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Abstract

Performative reinforcement learning is an emerg-
ing dynamical decision making framework, which
extends reinforcement learning to the common ap-
plications where the agent’s policy can change
the environmental dynamics. Existing works on
performative reinforcement learning only aim at a
performatively stable (PS) policy that maximizes
an approximate value function. However, there
is a provably positive constant gap between the
PS policy and the desired performatively opti-
mal (PO) policy that maximizes the original value
function. In contrast, this work proposes a zeroth-
order performative policy gradient (0-PPG) algo-
rithm that for the first time converges to the
desired PO policy with polynomial computa-
tion complexity under mild conditions. For the
convergence analysis, we prove two important
properties of the nonconvex value function. First,
when the policy regularizer dominates the environ-
mental shift, the value function satisfies a certain
gradient dominance property, so that any station-
ary point of the value function is a desired PO.
Second, though the value function has unbounded
gradient, we prove that all the sufficiently sta-
tionary points lie in a convex and compact policy
subspace I1a, where the policy value has a con-
stant lower bound A > 0 and thus the gradient
becomes bounded and Lipschitz continuous.

1. Introduction

Reinforcement learning is a powerful dynamic decision
making framework with many successes in Al, such as
AlphaGo (Silver et al., 2017), AlphaStar (Vinyals et al.,
2019), Pluribus (Brown and Sandholm, 2019), large lan-
guage model alignment (Bai et al., 2022) and reasoning
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(Havrilla et al., 2024). However, most reinforcement learn-
ing works ignore the effect of the deployed policy on the
environmental dynamics, including transition kernel and
reward function. This effect is significant in some applica-
tions. For example, the behavior of the autonomous vehicles
can affect the behavior of the pedestrians and the other vehi-
cles, so the environment may become very different from
the designers’ imagination (Nikolaidis et al., 2017). Also,
a recommender system formulated as a contextual Markov
decision process not only affects the user demographics
(context distribution) but also how users interact with the
platforms (Chaney et al., 2018; Mansoury et al., 2020).

To account for such effect of deployed policy on environ-
mental dynamics, performative reinforcement learning has
been proposed by (Mandal et al., 2023) where the transition
kernel p, and reward function 7, are modeled as functions
of the deployed policy 7. Similar to conventional reinforce-
ment learning, the ultimate goal is to find the performatively
optimal (PO) policy that maximizes the performative value
function, defined as the accumulated discounted reward
when deploying a policy 7 to its corresponding environment
(px, r=). However, the policy-dependent environmental dy-
namics pose significant challenge to achieve PO. Hence,
(Mandal et al., 2023) pursues a suboptimal performatively
stable (PS) policy using repeated retraining method with
environmental dynamics fixed for the current policy at each
policy optimization step. However, (Mandal et al., 2023)
shows that PS can have a positive constant distance to PO.

Two extensions of the basic performative reinforcement
learning problem (Mandal et al., 2023) have been proposed
and studied. (Rank et al., 2024) extends to the setting where
the environmental dynamics gradually adjust to the currently
deployed policy, and proposes a mixed delayed repeated
retraining algorithm with accelerated convergence to a PS
policy. (Mandal and Radanovic, 2024) extends (Mandal
et al., 2023) from tabular setting to linear Markov decision
processes with large number of states, and also obtains the
convergence rate of the repeated retraining algorithm to a
PS policy.

In sum, all these existing performative reinforcement learn-
ing works pursue a suboptimal PS policy. Therefore, we
want to ask the following fundamental research question.
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Q: Can we design an algorithm that converges to
the desired performatively optimal (PO) policy?

1.1. Our Contributions

We will answer affirmatively to the research question above
in the following steps. Each step yields a novel contribution.

e We study an entropy regularized performative reinforce-
ment learning problem, compatible with the basic perfor-
mative reinforcement learning problem in (Mandal et al.,
2023). We prove that the objective function satisfies a cer-
tain gradient dominance condition, which implies that an
approximate stationary point (not the suboptimal PS) is the
desired approximate PO policy, under a mild regularizer
dominance condition similar to that used by (Mandal et al.,
2023; Rank et al., 2024; Mandal and Radanovic, 2024) to
ensure convergence to a suboptimal PS policy. The proof
adopts novel techniques such as recursion for p,-related
error term and frequent switch among various necessary and
sufficient conditions of smoothness and strong concavity
like properties for various variables (see Section 3.2).

e We obtain a policy lower bound as a decreasing function
of a stationary measure. This bound not only implies the un-
bounded performative policy gradient (a challenge to obtain
a stationary policy and thus PO), but also inspires us to find a
stationary policy in the policy subspace IIn with a constant
policy lower bound A > 0 where we prove the objective
function to be Lipschitz continuous and Lipschitz smooth
(a solution to this challenge). The policy lower bound is
obtained using a novel technique which simplifies a compli-
cated inequality of the minimum policy value 7[amin(8)|$]
in two cases (see Section 3.3).

e We construct a zeroth-order estimation of the performative
policy gradient and obtains its estimation error. This is
more challenging than the existing zero-th order estimation
methods since our objective function is only well-defined
on the policy space, a compact subset of a linear subspace
of the Euclidean space RISIMI. To solve this puzzle, we
adjust a two-point estimation to the linear subspace £, of
policy difference, and simplify the estimation error analysis
by mapping policies onto the Euclidean space RISI(IA1=1)
via orthogonal transformation (see Section 4.1).

e We propose a zeroth-order performative policy gradient
(0-PPQG) algorithm (see Algorithm 1) by combining the per-
formative policy gradient estimation above with the Frank-
Wolfe algorithm. Then we obtain a polynomial computation
complexity of our 0-PPG algorithm to converge to a station-
ary policy, which is also the desired PO policy under the
regularizer dominance condition above. The convergence
analysis uses a policy averaging technique to show that an
approximate stationary policy on Il is also approximately
stationary on the whole policy space II (see Section 4.2).

Finally, we briefly show that the results above, including
gradient dominance, Lipschitz properties and the finite-time
convergence of 0-PPG algorithm to the desired PO, can be
adjusted to the performative reinforcement learning problem
with the quadratic regularizer used by (Mandal et al., 2023;
Rank et al., 2024) (see Appendix K).

2. Preliminary: Performative Reinforcement
Learning

2.1. Problem Formulation

Performative reinforcement learning is characterized by a
Markov decision process (MDP) M, = (S, A, pr, "x, )
that depends on a certain policy 7. Here, S and A denote the
finite state space with cardinality |S| and finite action space
with cardinality |.A| respectively. The policy 7 € [0, 1]!S!IMI,
with entries 7(a|s) for any state s € S and action a € A,
lies in the following policy space, such that 7(+|s) for any
state s can be seen as a distribution over A.

I fr e 0,154 Y n(als) = Lvs € S}
acA

The transition kernel p, € [0, 1]!° I dependent on policy
7 € II, with entries p,(s'|s,a) for any s,s’ € Sand a €
A, lies in the following transition kernel space such that
p= (|8, a) can be seen as a state distribution on S.

P {p € [0, 1]“9'2'“4‘ :Zp(s’|s,a):1,VseS,a€A}.
sES
rr € R %[0, 1]15I41 is the reward function with entries
rx(s,a) € [0,1] forany s € Sand a € A. p € [0,1]1¥]
is the initial state distribution such that ) __¢p(s) = 1.
Note that we consider p,, 7, p, ™ as Euclidean vectors, so
that we can conveniently define their Euclidean norm. For
example, we define [|pxll, = [Y, .. |p7r(s’|s7a)|q]1/q
for any ¢ > 1 and ||pr||cc = maxs g, |Px(s']s,a)|. Such
norms can be similarly defined over 7, p, m by summing
or maximizing over all the entries. Specifically, denote
-1l =1 |l2 by convention.

When an agent applies its policy 7= € II to MDP M, =
(S, A, prs, 777, p), the initial environmental state sy € S
is generated from the distribution p. Then at each time
t=0,1,2,...,the agent takes a random action a; ~ 7(+|s¢)
based on the current state s; € S, the environment transi-
tions to the next state s¢11 ~ pa(+|st, a;) and provides
reward ry = 7./(s¢,a¢) € [0,1] to the agent. The value
of applying policy 7 to M, can be characterized by the
following value function.

Vi EW’PW/,P[ZWtTW’(Styat)] — A (m). (1)

t=0
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Here, Er;,_, , is the expectation under policy m, transi-
tion kernel p,. and initial state distribution p. v € (0,1)
is the discount factor. H./(m) is a regularizer with co-
efficient A > 0 to ensure or accelerate algorithm con-
vergence. Existing works use the quadratic regularizers
such as (1) = ||dx, , ||* (Mandal et al., 2023; Rank
et al.,, 2024) and H () = 3[|®"dx, ,||* (Mandal and
Radanovic, 2024) with a feature matrix ¢, where the oc-
cupancy measure d ,, € [0, 1]!S/4l for any policy 7 and
transition kernel p is defined as the following distribution
onS x A

def S
dﬁ,p(57a) = (1-7) Z’Ytpmpm{st =s,a =a}. (2)
t=0
Then the state occupancy measure defined as d p(s) e
> o dx p(s, a) satisfies the following well-known Bellman
equation for any state s’ € S.

drp(s') = (1=7)p(s") 47 _dnp(s)m(als)p(s']s,a). (3)

The ultimate goal of performative reinforcement learning
is to find the performatively optimal (PO) policy 7 that
maximizes the performative value function V;f . (with 7" =
« in Eq. (1)), as formally defined below.

Definition 1 (Ultimate Goal: PO). For any € > 0, a policy
w € Il is defined as e-performatively optimal (e-PO) if
maxqeri V)\Tf;r/ — V'x < e Specifically, we call a 0-PO
policy as a PO policy.

Conventional reinforcement learning can be seen as a spe-
cial case of performative reinforcement learning with fixed
environmental dynamics, namely, constant transition kernel
pr = p and constant reward function . = r. However, this
may fail on applications with policy-dependent environmen-
tal dynamics, such as recommender system and autonomous
driving (Mandal et al., 2023) as explained in Section 1.

2.2. Performatively Stable (PS) Policy in Existing Works

Achieving an e-PO policy (defined by Definition 1) is chal-
lenging, due to the policy-dependent environmental dynam-
ics p, and 7. To alleviate the challenge, all the existing
works (Mandal et al., 2023; Rank et al., 2024; Mandal and
Radanovic, 2024) aim at a performatively stable (PS) policy
mpg defined as follows, as an approximation of a PO policy.

mps € argmax VYT . @)

mell
In other words, a PS policy mpg has the optimal value on
the fixed environment M,_.. However, (Mandal et al.,
2023) shows that a PS policy can be suboptimal, so these
existing algorithms cannot converge to a PO policy. Never-
theless, we will briefly introduce these algorithms, to later

partially inspire and compare with our method for achieving
a PO policy. Note that an occupancy measure d (a dis-
tribution on S x A) corresponds to the policy 7 defined
as 1(als) = %280 (w9(als) = 1/|A] if d(s) = 0), where
d(s)=>_,cad(s,a’). Hence, (Mandal et al., 2023; Rank
et al., 2024; Mandal and Radanovic, 2024) transform the
policy optimization problem (4) into a problem of solving
d. The basic performative reinforcement learning (Man-
dal et al., 2023) considers the following dual optimization
problem of d in the environment pyy = p ar, Tqr = T
corresponding to another occupancy measure d’.

A
max S d(s,a)ra (s, )5

d:distribution on Sx.A
s

s.t.Zd(s, a)=p(s) +72 d(s',a)pa (s|s’, a)

s’ a

. (5

The objective function above corresponds to the value func-
tion V{7, defined in Eq. (1) with quadratic regularizer
Hp(m)=1|ldx || The equality constraint above comes
from the Bellman equation (3). Denote ¢(d’) as the optimal
solution to the problem (5) above. Then the target becomes
a performatively stable occupancy measure dpg defined as a
fixed point dps = ¢(dps ), which corresponds to a PS policy
7ps = m%S. Suppose the transition kernel and reward func-

tion are sensitive with parameters €/, €/. > 0 respectively,

prTr
that is, for any occupancy measures d, d’.

Ipe —pall <€ lld’=dl, |Ira —ral| <€ |d'=d].  (©6)

It has been proved by (Mandal et al., 2023) that ¢ is a con-
traction mapping under a regularizer dominance condition
that A > O(e, + €;.). In this case, any repeated retrain-
ing method characterized by d;;1 ~ ¢(d;) with sufficient
precision can converge to the PS policy.

Similarly, (Rank et al., 2024; Mandal and Radanovic, 2024)
also apply repeated retraining to optimization problems of
occupancy measure, which converges to a PS policy for
extensions of the basic performative reinforcement learning
(Mandal et al., 2023). Next, we will propose our signifi-
cantly different strategies to achieve the desired PO policy.

3. Entropy Regularized Performative
Reinforcement Learning

In this section, we obtain critical properties of an entropy
regularized performative reinforcement learning problem
for achieving the desired PO policy.

3.1. Negative Entropy Regularizer

To achieve the PO policy, one might attempt to solve the
problem (P;), adjusted from the dual problem (5) above
with fixed d’ replaced by the decision variable d. The so-
lution dpo will yield the PO policy 7%7©. However, such
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replacement will make the convex quadratic optimization
problem (5) much more complicated, due to the unknown
and possibly complicated functions pg and r4. Therefore,
we will instead focus on the primal problem max, V" .

We consider the following negative entropy regularizer of
the policy 7, which is widely used in reinforcement learning
to encourage environment exploration and accelerate con-
vergence (Mnih et al., 2016; Mankowitz et al., 2019; Cen
et al., 2022; Chen and Huang, 2024).

Ho () = Eﬂ,pw,7p[27t log 7(at|st)|- @)
t=0

In addition, this negative entropy regularizer can be seen
as a strongly convex function of the occupancy measure
dr p_, (proved in Appendix B), which is critical to develop
algorithms convergent to a PO (see Theorem 1 later) or
PS policy (Mandal et al., 2023). For optimization problem
on a probability simplex variable (policy 7 or occupancy
measure d), negative entropy regularizer is more natural
and yields faster theoretical convergence than the quadratic
regularizers used in the existing performative reinforcment
learning works (Mandal et al., 2023; Rank et al., 2024) (see
pages 43-45 of (Chen, 2020) for explanation).

Therefore, we will mainly focus on the following entropy-
regularized value function, which is obtained by substituting
the negative entropy regularizer (7) into the general value
function (1).

oo
Viw By g0 [ 50, 0) = Nogr(arlsy)]] - ®)
t=0

Specifically, we will study the critical properties of the
entropy-regularized value function (8) (Section 4) to de-
velop algorithm that converges to PO (Sections 4.1-4.2).
Then we will briefly discuss about how to adjust these re-
sults to the existing quadratic regularizers (Appendix K).

‘We make the following standard assumptions to study the
properties of the entropy-regularized value function (8).

Assumption 1 (Sensitivity). There exist constants €y, €, >
0 such that for any w, 7' € II,

lpr —prll < epllw’ =mll, [Irr —rll <erln =ml| (9

Assumption 2 (Smoothness). p, and r, are Lipschitz
smooth with modulus Sy, S, > 0 respectively, that is, for
anym €11, 5,8 € S, a € A, we have

[Vapr (8']5,a) = Vapx(s']s,a) || <Sp[lz" — 7, (10)
[Vare(s,a) — Vara(s,a)| <Sp||7" —=|. (11)

Assumption 3. There exists a constant D > 0 such that
infrempep,ses drp(s) > D.

Assumptions 1-2 ensure that the environmental dynamics
pr and r, adjust continuously and smoothly to policy ,
and thus the performative value function VY is differen-
tiable with performative policy gradient V V" . Similar
versions of Assumption | on environmental sensitivity have
been used in the performative reinforcement learning litera-
ture (e.g. Eq. (6) in (Mandal et al., 2023)). Assumption 3
has been used (Zhang et al., 2021) or implied by stronger
assumptions (Wei et al., 2021; Chen et al., 2022; Agarwal
et al., 2021; Leonardos et al., 2022; Wang et al., 2023; Chen
and Huang, 2024; Bhandari and Russo, 2024) in conven-
tional reinforcement learning (see Appendix C for the proof),
which guarantees that each state is visited sufficiently often.

3.2. Gradient Dominance

For the nonconvex policy optimization problem
maxrecn V', with the entropy regularized value function
(8) on the convex policy space II, it is natural to consider its
approximate stationary solution as defined below.

Definition 2 (Stationary Policy). For any € > 0, a policy
7w € Il is e-stationary if maxz e <V7TV/\’T77T, T™— 7r> <e We
call a 0-stationary policy as a stationary policy.

Note that for a policy to be the desired PO, it is necessary to
be stationary, while the PS policy targeted by existing works
is neither necessary nor sufficient. Furthermore, we will
show that stationary policy can also be a sufficient condition
of the desired PO under mild conditions. As a preliminary
step, we show the important gradient dominance property
of the objective function as follows.

Theorem 1 (Gradient Dominance). Under Assumptions 1-
3, the entropy regularized value function (8) satisfies the
following gradient dominance property for any my, m € IL

T ™0 —1 ™0
V)\,Trl SV)\JTO +D lgleaiz[{ <v7r0V>\,7r07 = 7T0>

= Gl = mol?. (12)
where the constant i € R is defined as follows.
DX 67|S|(1+ Alog |A])
K= - 3
1—vy D(1—7)
[61)( VIAl+ YépV ‘SD + Sp(l - ’Y)]

D(1—)

Remark: With sufficiently large regularizer strength A
and small environmental shift strength €, €., .S, S, (i.e.,
when the regularizer dominates the environmental shift), we
have p > 0, which implies the gradient dominance form
(Eq. (12) with ¢ = 0) that holds for conventional unregu-
larized reinforcement learning (see Lemma 4 of (Agarwal
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et al., 2021)). In this case, stationary policy becomes a suffi-
cient condition of the desired PO, as shown in the following
Corollary 1. Note that the existing performative reinforce-
ment learning works (Mandal et al., 2023; Rank et al., 2024;
Perdomo et al., 2020) also require a regularizer dominance
condition similar to our # > 0 (e.g. A > O(e), + ¢;.) in
(Mandal et al., 2023)) to ensure convergence to a PS policy.

Corollary 1. Under Assumptions 1-3, if p > 0 for u defined
in Eq. (13), then any De-stationary policy is also the desired
€-PO policy. Furthermore, if u > 0, the PO policy is unique.

Intuition and Novelty for Proving Theorem 1: Define
the following more refined value function

J)\(T‘- Wlapa )

dﬁfE ,p[ZV r(st, az) Alogw’(at|st)]‘80~p]. (14)

To get the intuition, we consider the following three cases
from the simplest conventional reinforcement learning to
the hardest performative reinforcement learning.

(Case I): For conventional reinforcement learning with fixed
dynamics p, = p and v, = r, denote d, = ady, , +
(1 — &@)dnr,,p (@ € [0, 1]). Based on the Bellman equation
(3), do = dg, p is the occupancy measure of the policy

To(als) = d(‘;(ff;‘)’). Therefore, V"> can be rewritten as

In(Ta; Ta, D7) = 32 o da(s, a)[r (s, a) — Alogma(als)],
which has the following strong concavity like property by
Pinsker’s inequality (see Eq. (91) for detail).

J)\ (7'('0”7'((1 ,p,T’) 70“])\ (7'['1 )71 ,pﬂ")
- (1 _OK)JA (71'0,770,]7,7")

1
= Z [ady (s)KL[m1(|8)||ma(als)]

+ (1 = a)do(s)KL[mo(*|5)[|7a (als)]]
DXa(l — «) 9
= 51— ) |71 — o (15)
(Case II): Consider a harder case with varying p, and
constant reward 7, = r. Similarly, we denote d, =
adr, p. + (1 — a)dn, p, and 4 (als) = d;:‘z:)l). The
varying p brings a major challenge that d, = dr,, ., Te-
quired by Case I no longer holds. To solve this challenge,
we prove that the error term e, (s) = dr,, p, (5) — da(s) of
interest satisfies the following novel recursion (see Eq. (89)
for the derivation based on the Bellman equation (3)).

ea(s’ )=y Z [ea(s)Ta(als)px, (s']s,a) + ha(s,a,s)],

where hq (s, a,s") = do(s,a)px, (5|5, a)
—adi(8,a)pq, (8']s,a)—(1—a)do (s, a)pr, (s'|s, a). Since

do(s,a)pr, (s']s,a) is a Lipschitz smooth function of «
with Lipschitz constant {4, (s, a) defined by Eq. (87), we
have |hq (s, a,s’)| < Mﬁdp(s, a), which can be substi-
tuted into the recursion above and yields the following novel
error bound (see Eq. (90) for detail).

2_leals)

which implies the desired strong concavity like property as
follows.

)| < a(l —a)O(e, + S,)||Im1 — mol|?,

Jk(ﬂ'ouﬂonpomr) 70“])\(71'1771'171)1771)
— (1 = a)Jx(mo, 70,0, T)
>Eq. (15) — a(l — a)(1 + N\)O(ep + Sp)||Im1 — mo|?
a(l — «
> MOy 2 (16)
where 11 = 522~ —(1+X)O(e,+5,) defined by Eq. (92)
equals  defined by Eq. (13) when e, = S, = 0.

(Case III): Now we consider performative reinforcement
learning with varying p, and r,. The policy 7, and its
occupancy measure d,, are the same as in Case II above.
Then the function w(a) = aJy(m1,m1,p1,7a) + (1 —
a)Jx (7o, mo, Po, Ta) can be proved Lipschitz smooth with
parameter po = O(S,. + ¢,.) defined by Eq. (94), so using
r = rq in Eq. (16) we obtain the following strong concavity
like property.

JA(T(O(77TaapaaTOz) _aJ)\(ﬂ-lvTrl)plarl)
= (1 = a)Jx(m0, ™0, Pos70)

> MM 2 4 () (1)~ (1-a)u(0)

ol =) (m = pa)

- 2
Rearranging the inequality above, we obtain the following
inequality of V\"2 = J)\(a, T, PayTa)-

[l — ol

Tao Vﬂ'o 1 _
Ao AT s ™ :U’( O[)
o S R A 27||771—7To||27
where 1 = 1 — o is exactly defined by Eq. (13). Letting

a — +0 above, we have
VLo <y iV’rcx
A, — T ATo do Ao a=0

Using the chain rule, we can find a policy 7 such that
=V Voo < D{Vr, VS .75 — 7o), which along

A, 7T0
with the bound above proves the gradient dominance prop-

erty (12).

— Lllm = o

3.3. Policy Lower Bound and Lipschitz Properties

Policy Lower Bound: Based on Section 3.2, we can focus
on achieving an e-stationary policy. A major challenge is
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the unbounded performative policy gradient V-V on IL
Specifically, we will show that as m(a|s) — 0 for any state
s and action a, ||V V|| — +00. To tackle this challenge,
we prove the following policy lower bound.

Theorem 2. If Assumptions I and 3 hold, and p,, v are
differentiable functions of , then the following policy lower
bound holds forany m € II, s € S, a € A.

2
71'(0'|3) > Tmin€XP |:_ %(1_7) <V7TV):7H 7T/_7T> . (17

Here, we define the following constant my,;, and policy 7.

.dﬁf;e {_#
T A PP LT X

2|A|,/2|8{ \/|?1+)\10g|A\) 6” (18)
17 T )

a = amax(s)
a = amin(s) 3 (19)
Otherwise

m(als),

where amax(s) € arg max,m(als) and
amin(s) € arg min,7(als).

Implications of Theorem 2: First, as m(als) — 0, we
have (V, V' 7' —m) — 400, s0 [V VI || = +oo as
aforementioned. Second, any stationary policy 7 satisfies
(VﬂVﬂw,ﬂ’ —7) <0, s07(al|s) > Tmin. Therefore, we
can search e-stationary policy on the convex and compact
policy subspace TTa et {m €1l: w(als) > A} with lower
bound A € (0, Tpin]-

Intuition and Novelty for Proving Theorem 2: As a
preliminary step, consider a conventional reinforcement
learning problem with fixed environmental dynamics p, =
p and r; = r. In this case, V, V7 has analytical form (see
Eq. (98)) based on policy gradfent theorem, so by direct
computation we obtain the following bound (see Eq. (99)
for detail)

(Vo VT T — w>>%msax{(7r[amax(s)|s]—w[amin(s)|s])

-
T[amax(s)|s] 7(1+ Alog|A|)
Alog T [@min (8)]8] -1 1—7 }}

To directly solve the inequality above of T[amin(s)|s] is
not easy. To simplify this inequality, we consider two
cases, either 7[amin(s)[s] > 37[amax(s)]s] = gg or
T[amin(s)|s] < %Tr[amax(sﬂs]. In the second case, we
can replace 7[amax(s)|s] and 7 [amax (8)|s] — 7[amin(s)]$]
above with their lower bounds \T%I and ﬁ respectively.
Then it becomes straightforward to obtain the policy lower
bound.

2|4

Tlawin()[s] 2 Fhgpexp | - =5 (1

_71—> ,

- 7) <V7T V)\ﬂ:ﬂ'V Trl

where 7/ ; is defined by Eq. (18) with e, = ¢, = 0.

Then by extending conventional reinforcement learning to
performative reinforcement learning, V. V" is perturbed

by a magnitude of at most V21298170 W + €, (see Eq.

(102) for detail) based on the chain rule This perturbation
bound along with |7’ — 7|| < 1/2|S| yields the second line
of Eq. (18) and proves Theorem 2.

Lipschitz Properties: Furthermore, in the policy subspace
LA, the performative value function VY is actually Lip-
schitz continuous and Lipschitz smooth as shown below,
which facilitates finding an e-stationary policy in IIa.

Theorem 3. Under Assumptions 1-2, V\'  satisfies the fol-
lowing Lipschitz propreties for any A > 0 and w, 7" € TI.

Vi Vi <20 —xl, @0)
, Oy,
VeV = VaVil <% lln ==l @D
where
def /| A|(2—7+yAlog |A])+ep+/|S|(1+A1og |Al)
L& 1
(1-7)
+ (22)
L=~
aer 3JA|(1+ Mog|A]) . €,1/[S[AI(5 + 6Alog | A])
b= 2 3
(1—=) (1—7)
e [VIAI(1 =) + /IS](7 + 26,)]
|AJ(1 — )2
|AJ(1 =)

4. Zeroth-Order Performative Policy Gradient
(0-PPG) Algorithm

4.1. Performative Policy Gradient Estimation

In Section 3, we have obtained important properties of the
entropy regularized performative value function V" (de-
fined by Eq. (8)), which indicates that it suffices to find an e-
stationary policy in the subspace I for A € (0, myin]. To
achieve this goal, an accurate estimation of the performative
policy gradient V VT is important, which has two chal-
lenges. First, unlike conventional reinforcement learning
where policy gradient has analytical form, such analytical
form does not exist in performative reinforcement learning
due to the arbitrary forms of p, and r. Second, in practice,
we cannot access the values of p,(s’|s,a) and r, (s, a) but
can only obtain stochastic samples from them (Mandal et al.,
2023).

Despite these challenges in estimating V VY, note that
V. for any policy 7 can be evaluated, since it is actually
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the policy evaluation problem in conventional reinforcement
learning under fixed environment p,. and r, (for fixed 7).
Furthermore, for any ey, > 0 and 7 € (0, 1), many existing
policy evaluation algorithms such as temporal difference
(Bhandari et al., 2018; Li et al., 2023; Samsonov et al.,
2023), can obtain V)\fﬂ == V/{T’  with the following €y, error
with probability at least 1 — 7.

Ve = Vil <ev. (24)
As a result, we will consider a zeroth-order estimation of
V=V . using policy evaluation. However, this has another
challenge that V' is only well-defined on 7 € 1I, so
we cannot directly apply the existing zeroth-order estima-
tion methods (Agarwal et al., 2010; Shamir, 2017; Malik
et al., 2020) which require the objective function to be well-
defined on a sphere. Fortunately, for any 7,7’ € II, the
policy difference 7' —  lies in the following linear sub-
space of dimensionality |S|(|.A| — 1).

£ %t {u e RIS 3" y(als) =0, Vs € s}. (25)

a

Therefore, inspired by the popular two-point zeroth-order
estimations, we obtain the following estimation of V.V .

gk,é(ﬂ-)_ INGS

N
S|(lA
S S (0, V2%, i, 26)
i=1
where {u;}¥ | are i.i.d. samples from the uniform distribu-
tion on U; N Ly with

L fu e RISIAL ) =1}, @7)

Our estimation (26) above is more tricky than the existing
two-point zeroth-order estimations (Agarwal et al., 2010;
Shamir, 2017; Malik et al., 2020) where u; is uniformly
distributed on U;. To elaborate, we replace their U; with
Uy N Ly, a complete unit sphere on the linear subspace Ly,
and further require 7 € T and § < A, to guarantee that
w + du;, m — du; € Il for any u; € Uy N Ly and thus the
stochastic gradient estimation (26) is valid (see Appendix H
for the proof of validity). Moreover, we use the following
three steps to obtain w; uniformly from Uy N Ly: (1) Obtain
v; from the uniform distribution on U7 ; (2) Project v; onto
Ly as Eq. (28) below; (3) Normalize this projection as Eq.
(29) below.

proj ., (vi)(als) = vi(als) v ZU7 (a']s) (28)
uy = PrO3co(vs) (20)
[Iprojz, (vi)

The gradient estimation (26) has the following provable
error bound.

Proposition 1. Forany A > ¢ > 0,1 € (0,1) and 7 € I,
then the stochastic gradient §y ;(7) defined by Eq. (26) is
valid and approximates the projected performative policy
gradient proj . (V< V{7, ) with the following error bound
with probability at least 1 — 7.

[9,5(m) = proj, (V= Vi)l
2S||Alev | ALN[S||A| 3N|S|| Al
< 1
=75 3N(A —9) Og( )
L|S[A] 3N|S||Al o0y
e Nlog( g )+A_5. (30)
Remark: Proposition 1 above aims to approximate

projz, (VA V', ) instead of V, VT . This is sufficient to
obtain an e-stationary policy, because for any policies 7, 7/,
the stationarity measure only involves (V V" 7" — )
which equals to (proj . (V,V{ ), 7" —m) as 7' — 7 € Ly.
Therefore, we only care about proj . (V. V{ ).

The approximation error (30) has the order of O(ETV +

losl/n) 1 5), which can be arbitrarily small with suffi-
ciently large batchsize N (for reducing the variance), small
0 (for reducing the bias), and smaller policy evaluation error
€y.

Intuition and Novelty for Proving Proposition 1: Un-
like existing zeroth-order estimations on the whole Eu-
clidean space, our estimation (30) is made on the policy
space I1, which lies in the linear manifold Lo + |A|~! C
RISIMI " The key to our proof is to find an orthogo-
nal transformation 7' : RISIIAI=1) Lo, so that the
goal is simplified to analyze the gradient estimation of

def 1, T(x)+|A| !
@) =V r -
ticular, the true gradient can be rewritten as V fy(x) =

T (prOJEOV Vi 7T|7r o)+ A~ 1) using differentiability,

on any z € RISIIAI=D In par-

and when ey = 0 (i.e., VA = = Vy . forany m € II), our es-
timated gradient (30) on the policy’ space II can be rewritten
as the following two-point estimator on RISI(AI=1) (see Eq.
(112) for details).

[SI(4]-1) &
2N§ Z

i=1

grs(m)= (z + 60;) — falz — 06;)] s,

where @; = T!(u;) is uniformly distributed on a unit
sphere in RISI0AI=1) and 2 = 7= (7 — |.A|~1). Therefore,
we can apply estimation analysis to the Euclidean space
RISIIAI=1)  Finally, it is straightforward extend the conclu-
sion from ey = 0 to ey > 0 by adding the policy evaluation
error terms (see Eq. (116)).
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Algorithm 1 Zeroth-Order Performative Policy Gradient
(0-PPG) Algorithm

1: Inputs: T, N, A >§ >0,ey >0,5 > 0.
2: Initialize: policy 7y € IIa.
3: for Iterationst = 0,1,...,7 — 1 do
4:  Obtain i.i.d. vectors {v; }}¥, uniformly from the unit
sphere Uy % fu e RISIAL; || =1}
5 Obtain {projﬁ (v;)}}¥, from Eq. (28).
. Obtain {u;}¥; by Eq. (29).
7:  Obtain stochastic policy evaluation V)\’Tﬁ ~ VY, for
7 € {m =+ du; } N, with error bound (24).
8:  Obtain stochastic performative policy gradient esti-
mation gy s () using Eq. (26).
9:  Obtain 7, by Eq. (33).
10:  Update w41 by Eq. (32).
11: end for
12: Output: 77 where

T € argming<y<p_1(Gr,5(mt), Tt — ).

4.2. Zeroth-Order Performative Policy Gradient
(0-PPG) Algorithm

With the estimated gradient § s(m;) defined by Eq. (20),
we can consider the following Frank-Wolfe algorithm to
find an e-stationary policy.

Ty =argmax, e, (7, g5 (7)), 31
Ty =7 + B(7y — ). (32)

Lemma 1. The step (31) has the analytical solution below.

) _JAsa # as)
7t(als) = {1 —A(A| = 1);a = a(s)’ (33)

where a.(s) € arg max, g, s(m)(als).

See the proof of Lemma 1 in Section A.1. Then combining
the performative policy gradient estimation (see Section
3.1) with the Frank-Wolfe algorithm, we propose our zeroth-
order performative policy gradient (0-PPG) algorithm (see
Algorithm 1). We obtain the following convergence result
of Algorithm 1 in Theorem 4, the main theoretical result of
this work, as follows.

Theorem 4. Suppose Assumptions 1 3 hold. For any

288L,|S| 7| A
0 < € < min [24\/2|S\D, 5‘A|D2 = BLm‘in ‘ I]
and n € (0,1), select the following hyperparameters for Al-

gorlthm] A= Tgn 3= 3D67?:|‘36\’ § = 0(e), ey = O(€?),
= Ole 2log(n~te™1)], and the number of iterations
T = O(e72) (see Egs. (122)-(127) in Appendix J for de-

tailed expression of these hyperparameters). Then with
probability at least 1 — 1), the output policy 75 of Algorithm

1 is an De-stationary policy. Furthermore, if . > 0, 77 is
also an e-PO policy. The total number of policy evaluations
is 2NT = Ole *log(n~te7 1))

Comparison with Existing Works: Theorem 4 indicates
that our 0-PPG algorithm for the first time converges to the
desire PO policy with arbitrarily small precision € in poly-
nomial computation complexity, under the mild regularizer
dominance condition that ;¢ > 0. In contrast, existing works
only converge to a suboptimal PS policy under a similar
regularizer dominance condition (Mandal et al., 2023; Rank
et al., 2024; Mandal and Radanovic, 2024). Our preferable
convergence result is due to the major algorithmic difference
that existing works adopt repeated retraining algorithms
with iteration 7y ~ arg maXﬁeHV)\Ti;r where the policy
7 is deployed in a fixed environment M, with m # m,
whereas our 0-PPG algorithm evaluates V' where each
policy 7 is always deployed at its corresponding environ-
ment M.

Intuition and Novelty for Proving Theorem 4: Standard
convergence analysis of Frank-Wolfe algorithm yields that
max;renA<V,rV)\TiZf,7~r —mp) < % on ITo. However, it
requires a trick to prove the following Proposition 2 which
implies that 77 is De-stationary on IL.
Proposition 2. If A < myin/3 and a policy w satisfies
~ D) .
maxzer (Va Vi, 7—m) < STA(i=sy then the stationary
measures on I1a and 11 bound each other as follows.

Vo Vi 7 <2 Vo Vi 7 — 34
max(VaViz, @ —m) <2 max (Vo Vi, @ —m) (34)

To prove Proposition 2, note that 7’ defined by Eq. (19) also
belongs to ITa, so Theorem 2 implies 7(a|s) > 2A. Then
for any 7o € II, we have % € IIA and thus

o + T
Vo Vi mp—7) =2 <vv ,7f>
max (Vr Vi, ma—m) =2 max e

< — ).
<2 gﬁi(vﬂ‘/)\m,w )

5. Conclusion

We have studied an entropy-regularized performative rein-
forcement learning problem, obtained its important prop-
erties including gradient dominance, policy lower bound,
Lipschitz continuity and smoothness. Based on these prop-
erties, we have proposed a zeroth-order performative policy
gradient (0-PPG) algorithm only using sample-based policy
evaluation, which for the first time converges to a perfor-
matively optimal (PO) policy with polynomial number of
policy evaluations under the regularizer dominance condi-
tion. These theoretical results also holds for the quadratice
regularizers used in the existing works on performative rein-
forcement learning (see Appendix K for discussion). A fu-
ture direction is to extend the algorithm and results to more
practical environments of large state and action spaces.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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A. Supporting Lemmas
A.1. Frank-Wolfe Step

We repeat Lemma 1 as follows.

Lemma 2. The step (31) has the following analytical solution.

#(als) = {A;a # at(s)
! 1— A(JA] = 1);a = ay(s)’

where a;(s) € argmax, gz s(m)(als).
Proof. For 7, defined by Eq. (35) and for any 7 € IIa, we have

<7~Tt -, gA,5(7Tt)>

=> " gas(m)(als)[7(als) — 7(als)]

11

(35)
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=3 {ansm)lans)lsl[1 = AJA = 1) = 7la(s)ls]] = 30 drs(m)als)ln(als) - A}

s a#a(s)
(g) Z {g/\ﬁ(m)[ét(sﬂs] [1 —A(JAl-1) - W[dt(s)|s]] - Z Gx,s(m)[a(s)|s][m(als) — A]}
s aFa(s)
=y {ﬁx,é(ﬂt)[dt(sﬂs] (1= A(JA] = 1) = 7[ay(s)]s]] = gas(me)[an(s)|s][1 — ma(s)|s] — A(JA] - 1)]}

where (a) uses m(als) — A > 0 and §x s(m)(als) < Gas(m)[a(s)|s]. Therefore, Eq. (31) holds, that is, 7 =
arg max, o1y, (7, gx,s (m¢))- O

A.2. Lipschitz Property of Occupany Measure

Lemma 3. The occupancy measure d , defined by Eq. (2) has the following Lipschitz properties for any w, ' € 1I,
p,p' €Pands € S.

/ A /
52 ) = g6 < 7 mas (1) =15 < W ) 36)
S
> e ,p<s>|§7177%x”p(|s,a)_p<.|s,a>||1_ Dy — @)
1 /
3 e (:0) = dog )] 2 ma (1) = (1ol + -2 1. 0) = il

| /\

vl (38)

VA Ul + NAvALIT
L=~

Proof. The first < of Egs. (36) and (37) follows from Lemma 5 of (Chen and Huang, 2024). The second < of Egs. (36) and
(37) uses ||z||; < V/d|z|| for any z € RY.

Eq. (38) can be proved as follows.
D ldwrpr(5,0) = dr (s, )]
= Z |dr pr (8)7" (als) — dir,p(s)m(als)]
< Z dr pr (5)|7' (als) — m(als)| + m(als)|dn p (5) = dar p(5)]
=< Z o (8) max 1" (-1") = 7 (1) 1] + Y ldwr pr (5) = o p(5)]
@) oL / g / gl /
< max ||l (-|s") —w([s") 1 + T, max 7" (-ls) = m(-|s) [l + T max 1p"(-Is, @) = p(-[s,a)[lx
1
< max ' (Js) = w([s) 1 + 1 max [p'([s.) ~ p(Js.a)]s
\/ IAI \/ISI
H |l + || -l

where (a) uses Egs. (36) and (37).

12
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A.3. Various Value Functions

Define the following value functions.

Ia(m, 7' p,7) 7427 r(st, at) )\logﬂ’(at|st)]‘so ~ p}
— Z drp(s,a)[r(s,a) — Nlogn'(als)], (39)
-
Va(m, ' p,ris) ©R 71,[27 7(st, at) Alogﬂ’(at|st)]’so = s}, (40)
Qx(m, 7 p,rys,a) R ,p[zw r (54, ar) /\logw’(at|st)]’50 — s, a0 :a}
=r(s,a) — Mog 7' (als) + v Y _ p(s'|s,a)Va(m, 7', p, 75 8'). (41)

s/

Note that the value function (8) of interest can be rewritten into the above functions as follows.

V):ﬂ" = J)\(Trvﬂ-apﬂ’arﬂ’) = Zp(s)vk(ﬂ-aﬂ-7p7r'7r7r'as ZP CL| Q)\ T, T, Pty Tie? 3 S, a/) (42)
s

Hence, we will investigate the properties of the value functions (39)-(41) as follows.

Lemma 4. For any # € I, p € P, v € R, we have V_, Jx(m,m,p,7), Va(,7,p,7;5), Qx(T,7,p,735,a) €

1+Xlog|A
o]

Proof. We will prove the range of Jy(m, 7, p,) as follows using r(s,a) € [0, 1]. The proof for the other value functions
follow the same way.

0< Jx(m,m,p,r) = ,pp[Z’Yt (¢, ar) /\IOgﬂ(at|5t)ﬂ
t=0
§Z + AE, J’P{Z’Y Z a|st)log7r(a|5t)]}
t=0 a
1
<7 + )\27 log | A|
< 1+ Alog |A\ .
ST,
O
Lemma 5. The gradients of Jx(m, ', p,r) defined by Eq. (39) have the following expressions.
(9J)\(7T,7T/,p77‘) :dﬁ7p(8)QA(7T,7T/,p,’I";S,CI/) (43)
on(als) 1—7 ’
8J)\(7T7Tr/7p7r) — Adﬂ',p(sﬂa) (44)
o' (als) (1 —~)n'(als)’
f"]ggg,@;g;” L0 15, 0) — Aog ' (als) + Va7 s )] 45)
O\ (m, 7' p,1)  drp(s,a)
=— 46
Or(s,a) 1—v "’ (46)
8J/\(7T, URy 2 T) :dﬂ',p(s)[Q)\(ﬂ-v ™p, TS, &) - A] (47)
om(als) 1—x '

13
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Proof. Eq. (43) follows from the policy gradient expression in Eq. (7) of (Agarwal et al., 2021), with reward function
r(s,a) replaced by r(s,a) — Alog 7’ (als).

Eq. (45) can be proved as follows.
a)dn
p(s'ls,a) LN [ ) Ntogm(als) + A, o)
= 1 _ I:T(Sv CL) —A 1Og W(Q‘S) + ')/VA(T(, 7T/ap7 T S/):I ’

where (a) uses Eq. (9) in (Chen and Huang, 2024).
Eqgs. (44) and (46) can be proved by taking derivatives of Eq. (39).
Based on the chain rule, Eq. (47) can be proved as follows by adding Egs. (43) and (44) with 7’ = 7.

O\ (m, 7, p, 1) _[8J>\(7r,77’,p7r) aJA(w,w’,p,r)}

o (als) or(als) or'(als) .
_drp(8)Qx(m, T, p, 758, a) A p(s,a)
a 1—v (1L —=)m(als)
_dap(8)[@x(m,7,p,758,a) — A
1—7 ’

where the final = uses dx (s, a) = dx p(s)m(als). O

Lemma 6. The function Jy defined by eq. (39) has the following Lipschitz properties for any w, 7' € 11, p,p’ € P and
r,r’ € R.

|In(7' 7' p,r) — Ix(m, 7, p,7)| < Ly max || log 7' (-|s) — log m(+|s)]| (48)
|JA(7T,7T,p/,’I“)—JA(?T,?T,pﬂ")I SLPHp,_pH (49)

r ’r
[a(m, 1) = Ja(m, 7 p,r)| < ”7’1 _’"7”“ < ”Z - ;"” (50)
IVpIa (7', 7' p,r) = Vypda(m,m,p,7)|| < b max [ log 7' (+|s) — log w(:|s)|l (51)
||VpJ,\(7T,7T,p/,7“) - V;DJ)\(Wvﬂ—ap7 7“)” < E;DHp/ - pH (52)

VIS

IV a7 pf s 1") = Vpda(m, mop, )| < e m3X||10gW’('IS)—logWCIS)H+€p\\p’—p\l+ml\r’—ﬂ\m (53)

l. — —_ .
IV 1) = V()| < 2 E U g i [ L) a5y

Al(1+ 2X1og | A
IV r a7t r) = T ()l < (P2 ) log /(1) ~ og 1)

2¢/|S1(1 4 Al \/ o0
where L. — VIAIC—vtyrlog|A) -y . VISIAFAlog|AD 1 . VISIIAICHSYA g |AD g 29IS[(LEA log |A])
(1—)? P (1-v)? P (1-7)? L (1-7?

Proof. Egs. (48), (49), (51) and (52) directly follow from Lemma 6 of (Chen and Huang, 2024). Eq. (50) can be proved as
follows.

|J>\(7r,p,7“/) - J)\(Trvp7 | _‘ 1_ Zdﬂ'p 5 a ) T(Saa)]
71_ Zdﬁp (s,a)|r’(s,a) —r(s,a)]

14
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1
Zﬁzdw,p(&a)ﬂﬂ — 7l

1

=l = rlloe < " =7
To prove Eq. (53), note that
‘8'])\(7(-7 7T’p7 ’r/) _ 8J>\(7T77r7p7 ’r)’
Ip(s'ls, a) Ip(s'ls, a)
a d7r ’
Qs 11 0) — (s, Vol i) = Vi i)
@ )d7r (s,a)
Q) [y 3 A = i)
v t=0
drp(s,a)
<R — 56
= (1 _7)2 HT rHoo (56)
where (a) uses Eq. (45) and (b) uses Eq. (40). Therefore, we can prove Eq. (53) as follows.
||va)\(7T/, W/»P/» T/) - VpJ)\(,/Ta ™, D, T)H
SIVp i’ 7' ' r") = Vpda(m, m o', v )| + ([Vpda(m, m, ', 1) = Vpda(m, m,op, )|
+ ||Vp*])\(7ra Uy % T/) - vaA(ﬂ-aﬂ-vp’ T)H
(@) ’ / OJx\(m, p7 ') AJ\(m, m,p,7) |?
S e log ' (15) —log i)+ Gl il +,| 32 St~ “aue e
® / / ||7" - Tlloo
< {rmax || log7'(-|s) —log m(-[s)[| + &p[lp" — pll + >
s,a,s’
S
<t malog ' (15) — og (1) + 61 ol + 2~ rl
where (a) uses Eqgs. (51)-(52) and (b) uses Eq. (56).
Then, we prove Eq. (54) as follows.
IV JA(?T’ 70 r') = Veda(m,mp, )|
(@) llderpr — |
1—
< ||d7r’>p’ — dTr,p”l
N v 5
@ / gl ,
_(1_77)2 max 7" (-|s) = m(-[s)llx + WHSI%X 1P"(-|s, @) = p(:|s, a)|,
where (a) uses Eq. (46), (b) uses Eq. (38).
To prove Eq. (55), we will first prove the following auxiliary bounds.
a 1+ A1 1+ A1
QA(W,W,p,r;s,a)—)\(G) _AaiioM_A} = |Q/\(7T,7T,p,7“;8,a)—>\| < _Fliogbéua (57)
- -

where (a) uses Lemma 4.

‘Vk(ﬂl7ﬂl7p/7’r1; S) - V)\(Tﬂﬂ',p,’r; 3)‘
S‘VA(WI»W/7PI77'/§ S)—V)\(’R’,ﬂ',pl,r,; S)|+|V)\(7T77rap/a ’I“/; S)_V)\(ﬂ.7ﬂ-7p7 T/; S)|+|V)\(7T77rap7 rl; 3)_V>\(7777T»P77"§ S)‘
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7" =l

(a)
< L mase | g (1) ~ log (1) + Lyl ~pl| + 2= (58)

where (a) applies Egs. (48)-(50) to the case where the initial state distribution p is probability 1 at s (so Jy (7, m, p, )
becomes Vy (7, w, p, 75 8)).

IQ)\(T( ™ p,’I"I'S a) —Q)\(ﬂ'77r,p,7";570,)|

m[Z’Y (¢, a¢) — 7(s¢, a4)]

t=0

(a)

80287(10:&”
<]E7rp[§ Y (s, at —T(St,at)lls():&ao:a}

<Bo[ S il
t=0

=l

80:S7a0:a:|

59
S (59)
where (a) uses Eq. (41).
|QA(7T/,7T/,p/,7”; S7a) - Q)\(Traﬂ-ap7r; Saa’)‘
(a)
<\ log 7' (als) — logm(als |+7‘Z sls,a)Va(n', 7' p', vy s) — p(s'|s, a)Va(m, m,p, 73 8)]
<Alog'(als) —logm(als)| + 7 Y _ p/(s'|s,a)|Va(x', 7,1, 755) = Va(m,m,p, 75 5))|
+VZ\Z) "Is,a) = p(s'|s, a)||VA(m, 7, p, 73 5)
(b)
<Alog'(als) —logm(als)| + yLx max|[log7'(-]s") —log m(-|s")| + 7Lyl - p|
1+ Alog|A
+ WD ) = ptls, )l (60)

1
where (a) uses Eq. (41), and (b) uses Eq. (58) and Lemma 4.

Note that
(1- )‘BJ)\(W/,W/,])/,T/) B 8J)\(7T77r,p,r)’
i on'(als) or(als)
Dldar s)[ww’,w’,p',r’;s,a) — N — dup()[Qu (7, 7 p, i 5,0) — A

<[drr pr (5) = dr p ()@ (7, 7', 1,75 5,0) = A + dre () [Qa (7', 7', 0,75 5,0) — Qa (', 7', p' 55, )]
+ dx ,p(s)[Qk(ﬂ' m',p,ris,a) — Qa(m,m,p, 75, a)
g‘dﬁ/,p, 8) — drp(s | . |Q>\ 7w p s a) — )\| + dﬂ,p(s)|Q>\(7r/,7r’,p',r’; s,a) — Qx(n', 7', p 7 s,a)|
+ dﬂ',P(S)|Q)\(7r/77TI7pI7T; Saa) - QA(WJDP,?“; s,a)’
®) 1+ Al dr "7l
S—W]dﬂ/,p/(s) —dﬂ’p(s)‘ + 7p(3i||7"’y al

+dy p(5) {)\| log 7’ (a|s) — log m(als)|

(1 + Alog|A)

B W (s, a) = p(ls @)l

+ 7Ly max | log ' (-[s") —log w(:[s")[| + v Lyllp" — pl| +

where (a) uses Eq. (47), (b) uses Eqgs. (57), (59) and (60). Applying triangular inequality to the bound above, we can prove
Eq. (55) as follows.

- 7)|‘VW'JA(7TI>7T/7PI7T/) - VTA’J)\(WaTrap7 T)H
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1 1 —
< +>\ Og\A| Z‘dﬂp drp(s))” + HT TH” Zdﬂ 24 A Zdﬂp 2|log 7’ (als) — log (als)|?

+ [yLr max|[log 7' (-|s") —logm(-|s")]| + vLylp" — pll] [ dep(s)?

1+ AloglAl)
2L Al ) S

2llp'(]s,a) = p(ls, a) I3

,M(”“’g'““'ij\dﬂp gl + VAT r”“Vde oz (1) ~ log (|52

v(14+Xlog|Al)
+ (YL ms [ log ' (|5') ~log (13" |+ '~ |,4|+<g||w3|z||p ([s.a) — p(]s.a)|?

|A|(1 + Alog |A|) / , \/WHT oo
= (1- )2 [mEXHW (-[s) = 7(Is)llx + max 19" (-]s, @) = p(-[s, a)|lr] + —

+ Amax|[log ' (:[s") — log m(-|s')| + [yLx max || log ' (:|s") —log m(:[s")[| +vLyllp" — pll] VA
IS|(1+ Alog |Al)

/
T " — pll
@) r|Al(y +2Alog | A 2/|S|( 1+)\10g|A|)
< [0 ZZEID o 1o (1) ~ g (1) + 4/ FAT 2D 1 Tt —
L VAl =7l 7“||oo
1 —
where (a) uses Lemma 3, (b) uses |7/ (-|s) — 7(-|s)||1 < |[log7’(+]s) — logﬂ( BIE
|S\(1+/\lo [A]) \/|S||A\(1+)\lo |A])
[P'(-Is,a) = p(-ls,a)lly < V/ISIlIP'(-]s,a) = p(|s, a)|| < V/[S]llp" — " < g7 and
AlA|log IA\
A< (1—)? -
A 4. Zeroth-order Gradient Estimation Error
We import Theorem 1.6.2 of (Tropp et al., 2015) as follows.
Lemma 7 (Matrix Bernstein Inequality). Suppose complex-valued matrices Sy, ...,Sn € CU*% are independently
distributed with ESy, = 0 and ||Sk|| < C foreach k = 1,..., N. Denote the sum Zn = Zf:;l Sk, its variance statistic as
follows
N
o(Zy) = max [ Y E(S.s;) (S| (61)
k=1

where S}, denotes the conjugate transpose of Sy. Then for any € > 0, we have

P(IZn ] > ¢ < (d +do)exp [~ ] 62)

€ exp | ——————1|.
M= = AT RSP 72 + Ce/3
Applying the above lemma to vectors, we obtain the following vector Bernstein inequality.
Lemma 8 (Vector Bernstein Inequality). Suppose independently distributed vectors x1, . ..,xxn € C? satisfies |z < c
foreach k. =1,...,N. Then for any n) € (0, 1), with probability at least 1 — 1, we have
N
1 d d+1
H— (xr — Exy) H<—lo ( +1 )—|—20 —log( + ) (63)
N k=1 K N K
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Proof. Note that Sy, = z; — Exy, satisfies the conditions of Lemma 7 with d; = d, do = 1 and C replaced by 2¢. In
addition, v(Zy) defined by Eq. (61) satisfies v(Zy) < 4Nc? since

max[| SeSkll, 15k Skl?] < ISKIZIISkll* < 4c*.

For any n € (0, 1), let

4 d+1 d+1
€= clog (i) + ¢4 /2N log (i)
3 U U

Therefore, Lemma 7 implies that

1) € —€2/2
Pl o~ Bl = ) < e e | o] <

which implies that with probability at least 1 — n, we have

N

1 4c d+1 2 d+1
NH;(“ B < g =gy los(5,0) + 20 o (5 -),
O
For any function f : R? — R, obtain the following zeroth-order stochastic estimator of the gradient V f.
g
gs(x) = NG ;[f(l“ + 0u;) — f(2 — buy)lui = Vf(2) (64)

where § > 0 and {u;}}¥, arei.i.d. samples of the uniform distribution on the sphere Sy = {u € R? : |ju|| = 1}.

Lemma 9. Suppose f : R — Risan L ¢-Lipschitz continuous and { ;-smooth function. Then for any n € (0, 1), with
probability at least 1 — n), the gradient estimator gs defined by Eq. (64) has the following error bound.

4Lfd d+1 2 d+1
lgs(r) = V()| <=5 los (=) + 205y 5 los (=) + oty (65)
Proof. Note that g5 ;(x) def L[ f(z + 6u;) — f(x — du;)]u; has the following norm bound
d d
lgs,i (@) < 5zl @+ 0wi) = £z = dui)| - lws]| < 5 - Lyl 20uil| = Lyd. (66)

Define the following smoothed approximation of f as follows.
def
f6 (LL') = ]EUNUnlf(]Bd) [f(.’lf + 5’0)]7 (67)

where Unif(B,) denotes the uniform distribution on the ball B, ¥ {u € R%: |lu|| < 1}. Then based on Lemma 1 of
(Flaxman et al., 2005), we have

Elgs,i()] = V fs(7) = Eyounite,) [V f (2 + 6v)]. (68)

Therefore, applying Lemma 8 to g5 ;(x), the following bound holds with probability at least 1 — 7
1| ALyd | (d+1 d+1
~ (@) = Vis(@))|| < 5L 10 (=) + 200 [ 2 (£==). 69
NH;[%, (@) = V/fs(x s 08 » +2Lgdy [ log . (69)
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Note that
IV fs5(x) = V(@) = [[Byovnit@) [V (z + 6v) — Vf(2)]]| < dly. (70)

As aresult, we can prove the conclusion as follows by using Eqgs. (69) and (70) above.
los(z) Vi@ =[ [+ Zgéz )| - Vi@
<% Zg& @)] = Vis(@)|| + IV fs(@) = V(@)

<@log(d:1) +2Lsd —log(d:’_l) + 4y,

3N
O
A.5. Orthogonal Transformation
Lemma 10. There exists an orthogonal transformation T from the space RY™1 to Zg = {z = [21,...,24) € R?: Y%=
0}, that is, T is invertible and satisfies the following properties for any x,y € Z4 and o, f € R.
T(az + By) =aT (z) + BT (v), (71)
(T(2), T(y)) =(z,y). (72)
Proof. 1t can be verified that R? admits the following orthonormal basis with (e;, e;) = 0 for any i # j and ||e;|| = 1.
1
ep =———[1,1,...,1,—k,0,0,...,0] e R: k=1,2,...,d — 1.
k1l's (d—k—1) 0’s
1
eqg =—=[1,1,...,1] € R4
d ¢j ]
d1l’s
Define the transformation 7" at = [x1, 22, ..., 24_1] € R?! as follows.
d—1
x) = inei. (73)
i=1

Since Z; is a linear subspace of R4 orthogonal to ey, Z, admits the orthonormal basis {e; ;1:—11 Hence, 7 (z) € Z,.
Conversely, for any y € 2, there exists unique z € R?~! such that y = Zf;ll z;e;. Hence, T : R™1 — Z%is invertible.

Forany x = [z1,...,24-1],¥ = [y1,---,Yd—1] € R?! and a, B € R, we can prove Egs. (71) and (72) respectively as
follows.

d—1
Oéx‘f‘ﬁy :Z Oéxz"'ﬁyz
=1

d—
=a Z zie; + B Z yie

:a’T(x) + ﬂT(y).

(T (), Tw) =( iiy)
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d—1d-1

=D zijleie))

i=1 j=1

d—1
DI
i=1

O
A.6. Basic Inequalities
Lemma 11. For any € € (0,0.5] and x > 4~ ' log(e™1), the following inequality holds.
1
0< 2% <o (74)
x

Specifically, any x > 3 satisfies logt <i

Proof. As e~ ! > 2, wehave x > 4e log(e™t) > (4)(2)log(2) > 5.54, so logz > log5.54 > 1.71, which proves the
first < of Eq. (74).

Note that the function f(z) = lm% has the following derivative

1—logx
2

f(x) = <0,

X

where < uses logx > 1.71. Hence, f is monotonic decreasing in = > 4e ! log(e’l) > 5.54, Therefore, we prove the
second < of Eq. (74) as follows.

log z < log[4e~log(e™ )]  log4 +log(e™!) + log[log(e )] (2) log 4 log(e~1) +log(e™1)

re ~ e[dellog(el)] 4log(e~1) ~ 4log(2) 4log(e~1) =1 (75
where (a) uses ¢! > 2 and logu < u for u = log(e™1).
When:cz?),f'(x):l_i#<O,sof(x)§f(3): log3 O
Lemma 12. For any 7,7’ € TI, we have |7’ — || < 1/2|S].
Proof.
—7|? = Z|7r (als) — m(als \2<Z [7"2(als) + 7% (als)] Z s) + w(als)] = 2|S].
O

B. Negative Entropy Regularizer as a Strongly Convex Function of Occupancy Measure

The negative entropy regularizer (7) can be rewritten as follows

00 dw
Hor () :EW,PW'!”{ZVt log m(azst) } = Zdﬂ'p ,(s,a)log dp" (( )) (76)
t=0 TPt

where dr ;, ,(s) = >, drp_ (s,a’). Hence, it suffices to prove that the following function of occupancy measure d is
strongly convex.

d
= 3" d(s.a)log C(;’S‘)l), )
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where d(s) = >, d(s,a’). For any a € [0,1] and occupancy measures dy, do, denote d, = ad; + (1 — a)dy and the

corresponding policy as 7, (als) = dg(‘z’s';). Then we have

aH(dy) + (1 — @)H(do) — H(ds)

F||1

adi(s,a)logm (als) + (1 — a)do(s,a)logmo(als) — [adi(s,a) + (1 — a)dy(s, a)]log s (als)

»

,a

m1(als)

a(a\s) + (1 — a)dy(s,a)log

ad1

ﬂo(a\s)}

To(als)

P||1

S

]

s

F%

a(als) a(als)

ady (s)KL[m |)II%(GIS)}+(1—Oé)do(S)KL[Wo(-IS)Hﬂa(GIS)]}

®
S

)

[
[
[adl s)mi(als) log m(als) + (1 — a)do(s)mo(als) log 7T0(CL|S)]
joa

%Z |0 (5) 71 () = ma19)II3 + (1 = a)do(s) [ mo(-1s) = ma(-|5)]3]
e gZ [allmi(ls) = maCls)l12 + (1= @)l mo(-[s) = ma(:1s) 3]

S

> 2 [amaxm (1) = ma (13)]F + (1 — o) max mo(1s) ~ ma15) ]

©) —
PO oy — d ) + (1 - o) ma o — d ]
D(1-—
PO a1 - )2y — ol + (1~ @)y — dol]
1 —
:M -D(1 = 7)||dy — do]|3. 78)

where (a) uses Pinsker’s inequality, (b) uses Assumption 3, (c) uses Eq. (38) with p’ = p. The inequality above implies that
H(d) is D(1 — ~)-strongly convex, so the negative entropy regularizer (76) can be seen as a D-strongly convex function of
the occupancy measure dr ;, .

C. Existing Assumptions That Implies Assumption 3

The following assumptions have been used in the reinforcement learning literature. We will show that each of these
assumptions implies Assumption 3.

Assumption 4. (Bhandari and Russo, 2024) p(s) > 0 for any s € S.

Assumption 5. (Agarwal et al., 2021; Leonardos et al., 2022; Wang et al., 2023; Chen and Huang, 2024)

D, = SUPrer1,peP ldrp/plloc < 0.

Assumption 6. (Wei et al., 2021; Chen et al., 2022) There exists a constant piyi, > 0 and mixing time t,,;,, € N such that
under any policy m € II and transition kernel p € P, the stationary state distribution i, ,,(s) has uniform lower bound
Minses firp(S) = fimin, and

(79)

o~ =

dTV [Pﬂap»p(stnm - )) ,uﬂ',p] S

where Pr 1, ,(84,.. = -) denotes the state distribution at time t,,;,, under the policy , transition kernel p and initial state
distribution p, and drv denotes the total variation distance between two probability distributions.

Proof of Assumption 4=-Assumption 3: For any policy = € II, transition kernel p € P and state s € S, we have
s) = Z drp(s,a)
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(a) .
EXA=NY APyl = 5,0 = a}
a t=0

=(1-1) Z7t]}»ﬂ7p7p{5t = s}
=0

2(1=7)Prpp{s0 = s}
=(L=)p(s)
2(1 ~ ) min p(s).

As S is a finite state space, p(s) > 0,Vs € S implies that minges p(s) > 0. Hence, Assumption 3 holds with D =
(1 — ) minges p(s) > 0.
Proof of Assumption 5=Assumption 3: If p(s) = 0 for a state s, then Assumption 5 implies that d. ,(s) = (1 —

YooV Prpp{st = s} = 0forany m € Il and p € P, which means the state s will never be visited. Therefore, we can
exclude all such states s from S such that Assumption 4 holds, which implies Assumption 3 as proved above.

Proof of Assumption 6=-Assumption 3: Eq. (79) implies that for any n € N, we have
1 1
drv [Pmp,p(sntmix = ')7#71',17} =3 Z Prpp{Sntm =} — Hrp(s)] < an

Select n = [log(y,i,)/log4]. Then the bound above implies [Py , p{Snt = 5} — frp(5)| < ftmin/2 for any state s,
which along with pir () > fimin implies that P, ,{sns... = S} > ftmin/2. Therefore, we can prove Assumption 3 as
follows.

o0

T lmix — Hmin T lmix
dr p(s) =(1=7) Z'thﬂ,p,p{st =5} > (1= )Y Prp,p{Sntu, = 5} > 5 (1= 7).
t=0

D. Proof of Theorem 1

Fix any mo, 71 € II. For any o € [0, 1], denote d, = adr, p,, + (1 — @)dry .- Talals) = dg(?g) where d(s) =

Y dal(s,a’), and po, = pr,. It can be easily verified that dy = dr, ., d1 = dr, p, and do, = adp + (1 — «)dy. Then we
can obtain the following derivatives and their bounds about 7, d,, in Eqs. (80)-(86).

da(s)[d1(s,a) — do(s, a)] — da(s,a)[d1(s) — do(s)]
dz,(s)
[ady (s) + (1 = @)do(s)][da (s, @) — do(s, a)] — adi(s, a) + (1 = a)do(s, a)][di(s) — do(s)]
dz,(s)

%ﬂ'a(ab) =

:do(s)d1 (s,a) —do(s,a)di(s)
dz,(s)
do(s)di (s)[m (als) — mo(als)]

= & (s) ' (80)

Hence,

%
do

2 |do(s)di ()l (als) — mo(als)] 2
‘S,Za‘o e —

SRR A ——

s,a

(b)
<D [mi(als) — mo(als)? < Dy — o2, 81

s,a
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where (a) uses d,(s) = adi(s) + (1 — a)do(s) > min[dy(s), d;(s)] and (b) uses Assumption 3. Then by taking derivative
of Eq. (80), we have

& __ 2do(9)di (3)[m als) — mo(als)][d (5) — do(s)]
ﬁwa(ds) == ! dg(so) ! RSy (82)
Hence,
2d (5)7 (5) 1 (a]s) — mo(a]3)] [ (5) — do(5)] 2
H da? H Z‘ ! ad1 (s) + (l—Oa)dO(s)]3 :
2 max[do(s), di(s)] min[do(s), di(s)]|d1(s) — do(s)|12 2
= Z [ D2 min[dy(s), di (s)] } [m1(als)—mo(als)]
<(2D72)? max [|dy (s) — do(s)[*] 3 [ (als) — mo(als))?
<D m — moll2[ 1 (5) — dofs)]]
O L L= TR T
© ay 2 [1VIA] m 2
<@D7Pm = woll* [T = woll + T ol
<2072y — o[ 12V +7 )y?, (83)

where (a) uses d,,(s) = ady(s) + (1 — a@)do(s) > min[dy(s),d;(s)] > D, (b) uses Lemma 3, and (c) uses Assumption 1.

oo & (5]

a(s)
:‘ dOElSQ)(dSl(S) [dl(s,a) o do(s,a)} N 2d0( )dl( );ia( )

) 3 (
SdO(di)(dsl)(S) [|d1(s, a) —do(s,a)| + 2da(s )|d1(5> - do(s)ﬂ

da(s)
max|[dg(s), d1(s)] min[do(s), d1 ()]
< min2[do(s) . du (3)] [ld1(s, a) — do(s, a)| + 27 (als)|d1(s) — do(s)]

<D7Hdi(s, a) = do(s, a)| + 2ma(als)|d(s) — do(s)]]. (84)

[da(s) = do(s)]

L (s, a)pa(s'ls, )

=pao (5|5, a)[d1(s,a) — do(s,a)] + du(s, a) - %wa((ﬂs) VP, (8|5, a)
da (s, a)do(s)d1(s)[m(als) — mo(als)]

=pa(s'|s,a)[d1(s,a) — do(s,a)] + 2 (5) VP, (8']s,a) (85)
Then for any «, o’ € [0, 1], we have
[ s (5, )0 ('}5,0)] ~ = [d (5, pa (|, )]
d o ) dOL (e% I o I

< [Par ('], @) = pa(s'ls, a)| - [di(s,a) — do(s, a)| + do(s)dy(s)|m1(als) — mo(als)|-

[ 19 e (515.0) = T ()l | 5 = P2 19 s ]
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(b)
<epllmar — mallldi(s, a) — do(s, a)]

max|[do(s), dy(s)] min[do(s), d1(s)]
min[do(s), d1(s)]
+ D7 ep|mi(als) — mo(als)| - [ldi(s, a) — do(s, a)| + 2ma(als)|di(s) — do(s)]] - |a’ — o

(e)
<& D7 m —mo|l - |a' —al - |di(s, a) — do(s, a)]

+ Symar(als) - 71 (als) — moals)]| - [do(s) + d(s)] - D~ [lmy — o]l - ]o’ —
+ D, lmi(als) — molals)| - [|di(s, @) — do(s, )| + 2ma(als)[di (s) — do(s)]] - o’ —

+ s (als) |1 (als) = mo(als)] -

) SpHﬂ'oc’ — ol

(d) ,
Sgdp(&a)‘a —Oé|, (86)

where (a) uses Eq. (85), (b) uses Assumptions 1-2, do/(8,a) = do/(8)7ar(a|s), dos(s) = &'d1(s) + (1 — &')do(s) >
min[dy(s), d1(s)] and Eq. (84), (c) uses Assumption 3 as well as Eq. (81), (d) defines ¢4, (s, a) as the following Eq. (87)

ady(s)m1(als —a)do(s)mo(als
and uses 7, (als) = 1 )alél(lsgig—a;dggs; olals) < mo(als) + mi(als).

lap(s,a) =2D "y ||m1 — mo|l|di(s, a) — do(s, a)| + 2D~ e[ (als) + mo(als)] - |mi(als) — mo(als)| - |da(s) — do(s)]
+D71Sy[mi(als) + mo(als)] - |mi(als) — mo(als)| - 1 — mol| - [do(s) + di(s)]. (87)

Denote €4(s) = dr, p. (5) — da(s) as the error term due to the policy-dependent transition kernel p,, = p,'. Note that the
occupancy measure (2) satisfies that the Bellman equation (3) repeated as follows.

dep(s') = (L =Y)p(s) + 7D drp(s)w(als)p(s']s,a), s €S. (88)

Therefore, the error term e, (s) satisfies the following recursion.

ea(s)

=dr, p, (s) = ady(s") = (1 — a)do(s")
—VZ ro.pe (8)Ta(al8)pa(s']s, a) — adm, p, (s)m1(als)pi(s']s, a) — (1 = @)dxy po (s)70(als)po(s']s, a)]

= Z[EQ(S)TF(X(GlS)pa(S/‘S, a) + da(sv a)pa(3/|57 a) - o‘dl(‘sa a)pl (sl|57 a) - (1 - a)dO(Sv a)p0(8/|5, a)} (89)

The above inequality implies that
Z lea(s’)

<y Y [lea(s)malals)pa(sls, a) + |da(s, a)pa(s'ls, @) —adi(s, a)pi(s']s,a) — (1 — a)do(s, a)po(s'| s, @) ]

s,a,s’
(272 lea(s Z Lap(s, a)
S’YZ lea(s)] + w [2D716p||ﬂ'1 — mo| Z |d1(s,a) — do(s,a)| + 4D ey||m1 — 7ol oo Z |d1(s) — do(s)]
+4D718, [m — o oo -2 — ol
%3 )1+ 1S [t - ~(VIAlIm —moll 43/ 1S Tlpr, e, ) +4D7" 8, w1~

(d)

<’72|€a )+ 3D 1|S|a(l — a)||m; — mol? [ \/|A +vep/|S)) + S ]
'If pr,, = p does not depend on the policy 7o, it can be easily verified that e, (s) = 0 forall s € S.
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where (a) uses Eq. (86) which implies that d,, (s, a)p.(s’|s,a) is a Lipschitz smooth function with Lipschitz constant
L4y (s, a) defined by Eq. (87), (b) uses Eq. (87), (c) uses ||m1 — mo|/co < ||71 — 7o|| and Lemma 3, and (d) uses Assumption
1. Rearranging the above inequality, we get

Zla —%m—ml%( AL+ 76 V/1S]) + Sp(1 = )] (90)

Therefore, for any reward function r, we have
INT o, Tas Pas7) — adx (71,71, p1,7) — (1 — @) Jx (7o, T, po, T)

w_ Z |:d77a1pa(8’ a)[r(s,a) — Xogma(als)] — adi (s, a)[r(s,a) — Aog i (als)]

s,a

— (1 - a)do(s, a)[r(s,a) — Alogmo(als)]

! {[dﬂmpa (s,a) — du(s,a)][r(s,a) — Aogma(als)]

1—7

14

+da(s,a)[r(s,a) — Mogma(als)] — adi(s,a)[r(s,a) — Aogmy(als)] — (1 — a)do(s, a)[r(s,a) — Aogmg(als)]

® 1 i ~ Z[dm,pa(&‘) — do(8)|ma(als)[r(s,a) — Aog ma(als)]
11—~ {ad1(87 a)log ;Ti((?i)) + (1 — a)do(s,a)log :2((?;)}

S,a )
H A ol 2 o Ot 2 41l 3 et s 2T

S

@ 1+ Xlog|A|3y|S|a(l —«)
z - 11—~ D(1—~)2 [l — 7r0||2[€17( | Al + '7617\/@) + Sp(l - ’7)}

72 3 [ada(sKLm (fs) 7 (ls)] + (1= a)do()KL{ro( ) ma(15)]

1
2 IS NBIAD 1 e, (AT + 26, + 5501 )]
A 2 2
Y=y zS: {Oéd1(8)||771(~|5) — ma([8) [T + (1 = a)do(s)[Imo(-|s) — 7Ta('lé‘)lh}
0 2iSlallZ 00 LMD i, — ey (/AT + /IS + 851 = )]
¢ sy | eyt -~ e oo
D= 57 DD ) — o)
- DI N8 A e (] + 960 51 + 50
(") DXa(1 — «) 37|Sla(l — o) (1 + Alog|A|)
= 2(1—7) Il = mol* - D(1—~)3 I = o1 [e (VAT + 765 V/IS) + Sp(1 = )]
(2#104(12_04) 1 — molI2, 1)
where (a) uses Eq. (39), (b) uses dr, . (s, a) = dr, p.(5)Tal(als), da(s,a) = ( Yo (als ) and d, = ad; + (1 — a)do,
(c)uses 7(s,a) € [0,1], = >, ma(a|s)logma(als) € [0,1log|Al] and eq(s) = dr, p. (5) — da(s), (d) uses Eq. (90), (e)
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uses Pinsker’s inequality, (f) uses 7, (a|s) = d“(?;()‘) — o4 (( )) w1 (als) + % o(als), (g) uses du(s) = adi(s) +

o e
(1 — a)dg(s), (h) uses Assumption 3 and d, (s) < max[dy(s),d1(s)], and (i) defines the constant 1i; below.

det DA 679|S|(1+ Alog|A|) B
=T D) [e» (VA + vep/IS]) + Sp(1 = 7)]. (92)

Next, we begin to consider the policy-dependent reward 7, = . Define the function w(«) = aJy (71, 71, p1,70) + (1 —
a)Jx(mo, mo, Po, '), Which has the following derivative

w'(a) =J\ (71, 71, p1,7a) — IA(T0, T0, Pos Tar)

dmy,
+ [V, da (71, T, 1, 7a) + (1 — @) Vi Jx (7o, 7T07p077na)](v‘ﬂ'rﬂ'a)a (93)
For any 0 < o < o/ < 1, we prove the smoothness of w(«) as follows.
[w'(a) —w'(a)
o d?T@ -
:‘ Vo [Ia(m, 7, p1,7m6) — JA(WO,7To7poyrd)](vw7"m)%d@
/ ’ dﬂ'a dﬂ'a
+ [0V I (1, 71, p1, Tar) + (1= @)V (7m0, o, 0, T ) (Ver, ) (25 = 22
dmg,

+ [a/vrjx\(ﬂ-laﬂ-laplara’) + (1 - O/)VTJ/\(WOyWOapOaTa’)}(vﬂ’rﬂ' ’ -V 7“71'(1) do

+ {/ [V da (1, 1,01, mar) — Vida (w1, 1, p1, 7))
dmg,
+ (1 = ) [V, Jx (70, ™0, P0s Tar ) — V7'J>\(7T077T07p07T(X)]}(Vﬂ'rﬂ'a)a

dm
+ (¢ — @) [V, Ia (71, 71,015 7a) — Vieda (70, T0, D0, Ta)] (VaTr,) do(j

@ [ e |lm —mo ~
< [ B0 G () = moCes) s + s . 0) = poCess )l )
et D(l_’y) S s,a

SrllTar — ma| )

. S
16_ “m —7r0|\2p(6p |1|_J; |A‘)]|a/—a|+ 1= D7 H|my — mol| + 0
€rllT] —
+la’ —al- ”1702H(max [71(-]s) = mo(-]s)]l1 +vmax [[p1(-|s,a) — po(-|s,a)]1)
D(l _'7) s s,a
® er||m — o
<2a’ — af - 52— (VIAlllm: = mol| +7V/[S]lps = pol)
(1=1)
2¢,||my — 7ol|? P(ep S+ AD}‘O/,QH Sellm —mol®
D%(1—7) 1—v D*(1—7)

() 2| m —7T0H
= 2 (VIAlllm1 = moll + vep/[Slllm — moll) |’ — e

=D
Mrllm mll 4 5=l — mol?
+ D2(1= (VIA| + eV/1S]) e — D1 — )2
(d)4er (VA +76p\/|8 )+ S ( 9 4
2 )2 ”771*770” lo’ —af,
D?(1—7)
where (a) uses Assumptions 1-2, ||V, Jx(-,-,-,-)|| < == (1mphed by Eq. (50)) as well as Egs. (54), (81) and (83), (b) uses

Eq. (81) and ||z||; < V/d||z| for any z € R?, (c) uses Assumptlon 1, and (d) uses D, € [0,1]. The inequality above
implies that w(«) is pa||m1 — mo||?-Lipschitz smooth with the constant yio defined as follows.

_ e (VA + /IS + 5-(1 = 7) (94)

D2(1—~)?
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Therefore,

V;t;u — OzV;; (1- Oz)V/\W?rO
:JA(,]TOMTFoHpavTOé) - a‘])\(ﬂ—laﬂ—lvplvrl) - (1 - OZ)J)\(Wo,Wo,po,To)

pa(l —a)

(g)aJ,\(m?Whpw“a)*‘(1—04)J/\(7T0,7To,po,7"a)+ 5 |1 — mol|?
— aJx(m1, ™, p1,7m1) — (1 = @) Jx(70, ™0, Pos T0)
—u(a) — au(1) - (1 - a)u(0) + LU= D e
(>i) (p1 — M2)204(1 —a) 1 — ol
Q0D o, ©3)

where (a) uses Eq. (91) with r replaced by 7, (b) uses the fact proved above that w(«) is uz||71 — 7o ||?-Lipschitz smooth,
and (c) defines the following constant x which is the same as Eq. (13).

def
Bo=H1 — K2
@ DX 67|S|(1 + Alog|A|) Sr(1 =) + 4e.(V/|A] —|—ep\/\8
2 V/ V/ (1—7)] -
T D(1 =) lep (VI Al +vepV/|S]) + Sp(1 — )] D1 = )2
where (a) uses Egs. (92) and (94). Rearranging Eq. (95), we obtain that

V;";a V;r?'r T 0y /.L(l N Oé)
2V - V)\?TO_FT”ﬂ-l_WO”Q'

Letting « — +0 above, we can prove the conclusion as follows.

Vi, = Vi, + Slim = moll?

Aﬂ'l ATF()

S{%V;;“} a=0
V”fT
28770/\ . |:
oV

(a) 1(s) Ao
Z (S)Zaﬁo flmi(als) = mo(als)]
)

(S )% )x Tro )\ﬂ'o
Z (s)[ Omo(s,a’) Zﬂ'o als) ,a)
ovye
D™ Z 871'0)\ [ (als) — mo(als)]

<D™ ' max <V WV o 7ro>,

mell

Talals)]|

a=0

where (a) uses Eq. (80), and (b) uses Assumption 3 as well as the following Eq. (96) where 7j & II is defined as

avyo
75 (a*|s) = 1 for a certain a* € arg maxa/% and 7§ (a’|s) = 0 for a’ # a*.

vyo oV
>\7To _ A, 70 )\770
ZWO a| 87r0 ) N m a’lT() S a Zﬂ-O a| 87r0 ) (96)

E. Proof of Corollary 1
Based on Theorem 1, Eq. (12) holds for any 7y, m; € II as repeated below.

Vi V;i(;\'o + Dil Ig_lea’ﬁ( <V7TOV/\7T2FO’7T - 7T0> - g”ﬁl - 7TOH27 o7

)\71'1—
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In the above inequality, let 71 € argmax 7V, and mp = 7 is any a De-stationary policy of interest. Then the inequality
above becomes

- _ 1
g?ﬁ‘vﬂﬁ <V, +D7! De~ §H7T1 -

If 1 > 0, the inequality above further implies that maxzen Vi~ — Vi x < € thatis, the De-stationary policy 7 is also an
e-PO policy. /

Furthermore, suppose 1 > 0 and there are two PO policies 7y, 1 € II, which should satisfy

1 T ™
Vim = Win = max Vi

max <V7FOV/\ o T 7T0> = 0.

mell
Substituting the two equalities above into Eq. (97), we obtain that §||7; — mo||* < 0, which along with x> 0 implies
T = mg, that is, the PO policy is unique.
F. Proof of Theorem 2

Forany 7 € II, p € P, r € R, we have

aJ)\(TF,ﬂ',p, T) (a) d‘n’,p(s)[Qk(ﬂ'vﬂ'aI%T; S, CL) - )‘]

or(als) 11—+

(_)dw,p(s) oy / Y,
ot sl GORS! Mog(als) +9 3 (el )Vt pori )] ©8)

where (a) uses Eqgs. (47), and (b) uses Eq. (41).

Then we have

Vodz(m,m,p, )" (x' —7)

- Z [gﬁa;: p>|]) (7" [amac(8)l] = 7 [amax(s)l3]) + m (7' [amin(5)15] = lamin(3)]5]) |
S)|s| — w|amin(5)|8]) |7]S, Gmin(S)| — T[S, a s ow
fz{ elomas(9)]s] = Tlamin(5)15]) [P min 5)] = rls, amas ()] + Mog e S

+VZ /13, amin (5)) = P(5'|3: amax ()IVA (. P75 8')| }

Tlamax(s)[s] - v(1+ Alog |A]) ] }7 (99)

> T max { (T[amax(s)|s] = T[amin(s)]s]) [A log TlammG)]s] 1 1—7

where (a) uses T[amax($)|$] — T[amin(s)|s] > 0, r(als) € [0, 1], p(s|s,a) € [0, 1] for any s, a, s’ and Lemma 4.
Consider the following two cases.
(Case D) If 7[amin(s)[s] = 57[amax(s)|s], then as 7[amax(s)[s] = g7, we have mlamin(s)|s] > 5.

(Case I1) [amin(8)[] < 37 [amax(s)|s], then as amax(s)[s] > \7¥|’ Eq. (99) implies that

VWJA(7T77T7p7 T)T(Tr/ - 7T)
Tamax(s)]s] 1 ~ 1+9Alog |A|
me“x{ 2(1— ) [/\log |A|7 [@min(5)]5] L=n }}
1

1+’y)\log\A|}

T (100)

5 {)\ log (|A| Ir;sinﬂ[amin(s)|s]) +
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which further implies that for any s € S and a € A, we have

- A 2 )Y ) )

o1 [f;fw
“oA = P LT AT ) T X

1
7r(a|s) > 7T[Clmin(8)|s] Zm exp |:

A= )Vadr(mmp) (' =m)], (10D

Note that in the two cases above, Eq. (101) always holds.
Furthermore, if Assumption 1 holds and p,, r, are differentiable functions of 7, then we have
||VWJ>\(7T,7T,pmr7r) - VWJ)\(W,TI',]);T,T.,}”;T:WH
:vaJ)\(W, Ty Doy T ) VaDr + VoA (70, T, P, T,,)V,J,TH
<[V da w0 s e ) [V | 4 [V I, 7, o ) || Vs |
@ ep\/IS](1 + Alog | A]) L

= ; (102)
(1=~ 1=
where (a) uses Assumption 1 as well as Egs. (49) and (50). Therefore,
T
I:VTI"])\(W7 T, Py 71‘71')|7~T:7r} (ﬂ'/ - ﬂ-)

:vﬂ‘]}\(ﬂa '/Tvp‘n'arﬂ')-r(ﬂ—/ - 7T) - [vﬂJA(7rv7T7p7Ta Tﬂ') - Vﬂ-JA(’/Taﬂap‘Frarﬁ”ﬁ':ﬂ]T(’/T/ - 7T)
SVW‘]}\(Wa vaﬂ'vrw)-r(ﬂ—/ - 7T) + ||V7rJA(7T»7BPm7"7r) - VWJ)\(Wv"Tapira Tﬁ)‘fr:ﬂH”ﬂJ - 7TH
(@) eo/ISI(L+ Alog |A]) e
< T P T
SV (mmpera) (1 =) + S (P T ), (103)

where (a) uses Eq. (102) and Lemma 12. Substituting p = p,, r = r, and then Eq. (103) into Eq. (101), we can prove Eq.
(17) as follows.

S 1 1
") 2 g7 P Ry

2 ) [Teda ) T ) + VS (ef’m'((ffj)?g Ay )

@(1 - ’7)<v7rV)\Ti7r7 T‘J - 7T>],

=Tmin €XP |: -

where the = uses V{7 = J, A7, T, P, T ) and i, defined by Eq. (18).

G. Proof of Theorem 3

For any policies w, 7/, we have

|V)\7T,7r/ - V)\ﬂ;ﬂ|
Sle\(ﬂva‘n"vTﬂ") - J)\(Trvp‘mrﬂ')l
§|J>\(7T/7pﬂ./,7“7r/) - J)\(W/apﬂ’»nr” + |J)\(7T’,pﬂ./,7“ﬂ-) - J)\(W/,pm’f‘ﬂ” + ‘JA(ﬂ—/»pmrTr) - JA("Tvpmrﬂ'”

(%) 77 — 7l

= Ly|lpnr = prl + Lx max || log 7'(-[s) — log m(-[s)|

(b

€r
<(Loep + 12 ) I == +LW¢Z | log 7' (-]s) — log m(-|s)]2

=

—
INe

(Lpep + 16_7'7) | log 7" —log 7|| + L/ log 7’ — log ||
D llogn’ —1
=L, logm" —log ||, (104)
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where (a) uses Egs. (48), (49) and (50), (b) uses Assumption 9, (c) uses |logy — logz| < |y — x| for any x,y € R, and (d)
defines the following constant.

v = VIAI@ =y +yMloglA) + 6 VIS|(1+ Alog|Af) +er(1 =)
-y 7 (1—7)? '

Note that for any u,v > A > 0,

L, = Lpep +

max(u,v) 1 1 _
|log u — log v| = log max(u,v) — log min(u, v) = / de < Z[max(u, v) — min(u,v)] = %
min(u,v)

Therefore, for any 7, 7" € IIa def {m €Il: w(al]s) > A}, we have
g’ —log > = > |log ' (a]s) — log w(als)/* < A>3 ['(a]s) — m(als)|* = A~2|lx" — 7
s,a s,a
Substituting the above inequality into Eq. (104) proves Eq. (20).
Next, we will prove Eq. (21) about the Lipschitz continuity of the following performative policy gradient.
V-rrv)\ﬂ:‘n' :v‘frjk(ﬂ—a T, Py Tﬂ')
:Vﬂ‘])\(ﬂ-7 T, P7s Tﬁ')‘ﬁ':ﬂ' + (vﬂpﬂ)vpﬂ J)\(ﬂ-v T, Py Tﬂ) + (Vﬂ'rw)vnr J)\(Tr, T, Prs Tw)- (105)

For any 7, 7’ € IIa, we prove Eq. (21) as follows.

||V7T'V)thr’ - vﬂ'V)\ﬂ:‘n' H

||V Ia (@', 7, pa, 77 7= — VA (7,7, s 77) 5= |
+ va’pﬂ’H : ||vp7r/<] (7T 71— yPrty Tt ) Vp,,J)\(ﬂ-ﬂTupTra'rﬂ')” + va,rJA(Wﬂﬂmew)H . ||v7r’p7r’ - prwH

+ [ Varra]| - ”vm/ JA(W T D, T ) = Vo N T Dy )|+ Vo I T prs 1 )| Vi — Viara ||

(@ /1A|(1 + 2\ log | A , 1+ Mo A
< (| |( (1 _7)2g| |) —|—'7L7r) m?XHIOgﬂ' (‘8) —10g7r(.|s)H + {(—g|| +~L } ‘SHA pr pﬂ”

- (1—=9)?
-A Tn' —Trlloo
+ A =l o 10 C1s) — g m(18)] + €l = pall + 22 VSTl = 7o
Yeér r
+ LpSplln’ — |l + W(mgxllw’(-\s) = 7(-[s)llr + max |[p (-|s, a) —pw('|57a)||1) o 7" — ||
|A|(1+2)\10g|A|) , 2(1 4 Mlog|Al|) ,
< -V T el _
< A Y ' — 4 e/ ISTHA e L L]
e/ Al — 7] 0,
ol =l ep[znw' —ll + el - e VISl ]

+ LpSplln’ — 7r||+ (\/ISHW 7l + epV/ISla" = ll) +

|A|(1+2>\10g|A|) o e [1S]72(1 + Alog | A]) ,
S( Al —~)? )H ||+ |A| { (1—7)2 +’YLP:|H7T =

€|’ — €p lpe 2 —
+M+7[5ﬂ+7p+ 7 67‘\/‘8|:| 7" — =

" — =]

AVIA[(1 -~ Al AL =)
+ Aﬁ(l +)€p) || 7TH + LPSP +A7:L(|(l - 'Y) ||7T/ _ 7TH
(@) JA|(1+2Xlog |A]) /A2 — v + yAlog | A])
S( AT—2 Al —7)? )H o
@[2(1+Mog|fll)+v SI(1 +Mog|«4l)}” -
A (1—7)? (1—7)?
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S| A|(2 4+ 3yAlog | A 2¢,7|S|(1 + Alog | A 2— ,
+ip{\/| I AI( i 73 g | I)Jr ep7IS|( s 3gl ) _’Y 67-\/@}”7? —
A (1-7) lA[(1 =) |A[(1 =)

_|_ Er V |‘A|(1 — 7) + Ver V |S‘(1 + 617) Hﬂ_/ _ 7_‘_” + SP V |S|(1 + )‘log "A') + ST(l B 7) Hﬂ_/ _ 7_‘_”
AJA|(1—7)? AJA|(1 =)
3|A|(1 + )‘log ‘AD Hﬂ_/ _ 7T|| + 610 Vv |S||A|(5 + 6)‘ lOg |AD ||7T/ _ ﬂ_H
A(l=9)? A(l=9)?
er [VIAI(L =) + VISI(y + 26,)] + Sp/ISI(L + Alog [A]) + S,(1 =),
+ TR I —
|A|(1 =)

O

A )

where (a) uses Eqs. (49), (50) and (53)-(55) as well as Assumptions 1-2, and (b) uses the following bounds for any
7,7 € A in which (d) uses Assumption 1, (c) uses A < |A|~! (since forany 7 € I, 1 = > _ w(als) > A|A)]), (d) uses

L, := V |A\(2?1’y_+’y'y);\10g|A\)’ Lp — —\/‘Sl((ll't:/;ggm‘)’ 0, = vV |S“A|Efti’)¥3 log | Al) and Ep = W defined in
Lemma 6, (e) uses ¢, defined by Eq. (23).

max || log @' (-[s) — log 7 (-] s)|| <A™ max ||7'([s) — 7 (-[s)[| < A7Hx" — 7],
s s
() ,
|pxr — Pl <epllm" =l

(d)
|77 = T lloo <[Irar — 72l < 67“”77/ —ll,

max |’ (|s) = 7([s)[|1 <v/IS|max |17/ (s) — 7 (-|s)]| < V/IS]lIx" = 7],
(d)
max [ (s, 0) = pa(-ls, a)lls <v/ISTmax [pa (1, a) = pa(-ls, a)ll < VISllIpe = pall < ev/IS]I7" = 7.

H. Proof of Proposition 1

We prove the validity of the stochastic gradient (26) first. For any m € IIa, s € S and a € A, we have m(als) > A, so
m(als) <1— A (since ), m(a’|s) = 1). For any u; € Uy, we have |u;(als)| < 1. Therefore,

(m £ du;)(als) > w(als) — S|ui(als)| > A -5 >0, (106)
which means 7 £ du; € II. Hence, V)ff;r, is well defined for 7’ € {7 + du;, ™ — du; }.

Then we will prove the estimation error (30). Based on Lemma 10, there exists an orthogonal transformation 7 : RIMI -
Zig1={z=lz,...,24] € RAI: 37, z=0}.

Note that any = € RISIIAI=1) can be written as - = [2,]scs, a concatenation of |S| vectors -, € RI4I. Therefore, we can
define the transformation T : RISI(AI=1) _y r 4 {u e RISIAL u(-[s) € 2 4-1,Vs € S} as follows
[T(x)](-]s) = T(xs),Vs € S (107)

where 2, € RI4! are extracted from |.A| entries of 2 = [2,]ses. Forany 2 = [z4]ses,y = [ys]ses € RISIIAIZD and
«, B € R, we can prove that T" is an orthogonal transformation as follows.
[T(az + By)](-|s) = T(azs + Bys) = oT (xs) + BT (ys) = a[T(@)](|s) + BT (2)](|s)
=T(ox + By) = oT(z) + BT (y).

(T(2),T(y) =) _([T@)]Cls), [TWIC1s) = D AT (@), T(ys)) = D _{ws,ys) = (z,9).

S S

Define the following set.

def

T'Ia — AT S {mela: T (r—AH}, (108)
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where m — |A| =1 € RISIMI has entries (7 — |.A|~1)(als) = 7(als) — |A|~', som — |A|~' € L. Furthermore, since T
is a convex and compact set and 7~ is an orthogonal transformation, 7! (ITo — |.4| 1) is a convex and compact subset of
L.

Then for any z € T~ (TIa — |A|71), we have T'(z) + |A|~! € A, so we can define the function f(z) e VAT%ZJ;EX\;

Note that as VA’Tm is a differentiable function of 7, so for any 7’ € II and fixed = € II we have

’
™
V)\

, T

=V = (VaVE o =) Vi = Vi — (proj, (VA Vi), 7 — )

7" = - [ — =

—0asn’ €land 7’ — m, (109)

where the above = uses 7' — m € Ly. Then, we can prove that f) is differentiable with gradient V fy(z) =

T (proj, VaVi.| _ T(z) 4 Al 1), since for any &’ € T~ (IIa — |A|7!) and fixed z € T~ (ITn — |A|~!) we have

f)\(l'/) - f)\(x) - <T71 [projﬁo (VWV)‘TTF|7T:T((L‘)+‘A|_1):|’x/ - (E>
2" — |
T(a')+| A"} T(x)+]A]~" ; 7T _ _
(é) VA,T(w’)HA\*l o V)\,T(m)+|.,4\*1 - <prOJ£o (V 14 w‘ﬂ T(x)+\A|*1)’ [T(x’) + |-’4‘ 1} - [T(x) + |-A| 1]>
[[T(a") + A=Y = [T () + A
Yo asa’ e T Y(Oa — | A7) and 2" — 2, (110)

Where (a) uses the property of the orthogonal transformation T, and (b) uses Eq. (109) and the fact that ' — x means
|[T(") + [AI7Y = [T(2) + A = |2 = 2| — 0.

Furthermore, we will show that f)(z) is a Lipscthiz continuous and Lipschitz smooth function of € IIa. For any
z,2' € T IIa — |A|7Y), we have

z —1 - 1 ( ) L b L
) = @) =Vl L = VI L] S 2 - @) € 2 - al),
||ka(ﬂf ) va | _||T I:pI'O_].LU (VWV;:TV’W:T(w’))] - T71 [proj»co (VWV;‘;"TLT:T(QJ)):I H

=||p1"0j£0 (Va V;ﬂ’w:T(m/)HArl) = proj g, (VaVila |, T(:c)+|A\*1)||
<[ (Va V| (VaViTs]

<A T =T@)I = <llz’ =l

In both the inequalities above, (a) applies Theorem 3 to T'(z) + |A| 7%, T'(z') + |A| 1 € IIa and (b) uses the property of
the orthogonal transformation 7'. The two inequalities above implies that f) is an ——Lrpschrtz continuous and % ~ -Lipschitz
smooth function on 771 (I — |A|71).

n=T(z')+|A|~ 1) =T (z)+|A|~ 1)H

() £x

Denote

N

|S| “’4| T+ou; T—0u;
ns(mM="—"555 E_,: VS, — Ve, (11

which replaces V7, with V7, in Eq. (26). The estimation error of the performative policy gradient estimator above can be
rewritten as follows for any 7 € IIa.

grs(m) = projz, (VaVi,)

(a) S .A —1 al T+ou; T—0U;
:(|(2|]V|5>;(V)\ ;:J(iéu _V)\ 7r66u ) ) —pI‘OJL (v V)‘ﬂ-)
N

O (BIOAZD S (14— A7) 407 ()] — [T — A7) — 07 ()] T ()

=1
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- Tﬁl[PFOJ'LO(V Vil
N
©(IS|(|A _ _
(A S~ ([T = 1A 677 )]~ [T — A7) — 67 )] T ()
=1
= VAT (m = A7), (112)
where (a) uses Eq. (26), (b) uses f(z) def V/\T ;’mgk&l . and the property of the orthogonal transformation 7!, (c) uses
Vivz)=T"1 (Projﬁo V"TV;‘;W|W=T(QL‘)+\A|—1) Note that in the above Eq. (112), m € IIa and u; is uniformly distributed
on the sphere Uy N L with Uy defined by Eq. (27), as repeated below.

1 E {u e RIS Jlu) =1}, (113)

Hence, 7 + du; € [Ia_s which implies 771 (7 — |A|7Y) £ 0T Y (w;) = T~ 1w £+ 6u; — |A|7Y) € T HMa_s — |A]7Y).
Also, T~ (u;) is uniformly distributed on the sphere 7! (U1 ) = S;sj(aj-1) = {u € RISIIAI=D ||| = 1}. Therefore,
we can apply Lemma 9 to the above Eq. (112) where the function f) is an ﬁ— i i Aej 5-Lipschitz
smooth function on T~ (ITa_s — |.A|~1), and obtain the following bound which holds with probability at least 1 — 7

lga.s(m) = proje, (V= Vi)l

4L,|S[(]A] — 1) ISI(|A] —1) + 1y Lx[S[(]A][ 1) IS[(JA] —1) +1 24
= QN(A—(S) tog ( 7 )+ TR ¢N1°g( 7 )+ 35

<ALASIAL,p (1S1AY | LoISUAL 2, (151, ot "

“3N(A-0 A-s \|N N

Note that Eq. (24) holds for any a certain policy 7 with probability at least 1 — 7. Therefore, with probability at least
1 — 2N, we have

Vi — Vi < ey, Vo' € {m £ 0u;}Y (115)
Therefore, with probability at least 1 — (2N + 1)n, Egs. (114) and (115) hold and thus we have

lgx.6(m) — proj., (V= Vi)l
<lgas(m) = g6 (M)l + llga,s(7) — projz, (Va Vi)l

(a) |S‘(|A|_1) al T+ou; T+ou; T—0u; T—0u;

< W;(VA :+5u - )\;r‘—-&-éu VAW Su; VA,W—gui)“i
4L,|S||A| ISIIAIY | LaIS[IA| S| A] 60>
3N(A76)log( )+ A5y s ( o )+

© IS HAI +5 Foui _{rm—dus su;
Z || ;TW-'_'L;;L - V)\Trﬂ-&fg;h V;iﬂ_%;h + V):n;ﬂ'—gai)ui ||

4L, |S||A| ISIAIN | LAISIIA] [ 2 S| A] 0y
3N(A—5)10g( )+ AT wes (5) YA

Orm— U T—0u;
+ |V)\,7r75ui + V)\,7r76ui

)

4L5[S|A| ISIIAIN | LaISTIA| |SI[A %N
3N(A —9) log (5,7) + A5 Nl (5,7 Y2

N
|S]IA| +us +ous
S NS Z V)\ﬂ'lrJrIgul V,\Trqugu
i=1

(©2|S||Aley | 4Lx|S||A] IS[[A]\ | LaIS||A] |2 |S]|A] 15\
< " log ( ) n ~log (—) + s (116)

=7 3N(A —9) A—3 y
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where (a) uses Egs. (26), (64) and (114), (b) uses Jensen’s inequality that || & Zivzl il < & Zf\;l ||z;||? for any vectors
{x;}¥| of the same dimensionality, (c) uses Eq. (24). The conclusion can be proved by replacing n with 3% in the
inequality above.

I. Proof of Proposition 2

For any 7 € Il A, it is easily seen that the corresponding 7’ defined by Eq. (19) also belongs to ITa. Therefore,

DA

VoViom —m) < max (V, V] 7—7) < ————.
< A, > < A, > 5‘A|(1 _A/)

X
Tella

Substituting the above inequality into Eq. (17), we obtain that

2 A 2 min
m(als) >mmin €xp | — %(1 — VLV, —m)| > 7T3 > 2A.
Therefore, for any 7 € II, we can prove that ”2; T ¢ IIA as follows.
ma(als) + m(als) < 0+ 2A _A
2 - 2
Therefore, we can prove Eq. (34) as follows.
Ty + T (a) -
s = (V0 T ) D g e (9,057 )
gg)ﬁ(V Vs T — ) max ViV, 5 m) < ;ré%;i(v Vi, T —)

where (a) uses % € Ila.

J. Proof of Theorem 4

If m; € IIA, then w1 € Ila, since IIa is a convex set and 7y, obtained by Eq. (32) is a convex combination of
m, T € IIa. Since mg € IIa, we have m; € 11 for all ¢ by induction. Therefore, Proposition | implies that the following
bound holds simultaneously for all {m;}Z_; C 1A with probability at least 1 — 1.

19x.5(me) = proj e, (VaVii )

AL A o (T ¢ YA 2 g (TR 2 )
The bound above further implies that for any 7 € II, we have
[(gas(m) = VoVt m— )
@) (gas(m) — proj, (Vo Vit ), m — mp)|
<Nlgas () = proj ey (Va Ve )| - I — me|
© 7S [2|S\|(;4|6V N 3;?&”:413) o (STNISHAI) N LAA|S_\|:54| %log (3TN\S||A\) . Aggj&}’ W)

where (a) uses 7y — 7y, ™ — mp € Lo for 7, T € Ila, and (b) uses Eq. (117) and Lemma 12.
Under the conditions above, we have

Tt41
A7Wt+1

(a) KA
ZV;;’” + (VWV)\T;t,mH — 7Tt> — E||7Tt+1 — ’/Tt||2

INa
2A

17 — me|?

b T ~
yre BV VT o — ) —
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s N B _ A ) , ) ~
=Vim T B{grs(me), T1e — ) + ﬁ(va)\,;—t —gas(m), 1 —m) — %Hﬂ't _ 7Tt||2
(© ) ] .
ZV)\TZM + B<9A,6(7Tt),’ﬂt - 7Tt> _ )‘|A|B
2|S||Aley  4L|S|| A 3TN|S||A]\  LalS||A| |2 STNIS|IA 5.
VRIS +?’TN<A—(5)log( )+ =35\ s ( )+ as) o

where (a) uses the %-Lipschitz smoothness of V/\fﬁ on IlA, (b) uses Eq. (32), (c) uses Eq. (118) and Lemma 12.

Rearranging and averaging Eq. (119) overt = 0,1,...,7T — 1, we obtain that
max (g (m7), 7 = 77

(a) A -
=(grs(T7), TF — T7)

®)1 = i
< T (Gx,6(me), T — )
t=0
VrT oy
< )\,TrTTﬁ Ao | f/\fw
2|S||Aley | 4Ly|S]JA| 3TNIS|IAl\ | LaIS[JA] |2 3T'N|S||A| 50x
5 1 2
+ V2SI T 3TN o) © ( )+ 25wl " )+ 223
< 1;3?11% «;ﬂ . fx\iw
—
2|S||Aley | 4Lx|S|| A 3TNIS|IA[\ | LalSIIA] |2 3TN|S||A| 6l
+ V2] [T +3TN(A—5)10g( )+ T2y e )+ as) a0

where (a) uses Lemma 1 which means 7; satisfies Eq. (31) and (b) uses the output rule of Algorithm 1 that T €
arg ming ;<71 (gx,s(7¢), ¢ — 7). Therefore,

max <VWV;§T,7? — 7Tf>

Tella
= ;IGI%}Z [<V7TV;:ZT:7: - g)\,(s(ﬂ.ﬂ'f)? T — 7T’1~"> + <g)\,5(ﬂ.7\'f)7 T — 77’1~">]
(%)1 + Alog | A n INEIE
TB(1—7) A
2S|[Alev | 4L5|S||A] BTN|S|IAl\ | LalS[JA] |2 3TN|S||A] 30y
+2/208] |72 +3TN(A—6)10g( )+ 25w ( )+ as) a2
where (a) uses Eqgs. (118) and (120).
Use the following hyperparameter choices for Algorithm 1.
A :”‘;“, (122)
DAe Dmpine
_ _ mint O 123
P =Tatys] ~ 360,05~ O (123)
12(1 + Alog |A|)  4320,]S|(1 + Xlog | A]) g
DeB(1—7) N T R e GO (129
DAe Dryine (@) A
5= = 2 =0(e) £ —, 125
48./2|S]€x  1444/2|S|lx (9 < 2 (129)
D minD2 2
oc T < O(e?) (126)

€ = = =
" T 8IS[|A[/2IS]  138240[S[P|A]
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66355212 |S||.A2 165888L§|3| A2 129665[S|?|A(1 + Alog | A])
- D22, €2 log max ( D272 ’ D2nmmin (1 — )2 )

mm

3|8
+ 2log (M) +3
n
=0[e ?log(n~te 1)) (127
where (a) uses € < 24/2|S|¢,/D. With the hyperparameter choices above, we obtain the following inequalities (128)-(130).

Ly|S||A] |2 3TN|S||A|

8w ()
(@)24L,|S|*5|A| [log N 1 12964,|S|?|A|(1 + Alog | A
DULSIA flos XL 12060 SPLA Vg A]

Tmin N N NTmin D2 (1 — 7)€
(®) L5
S24L)\|$| |A|

Tmin
_12\/5L)\‘S|15|A‘ 1)7Tmin6

Tomin V165883 L, |S| 1| A
De

cDe 128
STE (128)

where (a) uses Eq. (124) and § < A/2 = my,i, /6 implied by Egs. (122) and (125), (b) uses Eq. (127) and its implication
1.5

that N > 4¢~!log(é~1) with & = < 0.5 (since € < w)’ which implies IOgN < € based on

Lemma 11.

7rxnin€2
165888D2L2|S[F A2

+

1 (3TN|S||A|)_10g(TN) L (3|5\|A|)§ —1, (129)

| 11
o 1.1
TN 8 TN TN 272

where (a) uses NT' > N > max {3, 2log (%)} and Lemma 11.

4L, |S||A|
3TN(A =)

V2L5|S|IA|

2/ - A—§ TN

lo

log 2|S] -

(3TN7|78|A|) (130)

)
(3TN|S||A|> < 11926

where (a) uses 4 < v2andy < \/y fory = 7 log (%) < 1 (Eq. (129)), and (b) uses T > 1 and Eq. (128). By
substituting the hyperparameter choices (122)-(127) as well as Eqs. (128) and (130) into Eq. (121), we have

max <V V)\7r , T — 777:>

wella
Lt loglA] 4S8
T TA(1=7) A
2|S||Ale 4L,|S||A 3TN|S||A Ly|S||A 3TN|S||A Y4
+2\/m[| I |V+3TJ\;(|A||—1S)IOg< S|l I) xAI |I5| Nl ( 7|7|| |>_|_A_A5}
<1+)\10g|A| ef(1—7) OIS Ae
B(1—~) 12D(1+Alog|A]) ~ A 12D4,|S]
+4m|8||./4|. de L€ 4 2\/2|78€,\ Ae
0 48D|S||Al\/2]S] 12D 12D " A2 48,/2[8Diy
De (@ DX
i A —
2 7 5lA|(L—9)
2)D?

where (a) uses € < A=) Then based on Proposition 2, the inequality above implies that
T ~
mgx <V7TVA’£%, T — 7T7‘:> < Dk,
which means 77 is a De-stationary policy. Then if 1 > 0, Corollary 1 implies that 77 is also an €-PO policy.
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K. Adjusting Our Results to the Existing Quadratic Regularizer

In Section 4, we have proposed a 0-PPG algorithm and obtain its finite-time convergence result to the desired PO policy for
our entropy-regularized value function (8). We will briefly show that 0-PPG algorithm can also converge to PO for the existing
performative reinforcement learning defined by the value function (1) with quadratic regularizer H (7) = 3||dzp_, ||
(Mandal et al., 2023; Rank et al., 2024). The performative value function can be rewritten as the following A-strongly
concave function of d .

Vi = drpr,7x) = Aldnp, ||*. (131)
We can prove the performative value function above also satisfies Theorem 1 (gradient dominance) with a different p,
following the same proof logic, since both regularizers H. () are strongly convex functions of d ,_ which implies that
V/\T o is a p-strongly concave function of « as shown in the proof of Theorem I in Appendix D. By direct calculation, we
can also show that V" above is a Lipschitz continuous and Lipschitz smooth function of 7w € II. With these two properties,
we can follow the proof logic of Theorem 4 to show that the 0-PPG algorithm (with the same procedure as that of Algorithm
1 except the different values of V”“ in the policy evaluation step) converges to a stationary policy of the performative
value function (131), which by gradlent dominance is a PO policy when the new value of y satisfies p > 0.
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