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Abstract

Edge devices can benefit remarkably from federated learning due to their distributed nature;
however, their limited resource and computing power poses limitations in deployment. A
possible solution to this problem is to utilize off-the-shelf sparse learning algorithms at the
clients to meet their resource budget. However, such naive deployment in the clients causes
significant accuracy degradation, especially for highly resource-constrained clients. In par-
ticular, our investigations reveal that the lack of consensus in the sparsity masks among
the clients may potentially slow down the convergence of the global model and cause a sub-
stantial accuracy drop. With these observations, we present federated lottery aware sparsity
hunting (FLASH), a unified sparse learning framework for training a sparse sub-model that
maintains the performance under ultra-low parameter density while yielding proportional
communication benefits. Moreover, given that different clients may have different resource
budgets, we present hetero-FLASH where clients can take different density budgets based
on their device resource limitations instead of supporting only one target parameter density.
Experimental analysis on diverse models and datasets shows the superiority of FLASH in
closing the gap with an unpruned baseline while yielding up to ∼10.1% improved accuracy
with ∼10.26× fewer communication, compared to existing alternatives, at similar hyperpa-
rameter settings. Code is available at https://github.com/SaraBabakN/flash_fl.git

1 Introduction

Federated learning (FL) (McMahan et al., 2017) is a popular form of distributed training, which has gained
significant traction due to its ability to allow multiple clients to learn a common global model without sharing
their private data. However, clients’ heterogeneity and resource limitations pose significant challenges for
FL deployment over edge nodes, including mobile and IoT devices. To resolve these issues, various methods
have been proposed over the past few years for efficient heterogeneous training (Zhu et al., 2021; Horvath
et al., 2021; Diao et al., 2020) or aggregation with faster convergence and reduced communication (Li et al.,
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2020b; Reddi et al., 2020). However, these methods do not necessarily address the growing concerns of high
computation and communication limited edge.

Meanwhile, efficient edge deployment via reducing the memory, compute, and latency costs for deep neural
networks in centralized training has also become an active area of research. In particular, recently proposed
sparse learning strategies (Evci et al., 2020; Kundu et al., 2021; 2022; Mocanu et al., 2018; Dettmers &
Zettlemoyer, 2019) effectively train weights and associated binary sparse masks such that only a fraction of
model parameters (density d << 1) are non-zero during training. This enables the potential for reduction in
both the training time and compute cost (Qiu et al., 2021; Raihan & Aamodt, 2020), while yielding accuracy
close to that of the unpruned baseline.

In addition to the aforementioned benefits of sparse learning in centralized settings, its proper deployment in
FL can reduce communication costs. In particular, users can train larger models while communicating only

Text

a) b)

~40%

~39%
~10.5%

Figure 1: (a) Accuracy vs. Communication. For a
given communication threshold, sparse learning in FL
can improve performance. (b) Accuracy vs. parame-
ter density in each client. Our approach significantly
outperforms the existing alternative (Qiu et al., 2021).

a fraction of weights that are non-zero (Fig. 1 (a)).
However, the challenges and opportunities of sparse
learning in FL are yet to be fully unveiled. Only
very recently, few works (Bibikar et al., 2022; Huang
et al., 2022) have tried to leverage non-aggressive
model compression in FL. Another recent work,
ZeroFL (Qiu et al., 2021), has explored deploy-
ing sparse learning in FL; however, failed to lever-
age the advantages of model sparsity to reduce the
clients’ communication costs. Moreover, as shown
in Fig. 1(b), for d = 0.05, ZeroFL suffers from a
substantial accuracy drop of ∼14% w.r.t baseline.

Contributions. Our contribution is fourfold. In
view of the above, we first present crucial observa-
tions in identifying several limitations in integrating sparse learning in federated settings. In particular, we
observe that the sparse aggregated model does not converge to a unique sparsity pattern, primarily due to
a lack of consensus among the clients’ masks in different rounds. In contrast, as the model matures in
centralized training, the mask also shows a higher convergence trend. We further empirically demonstrate
the utility of incorporating layer importance and clients’ consensus on the performance.

We then leverage our findings and present federated lottery aware sparsity hunting (FLASH), a methodology
that can achieve computation and communication efficiency in FL by employing sparse learning.

Furthermore, in real-world scenarios, FL users are more likely to have highly heterogeneous resource budgets
(Diao et al., 2020). Therefore, instead of limiting everyone by the minimum available resource, we extend
our methodology to hetero-FLASH, where different clients can participate with different sparsity budgets
yet yield a sparse model, leveraging the resource and data of each client while adhering to their own resource
limit. Here, to deal with this problem, we propose server-side sub-sampling where the server creates multiple
sub-masks of the global model’s mask such that all follow the global layer importance.

We conduct experiments on MNIST, FEMNIST, CIFAR-10, CIFAR-100, and TinyImageNet with different
models for both IID and non-IID client data partitioning. Our results show that compared to the existing
alternative (Qiu et al., 2021), at iso-hyperparameter settings, FLASH can yield up to ∼8.9% and ∼10.1%,
on IID and non-IID data settings, respectively, with reduced communication of up to ∼10.2×.

2 Related Works

Model pruning. In the past few years, a plethora of research focused on model compression via pruning
(Frankle & Carbin, 2018; Liu et al., 2021; You et al., 2019; Kundu & Sundaresan, 2021; Niu et al., 2020;
Kundu et al., 2023a). Pruning essentially identifies and removes the unimportant weights to yield efficient
inference models. To this aim, various methods have been proposed for different purposes. Here, we focus
on Sparse Learning, which can potentially reduce the update size and compression errors (Xu et al., 2020)
for FL users.
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Sparse learning. It is a popular form of model pruning that recently has gained significant traction (Evci
et al., 2020; Kundu et al., 2020; 2019). In particular, in sparse learning with target density d, only d% of
the model parameters remain non-zero during the training (d << 1.0 and sparsity is 1.0− d).

In our paper, we leverage Dettmers & Zettlemoyer (2019) to find the sparse mask efficiently for each client.
Particularly, the training starts with a sparse model and a randomly initiated mask that meets the target
parameter density d. Since there is no prior knowledge about the importance of weights and layers, we
start with a random sparse mask with uniform layer-wise parameter density d. The mask gets updated
based on a prune-regrow policy at the end of each epoch. In each round, first, layers are ranked based on
their normalized contribution in the non-zero weights. Then, the lowest pr%1 weights from each layer are
pruned based on their absolute magnitude. Since this pr% pruning happens on top of d% density, we need
to regrow pr% from the pruned ones back in the model. Here, each layer gets the number of regrown weights
proportional to their normalized contribution, giving layers with higher importance more non-zero weights.
This process iteratively repeats each epoch to learn the mask and non-zero weights. Note that there are
multiple choices for pruning and regrowing the weights; however, we chose absolute magnitude to save the
cost of computing additional values, such as the momentum.

FL for resource and communication limited edge. Resource limitation and heterogeneity are among
the most known challenges, especially in cross-device federated learning (Kairouz et al., 2021). Existing
works have explored the idea of heterogeneous training that allows clients to train on different fractions of
full-model based on their compute budget (Horvath et al., 2021; Diao et al., 2020; Mei et al., 2022; Niu et al.,
2022). On a parallel track, various optimizations are proposed to accelerate the convergence, thus requiring
fewer communication rounds (Han et al., 2020; Gorbunov et al., 2021; Zhang et al., 2013; Li et al., 2019).

To make FL more communication efficient, a few works have leveraged pruning (Li et al., 2020a; Jiang
et al., 2022; Li et al., 2021). In LotteryFL (Li et al., 2020a), clients adapt personalized masks that perform
well only on their local data. Moreover, the clients must regularly communicate the entire model to the
server. Similarly, PruneFL (Jiang et al., 2022) also asks for high communication costs as it demands the
participating clients to send the gradient values of the entire model to the server while updating the masks.

Only a few works (Huang et al., 2022; Bibikar et al., 2022; Qiu et al., 2021) tried to benefit from sparse
learning in federated settings. In particular, Huang et al. (2022) relied on a randomly initialized sparse mask
and recommended keeping it frozen during the training without providing any supporting intuition. FedDST
(Bibikar et al., 2022), on the other hand, leveraged RigL (Evci et al., 2020) to perform sparse learning in
clients. It relied on a large number of local epochs to avoid gradient noise and focused primarily on highly
non-IID data distributions without targeting ultra-low density d. More importantly, neither of these works
investigated the key differences between sparse learning in centralized and FL. With a similar philosophy as
ours, ZeroFL (Qiu et al., 2021) identified a fundamental aspect of sparse learning in FL; the top-k weights
of clients are likely to differ for low densities; hence, the aggregated update cannot benefit anyone. They
propose increasing the update density to increase the update overlap and improve accuracy. As a result,
despite training a model with density d = 0.1, clients send updates to the server with d = 0.3. Thus, this
approach does not benefit from proportional communication efficiency; all clients receive a dense model and
send back a 3× denser model, and still, the global model suffers from a significant accuracy drop.

Another contemporary work (Isik et al., 2023) leveraged the idea of learning the sparse mask while keeping
the weights fixed to their initialized values (Ramanujan et al., 2020). Thus, clients are only required to
send the binary mask updates to the server, reducing the communication by 32×. However, due to SGD-
based updating of floating point mask for each weight, such methods do not necessarily help the client’s local
computation. Such an assumption is out of our current scope, as we assume an even stricter constraint where
no client can perform dense model updates or storage while yielding significant communication savings.

3 Revisiting Sparse Learning: Why Does it Miss the Mark in FL?

In centralized training, applying sparse learning methods has shown benefits in FLOPs reduction during
forward operations (Evci et al., 2020), and potential training speed-up of up to 3.3× (Qiu et al., 2021) while

1Prune rate (pr) indicates the % of weights pruned from each layer of a sparse model.
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maintaining high accuracy at low densities (d ≤ 0.1). However, here, the primary purpose of employing sparse
learning is to utilize communication efficiency by reducing update size in FL. Such methods can potentially
get better convergence and performance compared to post-training or data-independent methods.

Table 1: FL training settings considered in this work.

Dataset Model Data- Rounds Clients Clients/Round Optimizer Aggregation Local Batch
partitioning (T ) (CN ) (cr, cd) epoch (E) size

MNIST MNISTNet

LDA

400

100 10, 10 SGD FedAvg 32CIFAR-10 600
CIFAR-100 ResNet18 800 1

TinyImageNet 600
FEMNIST Same as (Caldas et al., 2018) – 1000 3400 34, 34 16

In this section, we conduct an exhaustive analysis to understand how naive deployment of sparse learning in
FL works while unveiling key differentiating factors in training dynamics with sparse learning in centralized
compared to that of FL. We used a widely adopted FL training setting (Qiu et al., 2021; Diao et al., 2020)
(refer to Table 1 for details) on the CIFAR-10 dataset and added sparse learning on the clients. Here, each
client separately performs sparse learning (Dettmers & Zettlemoyer, 2019) to train a sparse ResNet18 model
and meet a fixed parameter density d, starting from a random sparse mask. At the end of each round,
clients send their updates to the server, where they get aggregated using FedAvg. We name this naive sparse
training (NST) due to its plug-and-play nature of deployment of sparse learning in FL. Notably, NST can
decrease only communication from clients to the server mainly because these updates usually have different
sparsity patterns. Therefore, aggregating them by simply averaging gradients causes the final model to have
density >> d, translating to a higher downlink communication cost.

a) b)

3.7 %
12 %

Figure 2: Accuracy vs. round. Comparison between
the performance of sparse learning in federated and
centralized settings (dense and sparse baselines are
shown in dashed and solid lines.).

a) b)

Figure 3: Heatmap of SM between masks generated
in different rounds of (a) centralized and (b) feder-
ated learning. Lower SMs indicate more similarities
between the masks.

Observation 1. At ultra-low density d ≤ 0.1, the collaboratively learned FL model significantly sacrifices
performance, while the centralized sparse learning yields close to baseline performance.

Fig. 2 shows that sparse learning methods with high sparsity can perform similarly to the dense model (gray
and green lines). However, naively deploying the same method in FL can cause significant performance
degradation (purple and orange lines). In particular, the same model can suffer from an accuracy drop of
3.7% and 12% for d = 0.1 and d = 0.05, respectively.

Observation 2. As the training progresses, the sparse masks in centralized training tend to agree across
epochs, showing its convergence, while the server mask in FL does lack consensus across rounds.

Definition 1. Sparse mask mismatch. Let us call the masks generated at rounds i and j as Mi and
Mj . Now, we can define the sparse mask mismatch(SM) sm(i,j) as the Jaccard distance between these two
masks where Mi

l represents the sparse mask tensor for layer l.

sm(i,j) = 1−
(
∑L

l=1Mi
l ∩M

j
l )

(
∑L

l=1Mi
l ∪M

j
l )

(1)
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Fig. 3 presents the SM for the intermediate sparse masks generated during sparse training in centralized and
federated learning. As Fig. 3(a) shows, SM decreases in centralized learning as the training progresses. On
the other hand, in Fig. 3(b), the SM values for similar settings (same model, dataset, and density) for the
global model in FL remains > 0.4 indicating a distinction in the sparse learning between the two settings.

Observation 3. In federated sparse learning with low target density, a lack of consensus at the later (deeper)
layer’s masks remains more severe than that of the earlier ones.

Figure 4: Layer-wise sparse mask mismatch vs. epoch (rounds) for (a) centralized and (b) FL. In FL, the SM
for later layers stays high, contrary to centralized, where SM reduces for all layers as the training matures.

Fig. 4 presents the layer-wise SM of the consecutive masks in centralized and federated learning. As shown
in Fig. 4(a), by increasing training rounds in centralized learning, for each layer, the distance (measured by
SM) between masks decreases, showing a convergence trend. However, in FL (Fig. 4(b)), the later layers’
masks change significantly in different rounds with SM value as high as ∼0.8. One possible explanation for
this phenomenon is based on layer sensitivity, which we define below.

Layer sensitivity. All layers do not carry the same importance towards the final model performance. One
proposed metric to measure this difference is layer pruning sensitivity (Ding et al., 2019). After pruning
the model using any prospective algorithms, layers that are assigned higher density are the ones that are
more sensitive to pruning and play a more important part in the final performance. We can measure the
sensitivity of a sparse layer (l) via the ratio of its total # of non-zero weights to the total # of weights.

sensitivityl = total# non-zero weightsl

total # weightsl
(2)

It is commonly known that later layers usually have lower sensitivity and a larger number of total parameters,
allowing them to have many possible mask options compared to the earlier ones. Therefore, clients are
unlikely to reach a consensus and are more likely to come up with different masks in the later layers, causing
an increased SM . For example, 90% of the parameters in layer 1 and 5% of the parameters in layer 14 are
present in the final mask, and as expected, SM for these layers is 0 and ∼0.73, respectively.

To further investigate the impact of high SM and layer sensitivity on a model’s accuracy, we per-
formed five different centralized training as described in Table 2. Particularly for the training of row 1,

Table 2: Performance based on the different levels of
mask disagreement in centralized.

Training Use sens- Masks Layer Test
method itivity change at SM acc%

Pre-defined with frozen mask N – – 89.72
Y – – 91.66
Y layer 9-16 0.8 88.88

Without frozen mask Y layer 1-16 0.5 84.62
Y layer 1-16 0.8 82.32

we randomly generate sparse masks with uniform
density for all the layers. For rows 2 − 5, first, we
randomly create each layer’s mask by following its
pruning sensitivity2, then decide to freeze (prevent
changing) the mask partially or for all layers. More
specifically, in row 2, the initialized (pre-defined)
mask does not change. For rows 3−5, at each epoch,
a fraction of the mask in the specified layers changes
to meet the target SM value. As Table 2 shows that
large SM of masks between epochs can degrade the
accuracy by up to 9.34%, and we can safely conclude that disagreement of masks across epochs can affect
the final performance. Moreover, the model trained via sparse learning with sensitivity-driven pre-defined
masks (row 2) yields better performance than the one trained using a pre-defined mask.

2We train a separate model with the same architecture and target d to measure the final layer-wise sensitivity.
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Figure 5: Summary of FLASH. Stage 1: Cd clients perform sparse training locally to find layer-wise sensi-
tivities. Stage 2: Clients collaboratively train the weights under the server’s supervision to follow the layer
sensitivities and reach a consensus in yielding sparse masks.

Based on this observation, we hypothesize that such a lack of consensus impacts the model’s performance.
Changing the mask every epoch means a large chunk of weights to be updated from 0, affecting the trained
weights’ maturity. We note that this is an observation in a centralized setting. However, we believe it reflects
a generic phenomenon irrespective of the centralized or decentralized nature of training.

4 FLASH: Methodology

Based on observations in section 3, we hypothesize that deploying sparse learning in clients, though it helps
them find a lottery ticket individually, fails in finding a global one. To help FL find the winning lottery;
we identify two key characteristics of sparse learning, pruning sensitivity and mask convergence and present
federated lottery aware sparsity hunting (FLASH) methodologies. To adhere to the identified feature, FLASH
includes two stages: Stage 1 that learns layer sensitivity to properly initialize the sparse mask; Stage 2 that
trains weights and masks. Below, we explain how each step works and highlight its importance. Algorithm 1
details the training methods, and Fig. 5 summarizes FLASH and its components.

4.1 Stage 1: Mask Initialization

This stage aims to identify a good sparse mask the server can provide to the participating clients. However,
since in FL, the server does not have access to the training data, the server requires the help of the clients
to estimate layer importance. Server first randomly selects a small fraction of clients ([Cd]) and asks them to
perform sparse learning (locally) on their private data for a few warm-up epochs (Ed) (L4-8 in Algorithm 1).
It then evaluates each of cd clients’ layer sensitivities via Eq. 2. For each layer l, the server estimates average
density 3 by averaging the sensitivity of that layer over cd clients, i.e. d̂l =

∑cd

i=1
dl

i

cd
, where dl

i is the density at
layer l in ith client. As these averaged layer-wise density values may not necessarily satisfy the target density
(d) criteria, for a model with K parameters, we present the following density re-calibration formulation

dl
c = d̂l.rf , where rf = d×K∑L

l=1 d̂l.kl
(3)

kl is the dense model’s parameter size for layer l. For each layer l in the model, the server creates a binary
sparse mask tensor that is randomly initialized with a fraction of ones ∝ dl

c (L9 in Algorithm 1).

4.2 Stage 2: Sensitivity-Aware Training

Using Stage 1, clients can start training with a sensitivity-driven initialized mask. However, this does not
guarantee the mask convergence which we have shown (section 3, Obs. 2). Therefore, we propose the
following two approaches that can significantly improve mask convergence.

3which is the same as sensitivity for a layer.
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Algorithm 1: FLASH Training.
Data: Training rounds T , local epochs E, clients [CN ], clients per rounds cr, target density d ,

sensitivity warm-up epochs Ed, density warm-up client cd, freez = 0 and Aggregation type Agr.
1 Θinit ← initRandomMaskedWeight(d)
2 serverExecute:
3 # Calculate the layer-wise sensitivity in stage 1
4 Randomly sample cd clients [Cd] ⊂ [CN ]
5 for each client c ∈ [Cd] in parallel do
6 Θc ← clientExecute(Θinit, Ed, 0) # freez = 0
7 Sc ← computeSensitivity(Θc)
8 end
9 Θ0 ← initSensivityDrivenMaskedWeight([Sc], d)

10 freez ← 1 if SPDST, 0 if JMWST
11 # Start Stage 2
12 for each round t← 1 to T do
13 Randomly sample cr clients [Cr] ⊂ [CN ]
14 for each client c ∈ [Cr] in parallel do
15 Θt

c ← clientExecute(Θt−1, E, freez)
16 end
17 Θt

S ← aggrParamUpdateMask([Θt
c], Agr)

18 Θt ← subsampleServerModel(Θt
S , [Θt

c], d, freez)
19 end
20 return ΘT

21 clientExecute(Θc0 , E, freez) :
22 for local epoch i← 1 to E do
23 Θci ← doSparseLearning(Θci−1 , freez)
24 end
25 return ΘcE

Approach 1: SPDST. In this approach, to achieve a convergent mask and low sm values, the server
pre-defines layer masks at initialization (set freez = 1 at L10 in Algorithm 1). This way, all the clients
agree on the mask and only train the non-zero weights. This guarantees no mask divergence issue (sm(i,j)

= 0 for all i, j). Moreover, as FLASH disentangles the sensitivity evaluation stage from the training, the
pre-defined mask in this scenario benefits from the notion of layer sensitivity. We thus aptly name this
approach as sensitivity-driven pre-defined sparse training (SPDST). Interestingly, earlier research (Bibikar
et al., 2022) hinted at poor model performance with pre-defined masks, contrasting ours where we see
significantly improved model performance, implying the importance of stage 1 (as will be elaborated in
section 5).

Approach 2: JMWST. Here, after stage 1, the global mask is not frozen, and clients have the freedom
to come up with their mask and change the global one (set freez = 0 at L10 in Algorithm 1). This way,
the model masks and weights are jointly learned during clients’ local learning, thus termed as joint mask
weight sparse training (JMWST). However, as highlighted earlier, clients’ naive sparse mask selection at the
beginning of each round costs a considerable accuracy drop (section 3 Obs. 1). To avoid this problem and
increase mask consensus, JMWST allows the server to subsample a sparse model with density d at round
t + 1 from the aggregated model at the end of round t.

As mentioned in section 3, with target density d, the aggregated model has density dserver > d. To enable
efficient sampling of a sparse model while adhering to layer sensitivity, we leverage the density re-calibration
strategy (Eq. 3) by taking the tth round’s clients’ average sensitivity into consideration (L18 in Algorithm 1).
The server performs magnitude pruning to retain the top-dl

c fraction of parameters for lth layer and sends
the pruned model to clients at round t + 1. Intuitively, the server’s sampling of non-zero weights reduces
the chances of wasted updates and accelerates mask convergence due to alignment with the layers’ pruning
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sensitivity. Then, the next round’s clients can perform sparse learning locally, yield another set of sparse
models, send them to the server, and so on. By default, the server evaluates masks every round rint = 1.
However, it can increase the update interval, and clients update the mask after a specific rint > 1 round.

SPDST vs. JMWST. The update aggregation and communication are more straightforward in SPDST,
as the position of the zero and non-zero parameters are fixed, and the global model’s density remains at d
both at the server and the clients. In terms of mask convergent, SM is always 0 for SPDST because the
mask is pre-defined and does not change. In contrast, JMWST gives more freedom to the client, and they
can participate in mask training. Additionally, we observed that JMWST has a lower SM than NST, and
the mask it more convergent. For example, for the CIFAR-10 dataset after 300 rounds, the SM value for
JMWST is ∼85% lower than that of NST.

Extension to support heterogeneous density. The current framework assumes that all the clients train
with the same target density d. However, users may have different resource limitations, and some may
contribute more resources to the training based on their budget. We now present hetero-FLASH to support
this resource-heterogeneity of users and adhere to their respective density budgets.

Let us assume there are N available support densities dset = [d1, .., dN ], where di < di+1. Now, for hetero-
SPDST and hetero-JMWST, we perform the same Stage 1 as explained before to create the masks for the
clients with the highest density dN . For any other density di, we sample a sparse mask from that with
density di+1. Note, while creating the mask from di+1 to di, we follow the layer-wise density re-calibration
approach (Eq. 3). Similar to the original SPDST, after Stage 1, the server freezes all the N pre-defined
mask for the heterogeneous case, and for the rest of the training, clients can use the mask associated with
their budget. For hetero-JMWST, at the beginning of each round, the server performs magnitude pruning to
yield N sub-models meeting N different density levels, contrasting to the creation of one model in JMWST.
Participating clients of different densities use the corresponding sub-models to start sparse learning locally.

In hetero-FLASH, clients do not contribute to weights equally. Considering all the parameters from clients
with sparse masks, specifically, the pruned parameters may hurt the updates that are not zero on that same
position. Therefore, instead of FedAvg., the server performs aggregation we call Weighted Fed Averaging
(WFA). In particular, with similar inspiration as Diao et al. (2020), instead of averaging over # of partic-
ipating clients, we average each non-zero update by their total non-zero occurrences over the participating
clients in a round. We have provided the algorithm for hetero-FLASH in the Appendix.

5 Experiments

Datasets and models. We evaluated the performance of FLASH on MNIST (LeCun & Cortes, 2010) on
MNISTNet (McMahan et al., 2017), FEMNIST on model described in (Caldas et al., 2018) and CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and TinyImageNet (Pouransari & Ghili, 2014) on ResNet18 (Further
details in the Appendix). For data partitioning of MNIST, CIFAR-10, CIFAR-100, and TinyImageNet, we
use Latent Dirichlet Allocation (LDA)(Reddi et al., 2020) with three different α (α = 1000, 1, 0.1). In this
allocation, decreasing the value of the alpha increases the data heterogeneity among the clients. FEMNIST
is built from handwriting 3400 different users (Han et al., 2020), making it inherently non-IID.

Training hyperparameters. We use starting learning rate (ηinit) as 0.1 which exponentially decayed to
0.001 (ηend). Specifically, learning rate for participants at round t is ηt = ηinit(exp( t

T log( ηinit

ηend
))). In all

the sparse learning experiments, the pruning rate is 0.254. Other training hyperparameters can be found in
Table 1. Furthermore, all the results are averaged over three different seeds.

5.1 Experimental Results with FLASH

To understand the importance of stage 1 in FLASH methodology, we identify a baseline training with
uniform layer sensitivity-driven pre-defined sparse training (PDST) in FL. Table 3 details the performance
of FLASH at different levels of d. In particular, as we can see in Table 3 columns 5 and 6, the performance
of the model for both NST and PDST drops at ultra-low parameter density d = 0.05, 0.01. For example,

4Prune rate controls the fraction of non-zero weights participating in the prune-regrow during sparse learning.
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Table 3: Results for different datasets with FLASH (SPDST, and JMWST) and its comparison with NST
and PDST for different densities (d ∈ {5%, 10%} for all datasets and extreme sparse, d = 1% for CIFAR-10,
CIFAR-100 and TinyImageNet) and data distributions (α ∈ {0.1, 1, 1000}).

Dataset Data Distribution Density Baseline NST PDST SPDST JMWST(rint = 1) JMWST(rint = 5)
(d) Acc % Acc % Acc % Acc % Acc % Acc %
1.0 98.79± 0.06 – – – – –

IID (α = 1000) 0.1 – 97.57± 0.11 97.09± 0.18 98.21± 0.06 97.95± 0.16 98.09± 0.16
0.05 – 95.19± 0.56 94.8± 1.04 97.46± 0.14 97.24± 0.21 97.37± 0.23
1.0 98.76± 0.06 – – – – –

MNIST non-IID (α = 1.0) 0.1 – 97.36± 0.19 96.82± 0.25 97.96± 0.13 97.72± 0.12 98.11± 0.12
0.05 – 95.75± 0.31 95.34± 0.77 97.3± 0.26 97.38± 0.11 97.59± 0.07
1.0 98.45± 0.17 – – – – –

non-IID (α = 0.1) 0.1 – 96.19± 0.22 94.41± 1.23 97.22± 0.43 96.53± 0.19 96.7± 0.14
0.05 – 91.66± 1.74 91.06± 1.1 95.7± 0.37 95.83± 0.84 95.91± 0.64
1.0 88.56± 0.06 – – – – –

IID (α = 1000) 0.1 – 84.89± 0.26 86.72± 0.09 88± 0.28 87.62± 0.35 87.86± 0.13
0.05 – 77.48± 0.54 84.38± 0.12 86.99± 0.14 86.87± 0.08 87.18± 0.09
0.01 – 52.70± 1.17 70.17± 0.70 82.35± 0.14 83.59± 0.38 83.85± 0.26
1.0 87.13± 0.18 – – – – –

CIFAR-10 non-IID (α = 1.0) 0.1 – 83.46± 0.19 85.07± 0.24 86.42± 0.49 86.45± 0.31 86.36± 0.13
0.05 – 75.1± 0.76 83.33± 0.14 85.64± 0.58 85.34± 0.27 85.9± 0.24
0.01 – 50.71± 0.99 69.44± 0.63 81.01± 0.50 82.38± 0.18 82.31± 0.12
1.0 77.64± 0.49 – – – – –

non-IID (α = 0.1) 0.1 – 71.18± 1.23 74.82± 0.72 76.74± 1.46 74.74± 1.07 75.47± 1.18
0.05 – 61.29± 2.76 72.32± 1.05 75.47± 2.31 73.9± 1.45 75.49± 0.9
0.01 – 42.66± 0.50 59.30± 0.36 70.61± 1.82 68.89± 0.62 71.21± 1.98
1.0 65.38± 0.27 – – – – –

IID (α = 1000) 0.1 – 53.81± 0.92 61.16± 0.51 62.35± 0.40 62.88± 0.26 62.69± 0.24
0.05 – 42.08± 0.48 56.67± 0.25 60.32± 0.27 59.59± 0.19 60.29± 0.16
0.01 – 22.64± 0.75 38.99± 1.16 49.67± 0.49 51.53± 0.76 51.81± 0.13
1.0 65.17± 0.27 – – – – –

CIFAR-100 non-IID (α = 1.0) 0.1 – 53.36± 0.51 60.87± 0.40 62.13± 0.26 61.59± 0.07 61.66± 0.11
0.05 – 42.48± 0.39 56.57± 0.28 59.57± 0.35 59.27± 0.62 59.85± 0.35
0.01 – 23.39± 0.37 38.99± 0.34 49.05± 0.40 50.60± 0.10 51.61± 0.66
1.0 59.12± 0.63 – – – – –

non-IID (α = 0.1) 0.1 – 49.04± 0.57 55.06± 0.26 56.79± 0.33 54.74± 0.68 55.54± 0.71
0.05 – 37.33± 0.39 51.68± 0.32 54.34± 0.17 52.67± 0.97 53.47± 0.49
0.01 – 19.21± 0.19 35.59± 0.26 45.10± 0.64 45.31± 0.57 46.16± 0.76
1.0 55.36± 0.25 – – – – –

IID (α = 1000) 0.1 – 44.63± 0.17 51.95± 0.11 53.18± 0.41 52.05± 0.09 52.51± 0.35
0.05 – 38.39± 0.14 48.61± 0.25 51.31± 0.41 50.37± 0.48 50.53± 0.54
0.01 – 20.50± 0.43 37.85± 0.07 43.66± 0.35 43.07± 0.80 44.41± 0.17
1.0 54.76± 0.35 – – – – –

TinyImageNet non-IID (α = 1.0) 0.1 – 44.48± 0.16 50.50± 0.06 52.75± 0.18 51.22± 0.30 51.81± 0.08
0.05 – 38.03± 0.27 47.52± 0.29 51.07± 0.23 49.48± 0.23 49.76± 0.48
0.01 – 20.88± 0.14 37.49± 0.52 42.91± 0.24 43.04± 0.12 43.15± 0.25
1.0 48.12± 0.16 – – – – –

non-IID (α = 0.1) 0.1 – 38.92± 0.23 42.64± 0.40 46.25± 0.07 45.18± 0.38 45.21± 0.18
0.05 – 32.81± 0.66 40.69± 0.43 44.56± 0.10 43.31± 0.19 44.29± 0.16
0.01 – 18.01± 0.13 33.79± 0.15 37.80± 0.06 37.32± 0.51 38.32± 0.19
1.0 84.68± 0.20 – – – – –

FEMNIST non-IID 0.1 – 76.92± 0.42 76.01± 1.26 82.70± 0.26 83.02± 0.21 83.4± 0.26
0.05 – 37.33± 0.39 51.68± 0.32 54.34± 0.17 52.67± 0.97 53.47± 0.49

on CIFAR-10 (α = 0.1), models from NST and PDST sacrifice accuracy of 16.35% and 5.32%, respectively.
However, at comparatively higher density (d = 0.1), both can yield models with a lower accuracy difference
from the baseline by around 6.46% and 2.82%. SPDST, on the other hand, can maintain close to the
baseline accuracy at even ultra-low density for all data partitions and, interestingly, even outperform
JMWST (rint = 1) for the majority of the cases. These results highlight the efficacy of both sensitivity-
driven sparse learning (as SPDST > PDST) and early mask convergence (as SPDST ≈ JMWST) in FL
settings. Importantly, for increased rint in JMWST, we observe a consistent improvement in accuracy. The
inferior accuracy at rint = 1 can be attributed to the mask divergence caused by frequent noisy gradient
updates. We thus believe efficient hyperparameter search including rint is essential for the sparse FL model’s
improved performance. Also note that JMWST requires additional communication of non-zero weight indices
for rounds that masks are updating, contrasting SPDST, with clients not needing to send the mask at all,
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allowing us to yield proportional communication saving as the model density. Fig. 6 shows the accuracy vs.
comm. round for the two proposed methods on different data distributions.

Extreme sparse learning. For CIFAR-10, CIFAR-100, and TinyImageNet, which are trained on
a comparably more complex model (ResNet18), we also explore the extremely sparse training sce-
nario where clients train only 1% of the weights (100× saving in communication). This experiment
shows the power and importance of both stages in FLASH in achieving a good performance. In
contrast, the performance gap between the dense model and NST or PDST remarkably increases.

a) b)

Figure 6: Test accuracy vs. round for CIFAR-10
with (a) d = 0.05 (b) d = 0.1.

Comparison with ZeroFL. Despite leveraging a form
of sparse learning (Raihan & Aamodt, 2020), ZeroFL re-
quires a higher up-link/down-link budget than the tar-
get density d to achieve better performance. However,
FLASH reaches considerably better accuracy while being
substantially more efficient in communication compared
to ZeroFL. Especially for SPDST with a frozen mask, the
server and clients only need to communicate updates with
density d and enjoy bidirectional savings. Note that every
sparse matrix representation requires the value and loca-
tion of non-zero parameters, but SPDST can eliminate
sending the latter as it does not change. Finally, we evaluate the communication saving as the ratio of the
dense model size and corresponding sparse model size represented in compressed sparse row (CSR) format
(Tinney & Walker, 1967). As depicted in Table 45, FLASH can yield an accuracy improvement of up to
10.1% at a reduced communication cost of up to 10.26× (at up-link when both send sparse models).

Table 4: Comparison with ZeroFL on various performance metrics. (ZeroFL values are the results with the
higher accuracy and taken from the original manuscript.)

Dataset Data Method Density Acc% Down-link Up-link
Distribution Savings Savings

CIFAR-10

IID

ZeroFL (Qiu et al., 2021) 0.1 82 .71 ± 0 .37 1× 1.6×
SPDST (ours) 0.1 88± 0.28 9.8× 9.8×

ZeroFL (Qiu et al., 2021) 0.05 78 .22 ± 0 .35 1× 1.9×
SPDST (ours) 0.05 86.99± 0.14 19.5× 19.5×

ZeroFL (Qiu et al., 2021) 0.1 81 .04 ± 0 .28 1× 1.6×
non-IID SPDST (ours) 0.1 86.42± 0.49 9.8× 9.8×

(α = 1.0) ZeroFL (Qiu et al., 2021) 0.05 75 .54 ± 1 .15 1× 1.9×
SPDST (ours) 0.05 85.64± 0.58 19.5× 19.5×

FEMNIST non-IID ZeroFL (Qiu et al., 2021) 0.05 77 .16 ± 2 .07 1× 17.7×
SPDST (ours) 0.05 81.18± 0.36 14.6× 14.6×

5.2 Experimental Results with Hetero-FLASH

Table 5 shows the performance of hetero-FLASH for the scenario where the clients can have three possible
density budgets defined by the dset with maximum clients’ density dmax = 0.2. Also, we assume 40%, 30%,
and 30% of total clients can train models with a density equal to 0.2, 0.15, and 0.1, respectively. The server
samples 10% from each set for every round with the corresponding target density. Similar to the trend in
FLASH, hetero-SPDST outperforms the hetero-JMWST (rint = 1), and increasing mask update interval
(rint) helps improve its performance (roughly > 3%).

5.3 Quantitative Analysis on FLASH’s Design Parameters

Impact of initial sensitivity warm-up of participating clients. For a realistic scenario, Stage 1 needs
to be efficient and practically feasible. To be more precise, we cannot expect participating clients to train

5We understand for FEMNIST, ZeroFL reported significantly higher up-link saving; however, to the best of our understand-
ing, it should be similar to their report on other datasets, i.e. ∼1.9×.
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Table 5: Performance of hetero-FLASH on various datasets where each client can have a density from the
set dset ∈ [0.1, 0.15, 0.2] based on their budget, Note that the density of the final model depends on dmax.

Dataset Data Distribution Max Hetero-SPDST Hetero-JMWST Hetero-JMWST
dset Acc % (rint = 1) Acc % (rint = 5) Acc %

IID (α = 1000) 98.29± 0.05 97.44± 0.23 97.83± 0.10
MNIST non-IID (α = 1.0) 0.2 98.29± 0.09 97.47± 0.22 97.80± 0.23

non-IID (α = 0.1) 97.63± 0.22 96.11± 0.75 96.25± 0.86
IID (α = 1000) 87.19± 0.26 86.37± 0.2 87.39± 0.15

CIFAR-10 non-IID (α = 1.0) 0.2 86.16± 0.04 84.67± 0.06 86.19± 0.24
non-IID (α = 0.1) 75.23± 1.26 71.3± 2.75 74.34± 0.85

IID (α = 1000) 63.4± 0.2 60.5± 0.8 62.91± 0.04
CIFAR-100 non-IID (α = 1.0) 0.2 62.1± 0.2 59.6± 0.2 62.68± 0.28

non-IID (α = 0.1) 56.4± 0.4 51.5± 0.9 55.98± 0.19
IID (α = 1000) 51.28± 0.11 49.73± 0.20 52.07± 0.22

TinyImageNet non-IID (α = 1) 0.2 50.94± 0.17 49.32± 0.16 51.61± 0.17
non-IID (α = 0.1) 44.48± 0.40 42.72± 0.61 44.65± 0.45

FEMNIST non-IID 0.2 82.58± 0.24 82.2± 0.42 82.5± 0.55

their models for a long time in order to get an accurate estimation of layer sensitivity. Also, it is unlikely to
access many clients in a single time slot, especially in cross-device federated learning. Therefore, we designed
six different scenarios to understand the impact of these parameters on the final model’s performance. In
particular, we used two different values of participating clients ([10, 20]) and three local epoch choices ([10,
20, 40]). As shown in Fig. 7(a), the yielded pruning sensitivity follows a similar trend. Moreover, SPDST
with a mask chosen from any of these sensitivity lists finally yields FL models with similar performances
(Fig. 7(b)), clearly demonstrating the robustness of our warm-up based sensitivity evaluation stage 1.

SPDST JMWST

a) b)

Figure 7: (a) Layer sensitivity evaluated at the end of sensitivity warm-up stage (Stage 1) for different
client participation (cd) and their local epochs (Ed), (b) Comparison of global model performance with the
initialized sparse mask based on different sensitivity evaluated from (a).

Overheads of stage 1. Stage 1 uses one round with Ed local epochs (here, Ed = 10) per client. A normal
FL stage in our settings trains the clients for T rounds, 1 epoch per client/round. Hence, this stage increases
the time by a factor of ( Ed

T + 1). Usually, Ed << T , making the pre-training overhead negligible.

a) b)

Figure 8: Performance vs. up-link bandwidth for (a)
α = 1.0 and (b) α = 0.1.

The communication overhead of Stage 1 is also
negligible compared to that in each round for the
Stage 2 FL training. Each participant only needs
to send L values for an L-layer model. So, cd

clients will have a total communication overhead of
(L×cd×32) bits, assuming 32-bit number represen-
tation.

Convergence versus communication costs.
Fig. 8 shows the performance of FL models when
the clients have a limited communication budget.
In particular, PDST and SPDST can significantly
outperform other approaches at low communication budgets (even FedAvg). This can be attributed to
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their substantially smaller model sizes, helping them to communicate more rounds than others on a limited
bandwidth scenario.

Importance weighted aggregation in hetero-FLASH. Earlier literature (Diao et al., 2020) suggested
weighted averaging in the aggregation of models with different sizes, which we also investigate here. In
particular, we performed experiments on CIFAR-10 (α = 1.0), both with and without WFA. First, we
observe that WFA degrades model performance in JMWST compared to FedAvg (Fig. 9 (a)). On the
contrary, the use of WFA improves accuracy for hetero-FLASH (Fig. 9 (b)). The inferior performance of
WFA in FLASH may hint at the fact that if a parameter is non-zero only for fewer clients, as compared to
other non-zero weights, giving it equal weight as the others in the aggregation nullifies its lower importance,
that may be necessary to preserve for mask convergence. On the other hand, having WFA in hetero FLASH
is necessary, as the less frequent non-zero occurrence of a parameter can be a result of the presence of fewer
high-parameter density clients in a round.

a) b)

Figure 9: Performance comparison between FedAvg
and weighted FedAvg for different (a) algorithms (b)
data distributions (α).

a) b)

Figure 10: Performance of models trained with dif-
ferent mask initialization in stage 1 for target pa-
rameter density for (a) d = 0.05 (b) d = 0.1

Comparison with ERK+ initialization. We now compare our SPDST mask initialization with that of
parameter density distribution evaluated via ERK+ (Huang et al., 2022; Evci et al., 2020). In contrast with
uniform density, the ERK+ scheme keeps more weights for the layers with fewer parameters. To this aim,
we use Stage 1 in SPDST, ERK+, or uniform (PDST) as the initial mask for stage 2 and keep the mask
frozen for the rest of the training. As shown in Fig. 10, the mask initialization using stage 1 for SPDST
consistently provides superior results over the other two. We hypothesize this is rooted in the data-driven
layer sensitivity evaluation scheme of SPDST, particularly at the earlier layers, allowing it to retain more
information at these layers.

Ablation on Stage 1. Our proposed method consists of two stages: sensitivity evaluation (Stage 1) and
training in federated settings (Stage 2). In Table 6, we present ablation with and without Stage 1 for
SPDST and JMWST. It is notable that SPDST without Stage 1 is PDST.

Table 6: Impact of Stage 1 on final performance on CIFAR-10 dataset with target d = 0.05

Data Distribution Method without Stage 1 with Stage 1
IID(α = 1000) SPDST 84.38± 0.12 86.99± 0.14

non-IID(α = 0.1) SPDST 72.32± 1.05 75.47± 2.31
IID(α = 1000) JMWST 86.93± 0.1 87.18± 0.09

non-IID(α = 0.1) JMWST 74.7± 1.7 75.49± 0.9

6 Conclusion

This paper presented methodologies to yield sparse server models with insignificant accuracy drops com-
pared to the unpruned counterparts. In particular, we demonstrated two efficient sparse learning solutions
specifically tailored for FL, enabling better computation and communication benefits over existing sparse
learning alternatives. Additionally, we presented the effectiveness of the proposed algorithms for clients with
different parameter budgets, allowing deployment for resource-limited edge devices having heterogeneous
resource support. The future research direction of this work includes a theoretical understanding of our
observations and further empirical demonstrations of the newer class of foundation models.
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A Appendix

A.1 Hetero-FLASH Algorithm

Algorithm 2 details the training algorithm in hetero-FLASH. Note that and aggrParamUpdateMask and
subSampleServerModel are the two functions that play a key role in supporting heterogeneity in sparsity

ratios for different clients. The details of these two functions are elaborated in Algorithm 3 and Algorithm 4,
respectively. We plan to open-source our code upon acceptance of the paper.

Algorithm 2: Hetero-FLASH Training.
Data: Training rounds T , local epochs E, client set [[CN1 ], ..., [CNM ]], clients per rounds cr, target density set

dset = [d1, ..., dM ], sensitivity warm-up epochs Ed, density warm-up client count cd, initial value of freeze
masks freez = 0, training algorithm A and aggregation type Agr.

1 Θinit ← initRandomMaskedWeight(dM )
2 serverExecute:
3 Randomly sample cd clients [Cd] ⊂ [CNM ]
4 for each client c ∈ [Cd] in parallel do
5 Θc ← clientExecute(Θinit, Ed, 0)
6 Sc ← computeSensitivity(Θc)
7 end
8 Θ0 ← initSensivityDrivenMaskedWeight([Sc], dset)
9 freez ← freezeMask(A)

10 for each round t← 1 to T do
11 Randomly sample cr clients [Cr] ⊂ [CN ]
12 for each client c ∈ [Cr] in parallel do
13 Θt

c ← clientExecute(Θt−1, E, freez)
14 end
15 Θt

S ← aggrParamUpdateMask ([Θt
c], Agr)

16 Θt ← subSampleServerModel (Θt
S , [Θt

c], dset, freez)
17 end
18 clientExecute(Θc0 , E, freez) :
19 for local epoch i← 1 to E do
20 Θci ← doSparseLearning(Θci−1 , freez)
21 end
22 return ΘcE

Algorithm 3: aggrParamUpdateMask
Data: Round t, aggregation type Agr [fedAvg, weightedFedAvg], clients updates [Θt] = [Θc1 , ..., Θcr ], client

data size [dsc1 , ..., dscr ]
1 if Agr is fedAvg then
2 Θt

S ← 1
Σcr

ci=1dsci
Σcr

ci=1dsci ·Θt
ci

3 else
4 //For hetero-FLASH
5 Wt ← initWeightFactor()
6 for each update Θci ∈ [Θt] do
7 Wt

ci
← dsci × retrieveMask(Θci )

8 Wt ←Wt +Wt
ci

9 end
10 //safeDivide(a,b): gives zero anywhere the b is equal to zero
11 Θt

S ← Σcr
ci=1[safeDivide(Wt

ci
,Wt) ·Θt

ci
]

12 end
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Algorithm 4: subsampleServerModel
Data: Current round id t, client set [Cr], aggregated Weight Θt

S of model with L layers, support density set dset

= [d1, ..., dM ] where di < di+1, model layer-wise parameter count [k] = [k1, ..., kL].
1 if size(dset) is 1 then
2 //JMWST subsampling in FLASH
3 M← initMaskWithZeros()
4 [d̂1, ..., d̂L]← avgLayerWiseDensity([Cr])
5 rf ← d1×K∑L

l=1
d̂l.kl

6 for layer l← 1 to L do
7 idx← getSortedWeightIndices(Θt

S , l)
8 nz ← int(rf × d̂l × kl) //number of non-zeros
9 Ml[idx[: nz]]← 1

10 end
11 else
12 //For hetero-FLASH
13 for di ∈ dset do
14 Mi ← initMaskWithZeros()
15 end
16 Dt

s ← getCurrentDensity(Θt
S)

17 [d̂1, ..., d̂L]← getLayerWiseDensity(Θt
S)

18 for layer l ← 1 to L do
19 idx← getSortedWeightIndices(Θt

S , l)
20 for di ∈ dset do
21 rf i ←

di

Dt
s

22 nz ← int(rf i × d̂l × kl)
23 Mi

l[idx[: nz]]← 1
24 end
25 end
26 end

A.2 Model Architectures

Table 7 shows the model architectures used for MNIST and FEMNIST datasets. For CIFAR-10, CIFAR-100
and TinyImageNet we used ResNet18 (He et al., 2016) with the first CONV layer kernel size as 3× 3 instead
of original 7× 7.

Table 7: Architecture used for MNIST and FEMNIST datasets

MNIST FEMNIST
CONV5× 5(Co = 10) CONV5× 5(Co = 32)

max_pool max_pool
CONV5× 5(Co = 20) CONV5× 5(Co = 64)

max_pool max_pool
FC(5120, 50) FC(3136, 2048)
FC(50, 10) FC(2028, 62)

A.3 Additional Comparisons

We now compare the performance of FLASH with that of yielded via FedSpa (Huang et al., 2022) and
FedDST (Bibikar et al., 2022). For FedSpa, we implemented their proposed algorithm in our settings and
kept all the hyperparameters the same for an apple-to-apple comparison. We report the best accuracy yielded
for FLASH via models trained using SPDST and JMWST. As shown in Table 8, FLASH outperforms FedSpa
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up to 2.41%. A similar trend is observed when we compare with FedDST, and as Table 9, on the MNIST
dataset, FLASH can have an accuracy improvement of up to 1.41%.

Table 8: Comparison of FLASH with FedSpa (Huang et al., 2022) on CIFAR-10 with ResNet18.

Data Method Density (d) Best Acc. (%) δAcc

distribution
α = 1000 FedSpa 0.05 85.63 –

FLASH 0.05 87.18 +1.55
α = 0.1 FedSpa 0.05 73.08 –

FLASH 0.05 75.49 +2.41

Table 9: Comparison of FLASH with FedDST (Bibikar et al., 2022) on pathologically non-IID MNIST. We
used the same hyperparameter settings and models as in (Bibikar et al., 2022) for this comparison.

Method Density (d) Communication Best Acc. (%) δAcc

Cost (GiB)
FedDST 0.2 1.0 96.10 –
FLASH 97.51 +1.41
FedDST 0.2 2.0 97.35 –
FLASH 97.69 +0.34

B FLASH for NLP Tasks

We also employed FLASH in fine-tuning the BERT-base (Devlin et al., 2018), a popular large language
model that can be trained comprehensively with academic resources. In this experiment, the embedding
layers are frozen, and since the goal is to fine-tune the model, the total number of federated rounds is 50. As
shown in Table 10, the improvement in SPDST/JMWST over the baseline alternatives can also be observed
on NLP tasks.

Table 10: Results for fine-tuning SST dataset on BERT-base model.

Dataset Data Distribution Density Dense NST PDST SPDST JMWST(rint = 1) JMWST(rint = 5)
(d) Acc % Acc % Acc % Acc % Acc % Acc %

SST2 non-IID (α = 1) 0.2 92.25 77.59 78.96 83.07 80.5 81.78

C More Quantitative Analysis

Below, we provide more analysis and ablation to show the effectiveness of FLASH in different scenarios.

C.1 Impact of Number of Participating Clients per Round

Fig. 11 (a) shows that JMWST and SPDST follow the same pattern at the baseline model (d = 1.0) with
FedAvg. In other words, similar to FedAvg, as the cr increases, the performance is enhanced. Also, for a
specific cr, JMWST and SPDST perform better than PDST and NST.

C.2 Impact of Batch-Normalization Layer Statistics

Fig. 11 (b) shows the performance comparison between batch normalization (BN) and static batch normal-
ization (static BN, as suggested in (Diao et al., 2020)). In particular, in our setting, using BN layer statistics
consistently outperforms the static BN.
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Figure 11: (a) Performance of the final trained model for different participating clients per round, (b)
Significance of BN and Static BN in final model performance.

C.3 Effect of the Mask Update Interval Rounds (rint) in JMWST

As mentioned in the original manuscript, for JMWST, the server can increase the mask update interval
(rint) to save communication energy. We thus performed ablation for this variable from the default value of
1 (similar to (Qiu et al., 2021)) to see its impact on the final accuracy, and Table 11 and Fig. 12 show the
results. In particular, as we can see in the table, less frequent update intervals can lead to better performance
than the original JMWST and provide additional bidirectional saving in communication as the masks do not
change every round. Fig. 12 also indicates that the improvement tends to saturate after specific rint, which
hints at the importance of this parameter. This pattern in the performance means that rint may potentially
create a trade-off between the learnability of the masks and weights, and we believe understanding this
complex trade-off is an interesting future research.

Table 11: Impact of different mask update intervals in JMWST for a target density d = 0.1 on CIFAR-10.

Model Data Mask update interval rounds (rint)
distribution rint = 1 rint = 2 rint = 5 rint = 10

IID (α = 1000) 87.62± 0.35 87.76± 0.07 87.86± 0.13 87.67± 0.09
ResNet18 non-IID (α = 1) 86.45± 0.31 86.26± 0.07 86.36± 0.13 86.68± 0.25

non-IID (α = 0.1) 74.74± 1.07 73.73± 1.18 75.47± 1.08 77.14± 0.22

Figure 12: Test accuracy vs. mask update interval round.

C.4 Convergence Trend of Proposed Algorithms

Fig. 13 shows the test accuracy vs. FL rounds for NST, PDST, SPDST, and JMWST algorithms on the
CIFAR-10 dataset with non-IID data distribution (α = 1). As shown in the plots, for d = 0.05 and d = 0.1,
NST has slower convergence with lower final accuracy. Introducing consensus among the clients for the
sparse mask accelerates the convergence and enhances the final performance.
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Figure 13: Performance of proposed algorithms vs. comm. rounds on CIFAR-10 dataset for (a) d = 0.05 (b)
d = 0.1.

C.5 Revisiting Sparse Mask Mismatch for NST with VGG16

Fig. 14 shows the comparison of SM between centralized and FL settings with NST on VGG16, another
popular model variant. Similar to our observed trend with ResNet18, we see a significantly high SM for FL
settings with a target of d = 0.05. This strengthens the generality of our observed limitations across different
classes of DNN models.

Figure 14: (a)-(b) Sparse mask mismatch (SM) for VGG16 in (a) centralized and (b) FL settings with
NST. (c)-(d) Layer-wise SM vs. training epochs (rounds) for VGG16 in (c) centralized and (d) FL settings,
respectively, with NST.

C.6 Revisiting Sparse Mask Mismatch for FLASH

As demonstrated in Fig. 15, the sparse mask mismatch in the case of JMWST significantly reduces, helping
the mask train in a convergent way, significantly faster than that in NST.

Fig. 16 shows the layer-wise SM for the centralized trained model (Fig. 16a) and FL trained model with
sparsity (Fig. 16b-c). In particular, the SM at the later layer can significantly reduce in the case of JMWST
compared to NST, further demonstrating the convergence ability even at the later layers.

Figure 15: Sparse mask mismatch (SM) for (a) centralized sparse learning, (b) NST, and (c) JMWST in
federated settings.
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Figure 16: Layer-wise sparse mask mismatch (SM) vs. training epochs (rounds) plot for (a) centralized and
(b) FL with NST, and (c) FL with JMWST.

C.7 Sparse Mask Mismatch as a Function of d

To understand the relation of SM with d, we performed the baseline sparse training (NST) with ResNet18
on CIFAR-10 for three different target densities, 0.05, 0.25, 0.5. As shown in Fig. 17, the SM tends to reduce
for higher density. In particular, Fig. 17(d) shows the SM for CONV layer 16 (a later layer) after round 200.
The SM reduces by 1.53× for d = 0.5 than that with d = 0.05, strengthening our general observation that
SM becomes prominent as the density decreases.

Figure 17: (a-c) SM for FL settings for three different d of 0.05, 0.25, and 0.5, respectively. (d) Comparison
of Jaccard distance values for the 16th CONV layer of ResNet18 after round 200 for different ds.

C.8 Sparse Mask Mismatch as a Function of Total Number of Clients

To understand the relation of SM with the number of total clients, we performed the baseline sparse training
(NST) with ResNet18 on CIFAR-10 for 50 and 200 clients, respectively. As shown in Fig. 18, the SM concern
persists, irrespective of the number of clients. This strengthens the generality of our observations over the
total number of clients.

Figure 18: (a-b) SM for FL settings for (a) 50 and (b) 200 clients. (c-d) Layer-wise SM vs. training rounds
for (c) 50 and (d) 200 clients.

D Model Personalization vs. Mask Consensus

Compared to personalized FL, FLASH comes with a different objective. Our goal is to train a single global
model that performs well on all clients’ datasets. Mask convergence plays a key role in maintaining stable
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learning progress and high model accuracy, especially for heterogeneous data and high compression ratios.
However, model personalization aims to find individual models that adapt to each client.

E Discussion on Computing Benefits of Sparse Learning at the Edge

To extract FLOPs benefits for irregular pruning in FLASH, we assume that the compute energy for the
sparse network can be avoided via the means of clock-gating (Yang & Kim, 2018) of the zero-valued weights.
Moreover, there has been recent development of sparsity-friendly DNN accelerators (Qin et al., 2020) that
can efficiently reduce the compute cost by a significant margin. Such accelerators can leverage the yielded
sparse FL models to deploy at compute-constrained edges.

E.1 FLOPs vs. Communication Cost for Different Density Budgets

To reach a target accuracy value, we plot the FLOPs to uplink communication cost for different density
budgets in Fig. 19.

Figure 19: Computation and Communication relation with (a) each other (b, c) with different density levels
for SPDST algorithm.

E.2 Clarification on Sparse Training vs. Sparse Updates

Here, we want to emphasize that our framework differs from the method proposed for sparsifying updates such
as top-K. In particular, in algorithms that try to sparsify the updates, the clients must do a dense gradient
update, costing higher computation and potential communication overhead. Our framework, specifically
SPDST, on the contrary, ensures only k weights are updated to be non-zero during each round for each
client, allowing us to yield the lucrative benefits of sparse gradient computation. Moreover, it ensures each
client sends and receives only k weights to and from the server at the end and beginning of each round.
Finally, in every round of the top-k algorithm, clients ignore the weights not in the top-k, potentially causing
wasted computation and performance degradation. However, in SPDST, such wasted computations are
avoided since only a fixed fraction of weights are trained.

E.3 Computation Saving in FLASH

Employing sparse learning in FL helps participating clients reduce communication and compute costs
(FLOPs) for training. Without the loss of generality, we now evaluate the convolutional layer training
FLOPs for FLASH and demonstrate the relation of parameter density d with the reduction in FLOPs and
communication cost.

The training FLOPs for a layer l (F l
layer) can be partitioned into forward operation FLOPs (F l

fwd), backward
input (F l

back_in) and weight gradient (F l
back_wt) compute FLOPs. With the assumption of the no-compute

cost associated with the zero-valued weights via zero-gating logic (Kundu et al., 2023b), the F l
layer for FLASH

with parameter density d (d << 1.0) is

F l
layer = d× [Ful

fwd + Ful
back_in] + sa × Ful

back_wt (4)
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If the zero weights’ gradients flow is computed for mask learning, then Fback_wt can’t leverage the advantage
of low parameter density. Thus, gradients are dense in JMWST, and Fback_wt is the same as that in dense
computation. However, for SPDST or JMWST with rint > 1, zero weights remain zero, allowing us to skip
the associated gradient computation safely. This helps extract the benefits of sparsity during all three stages
of FLOPs computation. In other words, FLASH can improve communication and compute costs for clients
with limited resources.

E.4 Evaluation of the Communication Cost

Communication cost is associated with transmitting the newly updated weight (or gradients) from client to
server or vice versa. The communication reduction is achieved by making the weight matrices sparse. In
this way, clients do not need to send the whole matrix; instead, they can only send the value of the non-zero
ones. In our experiments, we use the compressed sparse row (CSR) format of the sparse model weights to
communicate them between clients and the server. Finally, communication-saving is evaluated by the ratio
of full dense model communication cost to sparse model in CSR format.

E.5 Support for Hardware-Friendly Sparsity Patterns

Irregular sparsity is often not well-suited for hardware benefits without dedicated architecture or compiler
support. However, we can yield computation energy saving with custom zero-gating logic (Kundu et al.,
2020) and compiler support (Liu et al., 2018). As we intended to achieve reduced computation energy and
communication cost in FL and as irregular sparsity can yield higher compression than structured/pattern
sparsity, we have limited our evaluations to random or irregular sparsity only. Nevertheless, we believe our
framework can support more complex and structured pruning, which we briefly explain.

Among the various hardware-friendly sparsity patterns, the recently proposed N : M sparsity (Zhou et al.,
2021) has gained significant attention due to its less strict constraints. For SPDST, post Stage 1, sparse
mask selection can be easily extended to support the N : M sparsity. In particular, for a layer l, instead
of random assignment of dl × kl non-zero mask locations, we can partition the total non-zero elements into
Gl groups, where each group will contain dl × kl/Gl non-zero elements. Here, Gl is evaluated as kl/M ,
M representing the total element size out of which we need to have a certain fraction as non-zero, and kl

represents the total number of weights for that layer. As the masks remain frozen, we maintain the pattern
throughout the training for each client to extract the benefit. For JMWST, we can adapt this principle
in the prune and regrow policy during each client’s local training. In Table 12, we now show results with
pattern pruning with N : M sparsity for the CIFAR-10 dataset.

Table 12: FLASH with structured sparsity for CIFAR-10 dataset

Data Distribution Density Method Acc (%)
non-IID (α = 1) 0.2 SPDST 86.96
non-IID(α = 0.1) 0.2 SPDST 77.64
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