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ABSTRACT

Learning disentangled representations for time series is a promising path to facili-
tate reliable generalization to in- and out-of distribution (OOD), offering benefits
like feature derivation and improved interpretability and fairness, thereby enhancing
downstream tasks. We focus on disentangled representation learning for home appli-
ance electricity usage, enabling users to understand and optimize their consumption
for a reduced carbon footprint. Our approach frames the problem as disentangling
each attribute’s role in total consumption. Unlike existing methods assuming at-
tribute independence which leads to non-identiability, we acknowledge real-world
time series attribute correlations, learned up to a smooth bijection using contrastive
learning and a single autoencoder. To address this, we propose a Disentanglement
under Independence-Of-Support via Contrastive Learning (DIOSC), facilitating
representation generalization across diverse correlated scenarios. Our method
utilizes innovative l-variational inference layers with self-attention, effectively
addressing temporal dependencies across bottom-up and top-down networks. We
find that DIOSC can enhance the task of representation of time series electricity
consumption. We introduce TDS (Time Disentangling Score) to gauge disentan-
glement quality. TDS reliably reflects disentanglement performance, making it a
valuable metric for evaluating time series representations disentanglement. Code
available at https://institut-polytechnique-de-paris.github.
io/time-disentanglement-lib.

1 INTRODUCTION
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Figure 1: Time series real-world often showcases
attributes exhibiting strong correlation.

Disentangled representation learning is cru-
cial in various fields like computer vision,
speech processing, and natural language pro-
cessing (Bengio et al., 2014). There have been
efforts to learn disentangled time series represen-
tation (Woo et al., 2022; Yao et al., 2022), with
the aim to improve generalization, robustness,
and explainability. A core task in representation
learning is provable representation identifica-
tion. We call a representation disentangled when
identified attributes in the data are specifically
coded in the structure of its latent units. How
this can be achieved remains an open research
question. In (Locatello et al., 2019), it is shown
that disentangling requires some kind of supervised learning and inductive bias. Moreover, standard
methods such as β-VAE (Higgins et al., 2016), TCVAE (Chen et al., 2018c), and rely on the too
stringent assumption of statistical independence among ground truth attributes. In real-world time
series, attributes are often correlated. In the application of this study, the attributes correspond to the
contributions of specific devices in an aggregated consumption signal. We illustrate the correlation of
the attributes in Fig 1, where green boxes contain typical consumption for their respective appliances
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Figure 2: Disentanglement under Independence-of-Support via Contrastive (DIOSC), Representations of
positive pairs attract each other, while negative repels their corresponding representations. The latent attributes
exhibit causal correlations (Shanmugam, 2018), DIOSC allows for scenarios where unlikely (but exist in data)
combinations occur ((i) and (ii) leading to the existence of (iii)). It’s worth noting that forcing strict statistical
independence does not prevent these cases.

and purple ones show consumption profiles that are correlated to those of the other appliances.
Existing methods in this context, such as β-VAE, TCVAE, often assume independent attributes. This
paper provides a unified framework for disentangling time series by relaxing the assumption of
statistical independence in the latent representation. To illustrate this, we will focus on a crucial
application of time series disentanglement: household energy consumption disaggregation, also
known as Non-Intrusive Load Monitoring (NILM). Given only the main consumption of a household
x ∈ Rc×T , seen as a c-variate time series observed at times t = 1, . . . , T , the NILM algorithm
identifies the active consumption ym ∈ RT of each operating appliance m. Such a task has received a
growing interest and still raises unsolved problems. The fact that many households rely on past bills to
adjust future energy use underscores the importance of energy disaggregation algorithms in reducing
carbon footprints. Recent work (Bucci et al., 2021; Nalmpantis & Vrakas, 2020) hold promising
results, yet challenges in generalization to in- and out-of distribution. In this paper, we address
NILM with a disentanglement perspective, we assume that different appliance m need to have latent
zm ∈ Rd. On downstream disaggregation task, we show that a disentangled improves generalization
to distribution shifts. We draw on connection between contrastive learning and identifiability in the
form of Nonlinear ICA (Jutten et al., 2010; Hyvärinen, 2013).

Contributions and Main results. Our approach stands out by relying on weak contrastive learning
using support factorization on the prior (rather than strict statistical independence) and Attentive l-
Variational Inference. We evaluate our method qualitatively and quantitatively across various datasets
with ground-truth labels, examining the generalization capabilities of the learned representations on
correlated data. In summary:

[1] We define a new regularization term and its theoretical justification, DIOSC, whose goal is to
address latent space misalignment issues and to preserve disentanglement. This is achieved by
promoting specific Pairwise (dis-)similarities over the latent sub-variables (c.f. § 4).

[2] Our experiments across three datasets and diverse correlation scenarios demonstrate that DIOSC
significantly enhances robustness to attribute correlation, yielding up to a +61.4% for reconstruc-
tion and +21.7% improvement in disentanglement metrics (RMIG, DCI, and TDS) compared to
state-of-the-art methods (c.f. § 5.3).

[3] We propose l-variational-based self-attention for extracting high semantic representations from
time series, ensuring complex representations without temporal locality.

[4] To evaluate disentanglement we proposed TDS score, aling with the performance in the down-
stream task. We implemented our framework in a user-friendly library, making it the first
time-series disentanglement framework.

2 RELATED WORK

Time Series Disentanglement in the Realm of Correlated Attributes. Traditional methods for
time series disentanglement often emphasize enforcing statistical independence among representa-
tion dimensions (Do & Tran, 2021; Klindt et al., 2020), even when dealing with highly correlated
data. In recent computer vision disentanglement methods, there has been an exploration of using
auxiliary information to improve identifiability, moving away from the assumption of statistical
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independence (Roth et al., 2023). However, both (Träuble et al., 2021; Roth et al., 2023) point
out the limitations of this approach due to non-identifiability. Another study by (Wang & Jordan,
2022a) proposes support factorization for disentanglement from a causal perspective, incorporating
a Hausdorff objective akin to (Roth et al., 2023). In our unique approach, we tackle time series
disentanglement without explicit auxiliary variables or prior models. Instead, we achieve pairwise fac-
torized support through contrastive learning, departing from the traditional independence assumption.
Recent contributions (Wang & Jordan, 2022b; Roth et al., 2023) seek to alleviate this assumption,
yet remain disconnected from observational data and grapple with numerical stability. This method
pioneers disentanglement in correlated time series by emphasizing independence-of-support through
contrastive learning during training. This contrasts with methods like (Ren et al., 2021), where
representation discovery relies on contrastive learning of pre-trained generative models with assumed
independence factorization during training. To the best of our knowledge, the present work provides
the first identifiability and disentanglement result for time series in real correlated scenarios.

On The Non-Intrusive Load Monitoring and Representation Learning. Recent work (Bucci
et al., 2021; Nalmpantis & Vrakas, 2020) has produced promising results for separation source
power. Nevertheless, they encounter challenges related to generalization and robustness when
confronted with out-of-distribution scenarios. Several approaches have been suggested to address
these challenges. Some methods tackle them through either transfer learning or by enhancing the
learned representations for each individual appliance. Exploring ways to enhance representation
learning in this field has been the focus of recent studies (Woo et al., 2022; Vahdat & Kautz, 2021;
Maaløe et al., 2019). However, achieving an informative and disentangled representation remains an
open and challenging question. Existing models, like RNN-VAE (Chung et al., 2015) for sequential
data and D3VAE (Li et al., 2023), assume statistically independent attributes. This assumption
hampers their performance on real-world data and makes them less applicable to out-of-distribution
scenarios. Developing models that effectively capture informative and disentangled representations
in a realistic and versatile manner continues to be a significant challenge.

3 PROBLEM STATEMENT AND PRELIMINARIES

Our approach belongs to the general framework of Variational Auto-Encoders VAEs, and thus relies
on two main ingredients: 1) a variational family (qϕ), which approximates the conditional density
of the latent variable given the observed variable based on an encoder fϕ; 2) a generative model
(pθ) based on a latent variable, and a decoder gθ. We consider a C-variate time series observed at
times t = 1, . . . , T , we denote by x ∈ RC×T the C × T resulting matrix with rows denoted by
x1, . . . , xC . Each row can be seen as a univariate time series. The goal is to recover the following
decomposition of the active power xc=1 = y + ξ , where y is a matrix with M columns ym ∈ RT

denotes the contribution of the m-th electric device, among the total of M devices identified, and
ξ ∈ RT contains the contribution of K unknown sources and/or additive noise. The NILM mapping,
denoted as x 7→ y, is typically learned from a training set X = {x̃i}Mi=1, where each x̃i = (xi,yi)
represents a pair of input-output samples used for training purposes. In a VAE, both (unknown)
parameters θ and ϕ are learnt from the training set X . A key idea for defining the goodness of fit part
of the learning criterion is to rely the Evidence Lower Bound (ELBO), which provides a lower bound
on (and a proxy of) the log-likelihood

log pθ(x̃) ≥ Eqϕ(z|x̃) [log pθ(x̃|z)]− KL(qϕ(z|x̃) ∥ p(z)) , (3.1)

where we denoted the latent variable by z, defined as a dz×(M+K) matrix and p denotes its distribu-
tion. The use of ELBO goes back to traditional variational Bayes inference. The encoder fϕ provides
an approximation of z = {z1, . . . , zM+K} ∼ pz from x while y := gθ(z). A standard choice in a
VAE is to rely on Gaussian distributions and, for instance, to set qϕ(z|x) = N (z;µ(x, ϕ), σ2(x, ϕ)),
where µ(x, ϕ) and σ2(x, ϕ) are the outputs of the encoder fϕ. As discussed in Section 1, various crite-
rion functions such as β/TC/Factor/DIP-VAE have been introduced, aiming to learn a disentangled la-
tent variable z and align it with the corresponding attributes. However, these methods typically assume
statistical independence among attributes, leading to the assumption: p(z) = p(z1) . . . p(zM+K).
In the real world, this assumption does not hold, appliances are not used independently; rather,
they are used simultaneously, and their profiles may exhibit correlation (though less likely), thereby
challenging the validity of Independent Factorization.
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Definition 1. Independence-of-Support Factorization (IOS). For a latent variable z =
{z1, . . . , zM+K} sampled from p(z), if Z = Z1× . . .×ZM+K , where Z is the support of p(z), and
Zj denotes the supports of marginal distributions of zj , then z exhibits Independence-of-Support.
To address this, we propose a contrastive pairwise similarity to strengthen the constraint for better
representation identification with observational data. As a starting point, we assume that observed
data samples y of appliance powers are generated from a set of latent random vectors z through a
diffeomorphism1 gθ : Z → X , mapping from a latent space Z to an observation space Y ⊂ X ,

z ∼ pz, y = gθ(z). (3.2)

The only assumption we place on pz is that it is fully supported on Z . In particular, we do not require
independence and allow for arbitrary dependencies between components of , motivated by the fact
that the properties of certain time series profiles may be correlated with those of other profiles.

4 DISENTANGLING UNDER IOS VIA CONTRASTIVE THEORY

Under the problem of non-identifiability, to solve the NILM problem effectively in real-world
scenarios, we seek an ideal disentangled representation. We use a single encoder/decoder for
simultaneous and more efficient disentangling. To achieve this, we employ the following strategies:
1) Disentanglement and Independence-of-Support via Contrastive Learning (DIOSC), which first
promotes similarity between the latent representations zm when the device m is present in both xi

and its augmentation while inducing dissimilarity in negative cases; 2) we propose using an Attentive
l-Variational Auto-Encoder integrate self-attention mechanisms (Vaswani et al., 2017), to enhance
the model’s ability to capture intricate patterns and achieve robust reconstruction. In the upcoming
sections, we will delve into the theoretical underpinnings of our proposed methods.

4.1 DISENTANGLING UNDER INDEPENDENT-OF-SUPPORT VIA CONTRASTIVE (DIOSC)

Given appliance power sampled from the generative model outlined in Eq. (3.2), we now seek
to understand under what conditions an inference model f̂ϕ : X → Z will provably identify the
ground-truth latent representations. Ideally, we would like f̂ϕ to recover the true inverse fϕ := gθ

−1,
but that is generally only possible up to certain irresolvable ambiguities. In our NILM setting, the
objective is to separate the power representations such that each inferred latent captures one and only
one ground-truth latent as one individual latent block, we can learn a fully disentangled representation.
To this end, we define block affine identification: the true latent variables z are block-identified by
a function fϕ : X → Z if the inferred latent ẑ = fϕ(x) contains all and only information about z,
i.e., if there exists some smooth invertible mapping Γ : dim(Z) → dim(Z) s.t. z = Γ(ẑ). This
identification can be connected to disentnaglement under IOS Def. 1.

Theorem 1 (Identifiability and Disentanglement). Suppose the observational data is generated
from Eq. (3.2) under the following assumptions:

(i) The support of pz satisfies Def. 1, and interior of the support is a non-empty subset of Rd, and
for n ̸= m, a pair (ẑn, ẑm) satisfies Ẑn,m = Ẑn × Ẑm.

(ii) x satisfies a positivity condition: for every m, we have p(zm|x) > 0 if and only if p(zm) > 0;
under this condition, if the representation z = (z1, . . . , zM+K) is disentangled, then: The
support of each dimension m remains unchanged whether conditioned on other dimensions
n ̸= m or not.

A unique disentangled representation is then defined by the autoencoder (fϕ, gθ) that solves Eq. (4.4)
achieves Permutation, Translation, and Scaling identification, i.e., ∀z ∈ Z, ẑ = ΛΠz + Const.,
where ẑ is the output of the encoder fϕ, z is the true latent and Π is a permutation matrix and Λ is an
invertible diagonal matrix.

To demonstrate the validity of Thm. 1, we rely on (Thm. 5.3, Ahuja et al. (2023)) and (Thm.
9, Wang & Jordan (2022b)). The full proof is provided in App. A. Thm. 1 demonstrates that
ensuring independence between the supports of latent variables is key to achieving identification
in observational data, allowing for permutation, shift, and scaling transformations. Representation
encodes the same data properties, specifically, two representations z and its augmented version z+

1A bijective function between differentiable manifolds that is smooth and the inverse is also smooth.
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satisfy the same sigma algebra σ(z) = σ(z+) if a bijective function Γ exists such that z = Γ(z+).
To achieve this, we use a contrastive objective to learn representations that enforce identifiability and
disentanglement via support independence, as leaverged in Thm. 1. Additionally, this perspective
offers an alternative understanding of identifiability of Zimmermann et al. (2022), as it has been
shown for the hypersphere, and convex bodies Z , the minimization of the adapted objective function
LCL solve the unmixing problem of non-linear ICA.

LCL(f ; τ,N) := E
(x,x+)∼ppositive{x−

i }N
i=1

i.i.d.∼ pdata

− log
efϕ(x)

Tfϕ(x
+)/τ

efϕ(x)
Tfϕ(x+)/τ +

N∑
i=1

efϕ(x)
Tfϕ(x

−
i )/τ

. (4.1)

Here N ∈ Z+ is a fixed number of negative samples, pdata is the distribution of all observations and
ppositive is the distribution of positive pairs. In this equation the sum in the numerator extends to all
N negative pairs generated and its size depends on the batch size. In multiclass settings like NILM,
the contrastive loss (Eq. 4.1) struggles when multiple samples share the same appliance latent zm
due to labeled data. A suggested generalization (Khosla et al., 2021) tackles labeled cases. However,
drawbacks include the lack of z invariance and challenges with limited or noisy labels, especially in
obtaining both negative and positive labels for time series.

Disentanglement, Invariant, and Axis-Alignment Latents. When the m-th component of z,
denoted by zm, remains invariant regardless changes in x, zm is meaningless and contains no
information from x. We consider that the latent space aligned when the variations of latent variables
zm only have an influence on the m-th output of the decoder gθ applied to z. Both terms form the
basis of the disentanglement principle. Thus, z is considered disentangled when there is a one-to-one
correspondence between each ground truth ym and the corresponding zm in the representation. To
uphold this despite the constraint of limited labels, hard to get both negative and positive in NILM, and
without relying on static attribute independence, we leverage weak contrastive learning (Zimmermann
et al., 2022; Zbontar et al., 2021), and adjusting it for disentanglement. Rather, to overcome the
constraints of Eq. (4.1) and establish invariance and alignment in a single step, we extend a contrastive
objective of Zbontar et al. (2021). Our objective, integrates two core components: latent-Invariant
component seeks to minimize information overlap between zm and its negatives z−m; latent-Alignment
compelling similarity between zm and its augmented z+m accommodating potential changes to cover
the variability factor of variation in ground-truth attributes, ensuring both invariance, alignment and
enabling the discrimination task. To further enforce (i)-Thm. 1) empirically, we demonstrate how this
constraint could encompass an extra assumption relaxing IOS Asm. 4.1.
Assumption 4.1 (Empirical Relaxing Independent Factorization to IOS). Consider an empirical
support Z ≈ Z where Z = {zi}bi=1, and b mini-batch size. Forcing IOS implies that Z aligns with
its Cartesian product Z×. Therefore, we minimize sliced/pairwise contrastive approximating Z and
Z× = z:,1 × . . .× z:,M+K , where z:,m ∈ Rb×d.

Building upon Asm. 4.1, which incorporates the invariant and alignment properties, we impose
a constraint on a given mini-batch Z of size b. Specifically, we ensure that the elements Z:,m are
close to their corresponding augmented Z+

:,m and far from any negative Z−
:,m, while simultaneously

preserving the independence of the Support (IoS). This involves minimizing the distance between sets
Z:(m, ̸=m) and Z:,m × Z:,̸=m for all appliances m. Owing the discriminating nature of contrastive
learning over data, this IoS constraint can be met by focusing on contrastive learning Z:,m and its
augmentation Z+

:,m without involving the Cartesian product× between support latent. Essentially, our
approach contrastive effectively addresses the same instance discrimination task as when considering
the Cartesian product over all possible combinations. This observation aligns with insights from
a disentanglement causality perspective2 (Wang & Jordan, 2022a). Further explanations are given
in § 5.3.

LDIOSC = η
∑
m

∑
V

D(zm, z−m)2︸ ︷︷ ︸
Latent-Invariant

+
∑
m

∑
U

(
1−D(zm, z+m)

)2
︸ ︷︷ ︸

Latent-Alignment

, (4.2)

where D(·, ·) is the cosine similarity distance, with U and V representing sets of positive and negative
latent values. It is shown that both terms contribute equally to the improvement, i.e. η = 1.

2This study embraces a causal of representation learning, contrasting with DIOSC’s relaxation of the
independence assumption to Independence-of-Support (IoS) via contrastive.
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Figure 3: Performing Attentive l-Variational Inference entails processing power input x ∈ RC×T through l

levels of residual blocks (Res(l)), generating key and query feature maps. Parameters [K(L+1)
ϕ , T

(0)
θ , K

(0)
θ ]

are initially set to zero, and h(L+1) δ
= x.

4.2 ATTENTIVE l-VARIATIONAL AUTO-ENCODERS

To avoid time locality during dimension reduction, and keep long-range capability we refer to an
in-depth Temporal Attention with l-Variational layers. NVAE (Vahdat & Kautz, 2020; Apostolopoulou
et al., 2021) proposed an in-depth autoencoder for which the latent space z is level-structured and
attended locally (Apostolopoulou et al., 2021), this shows an effective results for image reconstruction.
We employ Temporal Multihead Self-attention (Vaswani et al., 2017) for constructing beliefs of
variational layers, allowing effective handling of long context sequences. l-Variational Inference is
illustrated in Fig. 3, where the construction of Temporal context T̂ (l)

θ at level l relies on a preview
contexts i.e l − 1 denoted T

(<l)
θ , query map Q

(l)
θ , and its key map K

(<l)
θ . This approach enables the

model to attend to information from different representation subspaces at various scales. The use of
Multihead self-attention aids in capturing diverse relationships and patterns. The detailed mechanism
is given in App. D. For the remainder, we assume that DIOSC uses attentive variational inference
l. We adopt the Gaussian residual parametrization between the prior and the posterior. The prior
is given by p(z(l)|z(<l)) = N (µ(T l

θ, θ), σ(T
l
θ, θ). The posterior is then given by q(z(l)|x, z(<l)) =

N (µ(T l
θ, θ)+δµ(T̂ l

ϕ, ϕ), σ(T
l
θ, θ) ·δσ(T̂ l

ϕ, ϕ)) where µ(·), σ(·), δµ(·), and δσ(·) are transformations
implemented as convolutions layers. Hence, the term LKL in Eq. 3.1 adding the residual and then the
LKL is given by:

LKL(x;ϕ, θ) = LKL(x;ϕ, θ) +

L∑
l=1

0.5×
(
δµ(l)2

σ(l)2
+ (δσ(l))

2
− log (δσ(l))

2
− 1

)
. (4.3)

4.3 SETTING OVERALL OBJECTIVE FUNCTION

Our final objective function combines the regularization (Eq. 3.1) and the VAE loss (Eq. 3.1), which
consisting of a reconstruction term Lrec, a LKL term. We present balancing parameters, denoted as
λ and β, with λ weight the disentanglement regularization and β balancing emphasis between the
reconstruction and KL divergence terms.

L(D, ϕ, θ) = E
X

b∼X

[
λLDIOSC +

1

b

∑
x∈X,y∈Y

Lrec(ŷ,y;ϕ, θ) + βLKL(x;ϕ, θ)
]
. (4.4)

4.4 HOW TO EVALUATE DISENTANGLEMENT FOR TIME SERIES?

Metric Align-axis Unbiased No. Condition
β-VAE
FactorVAE ✓
RMIG ✓ ✓
SAP ✓ ✓
DCI ✓ ✓
TDS (Ours) ✓ ✓ ✓

Table 1: TDS Compared to SOTA met-
ric. (Red row the worst, Blue the best).

Evaluating disentanglement in series representation is more
challenging than established computer vision metrics. Exist-
ing time series methods rely on qualitative observations and
predictive performance, while metrics like Mutual Information
Gap (MIG) (Li et al., 2023) have limitations with continuous
labels. To address this, we adapted RMIG (Carbonneau et al.,
2022) for continuous labels and used DCI metrics from (Do
& Tran, 2021). Our evaluation, including DCI, RMIG. The
β-VAE and FactorVAE scores, can be found in App. D.6. However, these measures suffer from
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limitations with sequential data and do not provide measures of attribute alignment under ground
truth variation. To overcome this, consider cross-correlation between latent variables zm (latent
anchor) and its augmentation z+m with respect to ground truth attribute ym. Yet, practical challenges
arise with multiple attributes, as this measure can be sensitive to variations within the same attribute.
To address this, we introduce the compact Time Disentanglement Score.

TDS =
1

dim(z)

∑
n ̸=m

∑
k

||zm − z+n,k||2

Var[zm]
, (4.5)

where z+n,k is an augmentation of zm, and Var[zm] variance of zm. When a set of latent variables are
not axis-aligned, each variable can contain a decent amount of information regarding two or more
attributes. A wide gap between unaligned variables indicates an entanglement. TDS excels in axis
alignment (c.f. Table. 1), is unbiased across hyperparameters.

5 EXPERIMENTS

5.1 ARCHITECTURE SETTINGS AND DATA AUGMENTATION FRAMEWORK

Residual Blocs. We enhance our Residual model by replacing traditional components in residual
blocks with Sigmoid Linear Units (SiLU) (Elfwing et al., 2017). SiLU offers advantages such as
faster training, robust feature learning, and superior performance compared to weight normalization.

DIOSC(L = 8) KL ↓ RMSE ↓ Time (s) ↓
ReLU 0.734 0.734 28800
SiLU 0.671 0.671 21600
ReLU+SE 0.721 0.721 32760
SiLU+SE 0.582 0.582 23040

Table 2: Metrics on UK-Dale (↓ lower is
better, ↑ higher is better Top-2 , Top-1 ).

Our framework is given in Fig. 3, we set L = 16, and we
fix an time window input to 256 steps, for the latent space
dimension we fix dz = 16.

Squeeze-and-Excitation on Spatial and Temporal: The
SE block improves neural networks by selectively empha-
sizing important features and suppressing less relevant
ones. Extending SE for time series data enhances the
capture of significant temporal patterns in sequences.

Pipeline Augmentation for Electric Load Monitoring. Four augmentations were sequentially
applied to all contrastive methods’ pipeline branches. The parameters from the random search are: 1)
Crop and delay: applied with a 0.5 probability and a minimum size of 50% of the initial sequence. 2)
Cutout or Masking: time cutout of 5 steps with a 0.8 probability. 3) Channel Masks powers: each
power (reactive, active, and apparent) is randomly masked out with a 0.4 probability. 4) Gaussian
noise: random Gaussian noise is added to window activation ym and x with a standard deviation of
0.1. The impact of each increase is detailed in the Appendix. D.2.

Pipeline Correlated Sampling Attributes. We evaluate the model’s robustness to data correlations
by examining various pairs, primarily focusing on linear correlations between two appliances and
scenarios where one device correlates with two others. For this, we parameterize these correlations by
sampling from a common distribution p(y1, y2) ∝ exp

(
−||y1 − αy2||2/2σ2

)
, where α is a scaling

factor, and σ indicates the strength of the correlation. We extends the (Träuble et al., 2021) framework
beyond time series and adapts it to cover correlations between multiple devices operating in a T
time window. Scenario examples include: No Correlation (σ =∞); Pair: 1 (clothes dryer/oven,
σ = 0.3); Pair: 2 (washing machine/dishwasher, σ = 0.4), and Random pair (randomly selected
pairs, σ = 0.8). Additional correlation pairs are detailed in Appendix. D.3.

5.2 EXPERIMENTAL SETUP

Datasets. We conducted experiments on three public datasets: UK-DALE (Kelly & Knottenbelt,
2015), REDD (Kolter & Johnson, 2011), and REFIT (Murray et al., 2017) providing power measure-
ments from multiple homes. We focus on six appliances: Washing Machine, Oven, Dishwasher, Cloth
Dryer, Fridge. We performed cross-tests on different dataset scenarios, each with varying sample
sizes. Specifically, scenario A involved training on REFIT and testing on UK-DALE, 18.3k samples
with time window T = 256, and frequencey of 60Hz, the test set consisted of 3.5k samples, scenario
B involved training on UK-DALE and testing on REFIT with 13.3k samples, and scenario C involved
training on REFIT and testing on REDD with 9.3k samples. The augmentation pipeline is applied for
all scenarios. For training and testing under correlation, we use the corresponding sampling.
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Figure 4: Prediction Clothes dryer under in correlated case (top) and uncorrelated case (bottom) over a time
window of 256min. Moving from left to right, the graph illustrates the aggregated power (P,Q,S) alongside the
ground-truth Clothes-dryer to be identified under correlation with Oven.

Baseline and Evaluation. We compare DIOSC with downstream task models in energy,
Bert4NILM (Yue et al., 2020) as a baseline and S2P (Yang et al., 2021), S2S (Chen et al., 2018a), for
those model we keep the same configuration as the original implémentation. We provide also variant
β-TC/Factor/-VAE implemented for time series, compared to D3VAE (Li et al., 2023) and NVAE (Vah-
dat & Kautz, 2021), and RNN-VAE (Chung et al., 2015). We compare these model using RMSE, and
we compute disentanglement metrics: RMIG, DCI, TDS. The metrics have been evaluated by both,
either sampling from the correlated data or from the uncorrelated distribution.

Experimental Platform. We conduct 5 seeds of experiments, reporting the averaged results and
standard deviation. Based on the grid search, we found that DIOSC’s best performance is obtained by
(λ = 2.3, β = 1.5). The experiments are performed on four NVIDIA A100 GPUs. Hyperparameter
settings are available in Appendix D.

5.3 PERFORMANCE AND INFORMATIVITY OF CONTRASTIVE

Finding: DIOSC performs better in Out-of-distribution (under correlated data).

To assess DIOSC’s regularization robustness to correlated appliances, we examine scenarios involving
pairs defined in § 5.1. From Fig. 6 the increased disentanglement through DIOSC gives consistent
improvements in all cases, and gets more pronounced in the low data regime, indicating higher
sample efficiency, as expected from better disentanglement even the correlated in pairs. Fig. 3 show
the regression results as we see even when signals are correlated the disentangling is acheived and
relative improvements up to +20% in RMSE. We find factorization of supports using DIOSC on
the training data is strongly relate to downstream disentanglement even when experiencing a strong
correlation during training.

Sc. Methods No Corr σ =∞ Pairs: 1 σ = 0.3 Pairs: 2 σ = 0.4 Random Pair σ = 0.8

Metrics –¿ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓ DCI ↓ TDS ↓ RMSE ↓

A

Bert4NILM - - 56.4 ±2.58 - - 70.2±1.45 - - 72.08±0.96 - - 70.92±1.15
S2S - - 54.3 ±3.12 - - 69.5±3.56 - - 72.31±2.45 - - 69.95±3.26
β-VAE 72.4±3.10 0.96±.15 48.6 ±2.32 72.4±3.10 0.96±.15 52.6 ±2.31 72.4±3.10 0.96±.15 54.73±1.54 74.29±2.04 1.08±.09 52.99±1.91
β-TCVAE 78.0±1.09 0.94±.13 43.2 ±2.23 78.0±1.09 0.94±.13 49.2 ±1.13 77.23±0.76 0.94±.13 50.87±1.17 79.74±0.84 1.07±.11 49.65±1.43
FactorVAE 68.4±2.41 0.97±.03 47.7 ±1.35 68.4±2.41 0.97±.03 53.2 ±1.02 69.78±1.43 0.97±.03 54.32±0.64 69.95±1.63 1.00±.02 53.45±0.82
HFS 79.8 ± .10 0.64 ± .05 57.2 ± 2.15 79.8 ± .10 0.64 ± .05 61.3 ± 1.82 79.56±0.28 0.64±.05 62.33±1.23 80.37±.05 0.72±.03 61.64±1.52
β-VAE + HFS 73.1±1.01 0.69±.02 34.4±1.89 73.1±1.01 0.69±.02 38.1±1.34 73.59±0.86 0.69±.04 39.65±0.87 74.25±0.59 0.73±.05 38.48±1.04
β-TCVAE + HFS 67.2±2.01 0.52±.02 24.3 ±1.81 67.2±2.01 0.52±.02 27.4 ±1.13 67.51±1.84 0.52±.07 28.94±0.66 68.79±1.27 0.58±.04 27.77±0.83
DIOSC 63.5±1.35 0.49±.02 19.6±1.95 69.3±1.2 0.4±.02 22.3±1.79 70.3±0.82 0.49±.02 23.97±1.19 67.12±0.91 0.51±.01 22.63±1.49

B

Bert4NILM - - 57.85 ±1.88 - - 68.8±1.12 - - 73.41±1.35 - - 72.78±0.88
S2S - - 56.38 ±2.22 - - 67.8±2.76 - - 73.95±1.91 - - 70.92±2.25
β-VAE 73.78±2.68 1.08±.09 50.14 ±1.87 75.47±1.98 0.82±.10 51.7±1.79 70.8±2.62 0.85±.11 55.98±1.27 76.18±1.54 1.16±.08 54.83±1.58
β-TCVAE 79.57±0.84 1.07±.11 45.72 ±1.68 80.23±0.54 0.81±.09 48.3±0.94 76.2±0.54 0.83±.10 51.74±0.94 80.88±0.53 1.15±.10 51.15±1.10
FactorVAE 70.14±1.89 1.00±.02 49.02 ±1.05 71.89±1.24 0.94±.02 52.4±0.85 68.7±1.13 0.92±.02 55.24±0.42 71.57±1.27 1.06±.01 54.68±0.64
HFS 80.12±.05 0.72±.03 58.49 ±1.45 80.26±.03 0.56±.03 6.0±1.42 78.8±0.15 0.58±.03 63.79±0.97 80.61±.02 0.80±.02 63.22±1.17
β-VAE + HFS 74.47±0.61 0.73±.05 36.09±1.25 75.12±0.41 0.67±.02 37.4±1.04 72.8±0.52 0.64±.03 40.92±0.66 75.07±0.43 0.75±.03 39.68±0.80
β-TCVAE + HFS 68.54±1.36 0.58±.04 25.88 ±1.20 69.28±1.01 0.46±.01 26.7±0.88 66.7±1.51 0.45±.02 29.82±0.51 7.04±0.93 0.72±.02 40.49±0.64
DIOSC 64.42±0.96 0.51±.01 21.35 ±1.80 65.11±0.66 0.39±.01 21.5±1.44 69.5±0.43 0.48±.01 24.94±0.87 65.05±0.71 0.55±.01 24.05±1.30

C

Bert4NILM - - 58.29 ±2.16 - - 75.6±1.68 - - 71.73±1.66 - - 76.05±1.87
S2S - - 56.28 ±2.43 - - 73.8±3.91 - - 74.76±3.75 - - 73.47±4.12
β-VAE 74.17±2.01 1.03±.09 50.18 ±1.92 73.84±1.56 0.72±.12 55.7±2.47 76.1±3.36 1.07±.17 56.32±2.31 73.95±1.93 1.16±0.11 55.90±2.40
β-TCVAE 79.21±0.89 0.98±.10 45.11 ±2.03 79.48±0.75 0.78±.08 50.9±1.27 78.85±0.94 1.05±.15 51.19±1.84 80.57±0.95 1.10±0.11 51.17±1.85
FactorVAE 70.23±1.70 0.99±.02 49.12 ±1.18 69.75±1.53 0.99±.03 56.4±1.11 70.92±1.58 0.99±.05 55.48±1.25 70.43±1.74 1.05±.02 54.61±1.34
HFS 8.04±.06 0.67 ± .03 59.04 ±1.74 80.11±.05 0.60±.04 62.9±1.98 79.91±0.36 0.69±.07 63.52±1.94 80.42±.06 0.73±.03 63.83±2.01
β-VAE + HFS 69.03±0.79 0.70±.01 35.65±1.59 74.14±0.82 0.74±.01 40.5±1.49 74.26±0.95 0.71±.06 40.32±1.38 74.84±0.51 0.78±.05 39.38±1.19
β-TCVAE + HFS 69.04±1.45 0.54±.01 25.85 ±1.45 68.37±1.31 0.47±.01 28.9±1.28 69.07±2.02 0.59±.09 30.38±1.24 69.84±1.43 0.62±.04 29.29±1.13
DIOSC 64.87±1.07 0.50±.01 19.6±1.95 70.54±0.60 0.50±.01 21.1±1.92 71.2±0.94 0.44±.03 26.97±1.04 67.72±1.01 0.57±0.01 24.12±1.58

Table 3: Average scores DCI, TDS, and RMSE vary from No. Correlation (left) to every appliance correlated
with one confounder (right) on uncorrelated test data. Red to blue, with bold indicating the best performance per
correlation. (↓ lower is better, ↑ higher is better Top-2 , Top-1 ).
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6 ABLATION STUDIES

6.1 DIOSC PRESERVES ITS ROBUSTNESS IN CORRELATED SCENARIOS

20 40 60 80 100
Training [%]

0

10

20

30

40

50

60

Re
la

tiv
e 

Im
pr

ov
em

en
t (

%
)

No.Corr ( = )

20 40 60 80 100
Training [%]

0

10

20

30

40

50
Pair 1 ( =0.3)

20 40 60 80 100
Training [%]

0

10

20

30

40

Pair 2 ( =0.4)

20 40 60 80 100
Training [%]

0

10

20

30

40

Random Pair (at =0.7)

DIOSC DIOSC-2 HDF -VAE TCVAE Factor-VAE

Figure 5: Relative RMSE (%) improvement over Bert4NILM for six devices using DIOSC, β-VAE, and
FactorVAE, with the amount of labelled training data as a variable parameter.
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Figure 6: We find strong correlation between DIOSC and disentanglement metrics vary with M (right), linked
to classifcation accuracy of each compenents zm on ym labeled test data (Left), Darker Blue → High accuracy.

Finding: DIOSC preserves its robustness in correlated scenarios and achieves comparable perfor-
mance to baseline models with less training sample data.

Training with the same l variational inference model with the different regularisation variants results
shows that DIOSC outperforms SOTA as shown in Fig. 5, mainly in the uncorrelated cases with only
50% of labelled data, which corresponds to HDF (Roth et al., 2023). With 80% of data, DIOSC scores
14% better than HDF and 61.4% better than the baseline Bert4NILM. In the correlated scenarios
(pair 1 and 2), β/Factor/TC-VAE shows weaker performance, while DIOSC consistently outperforms
HDF and the baseline.

6.2 IN-DEPTH SELF-ATTENTION l-VAES LEARN AN EFFECTIVE REPRESENTATION.

Method Depth (L) NRMSE ↓ RMIG ↓ TDS ↓
VAE (baseline) - 0.928 0.921 0.935
VAE (baseline)+DIOSC - 0.929 0.924 0.931
FactorVAE - 0.942 0.931 0.973
β-TCVAE - 0.931 0.918 0.937
β-TCVAE+DIOSC - 0.930 0.922 0.933
DIP-VAE - 0.932 0.915 0.939
DIP-VAE+DIOSC - 0.928 0.926 0.930
DIOSC 8 0.50 0.73 0.71
DIOSC w/o Attention 8 0.54 0.71 0.72
DIOSC 16 0.49 0.74 0.70
DIOSC w/o Attention 16 0.52 0.72 0.73
DIOSC 32 0.48 0.75 0.69

Table 4: Average Normalized RMSE, RMIG,
and TDS Scores for Variants DIOSC w/,w/o At-
tention, as L Increases. (↓ lower is better, ↑
higher is better Top-2 , Top-1 ).

Finding: As DIOSC deepens, representation increases
over 20% (40% in TDS), downtasking boosts perfor-
mance, and attention mechanisms contribute a 10%
improvement.

In Table 7, we employ l-Variational Inference with
the DIOSC regularizer, both with and without self-
attention, and explore its application with alternative
structures tailored for time series, particularly those
residual in D3VAE. Our observations reveal two key
findings. Firstly, incorporating DIOSC with another
regularization method slightly enhances results, as the
alternative regularizer assumes independent factoriza-
tion, potentially compromising the relaxing effect. Secondly, DIOSC demonstrates improved per-
formance with increasing values of L, and the TDS correlates positively with performance, while
RMIG suggests that using DIOSC with attention leads to well-disentangled representations. Notably,
the attention mechanism proves efficient by enhancing the overall model performance.

6.3 ROBUSTNESS, DISENTANGLEMENT, AND STRONG GENERALIZATION

Finding: DIOSC demonstrates robust disentanglement performance across varying dimensions,
while FactorVAE exhibits degradation as dimensionality increases M ↑.
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In Fig. 6 (right), we report the disentanglement performance of DIOSC and FactorVAE on the Uk-dale
dataset as M is increased. FactorVAE (Higgins et al., 2016) is the closest TC-based method it uses a
single monolithic Discriminator and the density-ratio trick to explicitly approximate TC. Computing
TC(z) is challenging to compute as M increases. The results for M = 10 (scalable ≈ ×3) are
included for comparison. The average disentanglement scores for DIOSC M = 7 and M = 10
are lower and very close, indicating that its performance is robust in M . This is not the case for
HDF Factor/β-VAE. It performs worse on all metrics when m increases. Interestingly, HDF M = 7
seems to recover its performance on most metrics. Despite this, the difference suggests that HDF and
Factor/β-VAE are not robust to changes in M . The optimal M for HDF and TC/β-VAE, shown in
Fig. 6 (left), indicates promising accuracy for HDF, despite being no better than DIOSC.

7 DISCUSSION AND CONCLUSION

To address the limitation of assuming independence in existing time series disentanglement methods,
which may not accurately reflect real-world correlated data, our approach focuses on recovering
correlated data. By relaxing the independence factorization assumption to independence-of-support
via contrastive learning, our method achieves identification and disentanglement, enabling the model
to encode attribute variability in the latent space. DIOSC, combines contrastive regularization and l-
Variational Autoencoder for time series, we demonstrate that promoting pairwise factorized support is
sufficient for disentangling time series. Consistent with our theoretical findings, DIOSC outperforms
baseline methods by more than +61.4% in downstream tasks of NILM across datasets with various
correlation shifts, highlighting the benefits of enhanced disentanglement for out-of-distribution
generalization in representation learning. Future work should explore support factorization for time
series with causal notions rather than independence.

Limitations of Theory. Although we posit that our theoretical assumptions encapsulate crucial
aspects of time series representation learning under strong correlation, they may be subject to varying
degrees of violation in practical scenarios characterized by correlations. For instance, the relaxation
assumption to IOS (Asm. 4.1) regarding the batch is influenced by its size, which we consider as a
hyperparameter during training.

8 BROADER IMPACT

Our proposed method enables effective representation learning for time series data related to energy
load, offering broad applicability across various downstream tasks. In this context, we showcase its
efficacy in scenarios characterized by strong correlations. The scalability of our approach, particularly
when applied to scaled versions featuring a large number of appliances, facilitates its generalization
across domains, establishing foundational models for energy disaggregation. The potential societal
benefits, such as enabling household consumption determination, are particularly notable within
the context of smart grid systems. As evidenced by its successful implementation in smart grid
management, our method readily adapts to efficiently detect appliance consumption patterns. This
capability not only aids in energy management but also provides users with valuable feedback
regarding optimal utilization during off-peak hours, thereby optimizing energy consumption and
consequently reducing carbon footprint. Such contributions underscore the significant societal and
environmental advantages afforded by AI-driven models.
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Supplementary Material

To facilitate a comprehensive examination of our paper, we present additional results and furnish
complete proofs for the assumptions articulated in the main manuscript. This supplementary material
is meticulously organized as follows:
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