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Abstract

In offline reinforcement learning (RL) an optimal policy is learned solely from
a priori collected observational data. However, in observational data, actions
are often confounded by unobserved variables. Instrumental variables (IVs), in
the context of RL, are the variables whose influence on the state variables are all
mediated through the action. When a valid instrument is present, we can recover the
confounded transition dynamics through observational data. We study a confounded
Markov decision process where the transition dynamics admit an additive nonlinear
functional form. Using IVs, we derive a conditional moment restriction (CMR)
through which we can identify transition dynamics based on observational data.
We propose a provably efficient IV-aided Value Iteration (IVVI) algorithm based
on a primal-dual reformulation of CMR. To the best of our knowledge, this is the
first provably efficient algorithm for instrument-aided offline RL.

1 Introduction

In reinforcement learning (RL) [64], an agent maximizes its expected total reward by sequentially
interacting with the environment. RL algorithms have been applied in the healthcare domain to
dynamically suggest optimal treatments for patients with certain diseases [60, 37, 27, 50, 28, 55, 58].

One of the major concerns of working with observational data, especially for RL applications in
healthcare, is confounding caused by unobserved variables. Because the available data may not
contain measurements of important prognostic variables that guide treatment decisions, or heuristic
information such as visual inspection of or discussions with patients during each treatment period,
variables that affect both the treatment decisions and the next-stage health status of patients are
present. See [11] for a detailed discussion of sources of confounding in healthcare datasets.

Instrumental variables (IVs) are a very well-known tool in econometrics and causal inference to
identify causal effects in the presence of unobserved confounders (UCs). Informally, a variable Z is
an IV for the causal effect of the treatment variable X on the outcome variable Y , if (i) it is correlated
with X , and (ii) Z only affects Y through X . IVs are commonly used in healthcare studies to identify
the effects of a treatment or intervention on health outcomes. There are some common sources of IVs
in the medical literature, such as the preference-based IVs (see Example A.1), distance to a specialty
care provider, and genetic variants [3]. We introduce one example below.

Example 1.1 (Differential travel time as IV, NICU application). [41, 46, 18] study the effect on
neonatal mortality of delivery at high-level neonatal intensive care units (NICU), using the same
differential travel time as IV. The goal is to design a neonatal regionalization system that designates
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Figure 1: The NICU application, adapted from [18, Figure 1]. Left panel: DAG representing data
generation process where UCs are present. Right panel: DAG representing a prenatal regionalization
system in action.

hospitals according to the level of care infants need. The available dataset has ∼180,000 records
of mothers who delivered exactly two births during 1995 and 2009 in Pennsylvania and relocated
at the second delivery. In Figure 1 we present a possible causal DAG for the NICU application.
UCs are present due to mothers’ self-selection effects or unrecorded side information on which the
physicians base the NICU suggestion. The differential travel time to the closest high-level NICU
versus low-level NICU serves as a valid IV since it affects mothers’ choice of NICU and does not
impact clinical outcomes through other means. A neonatal regionalization system (Figure 1, right
panel) designates NICU solely based on the clinical outcome at the previous stage (since differential
travel time does not affect clinical outcome anymore once we actually assign NICU, and confounders
remain unobserved), removing arrows pointing into NICU decision in the DAG presented in the
upper panel.

We summarize three aspects of offline medical datasets often encountered by RL practitioners: (i)
there is a large amount of logged data where the actual effects of medical treatment on patient’s health
are confounded, (ii) the potential presence of a valid IV has been argued for in the biostatistics and
epidemiology literature, and (iii) it is expensive or unethical to do experimentation and then inspect
the actual performance of a target treatment policy. We ask

When a valid IV is present, can we design a provably efficient offline RL
algorithm using only confounded observational data?

We answer this question affirmatively. We formulate the sequential decision-making process in the
presence of both IVs and UCs through a model we termed Confounded Markov Decision Process with
Instrumental Variables (CMDP-IV). We then propose an IV-aided Value Iteration (IVVI) algorithm
to recover the optimal policy through a model-based approach. Our contribution is threefold. First,
under the additive UC assumption, we derive a conditional moment restriction through which we
point identify transition dynamics. Second, we reformulate the conditional moment restriction as a
primal-dual optimization problem, and propose an estimation procedure that enjoys computational
and statistical efficiency jointly. Finally, we show that the sample complexity of recovering an
ε-optimal policy using observational data with IVs is O(µ−4IV µ

−2.5
B H4dxε

−2), where 0 < µIV < 1
quantifies the strength of the IV, µB is the minimum eigenvalue of the dual feature covariance matrix,
quantifying the compatibility of the dual linear function space and the IV, H is the horizon of the
MDP, and dx is the dimension of states. To the best of our knowledge, this is the first sample
complexity result for an IV-aided offline RL.

1.1 Related Work

RL in the presence of UCs has attracted increasing attention; see §A for a detailed overview of related
work. One major difficulty of working with unobserved confounders is the issue of identification.
When unobserved confounders are present, causal effects of actions are not identifiable from data
without further assumptions. In these settings, several approaches are available. The first one is
the sensitivity-analysis based approach [62], where we posit additional sensitivity assumptions on
how strong the unobserved confounding can possibly be. These sensitivity assumptions enable
partial identification of the causal quantity. This approach is employed by a sequence of work in
[36, 34, 35, 50]. The second approach is to assume access to other auxiliary variables that can enable
point or partial identification. We adopt the second approach in this work, by assuming the access
to instrumental variables. Under an additive UC assumption (see (2.6)), instrumental variables can
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enable point identification of the structural quantity through conditional moment restriction (along
with certain completeness assumptions; see Remark C.1), allowing us to work with continuous
actions and continuous IVs. For example, in the NICU application, differential travel time (the IV)
is a continuous quantity. Note that several other related works also study the use of instrumental
variables [59, 18]. These works, and in particular [18], rely on partial identification bounds in the
fully nonparametric IV setting [44, 4]. These bounds are only available for binary IVs or binary
treatments, restricting the use of their algorithms in many real-world scenarios where the IV is
continuous. A continuous IV like the differential travel time must be dichotomized if one were to
apply these algorithms.

1.2 Notation

We use ‖ · ‖2 to denote the `2-norm of a vector or the spectral norm of a matrix, and use ‖ · ‖F to
denote the Frobenius norm of a matrix. For vectors a, b of the same length, let a · b denote the inner
product. We denote by ∆(M;N ) the set of distributions onM indexed by elements inN . For a real
symmetric matrix A, let σmax(A) and σmin(A) be its largest and smallest eigenvalues, respectively.
For any positive integer n, we define [n] = {1, . . . , n}. For any bounded function ϕ : X → Rdϕ ,
we define the linear function space spanned by ϕ as Hϕ = {θ · ϕ : θ ∈ Rdϕ}. For any function
f = θ · ϕ ∈ Hϕ, we denote by ‖f‖ϕ = ‖θ‖2 its norm.

2 Problem Setup

We formulate the problem in this section. We first define instrumental variables (IVs) in §2.1 as a
preliminary. In §2.2.1, we describe the evaluation setting, where we test the performance of our
learned policy. In §2.2.2, we describe the offline setting in which we collect the observational data to
learn a policy. Our goal is then to recover the optimal policy for the evaluation setting, using only
data collected in the offline setting.

2.1 Preliminaries: Instrumental Variables

We define confounders and IVs as follows.

Definition 2.1 (Confounders and Instrumental Variables, [56]). A variable ε is a confounder relative
to the pair (X,Y ) if (X,Y ) are both caused by ε. A variable Z is an IV relative to the pair (X,Y ),
if it satisfies the following two conditions: (i) Z is independent of all variables that have influence on
Y and are not mediated by X; (ii) Z is not independent of X .

Figure 2 (left panel) illustrates a typical causal directed acyclic graph (DAG) for an IV, where Z is the
IV relative to the pair (X,Y ), and ε is the UC relative to the pair (X,Y ). The the DAG in Figure 2
(left) can also be characterized by X = g(Z, ε) and Y = f(X, ε) given independent Z and ε, where
f and g are two deterministic functions.

2.2 CMDP-IV

We first introduce a type of finite-horizon Markov Decision Process (MDP) in the offline setting with
UCs and IVs, which we term Confounded Markov Decision Process with Instrumental Variables
(CMDP-IV). CMDP-IV is a natural extension of the IV model introduced in §2.1 to the multi-stage
decision making process. In §B we discuss possible extension of this model.

A CMDP-IV is defined as a tuple M = (S,A,Z,U , H, r; ξ0,Pe,Pz, F ∗, πb), where the sets S ⊆
Rdx and A are state and action spaces; the set Z ⊆ Rdz is the space of IVs; the set U ⊆ Rdx is the
space of UCs; the integer H is the length of each episode; and r = {rh : S ×A → [0, 1]}Hh=1 is the
set of deterministic reward functions, where rh is the reward function at the h-th step. For simplicity
of presentation, we assume that the reward function rh is known for any h ∈ [H]. Furthermore,
ξ0 ∈ ∆(S) is the initial state distribution, Pe = N (0, σ2Idx) is the distribution of UCs, and Pz is
the distribution of IVs. The function F ∗ : S × A → S is a deterministic transition function and
πb = {πb,h ∈ ∆(A;S,Z,U)}Hh=1 is the behavior policy, where πb,h is the behavior policy at the
h-th step.
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2.2.1 Evaluation setting: Bellman Equations and Performance Metric

We now introduce the evaluation setting of CMDP-IV. The evaluation setting is the same as the usual
RL setup [64]: we want to find an optimal policy in the MDP.

For a policy π = {πh ∈ ∆(A;S)}Hh=1, given an initial state x1 ∼ ξ0, for any h ∈ [H], the dynamics
in an evaluation setting at the h-th step is

ah ∼ πh(· |xh), xh+1 = F ∗(xh, ah) + eh, (2.1)

where {eh}Hh=1
iid∼ Pe is the sequence of Gaussian innovations. The episode terminates if we reach

the state xH+1. For simplicity, for any F : S ×A → Rdx we define the following transition kernel

PF (· |xh, ah) = N (F (xh, ah), σ2Idx). (2.2)

We define the value function and the Q-function of a policy under the evaluation setting (2.1). For
any h ∈ [H], given any policy πh at the h-th step, we define its value function V πh : S → R and its
Q-function Qπh : S ×A → R as follows,

V πh (x) := Eπ
[ H∑
i=h

ri(xi, ai)
∣∣∣xh = x

]
, Qπh(x, a) := Eπ

[ H∑
i=h

ri (xi, ai)
∣∣∣xh = x, ah = a

]
. (2.3)

Here, the expectation Eπ is taken with respect to the randomness of the state-action sequence
{(xi, ai)}Hi=h, where the action ai follows the policy πi(· |xi) and the next state xi+1 follows the
transition kernel PF∗(· |xi, ai) defined in (2.2) for any i ∈ {h, h+ 1, . . . ,H}.
An optimal policy π∗ gives the optimal value V ∗h (x) = supπ V

π
h (x) for any (x, h) ∈ S × [H]. We

assume that such an optimal policy π∗ exists. For a given policy π = {πh ∈ ∆(A;S)}Hh=1, its
suboptimality compared to the optimal policy π∗ = {π∗h}Hh=1 is defined as

‖V ∗1 − V π1 ‖∞ := sup
x∈S

V ∗1 (x)− V π1 (x). (2.4)

We describe the Bellman equation and the Bellman optimality equation for the evaluation setting. For
any (x, a, h) ∈ S ×A× [H], the Bellman equation of the policy π takes the following form,

Qπh(x, a) = (rh + PV πh+1)(x, a), V πh (x) = 〈Qπh(x, ·), πh(· |x)〉A, V πH+1(x) = 0,

where 〈Qπh(x, ·), πh(· |x)〉A =
∫
AQ

π
h(x, a)πh(da |x) and P is the operator form of the transition

kernel PF∗ , i.e., defined as (Pf)(x, a) = Ex′∼PF∗ (· | x,a)[f(x′)] for any function f : S → R. The
subscript A is omitted subsequently if it is clear from the context. Similarly, the Bellman optimality
equation takes the following form,

Q∗h(x, a) = (rh + PV ∗h+1)(x, a), V ∗h (x) = max
a∈A

Q∗h(x, a), V ∗H+1(x) = 0, (2.5)

which implies that to find an optimal policy π∗, it suffices to estimate the optimal Q-function and
then construct the greedy policy with respect to the optimal Q-function.

2.2.2 Offline Setting: Data Collection Process

We describe the offline setting of CMDP-IV, in which we collect the data by executing the behavior
policy πb ∈ ∆(A;S,Z,U)H . This distinguishes our work from most works in offline RL since we
need to handle the issue of unobserved confounders, which makes the already difficult offline RL
problem even more challenging.

At the beginning of each episode, the environment generates an initial state x1 ∼ ξ0, a sequence of
UCs {eh}h

iid∼ Pe, and a sequence of observable IVs {zh}h
iid∼ Pz . At the h-th step, given the current

state xh, the action ah and the next state xh+1 are generated according to the following dynamics,

ah ∼ πb,h(· |xh, zh, eh), xh+1 = F ∗(xh, ah) + eh. (2.6)

The episode terminates if we reach the state xH+1 and we collect all observable variables, i.e.,
{(xh, ah, zh, x′h)}h∈[H], where x′h = xh+1 for any h ∈ [H].

A causal DAG is given in Figure 2 (left) to graphically illustrate such dynamics. At any stage h, the
variable zh is an IV relative to the pair (ah, xh+1). Indeed, zh affects the action ah only through
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Figure 2: Left panel: An illustration of Definition 2.1 with one UC ε and three observable variables
X , Y , and Z. Right panel: Offline setting of CMDP-IV with a behavior policy πb (left). Evaluation
setting of CMDP-IV with intervention induced by π (right).

(2.6), and its effect on xh+1 must be channelled through ah because it does not appear in the second
equation in (2.6).

The main difference between the evaluation setting (2.1) and the offline setting (2.6) is whether the
UC eh has an effect on the action ah. In the language of causal inference [56], a policy π = {πh ∈
∆(A;S)}Hh=1 induces the stochastic intervention do(a1 ∼ π1(· |x1), . . . , aH ∼ πH(· |xH)) on the
DAG in Figure 2 (left part of the right panel), and the resulting DAG is obtained by removing all
arrows pointing into the action ah; see Figure 2 (right part of the right panel). §E includes more
details on the do-operation.

Under the offline and the evaluation settings described in Sections 2.2.2 and 2.2.1, respectively, we
aim to answer the following question:

Given data collected from the confounded dynamics (2.6) in the offline setting, can we find a policy
that minimizes the suboptimality defined in (2.4) in the evaluation setting?

The challenge of the problem stems from the fact that the UC eh enters both of the equations (2.6).
In general we do not have E[xh+1 |xh, ah] = F ∗(xh, ah) in the offline dynamics; see Remark B.3.

3 IV-Aided Value Iteration

How can an IV help us design an offline RL algorithm? To answer this question, we proceed by a
model-based approach. We estimate the transition function F ∗ first. And then any planning algorithm
(value iteration in our case) can be used to recover the optimal policy under the evaluation setting.

3.1 A Primal-Dual Estimand

We observe that, thanks to the presence of IVs, the transition function F ∗ is the solution of a
conditional moment restriction (CMR). To estimate the transition function F ∗ based on the CMR, we
derive a primal-dual formulation of the CMR in §3.1.2.

3.1.1 Conditional Moment Restriction

Following the confounded dynamics (2.6), the behavior policy πb induces the distribution of the
observable trajectories {xh, ah, zh, x′h = xh+1}Hh=1. We denote by dh,πb the distribution of the tuple
(xh, ah, zh, x

′
h) ∈ S ×A×Z ×S at the h-th step for any h ∈ [H], i.e., dh,πb(x, a, z, x

′). We further
define the average visitation distribution as follows,

d̄πb(x, a, z, x
′) =

1

H
·
H∑
h=1

dh,πb(x, a, z, x
′) (3.1)

for any (x, a, z, x′) ∈ S×A×Z×S . We denote byL2(S,A) = {f : S×A → R, E[f(x, a)2] <∞}
the space of square integrable functions equipped with the norm ‖f‖2L2(S,A) = E[f(x, a)2]. Similarly,
we define L2(Z) and the norm ‖g‖2L2(Z) = E[g(z)2]. The operator T : L2(S,A) → L2(Z) is
defined as

(T f)(·) = E[f(x, a) | z = · ]. (3.2)

The following proposition states the conditional moment restriction (CMR) implied by the IVs in the
offline confounder dynamics (2.6). See §F.1 for the proof.
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Proposition 3.1 (CMR). If (x, a, z, x′) is distributed according to the law d̄πb , then for any z ∈ Z ,
E[F ∗(x, a) | z] = E[x′ | z] . (3.3)

Proposition 3.1 implies that the transition function F ∗ satisfies the equation T F ∗ = E[x′ | z], where
the operator T is defined in (3.2). Such an equation is a Fredholm integral equation of the first kind
[38]. Given data collected from d̄πb , we aim to estimate F ∗ based on the CMR.
Remark 3.2 (Global IVs and global UCs). Our method directly extends to cases where, instead of a
time-varying IV, we only have access to a global IV that affects all the actions taken on a trajectory
simultaneously, e.g. a doctor’s preference to certain treatments. The reason is that the global IV,
conditional on the past history, is also a valid IV for each time step, mimicking the structure of the
time-varying IV. Specifically, having a global IV is equivalent to having zh = z for all h, i.e. all local
IVs take the same value. Then, by the full independence between {eh}h and z, the core requirement
of the time-varying IV E[eh | z] = 0 still holds, and thus our result applies.

Our model can also be extended to the case of global UCs, assuming that the global UCs have the
same effect on the states xh in both offline and evaluation settings. Only their effects on the actions
ah can differ; the global UCs affect the actions offline but not in evaluation setting. In more detail,
the global UCs affect all stages of decision making, and thus affect all states xh and actions ah.
While IV can deconfound the effects of global UCs on the actions ah, it cannot deconfound their
effects on the states xh, xh+1. The transition dynamics from xh to xh+1 would depend on the global
UCs. This dependence would limit the performance of the learned policy in evaluation settings if
the evaluation transition dynamics from xh to xh+1 does not depend on the global UCs in the same
way. Yet, assuming that the effect of global UCs on the states are persistent in both evaluation and
offline settings, our results would extend to global UCs. Moreover, with additional assumptions on
the transition dynamics, some settings of global UCs can be reduced to our setting. For example,
suppose the dynamics for stage h write

ah ∼ πb(· |xh, zh, e), xh+1 = F ∗(xh, ah) + e,

where the UC at each stage is identical and is denoted e. One can difference the sequence {xh}h, and
obtain xh+1 − xh = F ∗(xh, ah)− F ∗(xh−1, ah−1), where the global UC is cancelled. Due to these
considerations, we focus on the CMDP-IV setting in this work, which itself is a natural extension of
the IV model introduced in §2.1 to the multi-stage decision making process.

3.1.2 A Primal-Dual Estimand

We derive a primal-dual estimand for F ∗ = [f∗1 , . . . , f
∗
dx

]>. For any i ∈ [dx], by Proposition 3.1,
E[f∗i (x, a) | z] = E[x′i | z], where x′i is the i-th element of the next state x′. We find f∗i by solving
the least-square problem minfi∈L2(S,A)

1
2E[(E[fi(x, a) | z] − E[x′i | z])2]. By Fenchel duality, the

least-square problem admits a primal-dual formulation
min

fi∈L2(S,A)
max

ui∈L2(Z)
E[(fi(x, a)− x′i)ui(z)]− 1

2E[ui(z)
2] , (3.4)

where ui is the dual variable. To approximate the L2 spaces, we introduce two known feature maps
φ : S ×A → Rdφ , ψ : Z → Rdψ ,

and letHφ andHψ denote the spaces spanned by φ and ψ, respectively. For simplicity, we define the
following uncentered covariance matrices
A = E[ψ(z)φ(x, a)>], B = E[ψ(z)ψ(z)>], C = E[x′ψ(z)>], D = E[φ(x, a)φ(x, a)>]. (3.5)

where the expectations are taken following d̄πb . We replace the L2 spaces in (3.4) by their finite-
dimensional subspaces, minfi∈Hφ maxui∈Hψ E[(fi(x, a)−x′i)ui(z)]− 1

2E[ui(z)
2] ,which, in matrix

form, writes
min
θi∈Rdφ

max
ωi∈Rdψ

ω>i Aθi − biωi − 1
2ω
>
i Bωi , (3.6)

where bi := E[x′iψ(z)>] and A and B are defined in (3.5). We address the approximation error
incurred by such finite-dimensional approximation in §4.2. Now we collect (3.6) for all coordinates
i ∈ [dx], giving the key primal-dual estimand W sad

W sad := argmin
W

max
K

L(W,K), (3.7)

where L(W,K) := Tr(KAW>)−Tr(CK>)− 1
2Tr(KBK>) with W = [θ1, . . . , θdx ]> ∈ Rdx×dφ

and K = [ω1, . . . , ωdx ]> ∈ Rdx×dψ . For carefully chosen feature maps we expect W sadφ ≈ F ∗.
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Algorithm 1 IV-aided Value Iteration (IVVI)
1: Input: Reward functions {rh}Hh=1, feature maps φ and ψ, iterations T , stepsizes {ηθt , ηωt }Tt=1,

initial estimates K0 and W0, variance σ2, samples {(xt, at, zt, x′t)}T−1t=0 in Assumption A.1.
2: Phase 1 (Estimation of W sad in Eq. (3.7))
3: for t = 0, 1, . . . , T − 1 do
4: φt ← φ(xt, at), ψt ← ψ(zt).
5: Wt+1 ←Wt − ηθt · (Ktψtφ

>
t ), Kt+1 ← Kt + ηωt · (Ktψtψ

>
t + x′tψ

>
t −Wtφtψ

>
t ).

6: end for
7: Phase 2 (Value iteration)
8: V̂H+1(·)← 0, Ŵ ←WT .
9: for h = H,H − 1, . . . , 1 do

10: Q̂h(·, ·)← rh(·, ·) +
∫
S V̂h+1(x′)P

Ŵ
(dx′ | ·, ·).

11: π̂h(·)← argmaxa Q̂h(·, a), V̂h(·)← maxa Q̂h(·, a).
12: end for
13: Output: π̂ = {π̂h}Hh=1.

3.2 Algorithm

We first introduce the following data sampling assumption for the algorithm.
Assumption A.1 (Offline data). We have access to i.i.d. data from the average visitation distribution
defined in (3.1). That is, {(xt, at, zt, x′t)}T−1t=0

iid∼ d̄πb .

Assumption A.1 is only used to simplify the presentation of our results, by ignoring the temporal
dependence in the data.

Algorithm 1 introduces the backbone of the paper, IV-aided Value Iteration (IVVI), which recovers
the optimal policy under the evaluation setting given data collected from the confounded dynamics
under the offline setting. Algorithm 1 consists of the following two phases.

Phase 1. In Lines 3–7 of Algorithm 1, we solve (3.7) using stochastic gradient descent-ascent. At
the t-th iteration, we have ∂L

∂W = KtA,
∂L
∂K = −(KtB + C −WtA

>), which combined with the
definitions of A, B, and C in (3.5), gives us the updates of Wt+1 and Kt+1 in Line 5, respectively.

Phase 2. Given the estimated matrix Ŵ generated from Phase 1, in Lines 8–12 of Algorithm 1, we
implement value iteration to recover an optimal policy for the evaluation setting. In the optimality
Bellman equation (2.5), we replace the true transition operator P with the estimated transition operator
induced by Ŵ , i.e., Q̂h(x, a) = rh(x, a) + (P̂V̂h+1)(x, a), for any (x, a) ∈ S × A. Here, P̂ is the
operator form of P

Ŵ
:= P

Ŵφ
, such that (P̂f)(x, a) = Ex′∼P

Ŵ
(· | x,a)[f(x′)] for any f : S → R.

We remark that to efficiently implement the integration and maximization in Phase 2 of Algorithm 1,
one can use Monte Carlo integration and gradient methods, respectively.

4 Theory

We first introduce two assumptions on the feature maps φ and ψ.
Assumption A.2 (Bounded feature maps). We have ‖φ(x, a)‖2 ≤ 1 and ‖ψ(z)‖2 ≤ 1 for any
(x, a, z) ∈ S ×A×Z .
Assumption A.3 (Nondegenerate feature maps). It holds that rank(A) = dφ and rank(B) = dψ
for A and B defined in (3.5).

Uniqueness ofW sad. Assumption A.3 implies the minimax problem (3.7) admits a unique solution.
In the min-max problem (3.7), for a fixed primal variable W , the unique maximizer K∗(W ) of the
inner problem in takes the form K∗(W ) := (WA> − C)B−1. This holds by the invertibility of
B, whose minimum eigenvalue is now denoted by µB := σmin(B) > 0. Plug in this optimal value
we have maxK L(W,K) = 1

2Tr[(WA> − C)B−1(WA> − C)>]. By full-rankness of A we know
W sad is the unique minimizer of the map W 7→ maxK L(W,K).
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Instrument Strength. Assumption A.3 implicitly impose sufficient correlation between φ(x, a)
and ψ(z). In other words, IVs needs to be strong to have enough explanatory power for the behavior
policy πb. Weak IV is a well-known pitfall in applied economic research [2]. For RL applications in
healthcare, practitioners should take into account domain knowledge of the behavior policy to avoid
using weak IVs. We introduce a quantity µIV, which quantifies the strength of IVs. We define the IV
strength µIV as follows,

µIV := inf

{
‖ΠψT f‖2L2(Z)

‖f‖2φ
: f ∈ Hφ, ‖f‖φ 6= 0

}
, (4.1)

where Πψ is the projection operator onto the spaceHψ , i.e., Πψu = argminu′∈Hψ ‖u−u
′‖2L2(Z) for

any u ∈ L2(Z). The definition of µIV in (4.1) mimics the notion of sieve measure of ill-posedness
well-known in the literature on NPIV as a measure of IV strength [9, 19]. We next show µIV admits
a simple expression.
Proposition 4.1. Let A.3 hold. Then µIV = σmin(A>B−1A) .

4.1 Parametric Case

We impose the following assumptions on the transition function F ∗ and the conditional expectation
operator T .
Assumption A.4 (Linear representation). It holds F ∗ = W ∗φ for some W ∗ ∈ Rdx×dφ .

Such a linear form of the transition function F ∗ is commonly assumed in the literature [32, 43] in the
context of dynamical system identification.
Assumption A.5 (Realizability). For all f ∈ Hφ, it holds that T f ∈ Hψ .
Proposition 4.2. Let A.3, A.4 and A.5 hold. Then W ∗ = W sad.

One important contribution of our work is that we quantify how the strength of the IV is playing a
role in terms of recovering optimal policy from confounded data. We provide a sketch of the proof
for Theorem 4.3 in §D. The complete proofs are given in §F.4.
Theorem 4.3 (Parametric case). Let A.4–A.5 hold. We set the stepsizes in Algorithm 1 as ηθt =
β/(γ + t) and ηωt = αηθt for any t ∈ [T ], where α = c1µ

−1
IV µ

−1.5
B , β = c2µ

−1
IV , γ = c3µ

−4
IV µ

−3.5
B ,

and c1, c2, c3 are positive absolute constants. Then

(i) the estimation error satisfies

E
[
‖WT −W ∗‖2F

]
≤ ν

γ + T
, (4.2)

where ν = max{γP̃0, c4µ
−4
IV µ

−2.5
B · dxσ2} and P̃0 = ‖W0 −W ∗‖2F +

√
µB · ‖K0 −K∗(W0)‖2F

with c4 being a positive absolute constant; and

(ii) the planning error satisfies

E
[
‖V ∗1 − V π̂1 ‖∞

]
≤ H ·min

{
2Hσ−1

√
ν

γ + T
, 1

}
. (4.3)

The expectation is taken over the data.

For an appropriately chosen initial estimates W0 and K0, Theorem 4.3 shows that the sample
complexity needed to recover an ε-optimal policy using offline data is of order

O(µ−4IV µ
−2.5
B ·H4dxε

−2),

where µIV characterizes IV strength, i.e., how well the IV is able to explain the behavior policy, µB
quantifies the compatibility of the dual feature map and the IV, H is the horizon of the MDP, and dx
is the dimension of states. To the best of our knowledge, this is the first sample complexity result for
recovering optimal policy using confounded data when a valid IV is present.
Remark 4.4 (Joint computational and statistical efficiency). The estimation procedure (phase 1) is
readily a scalable algorithm, in contrast to estimators defined as the saddle-point of a finite-sum;
see Remark C.2. From an optimization perspective, the saddle-point problem (3.6) is a stochastic
convex-strongly-concave one, a case rarely investigated in the optimization literature; see Remark C.3
for a brief review. The asymmetric structure in the primal and dual variables demands more detailed
analysis of the algorithm in order to achieve a fast O(1/T ) rate.

8



Remark 4.5 (Dependence on IV strength). In (4.3), for appropriately chosen initial estimatesW0 and
K0, only the second term in the definition of ν matters. We are effectively solving dx NPIV problems,
and the asymptotic order for solving just one NPIV problem isO(µ−4IV µ

−2.5
B σ2T−1). The dependence

on the dimension of feature maps dφ and dψ is hidden in the minimum eigenvalues µB and µIV. We
compare our result with the work by [24] under A.5. There the proposed estimator is the saddle-point
of the sample version of (3.6); see Remark C.2 for more details. In particular, they provide a bound
in the L2-norm, and the order of the variance term is O(µ−4IV max{dφ, dψ}T−1) 2. The minimax
optimal rate for NPIV problem is established in the work of [9], attained by sieve estimators. In
comparison, the variance term in the minimax optimal rate is of order O

(
µ̃IV
−2
dψT

−1) 3, where
µ̃IV is the minimum nonzero singular value of D−1/2AB−1/2, quantifying the strength of an IV in a
similar way to our µIV.

Remark 4.6 (Dependence on horizon and state dimension). The work of [32] provides a
√
T -

regret bound for online learning of an additive nonlinear dynamics. Their regret bound translates to a
O(dφ(dφ+dx+H)H3ε−2) sample complexity bound, ignoring logarithmic factors; see Corollary 3.3
of [32]. Despite that we deal with confounders in additive nonlinear dynamics, our dependence on dx
and H matches their sample complexity bounds.

4.2 Nonparametric Case

In A.4 and A.5 we make the simplifying assumption that both the true transition function F ∗ and
the image of the operator T lie in some known finite dimensional spaces. To extend out theory to
the nonparametric case (e.g., F ∗ : S × A → Rdx is Hölder continuous, and functions of the form
{T f | f : S × A → R, bounded and continuous} are also Hölder continuous), we need to discuss
two issues. The first one is identification: whether F ∗ is the unique solution to the CMR (3.3).
Identification in NPIV usually requires some form of completeness assumptions; see Remark C.1.
The second issue is the error caused by finite-dimensional approximation which we address below.

Let f∗ be one element of F ∗ = [f∗1 , . . . , f
∗
dx

]>. If A.4 is violated, we define the primal approximation
error η1 := ‖f∗ − Πφf

∗‖L2(S,A). If A.5 is violated, we define the dual error, which characterizes
how well the dual function space Hψ approximates functions of the form T (f − f∗) for f ∈ Hφ.
Formally we define η2 := sup{‖T f − ΠψT f‖L2(Z) : f ∈ Hφ, ‖f‖L2(S,A) ≤ 1}. Obviously A.4
implies η1 = 0 and A.5 implies η2 = 0.

We show that, when A.4 and A.5 are violated, the difference between F ∗ and W sadφ has only linear
dependence on the approximation errors η1 and η2. Notably, the dual error η2 is inflated by µ−1IV .
Recall f∗i is the i-th element of F ∗ = [f∗1 , . . . , f

∗
dx

]>, and W sad
i is the i-th row of the estimand W sad

defined in (3.7).
Theorem 4.7 (Nonparametric case). Let A.3 hold. Assume there is a constant c > 0 such that
µ−1IV ·‖T (f∗i −Πφf

∗
i )‖L2(Z) ≤ c·‖f∗i −Πφf

∗
i ‖L2(S,A). We define the operatorQ : L2(S,A) 7→ Hφ,

Qf = argminf ′∈Hφ ‖ΠψT (f ′ − f)‖L2(Z). Let µ = ‖(Πφ −Q)f∗i ‖L2(S,A). It holds

‖f∗i −W sad
i · φ‖L2(S,A) ≤ (1 + 2c) · η1 + µ−1IV · µ · η2 .

The estimation phase still produces an estimator that converges to W sad at O(1/T ) rate. The only
difference is, in the planning phase, we are performing value iteration with a biased model.

5 Conclusion

Our model is motivated by real-world applications of RL in healthcare, where it is often the case
that UCs are present. We show that, for additive nonlinear transition dynamics, a valid IV can help
identify the confounded transition function. The proposed IVVI algorithm is based on a primal-
dual formulation of the conditional moment restriction implied by the IV. Moreover, our stochastic
approximation approach to nonparametric IV problem is of independent interest. We derive the
convergence rate of IVVI. Furthermore, we derive the sample complexity of offline RL with IVs in
the presence of unmeasured confounders.

2In Appendix D of [24], their (γn, kn,mn) is the same as our (µ−1
IV , dφ, dψ).

3In Theorem 2 of [9], their (τn, kn) is the same as our (µ̃IV
−1, dφ).
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A More Related Work

Dynamic treatment regime (DTR) DTR [48, 15, 16] is a popular model for sequential decision
making. DTR differs from RL in that it does not require the Markov assumption and the quantity
of interests is an optimal adaptive dynamic policy that makes its decision based on all information
available prior to the decision point. However, unobserved confounding is often expected in obser-
vational data, and yet few works handle UCs in DTR. A concurrent work by [18] study the policy
improvement problem in the presence of UCs, using partial identification results of causal quantities
with IVs [44, 4]. However, these identification results often apply to binary treatments or binary
IVs, restricting their use in many real-world scenarios where the IV is continuous. In our work, the
transition function is point-identified under the additive UC assumption. This enables us to work with
continuous actions and continuous IVs.

RL in the presence of UCs. [67] formulate the MDP with unobserved confounding using the
language of structural causal models. [42] study a model-based RL algorithm in a combined online
and offline setting. They propose a structural causal model for the confounded MDP and estimate
the structural function with neural nets using the observational data. [12] propose a model-based RL
algorithm in the evaluation setting that learns the optimal policy for a partially observable Markov
decision process (POMDP). [54] propose a class of structural causal models (SCMs) for the data
generating process of POMDPs and then discuss identification of counterfactuals of trajectories in
the SCMs. [65] study offline policy evaluation in POMDP. Their identification strategy relies on the
identification results of proxy variables in causal inference [45]. [68, 69] study the dynamic treatment
regime and propose an algorithm to recover optimal policy in the online RL setting that is based
on partial identification bounds of the transition dynamics, which they use to design an online RL
algorithm. [50] study offline policy evaluation when UCs affect only one of the many decisions made.
They work with a partially identified model and construct partial identification bounds of the target
policy value. [8] study off-policy evaluation in infinite horizon. Their method relies on estimation of
the density ratio of the behavior policy and target policy through a conditional moment restriction.
[34] study off-policy evaluation in infinite horizon. They characterize the partially identified set of
policy values and compute bounds on such a set. [33, 35] study policy improvement using sensitivity
analysis.

Primal-dual estimation of nonparametric IV (NPIV) Typical nonparametric approaches to IV
regression include smoothing kernel estimators and sieve estimators [52, 14, 19, 22], and very recently,
reproducing kernel Hilbert space-based estimators [63, 47]. However, traditional nonparametric
methods are not scalable and thus not suitable for modern-day RL datasets.

Our proposed method builds on a recent line of work that investigates primal-dual estimation of NPIV
[20, 39, 7, 47, 24, 40].

This paper differs from previous works in primal-dual estimation of NPIV in two aspects. First, we
solve the NPIV problem through a stochastic approximation (SA) approach [61]. The SA approach
is an online procedure in the sense it updates the estimate upon receiving new data points. This is
a more desirable framework for practical RL applications. For example, in business application of
RL, data is logged following business as usual, streaming into the database system. New technology
such as wearable devices allows real-time collection of health information, medical decisions and
their associated outcomes. Faced with large amounts of data, practitioners typically prefer algorithms
that process new data points in real time; see Remark C.2 for a detailed comparison with the sample
average approximation approach. Our stochastic approximation approach to NPIV problem tackles
computational error and statistical error jointly and is well-suited for streaming data.

Second, despite that the stochastic saddle-point problem is not strongly-convex-strongly-concave, we
show a fast rate of O(1/T ) can be attained by a simple stochastic gradient descent-ascent algorithm.

Example A.1 (Preference-based IV, MIMIC-III data). For example, the work of [10] discusses
the use of preference-based IVs. They assume that different healthcare providers, at the level of
geographic regions, hospitals, or individual physicians, have different preferences on how medical
procedures are performed. Then preference-based IVs are variables that represent the variation
in these healthcare providers. In the context of sepsis management by applying RL [37] on the
MIMIC-III dataset [31], the effect of doses of intravenous fluids and vasopressors (X) on the health
status of patients (Y ) is likely to be confounded by unrecorded severity level of comorbidities. Then
a physician’s preference for prescribing vasopressors (Z) is a potentially valid IV since it affects
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directly the actual doses given (X), but is unlikely to affect the next-stage health status through other
causes of Y .

B Appendix to §2

Remark B.1 Generalization of Figure 2 (right panel). We have made two simplifying assumptions.
First, we assume eh only confounds the transition dynamics (the arrow from ah to xh+1). The
unobservables eh could also affect the action and the reward, or state and reward, or both. Second,
we assume in each stage, zh and eh are generated in an i.i.d. manner and are independent of all
other random variables in the MDP. In practice it is likely that the sequences {zh} and {eh} exhibit
temporal dependence. We focus on this simplified model because it captures the essence of IVs: a
variable that affects xh+1 only through the action ah. In the work of [8] where the authors study
policy evaluation with unobserved confounders, confounders are also assumed i.i.d.
Remark B.2 On additive noise assumption. A more general version of this problem, which we
leave for future work, would be the setting where the transition dynamics are of the form xt+1 =
F (xh, ah, eh), in contrast to our additive Gaussian noise assumption. We remark non-identification
is a key issue in the fully non-parametric model. Let us revisit the IV diagram presented in Figure 2,
which represents the simplest case of IV with structural equations Y = f(X, ε) and X = g(Z, ε),
with Z ⊥⊥ ε. It is well-known that the conditional independence implied by the IV diagram is
not enough to identify the causal effect of X on Y [6, 30]. Roughly this means there exist two
distributions of random variables (X,Y, Z) that are compatible with the IV diagram, and yet the
structural functions f are different. One could instead work with a partially identified IV model,
using bounds of the causal effects [4, 5, 70].
Remark B.3 (The challenge of UCs). The challenge stems from the fact that the UC eh enters both
of the equations (2.6). For ease of discussion, suppose that the behavior policy πb is deterministic.
With slight abuse of notations, we denote by πb,h : S ×Z ×U → A the deterministic behavior policy
at the h-th step for any h ∈ [H]. Now, (2.6) writes ah = πb,h(xh, zh, eh). We further assume that the
behavior policy πb,h(x, z, e) is invertible in the third argument e for any (x, z) ∈ S×Z , which allows
us to define its inverse π−1b,h : S×Z×A → U . Then, by substituting eh = π−1b,h(xh, zh, ah) into (2.6),
we have xh+1 = F ∗(xh, ah) + π−1b,h(xh, zh, ah). By taking expectation conditioning on (xh, ah), we
obtain E[xh+1 |xh, ah] = F ∗(xh, ah) + δ(xh, ah), where δ(xh, ah) := E[π−1b,h(xh, zh, ah) |xh, ah].
This indicates that the true transition function F ∗ cannot be obtained by simply regressing xh+1 on
(xh, ah), since that would result in a biased estimate.

C Appendix to §4

Remark C.1 On completeness conditions. Bounded completeness condition is a relatively weak
regularity assumption on the average visitation distribution d̄πb . For two random variables X and
Y , X is boundedly complete w.r.t Y if for all Y -a.s. bounded function f , it holds E[f(Y ) |X] = 0
implies f = 0 Y -a.s. Intuitively, it requires that the distribution of Y exhibits a sufficient amount of
variation when conditioning on different values of X . It is well-known that there is a wide range of
distributions that satisfy bounded completeness; see, for example, [9, 23, 29, 1].

In the parametric case (F ∗ = W ∗φ, for some known bounded feature map φ), bounded completeness
is more than enough to ensure identification. In fact, it suffices to impose invertibility on the matrix
E[E[φ(x, z) | z]× E[φ(x, z) | z]] to ensure uniqueness and existence of the matrix W ∗.
Remark C.2 Stochastic approximation for instrumental variables. Our stochastic approximation
(SA) estimation procedure is in contrast with the empirical saddle-point estimator proposed in [24].
To estimate f∗j , their estimator would be defined as the solution to the finite-sum saddle-point problem

argmin
f∈Hφ

max
u∈Hψ

1

n

n∑
i=1

{
(f(xi, ai)− x′i,j)u(zi) +

1

2
u(zi)

2
}
− λ

2
‖u‖2φ +

µ

2
‖f‖2Hψ (C.1)

for some positive λ and µ. Here the data {xi, ai, zi, x′i} are i.i.d. draws from d̄πb , and x′i,j denotes the
j-th coordinate of x′i ∈ Rdx . Their procedure faces two challenges: (i) using the correct regularization
parameter, and (ii) finding an approximate solution of the convex-concave optimization problem
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(C.1), which requires a separate discussion of computational complexity. The theoretical trade-off
among regularization bias, statistical error and optimization error is unclear, as is shown in related
primal-dual methods in RL; see, e.g., [20, 21, 49]. In contrast, the SA approach considered in this
work tackles computational error and statistical error jointly and enjoys a fast rate of O(1/T ).
Remark C.3 More on O(1/T ) rate. We now review literature that studies convex-strongly-concave
SSP. A slow rate O(1/

√
T ) is obvious by the results for general stochastic convex-concave problem

[51]. The work of [17] studies deterministic CSC problem with bilinear coupling and shows a
O(1/T 2) rate. [66, 26, 25] consider CSC problem with finite sum structure and bilinear coupling
structure, and shows a linear convergence rate by variance reduction techniques. In contrast, our
algorithm solves stochastic CSC problem with linear coupling structure with a fast O(1/T ) rate
without the need of projection. Moreover, the assumption of bounded variance of the stochastic
gradient does not hold in our case, rendering most existing analysis invalid.

D Proof Sketch

The proof consists of two parts: the analysis of the convergence of the stochastic gradient descent-
ascent (Line 3–6) and the analysis of the planning phase using the estimated model (Line 8–11).

In Remark 4.4 we emphasized the stochastic minimax optimization problem is only strongly concave
in the dual variable. This motivates us to study the recursion of the following asymmetric potential
function. For some λ > 0, define

P̃t = E
[
‖Wt −W ∗‖2F

]
+ λE

[
‖Kt −K∗(Wt)‖2F

]
where K∗(W ) = (WA> − C)B−1 with A, B and C defined in (3.5). The matrix K∗(W ) is the
optimal dual variable in the saddle-point problem (3.7) when the primal variable is fixed at W . In
order to get around the assumption of bounded variance of stochastic gradients, which is common in
the optimization literature [51], we follow the idea in the work of [53] where we upper bounds the
variance of stochastic gradients by the suboptimality of the current iterate; see Lemma F.3. Thus our
algorithm does not require projection in each iteration. A careful analysis of the recursion for the
sequence {P̃t} shows the error in squared Frobenius norm converges at the rate O(1/t).

The second element in our analysis is the decomposition of difference of value functions, which is
adapted from Lemma 4.2 of [13].
Lemma D.1 (Suboptimality Decomposition). It holds that for all states x ∈ S,

V ∗1 (x)− V π̂1 (x) =

H∑
h=1

Eπ∗ [ιh(xh, ah) |x1 = x] (D.1)

+

H∑
h=1

Eπ∗ [ξh(xh) |x1 = x]−
H∑
h=1

Eπ̂[ιh(xh, ah) |x1 = x],

where π̂ is the output of Algorithm 1, the expectations Eπ∗ and Eπ̂ are taken over trajectories
generated by policies π∗ and π̂ under the true transition function F ∗, respectively, ξh = 〈Q̂h, π∗h −
π̂h〉A for all x ∈ S, and ιh = (rh + PV̂h+1)− Q̂h for all (x, a) ∈ S ×A.

Proof. See Appendix F.3 for a detailed proof.

The output policy {π̂h} is greedy with respect to the Q-functions {Q̂h}, and therefore the second
term on the right-hand side of (D.1) is negative. The model prediction error term ιh quantifies the
mismatch of the pair (V̂h+1, Q̂h) as the solution to the Bellman equation. This term is controlled
by bounding the chi-squared distance between two normal distributions with means W ∗φ(x, a) and
ŴTφ(x, a), respectively.

E Structural Causal Model and Intervention

Structural Causal Models (SCMs) provide a formalism to discuss the concept of causal effects and
intervention. We briefly review its definition in this section and refer readers to [56, Ch. 7] for a
detailed survey of SCMs.
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A structural causal model is a tuple (A,B, F, P ), where A is the set of exogenous (unobserved)
variables,B is the set of endogenous (observed) variables, F is the set of structural functions capturing
the causal relations, and P is the joint distribution of exogenous variables. An SCM is associated with
a causal directed acyclic graph, where the nodes represent the endogenous variables and the edges
represent the functional relationships. In particular, each exogenous variable Xj ∈ B is generated
through Xj = fj(XpaD(j), Uj) for some fj ∈ F , Uj ∈ B, where paD(j) denotes the set of parents
of Xj in D. A distribution over the endogenous variables is thus entailed.

An intervention on a set of endogenous variables X ⊆ B assigns a value x to X while keeping
untouched other exogenous and endogenous variables and the structural functions, thus generating a
new distribution over the endogenous variables. We denote by do(X = x) the intervention on X and
write do(x) if it is clear from the context. A stochastic intervention on a set of endogenous variables
X ⊆ B assigns a distribution p to X regardless of the other exogenous and endogenous variables
as well as the structural functions. We denote by do(X ∼ p) the stochastic intervention on X . An
intervention induces a new distribution over the endogenous variables.

For any two variables X,Y ∈ B with a directed path from X to Y in D, we say the causal effect
from X to Y is confounded if p(y|do(X = x)) 6= p(y|X = x) [57, Def. 6.39].

F Proofs

F.1 Proof of Proposition 3.1

Proof of Proposition 3.1. We recall the trajectories of a behavior policy is generated through (2.6)
with {eh}h ⊥⊥ {zh}h. Let px,h be the marginal distribution of xh. Also define the probability density
function and probability mass function

pa,h(a |x, z, e) := πb,h(a |x, z, e),
px′(x

′ |x, a, e) := 1{x′ = F ∗(x, a) + e}.

Then the marginal distribution of (xh, ah, zh, eh, x
′
h), denoted dh,πb,∗ (we use ∗ to emphasize the

presence of unobserved confounder eh), admits the factorization

dh,πb,∗(x, a, z, e, x
′) = Pz(z)Pe(e)px,h(x) · pa,h(a |x, z, e) · px′(x′ |x, a, e).

And the average visitation distribution of all random variables {xh, ah, zh, eh, x′h}h is

d̄πb,∗(x, a, z, e, x
′)

:=
1

H

H∑
h=1

dh,πb,∗(x, a, z, e, x
′)

= Pz(z)Pe(e) ·

(
H∑
h=1

px,h(x)pa,h(a |x, z, e)

)
· px′(x′ |x, a, e)

= Pz(z)Pe(e) ·

(
1

H

H∑
h=1

px,h(x)

)
·

(
H∑
h=1

px,h(x)∑H
k=1 px,k(x)

pa,h(a |x, z, e)

)
· px′(x′ |x, a, e).

Define the weighted policy π̄(a |x, z, e) =
(∑H

h=1 px,h(x)pa,h(a |x, z, e)
)
/
∑H
h=1 px,h(x) and the

average state visitation distribution px = 1
H

∑H
h=1 px,h(x). Then (x, a, z, e, x′) ∼ d̄πb,∗ can be

equivalently written as

z ∼ Pz, e ∼ Pe, x ∼ px, a ∼ π̄(· |x, z, e), x′ = F (x, a) + e.

We conclude if (x, a, z, e, x′) ∼ d̄πb,∗ then x′ = F ∗(x, a) + e with E[e | z] = 0.

Remark F.1 . We also have E[e |x, z] = 0 so we could extend the instrument z to z ← [x, z], and
the algorithm and the theory in this paper remain the same.
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F.2 Proof of Proposition 4.1

Proof of Proposition 4.1. First note for f = φ · θ ∈ Hφ, the operator ΠψT f admits the form

ΠψT f = ψ>E[ψ(z)ψ(z)>]−1E[ψ(z)(θ · φ)(x, a)] = ψ>B−1Aθ.

Recall ‖f‖φ = ‖θ‖. Then the feature map ill-poseness can be written as

µIV := min
f∈Hφ

‖ΠψT f‖2L2(Z)

‖f‖2φ
= min

θ 6=0

θ>(A>B−1A)θ

θ>θ
,

which is the minimum eigenvalue of the matrixATB−1A. This completes the proof of Proposition 4.1.

F.3 Proof of Lemma D.1

To facilitate the discussion, we recall the definitions of relevant quantities and define some auxiliary
operators. We define the operators Jh and Ĵh

(Jhf) (x) = 〈f(x, ·), π∗h(· | x)〉 , (Ĵhf)(x) = 〈f(x, ·), π̂h(· | x)〉 (F.1)

for any h ∈ [H] and function f : S × A → R. For any function g : S → R, given the model
parameter Ŵ , define the operator

(P̂g)(x, a) =

∫
g(x′)P

Ŵ
(x′ |x, a) dx′,

where P
Ŵ

(x′ |x, a) is the probability density of dx-dimensional Gaussian distribution with mean
Ŵφ(x, a) and variance σ2Idx (we overload notations and let P denotes both the distribution and the
density of a Gaussian). For the true underlying transition dynamics with model parameter W ∗, we
define the operator

(Pg)(x, a) =

∫
g(x′)PW∗(x′ |x, a) dx′. (F.2)

We define the quantity

ξh(x) = (JhQ̂h)(x)− (ĴhQ̂h)(x) = 〈Q̂h(x, ·), π∗h(· | x)− πh(· | x)〉 (F.3)

for any h ∈ [H] and all state x ∈ S.

Now we clarify the relationship among (π∗, Q∗, V ∗), (π̂, Q̂, V̂ ) and (π̂, V π̂, Qπ̂). Recall the Bellman
equation of the optimal policy π∗. For h = 1, . . . ,H ,

Q∗h = rh + P(V ∗h+1), ∀(x, a), (F.4)
V ∗h = 〈π∗, Q∗h〉 = JhQ∗h, ∀x, (F.5)
V ∗H+1 = 0 (F.6)

and the set of Bellman optimality equations that π∗ satisfies: π∗h(x) = argmaxaQ
∗
h(x, a), and

V ∗h = maxaQ
∗
h.

The update rules of π̂ in Algorithm 1 imply the following equations relating π̂, Q̂ and V̂ . For
h = 1, . . . ,H ,

Q̂h = rh + P̂V̂h+1, ∀(x, a), (F.7)

π̂h(· |x) = argmax
a

Q̂h(x, a), ∀x, (F.8)

V̂h = 〈Q̂h, π̂h〉 = max
a

Q̂h = ĴhQ̂h, ∀x. (F.9)

We recall the definition of the model prediction term

ιh = (rh + PV̂h+1)− Q̂h (F.10)
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for all (x, a) ∈ S ×A. Finally, since Qπ̂ and V π̂ are the Q function and value function of the output
policy π̂, the Bellman equations for π̂ holds: for h = 1, . . . ,H

Qπ̂h = rh + PV π̂h+1, ∀(x, a) (F.11)

V π̂h = 〈Qπ̂h, π̂h〉 = ĴhQπ̂h, ∀x (F.12)

V π̂H+1 = 0. (F.13)

Proof of Lemma D.1. We first write

V ∗1 − V π̂1 = (V ∗1 − V̂1)− (V̂1 − V π̂1 ).

Next we analyze the two terms separately.

Part I: Analysis of (V ∗1 − V̂1). For all state x ∈ S, and any h = 1, . . . ,H

V ∗h − V̂h = 〈π∗h, Q∗h〉 − 〈Q̂h, π̂h〉 (F.14)

= JhQ∗h − ĴhQ̂h (F.15)

= Jh(Q∗h − Q̂h) + (Jh − Ĵh)Q̂h (F.16)

= Jh(Q∗h − Q̂h) + ξh (F.17)

= Jh([rh + PV ∗h+1]− [rh + PV̂h+1 − ιh]) + ξh (F.18)

= JhP(V ∗h+1 − V̂h+1) + Jhιh + ξh. (F.19)

Here (F.14) follows from Bellman equations of V ∗h (F.5) and the update rule of V̂h (F.9); (F.15)
follows from the definition of operators Jh and Ĵh (F.1); in (F.16) we add and subtract JhQ̂h; (F.17)
follows from definition of ξh in (F.3); (F.18) follows by using the Bellman equations satisfied by Q∗h
and the definition of ιh in (F.10).

Next we apply the above recursion formula for the sequence {V ∗h − V̂h}Hh=1 repeatedly and obtain

V ∗1 − V̂1 =

(
H∏
h=1

JhP

)(
V ∗H+1 − V̂H+1

)
+

H∑
h=1

(
h−1∏
i=1

JiP

)
Jhιh +

H∑
h=1

(
h−1∏
i=1

JiP

)
ξh.

Using V ∗H+1 = V̂H+1 = 0 gives

V ∗1 − V̂1 =

H∑
h=1

(
h−1∏
i=1

JiP

)
Jhιh +

H∑
h=1

(
h−1∏
i=1

JiP

)
ξh. (F.20)

By definitions of P in (F.2), Jh in (F.1), and ξh in (F.3), we can equivalently write (F.20) in the form
of expectation w.r.t the optimal policy π∗. For all x ∈ S,

V ∗1 (x)− V̂1(x) =

H∑
h=1

Eπ∗ [ιh(xh, ah) |x1 = x] +

H∑
h=1

Eπ∗ [ξh(xh)] |x1 = x]. (F.21)

Part II: Analysis of (V̂1 − V π̂1 ). Notice for any h = 1, . . . ,H ,

V̂h − V π̂h = ĴhQ̂h − ĴhQπ̂h (F.22)

= Ĵh([rh + PV̂h+1 − ιh]− [rh + PV π̂h ]) (F.23)

= ĴhP(V̂h+1 − V π̂h+1)− Ĵhιh. (F.24)

Here (F.22) follows from the update rule of V̂h (F.9) and the Bellman equation satisfied by V π̂h in
(F.12); (F.23) follows from the Bellman equation satisfied by Qπ̂h in (F.11) and the definition of the
model prediction error ιh in (F.10).

Apply the recursion repeatedly we obtain

V̂1 − V π̂1 =

(
H∏
h=1

ĴhP

)(
V̂H+1 − V π̂H+1

)
−

H∑
h=1

(
h−1∏
i=1

ĴiP

)
Ĵhιh
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Using V̂H+1 = 0 by Line 8 of Algorithm 1 and V π̂H+1 = 0, we obtain

V̂1 − V π̂1 = −
H∑
h=1

(
h−1∏
i=1

ĴiP

)
Ĵhιh. (F.25)

By definition of Ĵh in (F.1), we write (F.25) in the form of expectation w.r.t. the policy π̂, and we
have for all state x ∈ S

V̂1(x)− V π̂1 (x) = −
H∑
h=1

Eπ̂[ιh(xh, ah) |x1 = x]. (F.26)

Putting together (F.21) and (F.26) completes the proof of Lemma D.1.

F.4 Proof of Theorem 4.3

We define

µA = σmin

(√
A>A

)
, LA = σmax

(√
A>A

)
, (F.27)

µB = σmin(B), LB = σmax(B) , (F.28)

where for a symmetric positive definite matrix M , the matrix
√
M is the unique matrix such that

M =
√
M
√
M . Recall the update rule in Algorithm 1 is

Wt+1 = Wt − ηθt · (Ktψt)φ
>
t , Kt+1 = Kt + ηωt · (Ktψt + x′t −Wtφt)ψ

>
t . (F.29)

Recall the saddle-point problem (3.6) and we denote the saddle-point function by Φi, i.e.,

Φi(θ, ω) := θ>A>ω − b>i ω − 1
2ω
>Bω, (F.30)

where bi = E[xiψ(z)>]. Given Φi defined above, we optimize out the dual variable, and define the
primal function Pi and the optimal dual variable ω̂i as follows.

Pi(θ) = max
ω

Φi(θ, ω) = 1
2 (Aθ − bi)>B−1(Aθ − bi) (F.31)

ω̂i(θ) = argmax
ω

Φi(θ, ω) = B−1(Aθ − bi). (F.32)

Uniqueness of ω̂i(θ) is guaranteed by on the full-rankness of A and B (Assumption A.3). Define by
(θsadi , ωsad

i ) the saddle-point of the convex-concave function Φi. Then we have

θsadi = argmin
θ

Pi(θ), ωsad
i = ω̂i(θ

∗
i ). (F.33)

Due to the separable structure of the update (F.29), if we denote the iterates (Wt,Kt) by Wt =
[θ1,t, . . . , θdx,t]

> and Kt = [ω1,t, . . . , ωdx,t]
>, then we can equivalently write the update as follows.

For i = 1, . . . , dx,

θi,t+1 = θi,t − ηθt ∇̃θΦi(θi,t, ωi,t)
= θi,t − ηθt (φ(xt, at)ψ(zt)

>)ωi,t (F.34)

ωi,t+1 = ωi,t + ηωt ∇̃ωΦi(θi,t, ωi,t)

= ωi,t + ηωt (φ(xt, at)
>θi,t − x′i,t − ψ(zt)

>ωi,t)ψ(zt) . (F.35)

Denote by (W sad,Ksad) the saddle-point of the problem (3.7). Let (θsad, ωsad) be the saddle-point
of Φi in (F.30). Since the minimax problem (3.7) is separable in the each coordinate of the primal and
the dual variables, we have θsad = W sad

i and ωsad = Ksad
i , for all i = 1, . . . , dx, where W sad

i is the
i-th row of the matrix W sad, and Ksad

i is the i-the row of Ksad. So we turn to study the convergence
of {θi,t, ωi,t}t to the saddle-point of Φi.
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In the rest of the discussion we will ignore the subscript i in ωi,t, θi,t, xi,t, x′i,t,Φi, Pi, ω̂i and bi.
Define the gradient of Φ evaluated at (θt, ωt), ∇θΦ and ∇ωΦ, and its stochastic version given a new
data tuple ξt = (xt, at, zt, x

′
t), ∇̃θΦ and ∇̃ωΦ, by

∇θΦ(θt, ωt) = A>ωt, ∇̃θΦ(θt, ωt; ξt) = (φ(xt, at)ψ(zt)
>)ωt (F.36)

∇ωΦ(θt, ωt) = Aθt − b−Bωt, ∇̃ωΦ(θt, ωt; ξt) = (φ(xt, at)
>θt − x′t − ψ(zt)

>ωt)ψ(zt).
(F.37)

We will ignore the dependence of ∇̃θΦ and ∇̃ωΦ on ξt from now on. Define the auxiliary update
sequences given the stochastic update sequence {θt, ωt} in (F.34) and (F.35),

θ̃t+1 = θt − ηθt∇θΦ(θt, ωt) = θt − ηθtA>ωt
θ̂t+1 = θt − ηθt∇P (θt) = θt − ηθtA>B−1(Aθt − b) ,
ω̃t+1 = ωt + ηωt ∇Φ(θt, ωt) = ωt + ηωt (Aθt − b−Bωt) .

Define the σ-algebras F0 = σ{θ0, ω0}, and Ft = σ{θ0, ω0, {xj , aj , zj , x′j}
t−1
j=0} for t = 1, . . . , T .

Note ξt−1 ∈ Ft but ξt /∈ Ft. Note that for all t ≥ 1, the random variables ξt−1, θt, ωt, θ̃t+1, ω̃t+1

and θ̂t+1 are deterministic given Ft, and we obviously have

E[∇̃θΦ(θt, ωt) | Ft] = ∇θΦ(θt, ωt) and E[∇̃ωΦ(θt, ωt) | Ft] = ∇ωΦ(θt, ωt).

We will denote Et[·] = E[· | Ft].
We start with some basic observations of the functions P and Φ.
Lemma F.2. Consider the functions P in (F.31) and Φ in (F.30).

1. Recall µIV and LP are the minimum and the maximum eigenvalues of the matrix A>B−1A,
respectively. Then the function P is µIV-strongly convex and LP -smooth. Moreover, we
have µIV ≥ µ2

A/LB , and LP ≤ min{1, L2
A/µB}.

2. For any fixed θ, the function ω 7→ −Φ(θ, ω) is µB-strongly convex and LB smooth.

3. (Proposition 4.2) Assumptions A.4 and A.3 imply the existence and uniqueness
of a matrix W ∗ = [W ∗1 , . . . ,W

∗
dx

] ∈ Rdx×dφ such that E[W ∗φ(x, a) | z] =

E[x′ | z]. Assumption A.3 implies the uniqueness of the saddle-point (θsad, ωsad) =
argmin

θ∈Rdφ max
ω∈Rdψ Φi(θ, ω). Furthermore, in addition to Assumptions A.4 and A.3, if

Assumption A.5 holds, then W ∗i = θsad and ωsad = ω̂i(θ̂) = 0.

Proof. See §G.1.

Item 3 above shows that under the assumptions listed in Theorem 4.3, the saddle-point of Φi equals
to the i-th row of the unkown transition matrix W ∗. To emphasize this we now define by (θ∗, ω∗) the
saddle-point of the function Φ. Next we present some descent lemmas about the sequence {θt, ωt}.
Denote the second moment of the stochastic gradient evaluated at the saddle-point of Φ, (θ∗, ω∗) by

σ2
∇θ = E[‖∇̃θΦ(θ∗, ω∗)‖2] and σ2

∇ω = E[‖∇̃ωΦ(θ∗, ω∗)‖2],

where ∇̃θΦ and ∇̃ωΦ are defined in (F.36). First we show the variance of stochast gradient can be
bounded by the suboptimality of the current iterate.
Lemma F.3 (Bounding variance of stochastic gradients). Consider the sequence {ωt, θt}. If Assump-
tion A.2 holds, then

Et
[
‖∇̃θΦ(θt, ωt)−∇θΦ(θt, ωt)‖2

]
≤ 4(µ−1B ‖θt − θ

∗‖2 + ‖ωt − ω̂(θt)‖2) + 2σ2
∇θ, (F.38)

Et
[
‖∇̃ωΦ(θt, ωt)−∇ωΦ(θt, ωt)‖2

]
≤ 16(µ−1B ‖θt − θ

∗‖2 + ‖ωt − ω̂(θt)‖2) + 2σ2
∇ω. (F.39)

where we condition on Ft and take expectation over the new data tuple ξt.
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Proof. See §G.2.

Lemma F.4 (One-step descent of primal update). Consider the update sequence {ωt, θt}. Let A.2
(bounded feature map) and A.3 hold. If ηθt ≤ 2

µIV+LP
, then

E
[
‖θt+1 − θ∗‖2

]
≤ (1− µIVη

θ
t + 4µ−1B (ηθt )2) · E

[
‖θt − θ∗‖2

]
(F.40)

+ (µ−1IV η
θ
t + 4(ηθt )2) · E

[
‖ωt − ω̂(θt)‖2

]
+ 2(ηθt )2 · σ2

∇θ (F.41)

Proof. See §G.3.

Lemma F.5 (One-step descent of dual update). Consider the update sequence {ωt, θt}. Let
A.2 and A.3 hold. If ηθt ≤ 2

µB+LB
, then

E
[
‖ωt+1 − ω̂(θt+1)‖2

]
≤
(
1− µBηωt + 32(µ−2B (ηθt )2(ηωt )−1 + (ηωt )2 + µ−1B (ηθt )2)

)
· E
[
‖ωt − ω̂(θt)‖2

]
+ 32

(
µ−2B (ηθt )2(ηωt )−1 + µ−1B (ηωt )2 + µ−2B (ηθt )2

)
· E
[
‖θt − θ∗‖2

]
(F.42)

+ 32
(
(ηωt )2σ2

∇ω + µ−1B (ηθt )2σ2
∇θ
)
. (F.43)

Proof. See §G.4.

Equipped with Lemmas F.4 and F.5, we can derive a recursion by choosing appropriate stepsize
sequences ηωt and ηθt . We set

ηθt =
β

γ + t
, ηωt =

αβ

γ + t
(F.44)

for some positive α, β, γ, which will be chosen later. For some positive λ (to be chosen later) we
define the potential function Pt with at = E[‖θt − θ∗‖2] and bt = E[‖ωt − ω̂(θt)‖2],

Pt = at + λbt, (F.45)

and then derive a recursion formula for Pt. We have by Lemma F.4 and F.5,

Pt+1 = at+1 + λbt+1 (F.46)

≤
(
1− µIVη

θ
t + 25(λα−1µ−2B ηθt + III)

)
at (F.47)

+
(
1− µBηωt + 25(α−2 · µ−2B ηωt + λ−1µ−1IV η

θ
t + I)

)
(λbt) (F.48)

+ II (F.49)

where

III = µ−1B (ηθt )2 + λµ−1B (ηωt )2 + λµ−2B (ηθt )2, (F.50)

I = (ηωt )2 + µ−1B (ηθt )2 + λ−1(ηθt )2, (F.51)

II = 2(ηθt )2 · σ2
∇θ + 4λ

(
µ−1B (ηθt )2σ2

∇θ + (ηωt )2σ2
∇ω
)

(F.52)

Our strategy is straight-forward. We find a suitable choice of the free parameters (λ, γ, α, β) such the
the sequence P̃t decays at the rate 1/t.

Step 1. Choose γ = γ(α, β, λ) such that (i) the stepsize requirements in Lemmas F.4 and F.5 are
met, and (ii) the two terms 25III and 25I are less than 1

2µIVη
θ
t and 1

2µBη
ω
t , respectively.

For any positive α, β, λ, we pick γ large enough such that the following inequalities hold for all
t ≥ 1,

25 · III ≤ 1

2
µIVη

θ
t (F.53)

25 · I ≤ 1

2
µBη

ω
t (F.54)
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Note ηθ0 = β/γ, and ηω0 = αβ/γ. The above inequalities suggest it suffices to set γ large enough.
Concretely, for any fixed positive (α, β, λ) with, we can make γ satisfy the following inequalities

γ ≥ 28 ·max{β · µ−1B µ−1IV , α
2λβµ−1B µ−1IV , βλµ

−2
B µ−1IV , αβµ

−1
B , α−1βµ−2B , α−1λ−1βµ−1B } (F.55)

To ensure the stepsizes are small enough to meet the conditions in Lemma F.4 and F.5 we need for all
t,

ηθt ≤
2

LP + µIV
, ηωt ≤

2

LB + µB
, (F.56)

it suffices to control ηθ0 and ηω0 by setting

γ ≥ max{β, αβ}. (F.57)

For any fixed (α, β, λ), the inequalities (F.55) and (F.57) give the choice of γ.

Step 2. Pick α, λ such that the recursion reduces to the form Pt+1 ≤ (1− 1
4µIVη

θ
t )Pt + noise. By

the choice of γ in Step 1 ((F.55) and (F.57)), the recursion (F.49) reduces to

Pt+1 = at+1 + λbt+1 (F.58)

≤ (1− 1

2
µIVη

θ
t + 25(λα−1µ−1B ηθt ))at (F.59)

+ (1− 1

2
µBη

ω
t + 25(α−2 · µ−2B ηωt + λ−1µ−1IV η

θ
t ))(λbt) (F.60)

+ II (F.61)

We find (α, λ) such that

25(λα−1µ−2B ηθt ) ≤ 1

4
µIVη

θ
t (F.62)

25(α−2 · µ−2B ηωt + λ−1µ−1IV η
θ
t ) ≤ 1

4
µBη

ω
t (F.63)

It suffices to set

λ = µ
1/2
B (F.64)

α = 28 · µ−1.5B µ−1IV (F.65)

Together the choice of λ, α in (F.64) and (F.65) implies that the recursion (F.58) simplifies to

Pt+1 ≤
(
1− 1

4
µIVη

θ
t

)
at + (1− 1

4
µBη

ω
t )(λbt) + II (F.66)

≤
(
1− 1

4
µIVη

θ
t

)
Pt +

(
2(ηθt )2 · σ2

∇θ + 4λ
(
µ−1B (ηθt )2σ2

∇θ + (ηωt )2σ2
∇ω
))
, (F.67)

where we used 1− 1
4µBη

ω
t ≤ 1− 1

4µIVη
θ
t because (F.65) implies α ≥ µIVµ

−1
B .

Next we bound the last term in (F.67). Now we study σ2
∇θ, σ

2
∇ω. By Item 3 of Lemma F.2, we

have the primal variable in the saddle-point of the minimax problem (F.30) equals to the truth that
generates the data, i.e., we have x′t = xt+1 = (θ∗) · φ(xt, at) + et, and that ω∗ = 0. Thus

σ2
∇θ = Eξt

[
‖∇̃θΦ(θ∗, ω∗; ξt)‖2

]
= E

[
‖(φ(xt, at)ψ(zt)

>)ω∗‖2
]

= 0

σ2
∇ω = Eξt

[
‖∇̃ωΦ(θ∗, ω∗; ξt)‖2

]
= E

[
‖(φ(xt, at)

>θ∗ − x′t − ψ(zt)
>ω∗)ψ(zt)‖2

]
= E

[
‖etψ(zt)‖2

]
≤ E[e2t ] = σ2

where we have used supz ‖ψ(z)‖2 ≤ 1 by A.2. This implies

2(ηθt )2 · σ2
∇θ + 4λ

(
µ−1B (ηθt )2σ2

∇θ + (ηωt )2σ2
∇ω
)

= λ · 4(ηωt )2 · σ2.

We now restore the omitted state dimension index i, and the recursion (F.66) writes

E
[
‖θt+1,i − θ∗i ‖2

]
+ λE

[
‖ωt+1,i − ω̂i(θt+1)‖2

]
(F.68)

≤
(
1− 1

4
µIVη

θ
t

)(
E[‖θt,i − θ∗i ‖2] + λE

[
‖ωt,i − ω̂i(θt)‖2

])
+ λ · 4(ηωt )2 · σ2. (F.69)
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Summing over i = 1, . . . , dx, we have a recursion formula on the sequence P̃t = E[‖Wt −W ∗‖2F ] +

λE[‖Kt − K̂(Wt)‖2F ].

P̃t+1 ≤ (1− 1

4
µIVη

θ
t )P̃t + λ · 4(ηωt )2 · dxσ2. (F.70)

Step 3. Pick β, ν such that P̃t = O(νt−1). Set

β = 8µ−1IV , (F.71)

ν = max
{
γP̃0,

(1

4
µIVβ − 1

)−1
β2α2λ · dxσ2

}
= max{γP̃0, const.× µ−4IV µ

−2.5
B }. (F.72)

Together with our choice of α in (F.65) and λ in (F.64), we have the following choice of γ ((F.55)
and (F.57))

γ = 28 · α2βλ · µ−1B µ−1IV = const.× µ−4IV µ
−3.5
B .

Next, we claim for all t ≥ 0,

P̃t ≤
ν

γ + t
. (F.73)

We prove by induction. For the base case t = 0, the inequality (F.73) holds by definition of ν. Next,
assume for some t ≥ 0, the inequality (F.73) holds. We investigate Pt+1. By the recursion formula
(F.70),

P̃t+1 ≤ (1− 1

4
µIVη

θ
t )P̃t + λ · 4(ηωt )2 · dxσ2 (F.74)

≤
γ + t− 1

4µIVβ

γ + t
· ν

γ + t
+ λ

4α2β2 · dxσ2

(γ + t)2
(F.75)

=
(γ + t− 1)ν

(γ + t)2
−

( 1
4µIVβ − 1)ν

(γ + t)2
+ λ

4α2β2 · dxσ2

(γ + t)2
(F.76)

≤ ν

γ + t+ 1
. (F.77)

where (F.75) holds due to the recursion formula (F.70); (F.75) holds due to the induction assumption
that P̃t ≤ ν/(γ + t); (F.77) holds because (i) 4−1µIVβ − 1 = 1 ≥ 0 by our choice of β, and (ii)
the definition of ν ensures the sum of last two terms in (F.76) is negative; (F.77) holds because
(γ + t− 1)/(γ + t)2 ≤ (γ + t+ 1)−1. This proves the claim (F.73).

This proves Theorem 4.3.

F.5 Proof of Theorem 4.3 (ii)

Proof. We recall the error decomposition of V ∗ − V π̂ presented in Lemma D.1. Conditioning on the
training data, the matrix WT and the functions {ιh}h are deterministic. Recall ξh = 〈Q̂h, π∗h − π̂h〉A
for all x ∈ S, and ιh = (rh + PV̂h+1) − Q̂h for all (x, a) ∈ S × A. First by definition of
ξh = 〈Q̂h, π∗h − π̂h〉A and that π̂h is greedy w.r.t. Q̂h, we have

H∑
h=1

Eπ∗ [ξh(xh) |x1 = x] ≤ 0 for all x.

Based on the error decomposition of V ∗ − V π̂ (Lemma D.1), we have for all (x, a),

‖V ∗ − V π̂‖∞ = sup
x
V ∗(x)− V π̂(x) (F.78)

≤ sup
x

{
H∑
h=1

Eπ∗ [ιh(xh, ah) |x1 = x] +

H∑
h=1

Eπ̂[ιh(xh, ah) |x1 = x]

}
. (F.79)
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Next we derive an upper bound for ‖ιh‖∞ = supx,a |ιh(x, a)|.

sup
x,a
|ιh(x, a)| = sup

x,a

∣∣∣(rh + PV̂h+1)− Q̂h
∣∣∣ (F.80)

= sup
x,a

∣∣∣(rh + PV̂h+1)− (rh + P̂V̂h+1)
∣∣∣ (F.81)

= sup
x,a

∣∣∣PV̂h+1 − P̂V̂h+1

∣∣∣ (F.82)

≤ sup
x,a

{√
Ex′∼PW∗ (· | x,a)

[
V̂h+1(x′)2

]
·min

(‖(WT −W ∗)φ(x, a)‖2
σ

, 1
)}
(F.83)

≤ min
{‖WT −W ∗‖

σ
, 1
}
·H. (F.84)

Here (F.81) holds by definition of Q̂h (F.83) holds due to Lemma H.3; recall PW (x′ |x, a) is the
probability density of multivariate Normal with mean Wφ(x, a) and variance σ2Idx . (F.84) holds
because for all h ∈ [H] we have V̂h ≤ H , and that ‖(WT −W ∗)φ(x, a)‖ ≤ ‖WT −W ∗‖‖φ(x, a)‖.
Note for all (x, a) we have ‖φ(x, a)‖ ≤ 1 (Assumption A.2).

Next we continue from (F.79).

‖V ∗ − V π̂‖∞ ≤ sup
x

{
H∑
h=1

Eπ∗
[
‖ιh‖∞ |x1 = x

]
+

H∑
h=1

Eπ̂
[
‖ιh‖∞ |x1 = x

]}
(F.85)

≤ 2H · max
h∈[H]

‖ιh‖∞ (F.86)

≤ 2H2 ·min
{‖WT −W ∗‖

σ
, 1
}
≤ 2H2σ−1 · ‖WT −W ∗‖. (F.87)

Now we take expectation on both sides w.r.t. the sampling process, we have

E
[
‖V ∗ − V π̂‖∞

]
≤ 2H2σ−1 · E

[
‖WT −W ∗‖

]
(F.88)

≤ 2H2σ−1 ·
√

E
[
‖WT −W ∗‖2F

]
≤ 2H2σ−1

√
ν

γ + T
. (F.89)

Note we trivially have ‖V ∗ − V π̂‖∞ ≤ H . So we conclude

E
[
‖V ∗ − V π̂‖∞

]
≤ H ·min

{
2Hσ−1

√
ν

γ + T
, 1

}
.

This completes the proof of Theorem 4.3 (ii).

F.6 Proof of Theorem 4.7

Proof of Theorem 4.7. Denote θsad = W sad
i . We omit the subscript i in f∗i and x′i. This theorem

studies the relation between the two quantities:

• An element in the primal function space, φ · θ∗ ∈ Hφ, where θ∗ solves the following
minimax problem.

min
f∈Hφ

max
u∈Hψ

E[(f(x, a)− x′)u(z)]− 1

2
E[u(z)2]. (F.90)

• The truth f∗ that satisfies E[f∗(x, a) | z] = E[x′ | z].

It can be verified that the optimal primal variable of the above minimax problem (F.90) exists and is
unique. Specifically, for f = θ · ψ ∈ Hφ, due to A.3, the inner maximization is uniquely attained at

ψ · ω̂(θ) ∈ Hψ, ω̂(θ) := E[ψ(z)ψ(z)>]−1E
[
ψ(z) · (f(x, a)− x′)

]
.
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Also note

ψ · ω̂(θ) = ΠψT (θ · φ− f∗)

due to the definition of the projection operator Πψ : L2(Z)→ Hψ , defined by for all u ∈ L2(Z),

Πψu = argmin
u′∈Hψ

‖u− u′‖L2(Z) = ψ>E[ψ(z)ψ(z)>]−1E[ψ(z)u(z)].

Now we plug in the optimal value and define, for f ∈ Hφ,

L(f) := max
u∈Hψ

E
[
(f(x, a)− x′)u(z)

]
− 1

2
E[u(z)2]

=
1

2
E[ψ(z) · (f(x, a)− x′)]>B−1E[ψ(z) · (f(x, a)− x′)]

=
1

2
‖ΠψT (f − f∗)‖2L2(Z).

The unique minimizer of L(f) overHφ is

φ · θsad ∈ Hφ, θsad = [A>B−1A]−1A>B−1E[ψ(z)x′] ∈ Rdφ .
Note

Qf∗ = φ · θsad

by definition of the operator Q in Theorem 4.7. We define f̂ = Πφf
∗, the projection of f∗ ontoHφ

w.r.t the norm ‖ · ‖L2(S,A). We have the decomposition

‖f∗ − θsad · φ‖L2(S,A) ≤ ‖f∗ − f̂‖L2(S,A) + ‖f̂ − θsad · φ‖L2(S,A).

For the first term we have ‖f∗ − f̂‖L2(S,A) ≤ η1 by definition of η1. For the second term, we further
decompose and use the definition of µIV and Proposition 4.1.

‖f̂−θsad · φ‖L2(S,A) (F.91)

≤ ‖f̂ − θsad · φ‖φ (F.92)

≤ µ−1IV · ‖T (f̂ − θsad · φ)‖L2(Z) (F.93)

≤ µ−1IV ·
(
‖T (f̂ − f∗)‖L2(Z) + ‖T (f∗ − θsad · φ)‖L2(Z)

)
(F.94)

≤ µ−1IV ·
(
‖T (f̂ − f∗)‖L2(Z) + ‖ΠψT (f∗ − θsad · φ)‖L2(Z) + η2 · µ

)
(F.95)

≤ µ−1IV ·
(
‖T (f̂ − f∗)‖L2(Z) + ‖ΠψT (f∗ − f̂ )‖L2(Z) + η2 · µ

)
(F.96)

≤ µ−1IV ·
(
2‖T (f̂ − f∗)‖L2(Z) + η2 · µ

)
(F.97)

≤ 2c · η1 + µ−1IV · η2 · µ. (F.98)

Here (F.92) follows since φ is bounded; (F.93) follows by definition of µIV; (F.94) follows since T
is linear and we use I inequality; (F.95) follows by definition of η2 and µ; (F.96) follows because
φ>θ∗ minimizes f 7→ ‖ΠψT (f∗ − f)‖2L2(Z) overHφ and that f̂ ∈ Hφ; (F.97) follows because the
projection operator is non-expansive; (F.98) follows by definition of the constant c.

This completes the proof of Theorem 4.7.

Remark F.6 . In Theorem 4.7, the existence of such a constant c is called the stability assumption;
see [9] and [19] for a detailed discussion. Note the dual approximation error η2 is inflated by a factor
of µ−1IV .

G Proofs of Lemmas in §F

G.1 Proof of Lemma F.2

Proof. Proof of Item 1 in Lemma F.2. For strong convexity, we show that the minimum eigenvalue
of ∇2P (θ) and is lower bounded by µ2

AL
−1
B . Since the matrix B is full rank (Assumption A.3)
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and thus its inverse B−1 has a unique square root B−1/2 such that B−1 = B−1/2B−1/2. For any
w ∈ Rdψ with unit norm we have ‖B−1/2w‖ ≥ L−1/2B . For any v ∈ Rdφ such that ‖v‖ = 1,

v>∇2P (θ)v = v>A>B−1Av = v>A>B−1/2B−1/2Av

= ‖B−1/2Av‖2 ≥ L−1B ‖Av‖
2 ≥ µ2

AL
−1
B

where we have used the fact that the matrix A has full column rank (Assumption A.3, rank(A) = dφ)
and thus for any u ∈ Rdφ such that ‖u‖ = 1 we have ‖Au‖ ≥ µA. The proof of LP ≤ L2

Aµ
−1
B

follows by similar reasoning. To see LP ≤ 1, recall D = E[φ(x, a)φ(x, a)>]. We note

‖A>B−1A‖ = ‖D1/2(D−1/2A>B−1/2)(B−1/2A>D−1/2)D1/2‖ ≤ ‖D‖ ≤ 1,

where we have used ‖D−1/2A>B−1/2‖ ≤ 1 and by A.2 ‖D‖ ≤ 1.

Proof of Item 2 in Lemma F.2. This is obvious by noting for any θ, ∇2
ωΦ(θ, ω) = −B and that the

matrix B satisfies µBIdψ � B � LBIdψ with 0 < µB (Assumption A.3).

Proof of Item 3 in Lemma F.2. The existence of W ∗ such that E[W ∗φ(x, a) | z] = E[x′ |x, a] is
guaranteed by Assumption A.4. From this equation, we multiply both sides by E[φ(x, a) | z] and take
expectation w.r.t z, we obtain

WE[E[φ(x, a) | z]× E[φ(x, a) | z]] = E[E[x′ |x, a]× E[φ(x, a) | z]].
So if the matrix E[E[φ(x, a) | z]× E[φ(x, a) | z]] is invertible then W ∗ is the unique solution to the
above equation. Such invertibility is implied by Assumption A.3.

Next we show the existence and uniqueness of the saddle-point of Φi. For any fixed θ, by full-rankness
ofB (Assumption A.3), the map ω 7→ Φi(θ, ω) is uniquely maximized at ω = ω̂i(θ) = B−1(Aθ−bi).
Recall Pi(θ) = maxω Φi(θ, ω) = 1

2 (Aθ−bi)>B−1(Aθ−bi). By Item 1 of Lemma F.2, the minimum
eigenvalue of∇2P is bounded away from zero due to full-rankness of A and B (Assumption A.3).
Thus P has a unique minimizer.

Next, we show W ∗i = θsad. A.5 implies η2 in Theorem 4.7 is zero. A.4 implies η1 in Theorem 4.7 is
zero. So Theorem 4.7 implies W ∗i = θsad.

Finally we show ω̂i(θ
sad) = 0. Recall ω̂i(θ) = B−1(Aθ − bi) for any θ ∈ Rdφ . Recall bi is defined

as bi = E[x′iψ(z)]. Since θsad = W ∗i , we have

Aθsad − bi = E[ψ(z)(φ(x, a)>θsad − x′i)] = E[ψ(z)(φ(x, a)>W ∗i − x′i)] = E[ψ(z)ei]

= E[ψ(z)E[ei | z]] = 0.

We conclude ω̂i(θsad) = 0.

G.2 Proof of Lemma F.3

Proof of Lemma F.3. For the inequality (F.38), conditioning on Ft, we take expectation over the new
data ξt = (xt, at, zt, x

′
t = xt+1) (note ξt /∈ Ft)

Et[‖∇̃θΦ(θt, ωt)−∇θΦ(θt, ωt)‖2] ≤ Et[‖∇̃θΦ(θt, ωt)‖2] (G.1)

≤ 2Et[‖∇̃θΦ(θt, ωt)− ∇̃θΦ(θ∗, ω∗)‖2] + 2Et[‖∇̃θΦ(θ∗, ω∗)‖2]
(G.2)

For the first term we use that ∇̃θΦ(θt, ωt; ξt) = (φ(xt, at)ψ(zt)
>)ωt and that φ and ψ are bounded

by one (Assumption A.2).

Et[‖∇̃θΦ(θt, ωt)− ∇̃θΦ(θ∗, ω∗)‖2] = Et[‖φtψ>t (ωt − ω∗)‖2] ≤ ‖ωt − ω∗‖2 (G.3)

We bound ‖ωt − ω∗‖2 by

‖ωt − ω∗‖2 ≤ 2‖ωt − ω̂(θt)‖2 + 2‖ω̂(θt)− ω∗‖2 (G.4)

= 2‖ωt − ω̂(θt)‖2 + 2‖(B−1A)(θ∗ − θt)‖2 (G.5)

≤ 2‖ωt − ω̂(θt)‖2 + 2LPµ
−1
B · ‖θ

∗ − θt‖2 (G.6)

≤ 2(‖ωt − ω̂(θt)‖2 + µ−1B · ‖θ
∗ − θt‖2) (G.7)
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where in (G.4) we use that ω∗ = B−1(Aθ∗ − b) and ω̂(θt) = B−1(Aθt − b); in (G.6) we use
‖B−1A‖ = ‖B−1/2(B−1/2A)‖ ≤ µ−1/2B L

−1/2
P ; in (G.7) we use LP ≤ 1. This completes the proof

of the first inequality.

For the second inequality (F.39) we use similar reasoning.

Et[‖∇̃ωΦ(θt, ωt)−∇ωΦ(θt, ωt)‖2] (G.8)

≤ Et[‖∇̃ωΦ(θt, ωt)‖2] (G.9)

≤ 2Et[‖∇̃ωΦ(θt, ωt)− ∇̃ωΦ(θ∗, ω∗)‖2] + 2Et[‖∇̃ωΦ(θ∗, ω∗)‖2] (G.10)

For the first term, note ∇̃ωΦ(θt, ωt; ξt) = (φ(xt, at)
>θt − x′t − ψ(zt)

>ωt)ψ(zt). and thus we have

Et[‖∇̃ωΦ(θt, ωt)− ∇̃ωΦ(θ∗, ω∗)‖2] = Et[‖ψtφ>t (θt − θ∗) + ψtψ
>
t (ωt − ω∗)‖2] (G.11)

≤ 2‖θt − θ∗‖2 + 2‖ωt − ω∗‖2. (G.12)

≤ (2 + 4LPµ
−1
B )‖θt − θ∗‖2 + 4‖ωt − ω̂(θt)‖2 (G.13)

≤ 23(µ−1B ‖θt − θ
∗‖2 + ‖ωt − ω̂(θt)‖2) (G.14)

where we have used A.2, and µ−1B ≥ 1 and LP ≤ 1. This proves (F.39). So we complete the proof of
Lemma F.3.

G.3 Proof Lemma F.4

Proof of Lemma F.4. Conditioning on Ft, we have
Et[‖θt+1 − θ∗‖2] = ‖Et[θt+1 − θ∗]‖2 + Et[‖(θt+1 − θ∗)− Et[θt+1 − θ∗]‖2] (G.15)

We bound the first term in (G.15).

‖Et[θt+1 − θ∗]‖2 = ‖θ̃t+1 − θ∗‖2 (G.16)

≤
(
‖θ̂t+1 − θ∗‖+ ‖θ̃t+1 − θ̂t+1‖

)2
(G.17)

≤
(
(1− ηθt µIV)‖θt − θ∗‖+ ‖θ̃t+1 − θ̂t+1‖

)2
(G.18)

≤ (1− ηθt µIV)‖θt − θ∗‖2 +
1

ηθt µIV
‖θ̃t+1 − θ̂t+1‖2, (G.19)

Here in (G.18) we use Lemma H.2 since (i) θ̂t+1 = θt − ηθt∇P (θt), (ii) P is µIV-strongly convex
and LP -smooth (Lemma F.2), and (iii) our choice of stepsize. In (G.19) we use that for any ε ∈ (0, 1),
it holds ((1− ε)a+ b)2 ≤ (1− ε)a2 + ε−1b2; see Lemma H.1 for a proof.

We bound the second term in (G.19) by∥∥θ̃t+1 − θ̂t+1

∥∥2 = (ηθt )2‖∇θΦ(θt, ωt)−∇θP (θt)‖2

= (ηθt )2‖A>ωt −A>ω̂(θt)‖2

≤ (ηθt )2L2
A‖ωt − ω̂(θt)‖2 .

Continuing from (G.19), we have∥∥Et[θt+1 − θ∗]
∥∥2 ≤ (1− ηθt µIV)‖θt − θ∗‖2 + ηθt · L2

Aµ
−1
IV · ‖ωt − ω̂(θt)‖2 (G.20)

Next we bound the second term in (G.15).

Et
[∥∥(θt+1 − θ∗)− Et[θt+1 − θ∗]

∥∥2] = Et
[∥∥θt+1 − Et[θt+1]

∥∥2] (G.21)

= Et
[∥∥θt+1 − θ̃t+1

∥∥2] (G.22)

= (ηθt )2 · Et
[∥∥∇̃θΦ(θt, ωt)−∇Φ(θt, ωt)

∥∥2] . (G.23)
This can be bounded by Lemma F.3. Plugging into (G.15) the bounds in (G.20) and (G.23),

Et[
∥∥θt+1 − θ∗

∥∥2] ≤ (1− ηθt µIV)‖θt − θ∗‖2 + (ηθt )L2
Aµ
−1
IV ‖ωt − ω̂(θt)‖2 (G.24)

+ (ηθt )2Et
[∥∥∇̃θΦ(θt, ωt)−∇Φ(θt, ωt)

∥∥2] (G.25)

≤ (1− ηθt µIV)‖θt − θ∗‖2 + (ηθt )L2
Aµ
−1
IV

∥∥ωt − ω̂(θt)
∥∥2 (G.26)

+ (ηθt )2 ·
(
4
∥∥ωt − ω̂(θt)

∥∥2 + 4LPµ
−1
B ‖θt − θ

∗‖2 + 2σ2
∇θ
)

(G.27)
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where we have used Lemma F.3. Taking expectation on both sides, we get

E[‖θt+1 − θ∗‖2] ≤
(
1− µIVη

θ
t + 4LPµ

−1
B (ηθt )2

)
· E
[
‖θt − θ∗‖2

]
(G.28)

+
(
L2
Aµ
−1
IV η

θ
t + 4(ηθt )2

)
· E
[∥∥ωt − ω̂(θt)

∥∥2]
+ 2(ηθt )2 · σ2

∇θ (G.29)

≤
(
1− µIVη

θ
t + 4µ−1B (ηθt )2

)
· E
[
‖θt − θ∗‖2

]
(G.30)

+
(
µ−1IV η

θ
t + 4(ηθt )2

)
· E
[∥∥ωt − ω̂(θt)

∥∥2]
+ 2(ηθt )2 · σ2

∇θ (G.31)

where we use LP ≤ 1 and LA ≤ 1. This completes the proof of Lemma F.4.

G.4 Proof of Lemma F.5

Proof of Lemma F.5. We first bound the one-step difference of primal updates.
Lemma G.1 (One-step difference). Consider the update sequence {ωt, θt}. Conditioning on Ft, we
have ∥∥Et[θt+1 − θt]

∥∥2 ≤ 2(ηθt )2
(
L2
P · ‖θt − θ∗‖2 + L2

A · ‖ωt − ω̂(θt)‖2
)
. (G.32)

Proof of Lemma G.1. We start by noting∥∥Et[θt+1 − θt]
∥∥2 =

∥∥θ̃t+1 − θt
∥∥2 = (ηθt )2 · ‖A>ωt‖2 (G.33)

≤ (ηθt )2 ·
(
2‖A>ω̂(θt)‖2 + 2‖A>ωt −A>ω̂(θt)‖2

)
. (G.34)

For the first term in (G.34), we have

‖A>ω̂(θt)‖ = ‖∇P (θt)‖ = ‖∇P (θt)−∇P (θ∗)‖ ≤ LP ‖θt − θ∗‖. (G.35)

For the second term in (G.34), we have

‖A>ωt −A>ω̂(θt)‖2 ≤ L2
A‖ωt − ω̂(θt)‖2. (G.36)

Plugging into (G.34) the bounds in (G.35) and (G.36), we complete the proof of Lemma G.1.

Now we prove Lemma F.5. Conditioning on Ft, we have

Et
[
‖ωt+1 − ω̂(θt+1)‖2

]
=
∥∥Et[ωt+1 − ω̂(θt+1)]

∥∥2 (G.37)

+ Et
[∥∥(ωt+1 − ω̂(θt+1)

)
− Et

[
ωt+1 − ω̂(θt+1)

]∥∥2] . (G.38)

Next we bound the first term in (G.37)∥∥Et[ωt+1 − ω̂(θt+1)
]∥∥2 =

∥∥Et[ωt+1 − ω̂(θt)
]

+ Et
[
ω̂(θt)− ω̂(θt+1)

]∥∥2 (G.39)

≤
(∥∥Et[ωt+1 − ω̂(θt)

]∥∥+
∥∥Et[ω̂(θt)− ω̂(θt+1)

]∥∥)2 (G.40)

=
(
‖ω̃t+1 − ω̂(θt)‖+

∥∥Et[ω̂(θt)− ω̂(θt+1)
]∥∥)2 (G.41)

≤
(

(1− µBηωt )‖ωt − ω̂(θt)‖+
∥∥Et[B−1A(θt − θt+1)

]∥∥)2 (G.42)

≤
(

(1− µBηωt )‖ωt − ω̂(θt)‖+ LAµ
−1
B ·

∥∥Et[θt − θt+1]
∥∥)2 (G.43)

≤ (1− µBηωt )‖ωt − ω̂(θt)‖2 + LPµ
−1
B ·

1

µBηωt
·
∥∥Et[θt − θt+1]

∥∥2 .
(G.44)

Here in (G.42) we use that (i) ω̃t+1 = ωt + ηωt ∇Φ(θt, ωt), (ii) for θt, the map ω 7→ −Φ(θt, ω) is
µB-strongly convex and LB-smooth (Lemma F.2), (iii) our choice of stepsize, and (iv) ω̂(θt) is the
minimizer of the map ω 7→ −Φ(θt, ω). In (G.44) we use that for any ε ∈ (0, 1), any a, b ∈ R, it
holds ((1− ε)a+ b)2 ≤ (1− ε)a2 + ε−1b2.
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Using Lemma G.1 we can bound the second term in (G.44) by ‖ωt − ω̂(θt)‖ and ‖θt − θ∗‖.
Now we bound the second term in (G.38).

Et
[
‖(ωt+1 − ω̂(θt+1))− Et[ωt+1 − ω̂(θt+1)]‖2

]
(G.45)

≤ Et
[
2
∥∥ωt+1 − Et[ωt+1]

∥∥2 + 2
∥∥ω̂(θt+1)− Et

[
ω̂(θt+1)

]∥∥2] . (G.46)

For the first term in (G.46) we have

Et
[∥∥ωt+1 − Et[ωt+1]

∥∥2] = (ηωt )2 · Et
[∥∥∇̃ωΦ(θt, ωt)−∇ωΦ(θt, ωt)

∥∥2] (G.47)

≤ (ηωt )2 ·
(
16‖θt − θ∗‖2 + 16‖ωt − ω̂(θt)‖2 + 2σ2

∇ω
)

(G.48)

where we have used Lemma F.3. For the second term in (G.46) we have

Et
[∥∥ω̂(θt+1)− Et[ω̂(θt+1)]

∥∥2] (G.49)

= Et
[∥∥B−1Aθt+1 − Et[B−1Aθt+1]

∥∥2] (G.50)

≤ LPµ−1B · Et
[
‖θt+1 − Et[θt+1]‖2

]
(G.51)

= LPµ
−1
B · (η

θ
t )2 · Et

[∥∥∇̃θΦ(θt, ωt)−∇θΦ(θt, ωt)
∥∥2] (G.52)

≤ µ−1B · (η
θ
t )2 · (4‖ωt − ω̂(θt)‖2 + 4µ−1B ‖θt − θ

∗‖2 + 2σ2
∇θ) . (G.53)

where we have used Lemma F.3 in (G.53).

Continuing from (G.46) (the variance part), we obtain

Et
[∥∥(ωt+1 − ω̂(θt+1)

)
− Et[ωt+1 − ω̂(θt+1)]

∥∥2] (G.54)

≤25
(
µ−1B (ηωt )2 + µ−2B (ηθt )2

)
‖θt − θ∗‖2 (G.55)

+ 25
(
(ηωt )2 + µ−1B (ηθt )2

)
‖ωt − ω̂(θt)‖2 (G.56)

+ 4
(
µ−1B (ηθt )2σ2

∇θ + (ηωt )2σ2
∇ω
)

(G.57)

Putting together (G.44), (G.57) and Lemma G.1, we have

Et[‖ωt+1 − ω̂(θt+1)‖2] ≤(1− µBηωt )‖ωt − ω̂(θt)‖2

+ 25
(
µ−2B (ηθt )2/ηωt + µ−1B (ηωt )2 + µ−2B (ηθt )2

)
‖θt − θ∗‖2 (G.58)

+ 25
(
µ−2B (ηθt )2/ηωt + (ηωt )2 + µ−1B (ηθt )2

)
‖ωt − ω̂(θt)‖2 (G.59)

+ 4
(
µ−1B (ηθt )2σ2

∇θ + (ηωt )2σ2
∇ω
)
. (G.60)

This completes the proof of Lemma F.5

H Supporting Lemmas

Lemma H.1. For any ε ∈ (0, 1), any a, b ∈ R, it holds ((1− ε)a+ b)2 ≤ (1− ε)a2 + ε−1b2.

Proof. By the Cauchy–Schwarz inequality, we have for all β > 0, (a+b)2 ≤ (1+β)a2+(1+β−1)b2.
Setting β = ε(1− ε)−1 completes the proof.

Lemma H.2 (One-step gradient descent for smooth and strongly-convex function). Suppose f :
Rd → R is a β-smooth and α-strongly convex function. Let x∗ = argminx∈Rd f(x). For any
0 < η ≤ 2

α+β and any x ∈ Rd, let x+ = x− η∇f(x). Then ‖x+ − x∗‖ ≤ (1− αη)‖x− x∗‖.

Proof. See Lemma 3.1 of [25].

Lemma H.3 (Expectation Difference Under Two Gaussians, Lemma C.2 in [32]). For Gaussian
distribution N

(
µ1, σ

2I
)

and N
(
µ2, σ

2I
)

(σ2 6= 0), for any positive measurable function g, we
have

Ez∼N1 [g(z)]− Ez∼N2 [g(z)] ≤ min

{
‖µ1 − µ2‖

σ
, 1

}√
Ez∼N1 [g(z)2] .
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Proof. For completeness we present a proof. Note

Ez∼N1 [g(z)]− Ez∼N2 [g(z)] = Ez∼N1

[
g(z)

(
1− N2(z)

N1(z)

)]

≤
√
Ez∼N1 [g(z)2]

√∫
(N1(z)−N2(z))

2

N1(z)
dz

=
√
Ez∼N1

[g(z)2]

√
exp

(
| µ1 − µ2‖2

2σ2

)
− 1 .

Since g ≥ 0 we have Ez∼N1 [g(z)]− Ez∼N2 [g(z)] ≤ Ez∼N1 [g(z)] ≤
√

Ez∼N1 [g(z)2]. Finally, we
use exp(x) ≤ 1 + 2x for 0 ≤ x ≤ 1.

Ez∼N1
[g(z)]− Ez∼N2

[g(z)] ≤
√

Ez∼N1
[g(z)2]

√√√√min

{
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1, 1

}

≤
√

Ez∼N1
[g(z)2] ·min

{
‖µ1 − µ2‖

σ
, 1

}
.

This completes the proof.
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