Vincent Tan. Thompson sampling algorithms for mean-variance bandits. In Interna-744
tional Conference on Machine Learning, pp. 11599–11608. PMLR, 2020.745

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and746
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning.747
arXiv preprint arXiv:1910.08348, 2019.748

19

Under review for RLC 2025, to be published in RLJ 2025

A Appendix749

A.1 Related Works750

In this section, we briefly discuss related works.751

In-context decision making (Laskin et al., 2022; Lee et al., 2023) has emerged as an attractive alterna-752
tive in Reinforcement Learning (RL) compared to updating the model parameters after collection of753
new data (Mnih et al., 2013; François-Lavet et al., 2018). In RL the contextual data takes the form of754
state-action-reward tuples representing a dataset of interactions with an unknown environment (task).755
In this paper, we will refer to this as the in-context data. Recall that in many real-world settings, the756
underlying task can be structured with correlated features, and the reward can be highly non-linear.757
So specialized bandit algorithms fail to learn in these tasks. To circumvent this issue, a learner can758
first collect in-context data consisting of just action indices It and rewards rt. Then it can leverage759
the representation learning capability of deep neural networks to learn a pattern across the in-context760
data and subsequently derive a near-optimal policy (Lee et al., 2023; Mirchandani et al., 2023). We761
refer to this learning framework as an in-context decision-making setting.762

The in-context decision-making setting of Sinii et al. (2023) also allows changing the action space763
by learning an embedding over the action space yet also requires the optimal action during training.764
In contrast we do not require the optimal action as well as show that we can generalize to new765
actions without learning an embedding over them. Similarly, Lin et al. (2023) study the in-context766
decision-making setting of Laskin et al. (2022); Lee et al. (2023), but they also require a greedy767
approximation of the optimal action. The Ma et al. (2023) also studies a similar setting for hierarchical768
RL where they stitch together sub-optimal trajectories and predict the next action during test time.769
Similarly, Liu et al. (2023c) studies the in-context decision-making setting to predict action instead770
of learning a reward correlation from a short horizon setting. In contrast we do not require a greedy771
approximation of the optimal action, deal with short horizon setting and changing action sets during772
training and testing, and predict the estimated means of the actions instead of predicting the optimal773
action. A survey of the in-context decision-making approaches can be found in Liu et al. (2023a).774

In the in-context decision-making setting, the learning model is first trained on supervised input-775
output examples with the in-context data during training. Then during test time, the model is asked to776
complete a new input (related to the context provided) without any update to the model parameters777
(Xie et al., 2021; Min et al., 2022). Motivated by this, Lee et al. (2023) recently proposed the778
Decision Pretrained Transformers (DPT) that exhibit the following properties: (1) During supervised779
pretraining of DPT, predicting optimal actions alone gives rise to near-optimal decision-making780
algorithms for unforeseen task during test time. Note that DPT does not update model parameters781
during test time and, therefore, conducts in-context learning on the unforeseen task. (2) DPT improves782
over the in-context data used to pretrain it by exploiting latent structure. However, DPT either requires783
the optimal action during training or if it needs to approximate the optimal action. For approximating784
the optimal action, it requires a large amount of data from the underlying task.785

At the same time, learning the underlying data pattern from a few examples during training is786
becoming more relevant in many domains like chatbot interaction (Madotto et al., 2021; Semnani787
et al., 2023), recommendation systems, healthcare (Ge et al., 2022; Liu et al., 2023b), etc. This is788
referred to as few-shot learning. However, most current RL decision-making systems (including789
in-context learners like DPT) require an enormous amount of data to learn a good policy.790

The in-context learning framework is related to the meta-learning framework (Bengio et al., 1990;791
Schaul & Schmidhuber, 2010). Broadly, these techniques aim to learn the underlying latent shared792
structure within the training distribution of tasks, facilitating faster learning of novel tasks during793
test time. In the context of decision-making and reinforcement learning (RL), there exists a frequent794
choice regarding the specific ’structure’ to be learned, be it the task dynamics (Fu et al., 2016;795
Nagabandi et al., 2018; Landolfi et al., 2019), a task context identifier (Rakelly et al., 2019; Zintgraf796
et al., 2019; Liu et al., 2021), or temporally extended skills and options (Perkins & Precup, 1999;797
Gupta et al., 2018; Jiang et al., 2022).798

20

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

However, as we noted in the Section 1, one can do a greedy approximation of the optimal action799
from the historical data using a weak demonstrator and a neural network policy (Finn et al., 2017;800
Rothfuss et al., 2018). Moreover, the in-context framework generally is more agnostic where it learns801
the policy of the demonstrator (Duan et al., 2016; Wang et al., 2016; Mishra et al., 2017). Note that802
both DPT-greedy and PreDeToR are different than algorithmic distillation (Laskin et al., 2022; Lu803
et al., 2023) as they do not distill an existing RL algorithm. moreover, in contrast to DPT-greedy804
which is trained to predict the optimal action, the PreDeToR is trained to predict the reward for each805
of the actions. This enables the PreDeToR (similar to DPT-greedy) to show to potentially emergent806
online and offline strategies at test time that automatically align with the task structure, resembling807
posterior sampling.808

As we discussed in the Section 1, in decision-making, RL, and imitation learning the transformer809
models are trained using autoregressive action prediction (Yang et al., 2023). Similar methods have810
also been used in Large language models (Vaswani et al., 2017; Roberts et al., 2019). One of the811
more notable examples is the Decision Transformers (abbreviated as DT) which utilizes a transformer812
to autoregressively model sequences of actions from offline experience data, conditioned on the813
achieved return (Chen et al., 2021; Janner et al., 2021). This approach has also been shown to be814
effective for multi-task settings (Lee et al., 2022), and multi-task imitation learning with transformers815
(Reed et al., 2022; Brohan et al., 2022; Shafiullah et al., 2022). However, the DT methods are not816
known to improve upon their in-context data, which is the main thrust of this paper (Brandfonbrener817
et al., 2022; Yang et al., 2022b).818

Our work is also closely related to the offline RL setting. In offline RL, the algorithms can formulate a819
policy from existing data sets of state, action, reward, and next-state interactions. Recently, the idea of820
pessimism has also been introduced in an offline setting to address the challenge of distribution shift821
(Kumar et al., 2020; Yu et al., 2021; Liu et al., 2020; Ghasemipour et al., 2022). Another approach to822
solve this issue is policy regularization (Fujimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019;823
Siegel et al., 2020; Liu et al., 2019), or reuse data for related task (Li et al., 2020; Mitchell et al.,824
2021), or additional collection of data along with offline data (Pong et al., 2022). However, all of825
these approaches still have to take into account the issue of distributional shifts. In contrast PreDeToR826
and DPT-greedy leverages the decision transformers to avoid these issues. Both of these methods can827
also be linked to posterior sampling. Such connections between sequence modeling with transformers828
and posterior sampling have also been made in Chen et al. (2021); Müller et al. (2021); Lee et al.829
(2023); Yang et al. (2023).830

A.2 Experimental Setting Information and Details of Baselines831

In this section, we describe in detail the experimental settings and some baselines.832

A.2.1 Experimental Details833

Linear Bandit: We consider the setting when f(x,θ∗) = x⊤θ∗. Here x ∈ Rd is the action feature834
and θ∗ ∈ Rd is the hidden parameter. For every experiment, we first generate tasks from Tpre. Then we835
sample a fixed set of actions from N (0, Id/d) in Rd and this constitutes the features. Then for each836
task m ∈ [M] we sample θm,∗ ∼ N (0, Id/d) to produce the means µ(m, a) = ⟨θm,∗,x(m, a)⟩ for837
a ∈ A and m ∈ [M]. Finally, note that we do not shuffle the data as the order matters. Also in this838
setting x(m, a) for each a ∈ A is fixed for all tasks m.839

Non-Linear Bandit: We now consider the setting when f(x,θ∗) = 1/(1 + 0.5 · exp(2 ·840
exp(−x⊤θ∗))). Again, here x ∈ Rd is the action feature, and θ∗ ∈ Rd is the hidden parame-841
ter. Note that this is different than the generalized linear bandit setting (Filippi et al., 2010; Li et al.,842
2017). Again for every experiment, we first generate tasks from Tpre. Then we sample a fixed set of843
actions fromN (0, Id/d) in Rd and this constitutes the features. Then for each task m ∈ [M] we sam-844
ple θm,∗ ∼ N (0, Id/d) to produce the means µ(m, a) = 1/(1+0.5·exp(2·exp(−x(m, a)⊤θm,∗)))845
for a ∈ A and m ∈ [M]. Again note that in this setting x(m, a) for each a ∈ A is fixed for all tasks846
m.847

21

Under review for RLC 2025, to be published in RLJ 2025

We use NVIDIA GeForce RTX 3090 GPU with 24GB RAM to load the GPT 2 Large Language848
Model. This requires less than 2GB RAM without data, and with large context may require as much849
as 20GB RAM.850

A.2.2 Details of Baselines851

(1) Thomp: This baseline is the stochastic A-action bandit Thompson Sampling algorithm from852
Thompson (1933); Agrawal & Goyal (2012); Russo et al. (2018); Zhu & Tan (2020). We briefly853
describe the algorithm below: At every round t and each action a, Thomp samples γm,t(a) ∼854
N (µ̂m,t−1(a), σ

2/Nm,t−1(a)), where Nm,t−1(a) is the number of times the action a has been855

selected till t−1, and µ̂m,t−1(a) =
∑t−1

s=1 r̂m,s1(Is=a)
Nm,t−1(a)

is the empirical mean. Then the action selected856
at round t is It = argmaxa γm,t(a). Observe that Thomp is not a deterministic algorithm like UCB857
(Auer et al., 2002). So we choose Thomp as the weak demonstrator πw because it is more exploratory858
than UCB and also chooses the optimal action, am,∗, a sufficiently large number of times. Thomp is859
a weak demonstrator as it does not have access to the feature set X for any task m.860

(2) LinUCB: (Linear Upper Confidence Bound): This baseline is the Upper Confidence Bound861
algorithm for the linear bandit setting that selects the action It at round t for task m that is most862
optimistic and reduces the uncertainty of the task unknown parameter θm,∗. To balance exploitation863
and exploration between choosing different items the LinUCB computes an upper confidence value864
to the estimated mean of each action xm,a ∈ X . This is done as follows: At every round t865
for task m, it calculates the ucb value Bm,a,t for each action xm,a ∈ X such that Bm,a,t =866
x⊤
m,aθ̂m,t−1 + α∥xm,a∥Σ−1

m,t−1
where α > 0 is a constant and θ̂m,t is the estimate of the model867

parameter θm,∗ at round t. Here, Σm,t−1 =
∑t−1
s=1 xm,sx

⊤
m,s + λId is the data covariance matrix868

or the arms already tried. Then it chooses It = argmaxaBm,a,t. Note that LinUCB is a strong869
demonstrator that we give oracle access to the features of each action; other algorithms do not870
observe the features. Hence, in linear bandits, LinUCB provides an approximate upper bound on the871
performance of all algorithms.872

(3) MLinGreedy: This is the multi-task linear regression bandit algorithm proposed by Yang873
et al. (2021). This algorithm assumes that there is a common low dimensional feature extractor874
B ∈ Rk×d, k ≤ d shared between the tasks and the rewards per task m are linearly dependent on a875
hidden parameter θm,∗. Under a diversity assumption (which may not be satisfied in real data) and876
W = [w1, . . . ,wM] they assume Θ = [θ1,∗, . . . ,θM,∗] = BW. During evaluation MLinGreedy877
estimates the B̂ and Ŵ from training data and fit θ̂m = B̂ŵm per task and selects action greedily878
based on Im,t = argmaxa x

⊤
m,aθ̂m,∗. Finally, note that MLinGreedy requires access to the action879

features to estimate θ̂m and select actions as opposed to DPT, AD, and PreDeToR.880

A.3 Empirical Study: Comparison against K-armed bandits and DPT881

In this section, we discuss the performance of PreDeToR (-τ) when there is no latent structure in the882
data, that is the K-armed bandits. Then we compare the performance of PreDeToR (-τ) against DPT.883

Baselines: In the K-armed bandits We implement the same baselines discussed in Section 4. The884
baselines are PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB. In the linear and885
non-linear setting, we compare against DPT instead of DPT-greedy.886

Settings: In the K-armed bandit setting we consider d = 6, and the arms as canonical vectors887
e1, e2, . . . , e6. For each task m, we choose the hidden parameter θm,∗ similar to the linear bandit888
setting discussed in Section 5. Note that this results in a K-armed bandit setting. For the linear and889
non-linear setting comparison, we use the same setting as Section 5, and 4.890

Outcomes: We first discuss the main outcomes from our experimental results in K-armed bandits891
and then in comparison against DPT in linear and non-linear settings.892

22

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Finding 7: PreDeToR (-τ) matches the performance of the demonstrator when there is
no structure (K-armed bandits). PreDeToR (-τ) performs close to DPT in the linear and
non-linear setting showing the usefulness of learning the reward structure.

893

(a) K-armed Bandit
(b) Comparison against DPT in
linear setting

(c) Comparison against DPT in
non-linear setting

Figure 7: Experiment with k-armed bandits and DPT (original). The y-axis shows the cumulative
regret.

Experimental Result: We observe these outcomes in Figure 7. In Figure 7a the demonstrator πw is894
the Thomp algorithm. Note that there is no structure across arms now, and sampling one arm gives895
no information about other arms in a task. We observe that PreDeToR-τ performs similarly to the896
demonstrator Thomp, and also shows that incorporating exploration is a sound technique. Also, AD897
performs similarly to the demonstrator Thomp. Both DPT-greedy and PreDeToR fail to learn the898
latent structure across the tasks and therefore do not learn any exploration strategy.899

In Figure 7b we show the linear bandit setting discussed in Appendix A.2. We observe that PreDeToR900
(-τ) matches the performance of DPT, and LinUCB. Note that DPT has access to the optimal action901
per task, and LinUCB is the optimal oracle algorithm that leverages the structure information.902

In Figure 7c we show the non-linear bandit setting discussed in Appendix A.2. Again we observe903
that PreDeToR (-τ) matches the performance of DPT and has lower cumulative regret than AD and904
LinUCB which fails to perform well in this non-linear setting due to its algorithmic design.905

A.4 Empirical Study: Bilinear Bandits906

In this section, we discuss the performance of PreDeToR against the other baselines in the bilinear907
setting. Again note that the number of tasks Mpre ≫ A ≥ n. Through this experiment, we want908
to evaluate the performance of PreDeToR to exploit the underlying latent structure and reward909
correlation when the horizon is small, the number of tasks is large, and understand its performance910
in the bilinear bandit setting (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022; Mukherjee et al.,911
2023). Note that this setting also goes beyond the linear feedback model (Abbasi-Yadkori et al., 2011;912
Lattimore & Szepesvári, 2020) and is related to matrix bandits (Yang & Wang, 2020).913

Bilinear bandit setting: In the bilinear bandits the learner is provided with two sets of action sets,914
X ⊆ Rd1 and Z ⊆ Rd2 which are referred to as the left and right action sets. At every round t the915
learner chooses a pair of actions xt ∈ X and zt ∈ Z and observes a reward916

rt = x⊤
t Θ∗zt + ηt

where Θ∗ ∈ Rd1×d2 is the unknown hidden matrix which is also low-rank. The ηt is a σ2 sub-917
Gaussian noise. In the multi-task bilinear bandit setting we now have a set of M tasks where the918
reward for the m-th task at round t is given by919

rm,t = x⊤
m,tΘm,∗zm,t + ηm,t.

Here Θm,∗ ∈ Rd1×d2 is the unknown hidden matrix for each task m, which is also low-rank. The920
ηm,t is a σ2 sub-Gaussian noise. Let κ be the rank of each of these matrices Θm,∗.921

23

Under review for RLC 2025, to be published in RLJ 2025

A special case is the rank 1 structure where Θm,∗ = θm,∗θ
⊤
m,∗ where Θm,∗ ∈ Rd×d and θm,∗ ∈ Rd922

for each task m. Let the left and right action sets be also same such that xm,t ∈ X ⊆ Rd. Observe923
then that the reward for the m-th task at round t is given by924

rm,t = x⊤
m,tΘm,∗xm,t + ηm,t = (x⊤

m,tθm,∗)
2 + ηm,t.

This special case is studied in Chaudhuri et al. (2017).925

Baselines: We again implement the same baselines discussed in Section 4. The baselines are926
PreDeToR, PreDeToR-τ , DPT-greedy, and Thomp. Note that we do not implement the LinUCB and927
MLinGreedy for the bilinear bandit setting. However, we now implement the LowOFUL (Jun et al.,928
2019) which is optimal in the bilinear bandit setting.929

LowOFUL: The LowOFUL algorithm first estimates the unknown parameter Θm,∗ for each task930
m using E-optimal design (Pukelsheim, 2006; Fedorov, 2013; Jun et al., 2019) for n1 rounds. Let931
Θ̂m,n1 be the estimate of Θm,∗ at the end of n1 rounds. Let the SVD of Θ̂m,n1 be given by932
SVD(Θ̂m,n1) = Ûm,n1 Ŝm,n1V̂m,n1 . Then LowOFUL rotates the actions as follows:933

X ′
m =

{[
Ûm,n1

Û⊥
m,n1

]⊤
xm : xm ∈ X

}
and Z ′ =

{[
V̂m,n1

V̂⊥
m,n1

]⊤
zm : zm ∈ Z

}
.

Then defines a vectorized action set for each task m so that the last (d1 − κ) · (d2 − κ) components934
are from the complementary subspaces:935

Ãm =
{[
vec
(
xm,1:κz

⊤
m,1:κ

)
; vec

(
xm,κ+1:d1z

⊤
m,1:κ

)
; vec

(
xm,1:κz

⊤
m,κ+1:d2

)
;

vec
(
xm,κ+1:d1z

⊤
m,κ+1:d2

)]
∈ Rd1d2 : xm ∈ X ′

m, zm ∈ Z ′
m

}
.

Finally for n2 = n−n1 rounds, LowOFUL invokes the specialized OFUL algorithm (Abbasi-Yadkori936
et al., 2011) for the rotated action set Ãm with the low dimension k = (d1 + d2)κ− κ2. Note that937
the LowOFUL runs the per-task low dimensional OFUL algorithm rather than learning the underlying938
structure across the tasks (Mukherjee et al., 2023).939

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:940

Finding 8: PreDeToR (-τ) outperforms DPT-greedy, AD, and matches the performance of
LowOFUL in bilinear bandit setting.

941

(a) Rank 1 Θm,∗ (b) Rank 2Θm,∗

Figure 8: Experiment with bilinear bandits. The y-axis shows the cumulative regret.

Experimental Result: We observe these outcomes in Figure 8. In Figure 8a we experiment with942
rank 1 hidden parameter Θm,∗ and set horizon n = 20, Mpre = 200000, Mtest = 200, A = 30, and943
d = 5. In Figure 8b we experiment with rank 2 hidden parameter Θm,∗ and set horizon n = 20,944
Mpre = 250000, Mtest = 200, A = 25, and d = 5. Again, the demonstrator πw is the Thomp945
algorithm. We observe that PreDeToR has lower cumulative regret than DPT-greedy, AD and Thomp.946
Note that for any task m for the horizon 20 the Thomp will be able to sample all the actions at947

24

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

most once. Note that for this small horizon setting the DPT-greedy does not have a good estimation948
of âm,∗ which results in a poor prediction of optimal action âm,t,∗. In contrast PreDeToR learns949
the correlation of rewards across tasks and can perform well. Observe from Figure 8a, and 8b that950
PreDeToR has lower regret than Thomp and matches LowOFUL. Also, in this low-data regime it951
is not enough for LowOFUL to learn the underlying Θm,∗ with high precision. Hence, PreDeToR952
also has slightly lower regret than LowOFUL. Note that the main objective of AD is to match the953
performance of its demonstrator. Most importantly it shows that PreDeToR can exploit the underlying954
latent structure and reward correlation better than DPT-greedy, and AD.955

A.5 Empirical Study: Latent Bandits956

In this section, we discuss the performance of PreDeToR (-τ) against the other baselines in the957
latent bandit setting and create a generalized bilinear bandit setting. Note that the number of tasks958
Mpre ≫ A ≥ n. Using this experiment, we want to evaluate the ability of PreDeToR (-τ) to exploit959
the underlying reward correlation when the horizon is small, the number of tasks is large, and960
understand its performance in the latent bandit setting (Hong et al., 2020; Maillard & Mannor, 2014;961
Pal et al., 2023; Kveton et al., 2017). We create a latent bandit setting which generalizes the bilinear962
bandit setting (Jun et al., 2019; Lu et al., 2021; Kang et al., 2022; Mukherjee et al., 2023). Again note963
that this setting also goes beyond the linear feedback model (Abbasi-Yadkori et al., 2011; Lattimore964
& Szepesvári, 2020) and is related to matrix bandits (Yang & Wang, 2020).965

Latent bandit setting: In this special multi-task latent bandits the learner is again provided with two966
sets of action sets, X ⊆ Rd1 and Z ⊆ Rd2 which are referred to as the left and right action sets. The967
reward for the m-th task at round t is given by968

rm,t = x⊤
m,t (Θm,∗ +UV⊤)︸ ︷︷ ︸

Zm∗

zm,t + ηm,t.

Here Θm,∗ ∈ Rd1×d2 is the unknown hidden matrix for each task m, which is also low-rank.969
Additionally, all the tasks share a common latent parameter matrix UV⊤ ∈ Rd1×d2 which is also970
low rank. Hence the learner needs to learn the latent parameter across the tasks hence the name latent971
bandits. Finally, the ηm,t is a σ2 sub-Gaussian noise. Let κ be the rank of each of these matrices972
Θm,∗ and UV⊤. Again special case is the rank 1 structure where the reward for the m-th task at973
round t is given by974

rm,t = x⊤
m,t (θm,∗θ

⊤
m,∗ + uv⊤)︸ ︷︷ ︸
Zm,∗

xm,t + ηm,t.

where θm,∗ ∈ Rd for each task m and u,v ∈ Rd. Note that the left and right action sets are the same975
such that xm,t ∈ X ⊆ Rd.976

Baselines: We again implement the same baselines discussed in Section 4. The baselines are977
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LowOFUL. However, we now implement a978
special LowOFUL (stated in Appendix A.4) which has knowledge of the shared latent parameters U,979
and V. We call this the LowOFUL (oracle) algorithm. Therefore LowOFUL (oracle) has knowledge980
of the problem parameters in the latent bandit setting and hence the name. Again note that we do not981
implement the LinUCB and MLinGreedy for the latent bandit setting.982

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:983

Finding 9: PreDeToR (-τ) outperforms DPT-greedy, AD, and matches the performance of
LowOFUL (oracle) in latent bandit setting.

984

Experimental Result: We observe these outcomes in Figure 9. In Figure 9a we experiment with985
rank 1 hidden parameter θm,∗θ⊤

m,∗ and latent parameters uv⊤ shared across the tasks and set horizon986

25

Under review for RLC 2025, to be published in RLJ 2025

(a) Rank 1 Zm,∗ (b) Rank 2 Zm,∗ (c) Rank 3 Zm,∗

Figure 9: Experiment with latent bandits. The y-axis shows the cumulative regret.

n = 20, Mpre = 200000, Mtest = 200, A = 30, and d = 5. In Figure 9b we experiment with rank987
2 hidden parameter Θm,∗, and latent parameters UV⊤ and set horizon n = 20, Mpre = 250000,988
Mtest = 200, A = 25, and d = 5. In Figure 9c we experiment with rank 3 hidden parameter Θm,∗,989
and latent parameters UV⊤ and set horizon n = 20, Mpre = 300000, Mtest = 200, A = 25, and990
d = 5. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has991
lower cumulative regret than DPT-greedy, AD and Thomp. Note that for any task m for the horizon992
20 the Thomp will be able to sample all the actions at most once. Note that for this small horizon993
setting the DPT-greedy does not have a good estimation of âm,∗ which results in a poor prediction of994
optimal action âm,t,∗. In contrast PreDeToR (-τ) learns the correlation of rewards across tasks and is995
able to perform well. Observe from Figure 9a, 9b, and 9c that PreDeToR has lower regret than Thomp996
and has regret closer to LowOFUL (oracle)which has access to the problem-dependent parameters.997
Hence. LowOFUL (oracle) outperforms PreDeToR (-τ) in this setting. This shows that PreDeToR is998
able to exploit the underlying latent structure and reward correlation better than DPT-greedy, and999
AD.1000

A.6 Connection between PreDeToR and Linear Multivariate Gaussian Model1001

In this section, we try to understand the behavior of PreDeToR and its ability to exploit the reward1002
correlation across tasks under a linear multivariate Gaussian model. In this model, the hidden task1003
parameter, θ∗, is a random variable drawn from a multi-variate Gaussian distribution (Bishop, 2006)1004
and the feedback follows a linear model. We study this setting since we can estimate the Linear1005
Minimum Mean Square Estimator (LMMSE) in this setting (Carlin & Louis, 2008; Box & Tiao,1006
2011). This yields a posterior prediction for the mean of each action over all tasks on average, by1007
leveraging the linear structure when θ∗ is drawn from a multi-variate Gaussian distribution. So1008
we can compare the performance of PreDeToR against such an LMMSE and evaluate whether it is1009
exploiting the underlying linear structure and the reward correlation across tasks. We summarize this1010
as follows:1011

Finding 10: PreDeToR learns the reward correlation covariance matrix from the in-context
training dataHtrain and acts greedily on it.

1012

Consider the linear feedback setting consisting of A actions and the hidden task parameter θ∗ ∼1013
N (0, σ2

θId). The reward of the action xt at round t is given by rt = x⊤
t θ∗ + ηt, where ηt is σ21014

sub-Gaussian. Let πw collect n rounds of pretraining in-context data and observe {It, rt}nt=1. Let1015
Nn(a) denote the total number of times the action a is sampled for n rounds. Note that we drop the1016
task index m in these notations as the random variable θ∗ corresponds to the task. Define the matrix1017
Hn ∈ Rn×A where the t-th row represents the action It for t ∈ [n]. The t-th row of Hn is a one-hot1018
vector with the It-th component being 1. We represent each action by one hot vector because we1019
assume that this LMMSE does not have access to the feature vectors of the actions similar to the1020
PreDeToR for fair comparison. Then define the reward vector Yn ∈ Rn where the t-th component is1021
the reward rt observed for the action It for t ∈ [n] in the pretraining data. Define the diagonal matrix1022

26

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

DA ∈ RA×A estimated from pretraining data as follows1023

DA(i, i) =

{
σ2

Nn(a)
, if Nn(a) > 0

= 0, if Nn(a) = 0
(6)

where the reward noise being σ2 sub-Gaussian is known. Finally define the estimated reward1024
covariance matrix SA ∈ RA×A as SA(a, a′) = µ̂n(a)µ̂n(a

′), where µ̂n(a) is the empirical mean of1025
action a estimated from the pretraining data. This matrix captures the reward correlation between1026
the pairs of actions a, a′ ∈ [A]. Then the posterior average mean estimator µ̂ ∈ RA over all tasks is1027
given by the following lemma. The proof is given in Appendix B.1.1028

Lemma 1. Let Hn be the action matrix, Yn be the reward vector and SA be the estimated reward1029
covariance matrix. Then the posterior prediction of the average mean reward vector µ̂ over all tasks1030
is given by1031

µ̂ = σ2
θSAH

⊤
n

(
σ2
θHn(SA +DA)H

⊤
n

)−1
Yn. (7)

Figure 10: BayesPred Performance

The µ̂ in (7) represents the posterior mean vector averaged1032
on all tasks. So if some action a ∈ [A] consistently yields1033
high rewards in the pretraining data then µ̂(a) has high1034
value. Since the test distribution is the same as pretraining,1035
this action on average will yield a high reward during test1036
time.1037

We hypothesize that the PreDeToR is learning the reward1038
correlation covariance matrix from the training dataHtrain1039
and acting greedily on it. To test this hypothesis, we con-1040
sider the greedy BayesPred algorithm that first estimates1041
SA from the pretraining data. It then uses the LMMSE es-1042
timator in Lemma 1 to calculate the posterior mean vector1043
µ̂, and then selects It = argmaxa µ̂(a) at each round t.1044

Note that BayesPred is a greedy algorithm that always selects the most rewarding action (exploitation)1045
without any exploration of sub-optimal actions. Also the BayesPred is an LMMSE estimator that1046
leverages the linear reward structure and estimates the reward covariance matrix, and therefore can1047
be interpreted as a lower bound to the regret of PreDeToR. The hypothesis that BayesPred is a1048
lower bound to PreDeToR is supported by Figure 10. In Figure 10 the reward covariance matrix for1049
BayesPred is estimated from theHtrain by first running the Thomp (πw). Observe that the BayesPred1050
has a lower cumulative regret than PreDeToR and almost matches the regret of PreDeToR towards the1051
end of the horizon. Also note that LinUCB has lower cumulative regret towards the end of horizon as1052
it leverages the linear structure and the feature of the actions in selecting the next action.1053

A.7 Empirical Study: Increasing number of Actions1054

In this section, we discuss the performance of PreDeToR when the number of actions is very high1055
so that the weak demonstrator πw does not have sufficient samples for each action. However, the1056
number of tasks Mpre ≫ A > n.1057

Baselines: We again implement the same baselines discussed in Section 4. The baselines are1058
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.1059

Outcomes: We first discuss the main outcomes from our experimental results of introducing more1060
actions than the horizon (or more dimensions than actions) during data collection and evaluation:1061

Finding 11: PreDeToR (-τ) outperforms DPT-greedy, and AD, even when A > n but
Mpre ≫ A.

1062

27

Under review for RLC 2025, to be published in RLJ 2025

(a) Linear Bandit (b) Non-linear Bandit
Figure 11: Testing the limit experiments. The horizontal axis is the number of rounds. Confidence
bars show one standard error.

Experimental Result: We observe these outcomes in Figure 11. In Figure 11a we show the1063
linear bandit setting for Mpre = 250000, Mtest = 200, A = 100, n = 50 and d = 5. Again, the1064
demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has lower cumulative1065
regret than DPT-greedy and AD. Note that for any task m the Thomp will not be able to sample all1066
the actions even once. The weak performance of DPT-greedy can be attributed to both short horizons1067
and the inability to estimate the optimal action for such a short horizon n < A. The AD performs1068
similar to the demonstrator Thomp because of its training. Observe that PreDeToR (-τ) has similar1069
regret to LinUCB and lower regret than Thomp which also shows that PreDeToR is exploiting the1070
latent linear structure of the underlying tasks. In Figure 11b we show the non-linear bandit setting for1071
horizon n = 40, Mpre = 200000, A = 60, d = 2, and |Ainv| = 5. The demonstrator πw is the Thomp1072
algorithm. Again we observe that PreDeToR (-τ) has lower cumulative regret than DPT-greedy, AD1073
and LinUCB which fails to perform well in this non-linear setting due to its algorithmic design.1074

A.8 Empirical Study: Increasing Horizon1075

In this section, we discuss the performance of PreDeToR with respect to an increasing horizon for1076
each task m ∈ [M]. However, note that the number of tasks Mpre ≥ n. Note that Lee et al. (2023)1077
studied linear bandit setting for n = 200. We study the setting up to a similar horizon scale.1078

Baselines: We again implement the same baselines discussed in Section 4. The baselines are1079
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.1080

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:1081

Finding 12: PreDeToR (-τ) outperforms DPT-greedy, and AD with increasing horizon.
1082

Experimental Result: We observe these outcomes in Figure 12. In Figure 12 we show the linear1083
bandit setting for Mpre = 150000, Mtest = 200, A = 20, n = {20, 40, 60, 100, 120, 140, 200} and1084
d = 5. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has1085
lower cumulative regret than DPT-greedy, and AD. Note that for any task m for the horizon 20 the1086
Thomp will be able to sample all the actions at most once. Observe from Figure 12a, 12b, 12c,1087
Figure 12d, 12e, 12f and 12g that PreDeToR (-τ) is closer to LinUCB and outperforms Thomp which1088
also shows that PreDeToR (-τ) is learning the latent linear structure of the underlying tasks. In1089
Figure 12h we plot the regret of all the baselines with respect to the increasing horizon. Again we see1090
that PreDeToR (-τ) is closer to LinUCB and outperforms DPT-greedy, AD and Thomp. This shows1091
that PreDeToR (-τ) is able to exploit the latent structure and reward correlation across the tasks for1092
varying horizon length.1093

28

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

(a) Horizon 20 (b) Horizon 40 (c) Horizon 60

(d) Horizon 100 (e) Horizon 120 (f) Horizon 140

(g) Horizon 200 (h) Increasing Horizon
Figure 12: Experiment with increasing horizon. The y-axis shows the cumulative regret.

A.9 Empirical Study: Increasing Dimension1094

In this section, we discuss the performance of PreDeToR with respect to an increasing dimension for1095
each task m ∈ [M]. Again note that the number of tasks Mpre ≫ A ≥ n. Through this experiment,1096
we want to evaluate the performance of PreDeToR and see how it exploits the underlying reward1097
correlation when the horizon is small as well as for increasing dimensions.1098

Baselines: We again implement the same baselines discussed in Section 4. The baselines are1099
PreDeToR, PreDeToR-τ DPT-greedy, AD, Thomp, and LinUCB.1100

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:1101

Finding 13: PreDeToR (-τ) outperforms DPT-greedy, AD with increasing dimension and
has lower regret than LinUCB for larger dimension.

1102

Experimental Result: We observe these outcomes in Figure 12. In Figure 12 we show the linear1103
bandit setting for horizon n = 20, Mpre = 160000, Mtest = 200, A = 20, and d = {10, 20, 30, 40}.1104
Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has lower1105
cumulative regret than DPT-greedy, AD. Note that for any task m for the horizon 20 the Thomp1106
will be able to sample all the actions at most once. Observe from Figure 13a, 13b, 13c, and 13d1107
that PreDeToR (-τ) is closer to LinUCB and has lower regret than Thomp which also shows that1108
PreDeToR (-τ) is exploiting the latent linear structure of the underlying tasks. In Figure 13e we plot1109
the regret of all the baselines with respect to the increasing dimension. Again we see that PreDeToR1110
(-τ) has lower regret than DPT-greedy, AD and Thomp. Observe that with increasing dimension1111

29

Under review for RLC 2025, to be published in RLJ 2025

(a) Dimension 10 (b) Dimension 20 (c) Dimension 30

(d) Dimension 40 (e) Increasing Dimension
Figure 13: Experiment with increasing dimension. The y-axis shows the cumulative regret.

PreDeToR is able to outperform LinUCB. This shows that the PreDeToR (-τ) is able to exploit reward1112
correlation across tasks for varying dimensions.1113

A.10 Empirical Study: Increasing Attention Heads1114

In this section, we discuss the performance of PreDeToR with respect to an increasing attention heads1115
for the transformer model for the non-linear feedback model. Again note that the number of tasks1116
Mpre ≫ A ≥ n. Through this experiment, we want to evaluate the performance of PreDeToR to1117
exploit the underlying reward correlation when the horizon is small and understand the representative1118
power of the transformer by increasing the attention heads. Note that we choose the non-linear1119
feedback model and low data regime to leverage the representative power of the transformer.1120

Baselines: We again implement the same baselines discussed in Section 4. The baselines are1121
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.1122

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:1123

Finding 14: PreDeToR (-τ) outperforms DPT-greedy, and AD with increasing attention
heads.

1124

Experimental Result: We observe these outcomes in Figure 14. In Figure 14 we show the non-linear1125
bandit setting for horizon n = 20, Mpre = 160000, Mtest = 200, A = 20, heads = {2, 4, 6, 8} and1126
d = 5. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ) has1127
lower cumulative regret than DPT-greedy, AD. Note that for any task m for the horizon 20 the Thomp1128
will be able to sample all the actions atmost once. Observe from Figure 14a, 14b, 14c, and 14d that1129
PreDeToR (-τ) has lower regret than AD, Thomp and LinUCB which also shows that PreDeToR (-τ)1130
is exploiting the latent linear structure of the underlying tasks for the non-linear setting. In Figure 14f1131
we plot the regret of all the baselines with respect to the increasing attention heads. Again we see that1132
PreDeToR (-τ) regret decreases as we increase the attention heads.1133

A.11 Empirical Study: Increasing Number of Tasks1134

In this section, we discuss the performance of PreDeToR with respect to the increasing number of1135
tasks for the linear bandit setting. Again note that the number of tasks Mpre ≫ A ≥ n. Through1136

30

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

(a) Attention Heads 2 (b) Attention Heads 4 (c) Attention Heads 6

(d) Attention Heads 8 (e) Attention Heads 12 (f) Increasing Attention Heads
Figure 14: Experiment with increasing attention heads. The y-axis shows the cumulative regret.

this experiment, we want to evaluate the performance of PreDeToR to exploit the underlying reward1137
correlation when the horizon is small and the number of tasks is changing. Finally, recall that when1138
the horizon is small the weak demonstrator πw does not have sufficient samples for each action. This1139
leads to a poor approximation of the greedy action.1140

Baselines: We again implement the same baselines discussed in Section 4. The baselines are1141
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB.1142

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:1143

Finding 15: PreDeToR (-τ) fails to exploit the underlying latent structure and reward
correlation from in-context data when the number of tasks is small.

1144

(a) Tasks Mtrain = 5000 (b) Tasks Mtrain = 10000 (c) Tasks Mtrain = 50000

(d) Tasks Mtrain = 100000 (e) Tasks Mtrain = 150000 (f) Increasing tasks
Figure 15: Experiment with an increasing number of tasks. The y-axis shows the cumulative regret.

31

Under review for RLC 2025, to be published in RLJ 2025

Experimental Result: We observe these outcomes in Figure 15. In Figure 15 we show the linear1145
bandit setting for horizon n = 20, Mpre ∈ {5000, 10000, 50000, 100000, 150000}, Mtest = 200,1146
A = 20, and d = 40. Again, the demonstrator πw is the Thomp algorithm. We observe that1147
PreDeToR (-τ), AD and DPT-greedy suffer more regret than the LinUCB when the number of tasks1148
is small (Mtrain ∈ {5000, 10000} in Figure 15a, and 15b. However in Figure 15c, 15d, 15e, and1149
15f we show that PreDeToR has lower regret than Thomp and matches LinUCB. This shows that1150
PreDeToR (-τ) is exploiting the latent linear structure of the underlying tasks for the non-linear1151
setting. Moreover, observe that as Mtrain increases the PreDeToR has lower cumulative regret than1152
DPT-greedy, AD. Note that for any task m for the horizon 20 the Thomp will be able to sample all1153
the actions at most once. Therefore DPT-greedy does not perform as well as PreDeToR. Finally, note1154
that the result shows that PreDeToR (-τ) is able to exploit the reward correlation across the tasks1155
better as the number of tasks increases.1156

A.12 Exploration of PreDeToR(-τ) in New Arms Setting1157

In this section, we discuss the exploration of PreDeToR (-τ) in the linear and non-linear new arms1158
bandit setting discussed in Section 6. Recall that we consider the linear bandit setting of horizon1159
n = 50, Mpre = 200000, Mtest = 200, A = 20, and d = 5. Here during data collection and during1160
collecting the test data, we randomly select one new action from Rd for each task m. So the number1161
of invariant actions is |Ainv| = 19.1162

Outcomes: We first discuss the main outcomes of our analysis of exploration in the low-data regime:1163

Finding 16: The PreDeToR (-τ) is robust to changes when the number of in-variant actions
is large. PreDeToR (-τ) performance drops as shared structure breaks down.

1164

We first show in Figure 16a the training distribution of the optimal actions. For each bar, the frequency1165
indicates the number of tasks where the action (shown in the x-axis) is the optimal action.1166

Then in Figure 16b we show how the sampling distribution of DPT-greedy, PreDeToR and PreDeToR-1167
τ change in the first 10 and last 10 rounds for all the tasks where action 17 is optimal. We plot this1168
graph the same way as discussed in Section 5. From the figure Figure 16b we see that PreDeToR(-τ)1169
consistently pulls the action 17 more than DPT-greedy. It also explores other optimal actions like1170
{1, 2, 3, 8, 9, 15} but discards them quickly in favor of the optimal action 17 in these tasks.1171

Finally, we plot the feasible action set considered by DPT-greedy, PreDeToR, and PreDeToR-τ in1172
Figure 16c. To plot this graph again we consider the test tasks where the optimal action is 17. Then1173
we count the number of distinct actions that are taken from round t up until horizon n. Finally we1174
average this over all the considered tasks where the optimal action is 17. We call this the candidate1175
action set considered by the algorithm. From the Figure 16c we see that PreDeToR-τ explores more1176
than PreDeToR in this setting.1177

We also show how the prediction error of the optimal action by PreDeToR compared to LinUCB in1178
this 1 new arm linear bandit setting. In Figure 17a we first show how the 20 actions are distributed1179
in the Mtest = 200 test tasks. In Figure 17a for each bar, the frequency indicates the number of1180
tasks where the action (shown in the x-axis) is the optimal action. Then in Figure 17b we show the1181
prediction error of PreDeToR (-τ) for each task m ∈ [Mtest]. The prediction error is calculated the1182
same way as stated in Section 6 From the Figure 17b we see that for most actions the prediction error1183
of PreDeToR (-τ) is closer to LinUCB showing that the introduction of 1 new action does not alter1184
the prediction error much. Note that LinUCB estimates the empirical mean directly from the test task,1185
whereas PreDeToR has a strong prior based on the training data. Therefore we see that PreDeToR is1186
able to estimate the reward of the optimal action quite well from the training dataset Dpre.1187

We now consider the setting where the number of invariant actions is |Ainv| = 15. We again show in1188
Figure 18a the training distribution of the optimal actions. For each bar, the frequency indicates the1189
number of tasks where the action (shown in the x-axis) is the optimal action. Then in Figure 18b we1190

32

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

(a) Train Optimal Action Distribu-
tion

(b) Distribution of action sampling
in all tasks where action 17 is opti-
mal

(c) Candidate Action Set in Time
averaged over all tasks where action
17 is optimal

Figure 16: Exploration Analysis of PreDeToR(-τ) in linear 1 new arm setting

(a) Test action distribution (b) Test Prediction Error
Figure 17: Prediction error of PreDeToR(-τ) in linear 1 new arm setting

show how the sampling distribution of DPT-greedy, PreDeToR and PreDeToR-τ change in the first1191
10 and last 10 rounds for all the tasks where action 17 is optimal. We plot this graph the same way as1192
discussed in Section 5. From the figure Figure 18b we see that none of the algorithms PreDeToR,1193
PreDeToR-τ , DPT-greedy consistently pulls the action 17 more than other actions. This shows that1194
the common underlying actions across the tasks matter for learning the epxloration.1195

Finally, we plot the feasible action set considered by DPT-greedy, PreDeToR, and PreDeToR-τ in1196
Figure 18c. To plot this graph again we consider the test tasks where the optimal action is 17. We1197
build the candidate set the same way as before. From the Figure 18c we see that none of the three1198
algorithms DPT-greedy, PreDeToR, PreDeToR-τ , is able to sample the optimal action 17 sufficiently1199
high number of times.1200

We also show how the prediction error of the optimal action by PreDeToR compared to LinUCB in1201
this 1 new arm linear bandit setting. In Figure 19a we first show how the 20 actions are distributed1202
in the Mtest = 200 test tasks. In Figure 19a for each bar, the frequency indicates the number of1203
tasks where the action (shown in the x-axis) is the optimal action. Then in Figure 19b we show the1204
prediction error of PreDeToR (-τ) for each task m ∈ [Mtest]. The prediction error is calculated the1205
same way as stated in Section 6. From the Figure 19b we see that for most actions the prediction1206
error is higher than LinUCB showing that the introduction of 5 new actions (and thereby decreasing1207
the invariant action set) significantly alters the prediction error.1208

A.13 Empirical Validation of Theoretical Result1209

In this section, we empirically validate the theoretical result proved in Section 8. We again consider1210
the linear bandit setting discussed in Section 4. Recall that the linear bandit setting consist of horizon1211
n = 25, Mpre = {100000, 200000}, Mtest = 200, A = 10, and d = 2. The demonstrator πw is the1212
Thomp algorithm and we observe that PreDeToR (-τ) has lower cumulative regret than DPT-greedy,1213
AD and matches the performance of LinUCB.1214

Baseline (LinUCB-τ): We define soft LinUCB (LinUCB-τ) as follows: At every round t for task1215
m, it calculates the ucb value Bm,a,t for each action xm,a ∈ X such that Bm,a,t = x⊤

m,aθ̂m,t−1 +1216

33

Under review for RLC 2025, to be published in RLJ 2025

(a) Train Optimal Action Distribu-
tion

(b) Distribution of action sampling
in all tasks where action 17 is opti-
mal

(c) Candidate Action Set in Time
averaged all tasks where action 17
is optimal

Figure 18: Exploration Analysis of PreDeToR(-τ) in linear 5 new arm setting

(a) Test action distribution (b) Test Prediction Error
Figure 19: Prediction error of PreDeToR(-τ) in linear 1 new arm setting

α∥xm,a∥Σ−1
m,t−1

where α > 0 is a constant and θ̂m,t is the estimate of the model parameter θm,∗1217

at round t. Here, Σm,t−1 =
∑t−1
s=1 xm,sx

⊤
m,s + λId is the data covariance matrix or the arms1218

already tried. Then it chooses It ∼ softmaxτa(Bm,a,t), where softmaxτa(·) ∈ △A denotes a softmax1219
distribution over the actions and τ is a temperature parameter (See Section 4 for definition of1220
softmaxτa(·)).1221

Outcomes: We first discuss the main outcomes of our experimental results:1222

Finding 17: PreDeToR (-τ) excels in predicting the rewards for test tasks when the number
of training (source) tasks is large.

1223

(a) Prediction Error for 105 tasks (b) Prediction Error for 2×105 tasks
(c) Cumulative Regret of PreDeToR
(-τ) compared against LinUCB-τ

Figure 20: Empirical validation of theoretical analysis

Experimental Result: These findings are reported in Figure 20. In Figure 20a we show the1224
prediction error of PreDeToR (-τ) for each task m ∈ [Mtest]. The prediction error is calculated as1225
(µ̂m,n,∗(a)− µm,∗(a))

2 where µ̂m,n,∗(a) = maxa θ̂
⊤
m,nxm(a) is the empirical mean at the end of1226

round n, and µ∗,m(a) = maxa θ
⊤
m,∗xm(a) is the true mean of the optimal action in task m. Then we1227

average the prediction error for the action a ∈ [A] by the number of times the action a is the optimal1228

34

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

action in some task m. We see that when the source tasks are 100000 the reward prediction falls short1229
of LinUCB prediction for all actions except action 2.1230

In Figure 20b we again show the prediction error of PreDeToR (-τ) for each task m ∈ [Mtest] when1231
the source tasks are 200000. Note that in both these settings, we kept the horizon n = 25, and the1232
same set of actions. We now observe that the reward prediction almost matches LinUCB prediction1233
in almost all the optimal actions.1234

In Figure 20c we compare PreDeToR (-τ) against LinUCB-τ and show that they almost match in the1235
linear bandit setting discussed in Section 4 when the source tasks are 100000.1236

A.14 Empirical Study: Offline Performance1237

In this section, we discuss the offline performance of PreDeToR when the number of tasks Mpre ≫1238
A ≥ n.1239

We first discuss how PreDeToR (-τ) is modified for the offline setting. In the offline setting, the1240
PreDeToR first samples a task m ∼ Ttest, then the test datasetHm ∼ Dtest(·|m). Then PreDeToR and1241
PreDeToR-τ act similarly to the online setting, but based on the entire offline datasetHm. The full1242
pseudocode of PreDeToR is in Algorithm 2.1243

Algorithm 2 Pre-trained Decision Transformer with Reward Estimation (PreDeToR)

1: Collecting Pretraining Dataset
2: Initialize empty pretraining datasetHtrain
3: for i in [Mpre] do
4: Sample task m ∼ Tpre, in-context datasetHm ∼ Dpre(·|m) and add this toHtrain.
5: end for
6: Pretraining model on dataset
7: Initialize model TFΘ with parameters Θ
8: while not converged do
9: SampleHm fromHtrain and predict r̂m,t for action (Im,t) for all t ∈ [n]

10: Compute loss in (3) with respect to rm,t and backpropagate to update model parameter Θ.
11: end while
12: Offline test-time deployment
13: Sample unknown task m ∼ Ttest, sample datasetHm ∼ Dtest(·|m)
14: Use TFΘ on m at round t to choose

It

{
= argmaxa∈A TFΘ (r̂m,t(a) | Hm) , PreDeToR
∼ softmaxτaTFΘ (r̂m,t(a) | Hm) , PreDeToR-τ

Recall thatDtest denote a distribution over all possible interactions that can be generated by πw during1244
test time. For offline testing, first, a test task m ∼ Ttest, and then an in-context test dataset Hm is1245
collected such thatHm ∼ Dtest(·|m). Observe from Algorithm 2 that in the offline setting, PreDeToR1246
first samples a task m ∼ Ttest, and then a test datasetHm ∼ Dtest(·|m) and acts greedily. Crucially1247
in the offline setting the PreDeToR does not add the observed reward rt at round t to the dataset.1248
Through this experiment, we want to evaluate the performance of PreDeToR to learn the underlying1249
latent structure and reward correlation when the horizon is small. Finally, recall that when the horizon1250
is small the weak demonstrator πw does not have sufficient samples for each action. This leads to a1251
poor approximation of the greedy action.1252

Baselines: We again implement the same baselines discussed in Section 4. The baselines are1253
PreDeToR, PreDeToR-τ , DPT-greedy, AD, Thomp, and LinUCB. During test time evaluation for1254
offline setting the DPT selects It = âm,t,∗ where âm,t,∗ = argmaxaTFΘ(a|Htm) is the predicted1255
optimal action.1256

35

Under review for RLC 2025, to be published in RLJ 2025

Outcomes: We first discuss the main outcomes of our experimental results for increasing the horizon:1257

Finding 18: PreDeToR (-τ) performs comparably to DPT-greedy and AD in the offline
setting.

1258

(a) Offline for Linear setting (b) Offline for Non-linear setting
Figure 21: Offline experiment. The y-axis shows the cumulative reward.

Experimental Result: We observe these outcomes in Figure 21. In Figure 21 we show the linear1259
bandit setting for horizon n = 20, Mpre = 200000, Mtest = 5000, A = 20, and d = 5 for the low1260
data regime. Again, the demonstrator πw is the Thomp algorithm. We observe that PreDeToR (-τ)1261
has comparable cumulative regret to DPT-greedy. Note that for any task m for the horizon n = 201262
the Thomp will be able to sample all the actions at most once. In the non-linear setting of Figure 21b1263
the n = 40, Mpre = 100000, A = 6, d = 2. Observe that in all of these results, the performance of1264
PreDeToR (-τ) is comparable with respect to cumulative regret against DPT-greedy.1265

B Theoretical Analysis1266

B.1 Proof of Lemma 11267

Proof. The learner collects n rounds of data following πw. The weak demonstrator πw only observes1268
the {It, rt}nt=1. Recall that Nn(a) denotes the total number of times the action a is sampled for n1269
rounds. Define the matrix Hn ∈ Rn×A where the t-th row represents the action sampled at round1270
t ∈ [n]. The t-th row is a one-hot vector with 1 as the a-th component in the vector for a ∈ [A]. Then1271
define the reward vector Yn ∈ Rn as the reward vector where the t-th component is the observed1272
reward for the action It for t ∈ [n]. Finally define the diagonal matrix DA ∈ RA×A as in (6) and1273
the estimated reward covariance matrix as SA ∈ RA×A such that SA(a, a′) = µ̂n(a)µ̂n(a

′). This1274
matrix captures the reward correlation between the pairs of actions a, a′ ∈ [A].1275

Assume µ ∼ N (0,S∗) where S∗ ∈ RA×A. Then the observed mean vector Yn is1276

Yn = Hnµ+HnD
1/2
A ηn

where, ηn is the noise vector over the [n] training data. Then the posterior mean of µ̂ by Gauss1277
Markov Theorem (Johnson et al., 2002) is given by1278

µ̂ = S∗H
⊤
n

(
Hn(S∗ +DA)H

⊤
n

)−1
Yn. (8)

However, the learner does not know the true reward co-variance matrix. Hence it needs to estimate1279
the S∗ from the observed data. Let the estimate be denoted by SA.1280

Assumption B.1. We assume that πw is sufficiently exploratory so that each action is sampled at1281
least once.1282

The Assumption B.1 ensures that the matrix
(
σ2
θHn(SA +DA)H

⊤
n

)−1
is invertible. Under Assump-1283

tion B.1, plugging the estimate SA back in (8) shows that the average posterior mean over all the1284

36

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

tasks is1285

µ̂ = SAH
⊤
n

(
Hn(SA +DA)H

⊤
n

)−1
Yn. (9)

The claim of the lemma follows.1286

C Generalization and Transfer Learning Proof for PreDeToR1287

C.1 Generalization Proof1288

Alg is the space of algorithms induced by the transformer TFΘ.1289

Theorem C.1. (PreDeToR risk) Suppose error stability Assumption 8.1 holds and assume loss1290
function ℓ(·, ·) is C-Lipschitz for all rt ∈ [0, B] and horizon n ≥ 1. Let T̂F be the empirical solution1291
of (ERM) and N (A, ρ, ϵ) be the covering number of the algorithm space Alg following Definition1292
C.2 and C.3. Then with probability at least 1 − 2δ, the excess Multi-task learning (MTL) risk of1293
PreDeToR-τ is bounded by1294

RMTL(T̂F) ≤ 4 C√
nM

+ 2(B +K log n)

√
log(N (Alg,ρ,ε)/δ)

cnM

where, N (Alg, ρ, ε) is the covering number of transformer T̂F.1295

Proof. We consider a meta-learning setting. Let M source tasks are i.i.d. sampled from a task
distribution T , and let T̂F be the empirical Multitask (MTL) solution. Define Hall =

⋃M
m=1Hm.

We drop the Θ, r from transformer notation TFr
Θ as we keep the architecture fixed as in Lin et al.

(2023). Note that this transformer predicts a reward vector over the actions. To be more precise we
denote the reward predicted by the transformer at round t after observing history Ht−1

m and then
sampling the action amt as TF

(
r̂mt(amt)|Ht−1

m , amt
)
. Define the training risk

L̂Hall
(TF) =

1

nM

M∑
m=1

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))

and the test risk
LMTL(TF) = E

[
L̂Hall (TF)

]
.

Define empirical risk minima T̂F = argminTF∈Alg L̂Hall (TF) and population minima1296

TF∗ = arg min
TF∈Alg

LMTL(TF)

In the following discussion, we drop the subscripts MTL andHall. The excess MTL risk is decom-1297
posed as follows:1298

RMTL(T̂F) = L(T̂F)− L (TF∗)

= L(T̂F)− L̂(T̂F)︸ ︷︷ ︸
a

+ L̂(T̂F)− L̂ (TF∗)︸ ︷︷ ︸
b

+ L̂ (TF∗)− L(TF∗︸ ︷︷ ︸
c

).

Since T̂F is the minimizer of empirical risk, we have b ≤ 0.1299

Step 1: (Concentration bound |L(TF)− L̂(TF)| for a fixed TF ∈ Alg) Define the test/train risks1300
of each task as follows:1301

L̂m(TF) :=
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))

, and

Lm(TF) := EHm

[
L̂m(TF)

]
= EHm

[
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))]

, ∀m ∈ [M].

37

Under review for RLC 2025, to be published in RLJ 2025

Define the random variables Xm,t = E
[
L̂t(TF) | Htm

]
for t ∈ [n] and m ∈ [M], that is, Xm,t1302

is the expectation over L̂t(TF) given training sequence Htm = {(amt′ , rmt′)}tt′=1 (which are1303

the filtrations). With this, we have that Xm,n = E
[
L̂m(TF) | Hnm

]
= L̂m(TF) and Xm,0 =1304

E
[
L̂m(TF)

]
= Lm(TF). More generally, (Xm,0, Xm,1, . . . , Xm,n) is a martingale sequence since,1305

for every m ∈ [M], we have that E
[
Xm,i | Ht−1

m

]
= Xm,t−1. For notational simplicity, in the1306

following discussion, we omit the subscript m from a, r and H as they will be clear from the1307
left-hand-side variable Xm,t. We have that1308

Xm,t = E

[
1

n

n∑
t=1

ℓ
(
rt′ ,TF

(
r̂t′ |Ht

′−1, at′
))∣∣∣∣∣ Ht

]

=
1

n

t∑
t′=1

ℓ
(
rt′ ,TF

(
r̂t′ |Ht

′−1, at′
))

+
1

n

n∑
t′=t+1

E
[
ℓ
(
rt′ ,TF

(
r̂t′ |Ht

′−1, at′
))
| Ht

]
Using the similar steps as in Li et al. (2023) we can show that1309

|Xm,t −Xm,t−1|
(a)

≤ B

n
+

n∑
t′=t+1

K

t′n
≤ B +K log n

n
.

where, (a) follows by using the fact that loss function ℓ(·, ·) is bounded by B, and error stability1310
assumption.1311

Recall that
∣∣∣Lm(TF)− L̂m(TF)

∣∣∣ = |Xm,0 −Xm,n| and for every m ∈ [M], we have1312 ∑n
t=1 |Xm,t −Xm,t−1|2 ≤ (B+K logn)2

n . As a result, applying Azuma-Hoeffding’s inequality,1313
we obtain1314

P
(∣∣∣Lm(TF)− L̂m(TF)

∣∣∣ ≥ τ
)
≤ 2e

− nτ2

2(B+K log n)2 , ∀m ∈ [M] (10)

Let us consider Ym := Lm(TF) − L̂m(TF) for m ∈ [M]. Then, (Ym)
M
m=1 are i.i.d. zero mean1315

sub-Gaussian random variables. There exists an absolute constant c1 > 0 such that, the subgaussian1316

norm, denoted by ∥ · ∥ψ2
, obeys ∥Ym∥2ψ2

< c1(B+K logn)2

n via Proposition 2.5.2 of (Vershynin, 2018).1317
Applying Hoeffding’s inequality, we derive1318

P

(∣∣∣∣∣ 1M
M∑
m=1

Yt

∣∣∣∣∣ ≥ τ

)
≤ 2e

− cnMτ2

(B+K log n)2 =⇒ P(|L̂(TF)− L(TF)| ≥ τ) ≤ 2e
− cnMτ2

(B+K log n)2

where c > 0 is an absolute constant. Therefore, we have that for any TF ∈ Alg, with probability at1319
least 1− 2δ,1320

|L̂(TF)− L(TF)| ≤ (B +K log n)

√
log(1/δ)

cnM
(11)

Step 2: (Bound supTF∈Alg |L(TF)− L̂(TF)| where Alg is assumed to be a continuous search
space). Let

h(TF) := L(TF)− L̂(TF)

and we aim to bound supTF∈Alg |h(TF)|. Following Definition C.3, for ε > 0, let Algε be a minimal1321
ε-cover of Alg in terms of distance metric ρ. Therefore, Algε is a discrete set with cardinality1322
|Algε| := N (Alg, ρ, ε). Then, we have1323

sup
TF∈Alg

|L(TF)− L̂(TF)| ≤ sup
TF∈Alg′

min
TF∈Algε

|h(TF)− h (TF′)|+ max
TF∈Algε

|h(TF)|.

38

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

We will first bound the quantity supTF∈Alg′ minTF∈Algε
|h(TF)− h (TF′)|. We will utilize that1324

loss function ℓ(·, ·) is C-Lipschitz. For any TF ∈ Alg, let TF ∈ Algε be its neighbor following1325
Definition C.3. Then we can show that1326 ∣∣∣L̂(TF)− L̂ (TF′)∣∣∣
=

∣∣∣∣∣ 1

nM

M∑
m=1

n∑
t=1

(
ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Ht−1

m , amt
))
− ℓ

(
rmt(amt),TF

′ (r̂mt(amt)|Ht−1
m , amt

)))∣∣∣∣∣
≤ L

nM

M∑
m=1

n∑
t=1

∥∥TF (r̂mt(amt)|Ht−1
m , amt

)
− TF′ (r̂mt(amt)|Ht−1

m , amt
)∥∥
ℓ2

≤ Lε.

Note that the above bound applies to all data-sequences, we also obtain that for any TF ∈ Alg,∣∣L(TF)− L (TF′)∣∣ ≤ Lε.

Therefore we can show that,1327

sup
TF∈Alg

min
TF
∈ Algε |h(TF)− h (TFF ′)|

≤ sup
TF∈Alg

min
TF
∈ Algε

∣∣∣L̂(TF)− L̂ (TF′)
∣∣∣+ ∣∣L(TF)− L (TF′)∣∣ ≤ 2Lε. (12)

Next we bound the second term maxTF∈Algε
|h(TF)|. Applying union bound directly on Algε and1328

combining it with (11), then we will have that with probability at least 1− 2δ,1329

max
TF∈Algε

|h(TF)| ≤ (B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM

Combining the upper bound above with the perturbation bound (12), we obtain that1330

max
TF∈Alg

|h(TF)| ≤ 2Cε+ (B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM
.

It follows then that1331

RMTL(T̂F) ≤ 2 sup
TF∈Alg

|L(TF)− L̂(TF)| ≤ 4Cε+ 2(B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM

Again by setting ε = 1/
√
nM1332

L(T̂F)− L (TF∗) ≤ 4C√
nM

+ 2(B +K log n)

√
log(N (Alg, ρ, ε)/δ)

cnM

The claim of the theorem follows.1333

Definition C.2. (Covering number) Let Q be any hypothesis set and d (q, q′) ≥ 0 be a distance metric1334
over q, q′ ∈ Q. Then, Q̄ = {q1, . . . , qN} is an ε-cover of Q with respect to d(·, ·) if for any q ∈ Q,1335
there exists qi ∈ Q̄ such that d (q, qi) ≤ ε. The ε-covering number N (Q, d, ε) is the cardinality of1336
the minimal ε-cover.1337

Definition C.3. (Algorithm distance). Let Alg be an algorithm hypothesis set andH = (at, rt)
n
t=11338

be a sequence that is admissible for some task m ∈ [M]. For any pair TF,TF′ ∈ Alg, define the1339
distance metric ρ

(
TF,TF′) := supH

1
n

∑n
t=1

∥∥TF (r̂t|Ht−1, at
)
− TF′ (r̂t|Ht−1, at

)∥∥
ℓ2

.1340

39

Under review for RLC 2025, to be published in RLJ 2025

Remark C.4. (Stability Factor) The work of Li et al. (2023) also characterizes the stability factor K1341
in Assumption 8.1 with respect to the transformer architecture. Assuming loss ℓ(·, ·) is C-Lipschitz,1342

the algorithm induced by TF(·) obeys the stability assumption with K = 2C
(
(1 + Γ)eΓ

)L
, where1343

the norm of the transformer weights are upper bounded by O(Γ) and there are L-layers of the1344
transformer.1345

Remark C.5. (Covering Number) From Lemma 16 of Lin et al. (2023) we have the following upper1346
bound on the covering number of the transformer class TFΘ as1347

log(N (Alg, ρ, ε)) ≤ O(L2D2J)

where L is the total number of layers of the transformer and J and, D denote the upper bound to the1348
number of heads and hidden neurons in all the layers respectively. Note that this covering number1349
holds for the specific class of transformer architecture discussed in section 2 of (Lin et al., 2023).1350

C.2 Generalization Error to New Task1351

Theorem C.6. (Transfer Risk) Consider the setting of Theorem 8.2 and assume the source tasks1352
are independently drawn from task distribution T . Let T̂F be the empirical solution of (ERM) and1353
g ∼ T . Then with probability at least 1− 2δ, the expected excess transfer learning risk is bounded by1354

Eg
[
Rg(T̂F)

]
≤ 4 C√

M
+B

√
2 log(N (Alg,ρ,ε)/δ)

M

where, N (Alg, ρ, ε) is the covering number of transformer T̂F.1355

Proof. Let the target task g be sampled from T , and the test set Hg = {at, rt}nt=1. Define em-1356
pirical and population risks on g as L̂g(TF) = 1

n

∑n
t=1 ℓ

(
rt(amt),TF

(
r̂t(amt)|Ht−1

g , at
))

and1357

Lg(TF) = EHg

[
L̂g(TF)

]
. Again we drop Θ from the transformer notation. Then the expected1358

excess transfer risk following (ERM) is defined as1359

Eg
[
Rg(T̂F)

]
= EHg

[
Lg(T̂F)

]
− arg min

TF∈Alg
EHg

[Lg(TF)] . (13)

where A is the set of all algorithms. The goal is to show a bound like this1360

Eg
[
Rg(T̂F)

]
≤ min

ε≥0

{
4Cε+B

√
2 log(N (Alg, ρ, ε)/δ)

T

}

where N (Alg, ρ, ε) is the covering number.1361

Step 1 ((Decomposition): Let TF∗ = argminTF∈Alg Eg [Lg(TF)]. The expected transfer learning1362
excess test risk of given algorithm T̂F ∈ Alg is formulated as1363

L̂m(TF) :=
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Dt−1

m , amt
))

, and

Lm(TF) := EHm

[
L̂t(TF)

]
= EHm

[
1

n

n∑
t=1

ℓ
(
rmt(amt),TF

(
r̂mt(amt)|Dt−1

m , amt
))]

, ∀m ∈ [M].

Then we can decompose the risk as1364

Eg
[
Rg(T̂F)

]
= Eg

[
Lg(T̂F)

]
− Eg [Lg (TF∗)]

= Eg
[
Lg(T̂F)

]
− L̂Hall

(T̂F)︸ ︷︷ ︸
a

+ L̂Hall (T̂F)− L̂Hall (TF
∗)︸ ︷︷ ︸

b

+ L̂Hall (TF
∗)− Eg [Lg (TF∗)]︸ ︷︷ ︸

c

.

40

Pretraining Decision Transformers with Reward Prediction for In-Context Multi-task Structured
Bandit Learning

Here since T̂F is the minimizer of training risk, b < 0. Then we obtain1365

Eg
[
Rg(T̂F)

]
≤ 2 sup

TF∈Alg

∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ . (14)

Step 2 (Bounding (14))For any TF ∈ Alg, let Xt = L̂t(TF) and we observe that1366

Em∼T [Xt] = Em∼T

[
L̂m(TF)

]
= Em∼T [Lm(TF)] = Eg [Lg(TF)]

Since Xm,m ∈ [M] are independent, and 0 ≤ Xm ≤ B, applying Hoeffding’s inequality obeys1367

P

(∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ ≥ τ

)
≤ 2e−

2Mτ2

B2 .

Then with probability at least 1− 2δ, we have that for any TF ∈ Alg,1368 ∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ ≤ B

√
log(1/δ)

2M
. (15)

Next, let Algε be the minimal ε-cover of Alg following Definition C.2, which implies that for any1369
task g ∼ T , and any TF ∈ Alg, there exists TF′ ∈ Algε1370 ∣∣Lg(TF)− Lg (TF′)∣∣ , ∣∣∣L̂g(TF)− L̂g (TF′)

∣∣∣ ≤ Cε. (16)

Since the distance metric following Definition 3.4 is defined by the worst-case datasets, then there1371
exists TF′ ∈ Algε such that1372 ∣∣∣∣∣Eg [Lg(TF)]− 1

M

M∑
m=1

L̂m(TF)

∣∣∣∣∣ ≤ 2Cε.

Let N (Alg, ρ, ε) = |Algε| be the ε-covering number. Combining the above inequalities ((14), (15),1373
and (16)), and applying union bound, we have that with probability at least 1− 2δ,1374

Eg
[
Rg(T̂F)

]
≤ min

ε≥0

{
4Cε+B

√
2 log(N (Alg, ρ, ε)/δ)

M

}

Again by setting ε = 1/
√
M1375

L(T̂F)− L (TF∗) ≤ 4C√
M

+ 2B

√
log(N (Alg, ρ, ε)/δ)

cM

The claim of the theorem follows.1376

Remark C.7. (Dependence on n) In this remark, we briefly discuss why the expected excess risk1377
for target task T does not depend on samples n. The work of Li et al. (2023) pointed out that the1378
MTL pretraining process identifies a favorable algorithm that lies in the span of the M source tasks.1379
This is termed as inductive bias (see section 4 of Li et al. (2023)) (Soudry et al., 2018; Neyshabur1380
et al., 2017). Such bias would explain the lack of dependence of the expected excess transfer risk1381
on n during transfer learning. This is because given a target task g ∼ T , the TF can use the learnt1382
favorable algorithm to conduct a discrete search over span of the M source tasks and return the source1383
task that best fits the new target task. Due to the discrete search space over the span of M source1384
tasks, it is not hard to see that, we need n ∝ log(M) samples (which is guaranteed by the M source1385
tasks) rather than n ∝ d (for the linear setting).1386

C.3 Table of Notations1387

41

Under review for RLC 2025, to be published in RLJ 2025

Notations Definition
M Total number of tasks
d Dimension of the feature
Am Action set of the m-th task
Xm Feature space of m-th task
Mtest Tasks for testing
Mpre Total Tasks for pretraining
x(m, a) Feature of action a in task m
θm,∗ Hidden parameter for the task m
Tpre Pretraning distribution on tasks
Ttest Testing distribution on tasks
n Total horizon for each task m
Hm = {It, rt}nt=1 Dataset sampled for the m-th task containing n samples
Htm = {Is, rs}ts=1 Dataset sampled for the m-th task containing samples from round s = 1

to t
w Transformer model parameter
TFw Transformer with model parameter w
Dpre Pretraining in-context distribution
Htrain Training in-context dataset
Dtest Testing in-context distribution

Table 1: Table of Notations

42

