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Abstract001

Large Language Models (LLMs) require fre-002
quent updates to correct errors and keep003
pace with continuously evolving knowledge004
in a timely and effective manner. Recent005
research in model editing has highlighted006
the challenges in balancing generalization007
and locality, especially in the context of008
lifelong model editing. Inserting knowledge009
directly into the model often causes con-010
flicts and potentially disrupts other unre-011
lated pre-trained knowledge. To address012
this problem, we introduce UniAdapt, a013
universal adapter for knowledge calibration.014
Inspired by the Mixture of Experts architec-015
ture and Retrieval-Augmented Generation,016
UniAdapt is designed with a vector-assisted017
router that is responsible for routing in-018
puts to appropriate experts. The router019
maintains a vector store, including multiple020
shards, to construct routing vectors based021
on semantic similarity search results. Uni-022
Adapt is fully model-agnostic and designed023
for seamless plug-and-play integration. Ex-024
perimental results show that UniAdapt out-025
performs existing lifelong model editors and026
achieves exceptional results in most metrics.027

1 Introduction028

Large Language Models (LLMs) have shown029

their outstanding abilities in understanding and030

generating texts, resulting in widespread de-031

ployment across various applications with sig-032

nificant social impacts (Vaswani, 2017; Radford033

et al., 2018). Although LLM is trained with034

up-to-date and highly accurate data, it still035

can make mistakes (Huang et al., 2023), gen-036

erating hallucinated responses. Furthermore,037

its world knowledge may quickly become out-038

dated. Due to computational cost, retraining039

or fine-tuning the model frequently is impracti-040

cal. This demands a model editor that corrects041

the errors and keeps pace with continuously042

evolving knowledge in a timely and effective 043

manner. 044

In recent years, model editing has emerged as 045

a highly effective method for updating knowl- 046

edge within LLMs. It aims to insert or update 047

the responses for certain target queries, referred 048

to as edits, while ensuring that responses on 049

unrelated queries remain intact. For instance, 050

ROME (Meng et al., 2022a) locates and edits 051

knowledge within LLMs. It treats a multi-layer 052

perceptron (MLP) as a key-value store, where 053

the key encodes a subject and the value en- 054

codes knowledge about that subject. It uses 055

rank-one modification to insert key-value pairs 056

into the MLP module directly. WISE (Wang 057

et al., 2024) employs a dual parametric mem- 058

ory scheme that consists of a main memory 059

for pre-trained knowledge and a side memory 060

for edited knowledge. It further introduces an 061

activation routing mechanism that determines 062

which memory to access when given a query, 063

thus optimizing the knowledge retrieval process. 064

Despite the extensive effort, existing methods 065

still suffer from either limited success in achiev- 066

ing generalizability (i.e., successfully introduc- 067

ing the new knowledge) or locality (i.e., suc- 068

cessfully maintaining the model performance 069

on unrelated knowledge). 070

To address the above-mentioned problem, 071

we introduce UniAdapt, a universal adapter 072

leveraging the MoE (Shazeer et al., 2017; Fe- 073

dus et al., 2022) architecture and Retrieval- 074

Augmented Generation (RAG) (Lewis et al., 075

2020; Sachan et al., 2021; Asai et al., 2023) 076

for knowledge calibration. UniAdapt edits a 077

model by adding an adapter to the selected 078

MLP layer, never changing the model’s weights. 079

The adapter comprises a vector-assisted router 080

and multiple parallel experts. The core idea 081

is that the router is responsible for routing 082

relevant queries to the corresponding experts. 083
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Additionally, if no suitable expert is found, the084

output of the selected layer remains unaltered085

to save resources. To achieve this, the vector-086

assisted router maintains multiple shards of a087

vector store, storing the sentence embeddings088

of newly introduced knowledge. When a query089

is received, the router constructs a routing vec-090

tor where each element represents the highest091

semantic similarity score regarding each shard.092

This routing vector determines which experts093

are activated to handle the current query. The094

output of our adapter is combined with the095

original output to achieve precise calibration.096

Overall, UniAdapt is a fully model-agnostic,097

plug-and-play, and cost-effective lifelong model098

editor.099

Our contributions are summarized as follows.100

• We analyze and identify the weakness of101

the existing lifelong model editors relying102

on memory, highlighting opportunities for103

potential enhancements.104

• We develop UniAdapt, a lifelong model105

editor that is designed to route queries to106

the most relevant experts based on seman-107

tic similarity. Our architecture is model-108

agnostic.109

• Our experiments show that UniAdapt out-110

performs existing lifelong model editors by111

a substantial margin. UniAdapt possesses112

the ability to memorize and generalize ef-113

fectively, making it a superior choice for114

lifelong learning tasks.115

2 Lifelong Model Editing116

The lifelong model editing task (Hartvigsen117

et al., 2024; Wang et al., 2024) involves mak-118

ing numerous updates to a pre-trained model119

over time, ensuring that it consistently re-120

freshes its knowledge and stays aligned with121

the fast-changing information encountered in122

everyday life. This task modifies an ini-123

tial base model fθ0 , parameterized by θ at124

the time step 0, using a dataset Dedit =125

{(Xe,Ye) | (x1, y1), · · · , (xT , yT )}. Formally, at126

the time step T , the model editor, denoted by127

ME, inserts the T-th edit into the model fθT−1
128

and produces an edited model fθT . Let P(·) be129

a function that rephrases x to a set of seman-130

tic equivalent inputs (we assume x ∈ P(x)).131

The task of lifelong model editing is defined as 132

follows: 133

fθT = ME(fθT−1
, xT , yT ) s.t. fθT (x)

=

{
ye if x ∈ P(xe) ∧ (xe, ye) ∈ Dedit

fθ0(x) otherwise.
134

The edited model fθT should produce a de- 135

sired output ye for each in-scope input x ∈ 136

P(xe) and (xe, ye) ∈ Dedit, while maintain- 137

ing the original model’s performance fθ0(x) 138

on an irrelevant input (x, y) ∈ Dirr where 139

Dirr = {(x, y) | x /∈ P(xe), ∀xe ∈ Xe}. 140

It also preserves knowledge from past edits 141

(x<T , y<T ) ∈ Dedit. Additionally, the result of 142

applying fθT to x and P(x) should be identical. 143

To measure the efficiency of a model editor, 144

the edited model is subject to evaluation using 145

the following metrics. 146

Reliability. The edited model fθT should
generate the expected responses on intended
edits:

E(xe,ye)∈Dedit1{argmaxyfθT (y | xe) = ye}

Locality. The edited model fθT should retain
original responses on inputs that are irrelevant
to intended edits:

E(x,y)∈Dirr1{argmaxyfθT (y | x) = fθ0(y | x)}

Generality. The model fθT should generalize
edits over other semantic equivalent inputs:

E(xe,ye)∈Dedit 1{argmaxyfθT (y | x) = ye} s.t.
x ̸= xe ∧ x ∈ P(xe)

147

3 Our Method: UniAdapt 148

In this section, we present the details of Uni- 149

Adapt, a universal adapter based on the MoE 150

architecture and a vector-assisted routing strat- 151

egy, as illustrated in Figure 1. UniAdapt is 152

appended immediately after a selected MLP 153

layer to calibrate the output. 154

3.1 UniAdapt Architecture 155

The core idea of UniAdapt is to introduce sev- 156

eral MoE-style experts to facilitate knowledge 157

updates and learning, while keeping all the orig- 158

inal parameters of LLM frozen to maintain its 159

original behavior. The idea is thoroughly an- 160

alyzed in Appendix A.2. Figure 1 introduces 161
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Figure 1: The architecture of UniAdapt inspired by MoE architecture. UniAdapt contains a router and
multiple parallel feed-forward layers (a.k.a experts), denoted as FFN1, FFN2, · · · , FFNk. The router
maintains a vector store containing multiple shards labeled S1, S2, · · · , Sk. The matching colors of shards
and experts indicate that each expert may hold knowledge relevant to queries associated with the shard.
In the inference phase, the router computes a routing vector to selectively choose appropriate FFNs,
ensuring precise calibration of the original MLP’s output (more details in 3.2).

the forward pass of UniAdapt. UniAdapt con-162

sists of a router and multiple parallel experts.163

This module is appended to the original MLP164

to calibrate the original knowledge. The out-165

puts of all experts are aggregated as a weighted166

sum to produce the final output. This choice167

aligns with recent experimental findings based168

on knowledge probing technologies, i.e., the169

MLP layers store knowledge (Geva et al., 2020).170

Unlike traditional MoE, the router has a vector171

store for sentence embeddings. Given a token172

xi within the input sequence x = {xi}Li=1, our173

adapter with K experts computes a gate deci-174

sion vector G that decides which expert to send175

the token xi to. This is defined as follows.176

G = H ◦ Topk(R(x)) (1)177

where R(·) defines a routing strategy (refer to178

details in 3.2). Note that the router makes the179

routing decision based on the whole sentence180

x. Consequently, all tokens xi within the sen-181

tence x are directed to the same experts. The182

function Topk(·) keeps only the top-k values183

and sets all others to zero. The function H is184

the Heaviside step function that outputs 1 for185

any non-negative input and 0 otherwise. Once186

the gate decision vector G is obtained, the cor-187

responding output hi is generated through a188

weighted aggregation of each expert’s compu-189

tation on xi, as follows:190

hi =

K∑
k=1

Gk ·Wk · xi (2)191

where Wk represents the linear projection192

weights of the k-th expert, and the gate de-193

cision Gk determines the contribution of the194

k-th expert to the output hi. For efficiency, ex-195

perts with Gk = 0 do not require computation.196

Overall, the forward pass of the Uni- 197

Adapt layer, combined with the frozen original 198

parameters W0, can be expressed as: 199

hi = W0 · xi︸ ︷︷ ︸
old knowledge

+λ
K∑
k=1

Gk ·Wk ·
old knowledge︷ ︸︸ ︷
(W0 · xi)︸ ︷︷ ︸

knowledge update

(3) 200

where λ is a non-negative weighting coefficient 201

used to balance the old knowledge and the 202

knowledge update. The formula (3) shows that 203

UniAdapt can minimize the knowledge update 204

by setting λ close to 0 to retain the original 205

output. 206

3.2 Vector-Assisted Router 207

The core concept of UniAdapt is that the router 208

has its own vector store to streamline the rout- 209

ing process. Our goal is to direct inputs that 210

share similar knowledge with the edits to the 211

appropriate experts, while inputs unrelated to 212

any edits will bypass expert activation, leaving 213

the output unchanged. To achieve this, we start 214

with training a router to distinguish between 215

related and unrelated inputs using our modified 216

loss function. Once trained, the router’s param- 217

eters are frozen. We fine-tune the adapter to 218

incorporate edits using the default loss function 219

of the model. In the following, we introduce 220

the details of the router. 221

Router Construction. Similar to the exist- 222

ing approaches (De Cao et al., 2021; Mitchell 223

et al., 2021, 2022), our vector-assisted router 224

is trained with a dataset. To decide whether 225

an input x is in P(xe) of some edit xe, we in- 226

troduce a threshold ϵ. If the similarity score 227

∆(x, xe) ≥ ϵ, x is considered an in-scope input 228

of xe. Otherwise, x is irrelevant to xe. Thus, 229
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we want the similarity scores of in-scope edits230

to be larger than out-scope edits by a large231

margin.232

min{∆(xi, xe)} ≫ max{∆(xo, xe)},
∀xe ∈ Xe, xi ∈ P(xe), xo /∈ P(xe)

(4)233

Note that when the number of edits increases,234

we observe that even though the edit x is related235

to xe and not to xa, there are numerous cases236

where ∆(x, xe) < ∆(x, xa). Therefore, we want237

to distinguish between in-scope edits of multiple238

edits. That is,239

min{∆(xi, xe)} ≫ max{∆(xi, xa)},
∀xe ∈ Xe, xa ∈ Xe ∧ xa ̸= xe, xi ∈ P(xe)

(5)240

To achieve both objectives in (4) and (5), we241

design a loss that is inspired by the multiple neg-242

ative ranking loss (Henderson et al., 2017). For243

a single in-scope edit xe ∈ Xe, we form a batch244

of K sentence pairs that contain a positive pair245

(xe, xi) where xi ∈ P(xe) ∧ xi ̸= xe and K − 1246

negative pairs (xe, xa) where xa ∈ Xe∧xa ̸= xe.247

The training goal is to minimize the data’s ap-248

proximated mean negative log probability. For249

a single batch, the loss is:250

L = − 1
K

∑K
i=1

[
∆(xe, xi)− log

∑K−1
a=1 e∆(xe,xa)

]
(6)251

The loss aims to maximize the distance be-252

tween a positive pair and multiple negative253

pairs. Note that the objective in (4) is typ-254

ically satisfied by most pre-trained sentence255

embedding frameworks (Reimers, 2019; Gao256

et al., 2021). Therefore, fine-tuning them with257

the loss function in (6) is sufficient to produce258

accurate similarity scores.259

Routing Strategy. Similar to SERAC, we260

need a memory to store the edits to make se-261

mantic similarity queries. Unlike SERAC, we262

aim to store sentence embeddings (rather than263

the sentences themselves) in a vector store, both264

to reduce memory usage and to ensure compat-265

ibility with a wide range of frameworks (Douze266

et al., 2024; Johnson et al., 2019).267

We have multiple experts to handle input268

queries. A router is used to distribute the input269

queries, and only a few experts are activated270

to enhance knowledge capacity (Wang et al.,271

2024). To efficiently utilize these experts, we272

would like to dynamically route inputs to the273

most relevant experts and balance the number274

of edits calibrated by each expert. To achieve 275

this goal, we propose a vector store sharding 276

mechanism. We equally divide the embeddings 277

of N edits into K shards, each shard stores 278

around N/K embeddings where K is the num- 279

ber of experts. Given an input x = {xi}Li=0 and 280

a shard Sk, the router computes the routing 281

score for each shard as follows: 282

αk = max{∆(x, xe) | ∀xe ∈ Sk} − ϵ (7) 283

where ϵ is a non-negative threshold derived 284

from the router construction step. The routing 285

score is in the range [−1, 1], if αk is close to 1 286

then the input is the most similar to the shard 287

Sk and the router likely activates the expert Ek 288

to handle the input. If αk ≤ 0 the expert Ek 289

is deactivated to reduce resource consumption. 290

Given the routing scores for all shards, the 291

decision vector is formed as follows: 292

R(x) = (α1, . . . , αj , . . . , αK) (8) 293

4 Experiments 294

In this section, we first present our experimental 295

setup. Then, we discuss the performance of 296

our method on two settings: single editing and 297

lifelong editing. 298

4.1 Experiment Setups 299

Datasets and Metrics. We use two promi- 300

nent model editing datasets: zsRE (Levy et al., 301

2017) and Counterfact (Meng et al., 2022a) for 302

performance evaluation. zsRE is a context-free 303

Question-Answering (QA) dataset built upon 304

zero-shot relation extraction. Counterfact is 305

a more challenging dataset containing factual 306

knowledge with diverse subjects, relations, and 307

linguistic variations. We evaluate the capabil- 308

ity of UniAdapt using Reliability, Generality, 309

and Locality (defined in Sect 2) along with the 310

average scores over these metrics. Specifically, 311

each edit record contains an editing pair (xe, ye) 312

along with a related edit xr and an unrelated 313

edit xo. The Reliability assesses if the edited 314

model can recall the response ye from xe. The 315

Generality evaluates whether the edited model 316

can produce ye given xr. The Locality measures 317

whether the edited model produces a consistent 318

response for xr both before and after the edit. 319
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Baselines. We compare UniAdapt with mul-320

tiple recently proposed baselines. We cat-321

egorize them into non-memory based meth-322

ods including FT-L (Meng et al., 2022a),323

MEND (Mitchell et al., 2021), MEMIT (Meng324

et al., 2022b) and memory-based methods325

including SERAC (Mitchell et al., 2022),326

GRACE (Hartvigsen et al., 2024), WISE (Wang327

et al., 2024). Note that we exclude the re-328

sults of MEMoe (Wang and Li, 2024b) and329

LEMoE (Wang and Li, 2024a), as their source330

code has not yet been made available.331

FT-L is a direct fine-tuning method that332

aims to limit the extent of weight modifications.333

MEND is a meta-learning method that learns334

auxiliary models to predict weight changes in335

the editing model. MEMIT inserts thousands336

of key-value pairs into multiple layers of the337

network by considering a feed-forward layer as338

linear associative memory.339

SERAC uses external memory to explicitly340

cache the edits and route an input query to341

either the counterfact model or the original342

model. GRACE replaces the hidden states of343

inputs if its activation scores fall inside a cluster344

of a codebook. WISE routes an input query345

to either side memories or the main memory346

using activation scores.347

Implementation Details. We apply our ed-348

its to GPT2-XL and LLaMA2-7B. Our router is349

built on top of SBERT (Reimers and Gurevych,350

2019) for similarity scores computation. We opt351

for two tasks: single editing and lifelong editing352

tasks. For single editing, following (Meng et al.,353

2022a), the batch size is set to 5, we evaluate354

edits and roll back to the initial state after each355

batch of edits. For lifelong editing, the batch356

size is set to 5. We insert 1000 edits and eval-357

uate without rolling back. For the baselines,358

WISE is only implemented for LLaMA2-7B and359

MEMIT is only implemented for GPT2-XL.360

4.2 Main Results361

Single Editing. We evaluate the perfor-362

mance of UniAdapt in the single editing setting,363

T=1, and compute the average of 1000 runs.364

The evaluation results are shown in Table 1.365

We observe that UniAdapt consistently outper-366

forms baselines across all tested models and367

most metrics. The results are balanced as it368

achieves scores of at least 0.97 in all metrics.369

In the zsRE setting, UniAdapt achieves scores 370

of 1.00 and 0.98 on GPT2-XL and LLaMA2, 371

respectively, achieving improvements of 28% 372

and 0% over the second-best competitor. Sim- 373

ilarly, the improvements are 36% and 5% in 374

the Counterfact setting. A closer investigation 375

shows that other tools often sacrifice their gen- 376

erality to achieve higher locality. GRACE and 377

MEND achieve 0.0 in generality but 1.0 in the 378

locality within the zsRE setting of GPT2-XL. 379

Overall, this result demonstrates the efficacy 380

and stability of UniAdapt’s capability on han- 381

dling a hard dataset (i.e., Counterfact). 382

Although the results of UniAdapt vary across 383

different datasets like other baselines, it demon- 384

strates consistent performance across different 385

model architectures. Specifically, the difference 386

remains below 3% in all metrics and under 2% 387

in the average score. For the average score, 388

the discrepancies in GRACE, FT, and SERAC 389

range from 1% to 28%. FT is considered the 390

least stable tool as its difference is 28%. In sum- 391

mary, the results indicate that UniAdapt not 392

only achieves the highest scores but also main- 393

tains stability across diverse models. 394

Lifelong Editing. We evaluate the perfor- 395

mance of UniAdapt in the lifelong editing set- 396

ting, T=1000. The evaluation results are shown 397

in table 2. The results clearly show a decline 398

in the performance across all methods as T 399

increases from 1 to 1000. For example, FT and 400

MEMIT experience a drop of over 50% and 401

20% respectively in almost all settings. This is 402

attributed to the fact that new edits tend to 403

overwrite previous ones. Among these meth- 404

ods, UniAdapt shows a negligible decline on 405

the easier zsRE, and a significant advantage in 406

terms of generalizing ability on Counterfact. A 407

further analysis reveals that UniAdapt signifi- 408

cantly outperforms the nearest competitor by 409

a large margin. In the GPT2-XL setting, Uni- 410

Adapt has a remarkable gap of around 40% over 411

MEMIT on the zsRE dataset. In the LLaMA2- 412

7B setting, UniAdapt proves to be the best with 413

around 40% difference compared to WISE in 414

the Counterfact dataset. In both datasets, our 415

overall score is the highest, significantly out- 416

performing the other methods. Furthermore, 417

while the lifelong editing setting has proved to 418

be more challenging than the single editing set- 419

ting, UniAdapt maintains impressive stability 420
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Method Model ZsRE Counterfact

Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

GRACE

GPT2-XL

0.34 0.00 1.00 0.45 0.00 0.00 1.00 0.33
FT 0.57 0.30 0.88 0.58 0.93 0.16 0.73 0.61
MEMIT 0.65 0.50 1.00 0.72 0.62 0.24 0.99 0.62
SERAC 0.43 0.29 0.85 0.52 0.44 0.01 0.95 0.47
MEND 0.07 0.07 0.99 0.37 0.00 0.00 0.97 0.32
UniAdapt 1.00 0.99 1.00 1.00 1.00 0.96 0.98 0.98

GRACE

LLaMA2-7B

0.97 0.00 0.34 0.44 1.00 0.00 0.78 0.59
FT 0.55 0.47 0.86 0.63 0.45 0.25 0.28 0.33
SERAC 0.52 0.41 1.00 0.64 0.45 0.12 1.00 0.52
MEND 0.07 0.06 0.87 0.33 0.03 0.03 0.88 0.31
WISE 1.00 0.94 1.00 0.98 1.00 0.76 1.00 0.92
UniAdapt 0.97 0.96 1.00 0.98 0.97 0.95 0.98 0.97

Table 1: Main editing results with the number of edits T =1. Bold is the best result, and underline is the
second-best result.

Method Model ZsRE Counterfact

Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

GRACE

GPT2-XL

0.34 0.00 1.00 0.45 0.00 0.00 0.99 0.33
FT 0.07 0.05 0.02 0.05 0.19 0.07 0.00 0.09
MEMIT 0.51 0.45 0.31 0.42 0.82 0.55 0.05 0.47
SERAC 0.19 0.19 0.85 0.41 0.00 0.00 0.96 0.32
MEND 0.21 0.20 0.99 0.47 0.00 0.00 0.99 0.33
UniAdapt 0.98 0.93 1.00 0.97 0.98 0.53 0.91 0.81

GRACE

LLaMA2-7B

0.98 0.01 0.34 0.44 0.99 0.00 0.77 0.59
FT 0.16 0.14 0.04 0.11 0.04 0.01 0.01 0.02
SERAC 0.36 0.35 1.00 0.57 0.15 0.12 1.00 0.42
MEND 0.29 0.29 0.85 0.48 0.15 0.12 0.96 0.41
WISE 0.83 0.77 1.00 0.87 0.42 0.26 0.64 0.44
UniAdapt 0.96 0.80 1.00 0.92 0.99 0.57 0.94 0.83

Table 2: Main editing results with the number of edits T=1000. Bold is the best result, and underline is
the second-best result.

across models. The difference remains below421

7% in all metrics and under 5% in the average422

score. In summary, UniAdapt excels at learn-423

ing extensive new knowledge while preserving424

other unrelated pre-trained knowledge.425

4.3 Ablation Studies426

In this section, we examine the effects of various427

hyper-parameters on the performance of Uni-428

Adapt. Given that zsRE has been extensively429

evaluated in numerous studies, we have imple-430

mented lifelong editing settings on the zsRE431

dataset with LLaMA2-7b. Training time, infer-432

ence time, and memory analysis are provided433

in Appendix A.1434

Effect of the Target Layer. We conduct435

multiple experiments to assess the impact of436

the choice of target layer on the performance.437

We sequentially append UniAdapt to the MLP438

module of each transformer block and evaluate439

the performance of UniAdapt with 1000 edits.440

The results are illustrated in Figure 2a across441

various target layers. While locality remains 442

stable, both reliability and generality encounter 443

significant fluctuations, peaking at layer 3 and 444

reaching their lowest point at the final layer. 445

Our finding aligns with the work (Zhao et al., 446

2024) that confirms the importance of editing 447

the model at layer 3. Notably, regardless of the 448

layer modified, generality consistently hits the 449

lowest accuracy among all metrics, indicating 450

that it is the most challenging metric to im- 451

prove. Overall, performance tends to decline 452

sharply as the target layer approaches the last 453

layer. 454

Effect of the Number of Experts. We 455

perform multiple experiments to study how 456

the number of experts impacts the performance. 457

Due to computational resource limitations, we 458

sequentially set the number of experts to values 459

in the range [1˘10] and evaluate UniAdapt’s per- 460

formance with 1000 edits. Figure 2b illustrates 461

the performance of UniAdapt with different 462

numbers of experts. We find that the locality of 463
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(a) Effect of Target Layer (b) Effect of Expert Number

(c) Effect of ϵ (d) Effect of top K

Figure 2: The performances of UniAdapt regarding to different hyper-parameters where the notation rel,
gen, loc are Reliability, Generality, and Locality respectively.

model editing does not change with the number464

of experts, i.e., there is neither a decrease nor465

a performance improvement. This is expected466

because only relevant inputs are forwarded to467

experts. The reliability exhibits slight fluctu-468

ation (i.e., going upward and then downward)469

when the number of experts increases. Further-470

more, it consistently remains above 0.95 across471

all scenarios. Unlike reliability and locality,472

the generalization of knowledge fluctuates with473

the number of experts, peaking when the num-474

ber of experts is 4, i.e., increasing the number475

of experts initially boosts overall performance,476

but eventually leads to a decline. We hypothe-477

size that the reason is that while having more478

experts can enhance recall by providing spe-479

cialized knowledge, it may also make it more480

challenging for the router to effectively choose481

the most suitable experts.482

Effect of ϵ. We conduct multiple experiments483

to evaluate the impacts of ϵ on the performance.484

We sequentially set the ϵ to values in the range485

[0.1˘0.9] and evaluate UniAdapt’s performance486

after 1000 edits. Figure 2c depicts the per-487

formance of UniAdapt across various ϵ. The488

results show that ϵ has little impact on the489

reliability and generality. In contrast, local-490

ity increases sharply as ϵ is raised from 0.1 to 491

0.6. This can be attributed to the behavior of 492

the router at low ϵ values. With a low ϵ, the 493

router tends to misclassify unrelated inputs, 494

while relevant inputs remain unchanged. As 495

ϵ increases, the router becomes more selective 496

and only forwards inputs that are highly likely 497

to be relevant, leading to higher locality. 498

Effect of top-k routing. We conduct mul- 499

tiple experiments to evaluate the impacts of 500

top-k routing on UniAdapt’s performance. We 501

sequentially set K to values in the range [1˘5], 502

fix the number of experts at 5, and evaluate our 503

performance after 1000 edits. Figure 2d depicts 504

the performance of UniAdapt across various K. 505

The results show that the locality remains un- 506

changed across the different K values. However, 507

reliability and generality consistently decrease 508

as K increases. This suggests that while top-k 509

routing does not impact locality, it hurts relia- 510

bility and generality as the number of routing 511

options increases. Interestingly, the best overall 512

performance is achieved when K=1, indicating 513

that using a single optimal routing path leads 514

to the highest reliability and generality. As K 515

increases, the UniAdapt becomes less focused 516

and may allocate resources to less relevant rout- 517
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Method T Reliability↑ Generality↑ Locality↑ Score↑

WISE 2000 0.70 0.64 1.00 0.78
UniAdapt 0.97 0.80 0.99 0.92

WISE 3000 0.64 0.58 1.00 0.74
UniAdapt 0.96 0.77 0.99 0.91

WISE 6000 0.50 0.48 1.00 0.66
UniAdapt 0.95 0.79 0.98 0.90

Table 3: Scaling to 6000 edits on zsRE dataset with
LLaMA2-7b

ing options, leading to decreased performance518

in terms of reliability and generality.519

Scale up to 6K. We conduct multiple exper-520

iments to assess the capability of UniAdapt on521

handling long continual edits. We sequentially522

scale the number of edits to 2000, 3000, and523

6000 and report our results along with WISE524

(the second-best competitor in our experiments)525

in Table 3. From the results, we observe that526

UniAdapt remains the best editor. WISE expe-527

riences a significant decline in both generality528

and reliability, dropping from 0.64 to 0.48 and529

0.70 to 0.50 respectively. This is expected be-530

cause WISE tends to incorrectly select the side531

memory when the number of edits increases.532

UniAdapt experiences a slight decrease of less533

than 0.02 in both metrics. Overall, the results534

highlight UniAdapt’s exceptional performance535

on handling long continual edits, which makes536

it a practical solution.537

5 Related Work538

Lifelong model editing is an active research539

area with many attempts (Wang et al., 2024;540

Meng et al., 2022b; Yu et al., 2024) demonstrat-541

ing encouraging results. In the following, we542

highlight some of the most relevant works.543

Model Editing. UniAdapt is related to544

model editing which aims to update knowledge545

of pre-trained LLMs. Instead of retraining the546

model which is infeasible, the task of model547

editing is to fine-tune the model by either di-548

rectly modifying the model parameters or dy-549

namically loading new knowledge from external550

storage. MEND (Mitchell et al., 2021) trains a551

meta-network that modifies the parameters of552

the target model. ROME (Meng et al., 2022a)553

insert key-value pairs into a layer of a feed-554

forward layer by considering the layer as linear555

associative memory. While MEND and ROME556

are effective, they suffer from low locality. To557

address this, SERAC (Mitchell et al., 2022) em- 558

ploys a router mechanism that directs inputs 559

to the appropriate model (i.e., either the new 560

model or the original model). IKE (Zheng et al., 561

2023) teaches the targeted model to revise the 562

output with high-quality demonstrations. 563

Lifelong model editing. UniAdapt is 564

closely related to lifelong model editing, 565

where thousands of edits are inserted contin- 566

ually. MEMIT (Meng et al., 2022b) extends 567

ROME to insert thousands of key-value pairs. 568

GRACE (Hartvigsen et al., 2024) assigns knowl- 569

edge into multiple clusters, allowing the sys- 570

tem to query and apply appropriate patches 571

when needed. MELO (Yu et al., 2024) ex- 572

tends GRACE by using dynamic Lora to store 573

patches. WISE (Wang et al., 2024) relies on 574

activation scores to route inputs to either the 575

main memory or side memory. Overall, these 576

tools employ a routing mechanism, except for 577

MEMIT. Both MEMoE (Wang and Li, 2024b) 578

and LEMoE (Wang and Li, 2024a) rely on an- 579

chor embeddings to distribute tokens to the 580

corresponding experts. 581

Spare Mixture of Experts (SMoE) Uni- 582

Adapt is closely related to SMoE, where a gate 583

network or router is responsible for dispatching 584

tokens to a subset of experts. The work (Fe- 585

dus et al., 2022) introduces an approach named 586

switch transformer to scale neural networks up 587

to a trillion parameters. It selectively activates 588

relevant experts for each input. (Shazeer et al., 589

2017) features a trainable gating network to 590

optimize expert selection. 591

6 Conclusion 592

In this work, we present UniAdapt, a universal 593

adapter for knowledge calibration. UniAdapt is 594

fully model-agnostic and designed for seamless 595

plug-and-play integration. It has MoE-style ar- 596

chitecture and is attached to the MLP layer to 597

calibrate the original output. The router with 598

multiple shards can precisely forward queries 599

to the experts that store knowledge and make 600

no modifications when the queries are irrele- 601

vant. The experimental results show that Uni- 602

Adapt achieves the significantly improved per- 603

formance on various models and datasets. 604
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7 Limitations605

Our analysis revealed two key areas for improv-606

ing overall performance: the routing algorithm607

and the method of storing data in external608

memories. Our approach focuses primarily on609

the routing algorithm aspect. This inadver-610

tently results in a less robust memory writing611

implementation. We have computed Out of Dis-612

tributions (ODD) metrics according to (Wang613

et al., 2024). The results show that WISE (i.e.,614

0.53) is better than UniAdapt (i.e., 0.49). Al-615

though our architecture is model-agnostic, it is616

slightly more complicated than others as Uni-617

Adapt requires a separate training phase for618

the router.619
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A Appendix777

A.1 Additional Experiments778

Inference Time Analysis. We measured779

LLAMA2-7b’s inference time with and without780

UniAdapt after training with T=3000 on ZsRE.781

Based on an average of three inference trials,782

the base model took 0.014 seconds. UniAdapt783

added a minor overhead of 5.75%—slightly784

higher than WISE-Merge (3%) but lower than785

WISE-Retrieve (7%).786

Memory analysis. UniAdapt loads two787

modules: a router built on top of all-MiniLM-788

L6-v2 and a vector storage for embeddings.789

The router requires 620 MB, while the orig-790

inal LLAMA2-7b model requires 26,222 MB.791

Each embedding has a shape of 384. For 3,000792

embeddings of float32, the size is 3,000 × 384 ×793

4 = 4.6 MB. An expert requires 64 MB. With794

a single expert, the total additional memory795

needed is 688.6 MB, representing a 2.63% over-796

head. When scaling UniAdapt to 8 experts and797

9,000 edits, the required memory becomes 4.6 ×798

3 + 620 + 64 × 8 = 1,145.8 MB, with a 4.37%799

overhead. The WISE’s overhead is 0.64% in800

theory and 4% in practice.801

Method Number
of edits

Router
train-
ing (s)

Edit
train-
ing (s)

Total
(s)

UniAdapt 10 0.96 14.90 15.86
UniAdapt 100 6.08 142.80 148.88
UniAdapt 1000 55.35 1423.82 1479.17
WISE 10 0.00 94.00 94.00
WISE 100 0.00 603.12 603.12
WISE 1000 0.00 5273.82 5273.82

Table 4: Training times

Training Time Analysis. Table 4 shows802

the training times of UniAdapt and WISE. Uni-803

Adapt’s training time consists of two compo-804

nents: router training and edit training. While805

the training time increases with the number of806

edits, and UniAdapt requires additional time807

for router training, its total training time is still808

approximately 4.5 times faster than WISE.809

Comparing with MEMoE and LEMoE810

While we wanted to compare with these mod-811

els directly, their source code was not publicly812

available at the time of our experiments. Nev-813

ertheless, their reported results under the same814

settings (ZsRE, Llama7b, 1000 edits) were sig-815

nificantly lower than ours (Table 5):816

Model Rel Gen Loc Avg

MEMoE 0.70 0.43 1.00 0.71
LEMoE 0.80 0.60 1.00 0.82

UniAdapt 0.96 0.80 1.00 0.92

Table 5: Comparing with similar methods

A.2 Lifelong Model Editing Using 817

Memory 818

Multiple recent methods, shown in Table 6, in- 819

corporate memories and routing mechanisms to 820

process inputs efficiently. The router is crucial 821

in detecting and forwarding inputs to desig- 822

nated memories. If an input falls inside the 823

scope of the existing edits, the router forwards 824

it to the designated memory, which contains 825

the new knowledge, thereby increasing reliabil- 826

ity and generality. Conversely, inputs that fall 827

outside of the edits are routed to the original 828

model, maintaining locality. Due to the impor- 829

tance of the router (Zhou et al., 2022; Dikkala 830

et al., 2023), we prioritize optimizing routing 831

mechanisms over memory enhancements. In 832

the following, we discuss existing efforts on 833

improving both routing inputs and routing al- 834

gorithms and justify the design choices that we 835

make for developing our method. 836

Routing Input Recent research opts for ac- 837

tivation scores, sentence embeddings, or anchor 838

embeddings to construct the routing vectors. 839

In our method, we rely on sentence embed- 840

dings over activation scores and anchor em- 841

beddings for the following reasons. First, the 842

works (Geva et al., 2020; Dai et al., 2021) dis- 843

cover that activation scores at a specific block 844

capture various patterns (i.e., shallow, seman- 845

tic, or shallow + semantic). They also sug- 846

gest that lower blocks capture shallow patterns, 847

while upper blocks capture semantic patterns. 848

However, there is no definitive evidence that 849

the activation scores at any specific layer can ef- 850

fectively capture the complete semantics of the 851

input. Anchor embedding enhances the classifi- 852

cation algorithm within the router. However, 853

this approach is dataset-specific. When applied 854

to factual knowledge, anchor embedding over- 855

looks the full sentence context, focusing only on 856

the subject and objects. This may lead to mis- 857

classification if the relation between the entities 858

changes. In contrast, sentence embeddings are 859
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Method Memory Router

Parametric Retrieval Algorithm Input

SERAC (Mitchell et al., 2022) Ë Ë Binary classifier Sentence embedding
GRACE (Hartvigsen et al., 2024) é Ë Clustering Activation score
WISE (Wang et al., 2024) Ë Ë Activation routing Activation score
MEMoE (Wang and Li, 2024b) Ë é Knowledge anchor Anchor embedding
LEMoE (Wang and Li, 2024a) Ë é Knowledge anchor Anchor embedding
UniAdapt Ë Ë Vector-assisted routing Sentence embedding

Table 6: Different routing strategies of recent methods. Parametric memory encodes knowledge within the
model’s parameters, whereas retrieval memory stores information in an external memory system for future
access. Sentence embeddings preserve the semantic meaning of entire sentences, while activation scores
represent the outputs from the activation layers of the neural network. Anchor embedding is formed by
combining the embeddings of entities (such as subjects and objects) in a sentence with token embeddings
through a concatenation operation.

widely recognized for their ability to compute860

the semantic similarity of the inputs (Reimers,861

2019; Gao et al., 2021; Cer et al., 2018; Feng862

et al., 2020). Second, sentence embeddings are863

model-agnostic, which means that they remain864

the same across different target models (i.e.,865

the models that we aim to edit). On the other866

hand, activation scores and anchor embeddings867

are model-specific, varying across different tar-868

get models. This potentially compromises the869

generalizability of methods that rely on them.870

Routing Algorithm. In recent studies, re-871

search on the routing algorithms primarily fo-872

cuses on searching for thresholds for separating873

relevant and irrelevant input. In the binary874

classification settings, SERAC defines a single875

threshold β = 0.5 for any pair of inputs. In876

multi-class classification settings, the cluster-877

ing algorithm in GRACE creates multiple pairs878

of thresholds (i.e., deferral radius ϵ) and cor-879

responding cluster centers (i.e., key Ki). For880

an input x, WISE computes its routing acti-881

vation indicator ∆x and compares it with a882

fixed threshold ϵ to either forward it to the883

main memory or a side memory. Additionally,884

the choice of the side memory is determined885

by the value of ∆x. In our work, we gener-886

alize the routing algorithms as a sub-class of887

MoE where a router aims to forward inputs to888

relevant experts.889

To achieve an effective lifelong model edi-890

tor, we design a model-agnostic adapter that891

harnesses the strength of sentence embeddings892

and the MoE architecture. By employing sen-893

tence embeddings, the adapter can capture the894

semantic meaning of inputs effectively. The895

MoE architecture operates without altering 896

the model’s parameters, minimizing the poten- 897

tial conflicts with other unrelated pre-trained 898

knowledge and preserving the overall perfor- 899

mance. 900

A.3 Router functionality 901

Figure 3 shows the functionality of the router. 902

A.4 Description of Datasets 903

We utilized two standard datasets: zsRE (Levy 904

et al., 2017) and Counterfact (Meng et al., 905

2022a). Table 7 illustrates examples from 906

these datasets, where each row has three pairs: 907

(xe, ye), (xirr, yirr) and (P(xe), ye) for the eval- 908

uation. ZsRE is a context-free Question- 909

answering (QA) dataset containing factual in- 910

formation. In contrast, Counterfact focuses 911

on counterfactual information. Compared to 912

zsRE, the Counterfact dataset is considered 913

more challenging to apply, as it attempts to 914

erase the model’s existing contradictory infor- 915

mation. Consequently, it often yields lower ac- 916

curacy. In our experiments with these datasets, 917

we adopt the version proposed by (Yao et al., 918

2023) 919

A.5 Training Details 920

In our reported results in Table 1 and Table 2, 921

UniAdaptis reported with the following hyper- 922

parameters: number of experts = 1, ϵ = 0.6, 923

TopK = 1, edited layer = 0, and number of 924

epochs to train the adapter = 25. It is worth 925

noting that this configuration is not our best 926

— our optimal setup uses an edited layer of 3 927

and 4 experts. 928
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Figure 3: An example of the router’s functionality, similar to a retriever in RAG. Instead of retrieving
related documents, the router computes decision vectors based on the similarity scores. The similarity
scores [1.0, 0.4, 0.3] indicate that there are three shards. The first shard has the highest similarity score
thus the answer will be stored in expert 1 (also known as FFN1).

# zsRE Counterfact

xe, ye Which college or university is related
with Mobolaji Johnson? Royal Mil-
itary Academy Sandhurst

The native language of Francis
Jammes is German

xirr, yirr nq question: where were the
olympics held in the 1980s?
Moscow, Soviet Union

The mother tongue of Frédéric
Bastiat is French

P(xe), ye Which university or university is
associated with Mobolaji Johnson?
Royal Military Academy Sand-
hurst

Where Francis Jammes is from,
people speak the language of
German

Table 7: Editing dataset example

A.6 Additional Experiments929

In general, an adapter’s effectiveness heavily de-930

pends on the layers selected for editing. Choos-931

ing the right layer for a specific dataset is cru-932

cial to achieving high accuracy. In addition to933

the results presented in the main content, we934

explored modifying different layers of two pri-935

mary models: GPT2-XL and LLaMA2-7B, to936

identify the optimal layer for editing. Table 8937

shows that for GPT2-XL, layer 16 achieves the938

highest score of 0.83, with layers 1 and 17 ty-939

ing for second at 0.82. For LLaMA2-7B, layer940

4 performs best, followed closely by layer 3.941

Overall, the best layer for editing varies be-942

tween models. However, layer 0 emerges as a943

reliable choice, consistently yielding relatively944

high accuracy across models. Moreover, earlier945

layers typically yield better results than later946

ones.947
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GPT2-XL LLaMA2-7B
Layer Reliability↑ Generality↑ Locality↑ Score↑ Reliability↑ Generality↑ Locality↑ Score↑

0 0.98 0.53 0.91 0.81 0.99 0.57 0.94 0.83
1 1.00 0.55 0.91 0.82 1.00 0.70 0.94 0.88
2 1.00 0.50 0.91 0.80 1.00 0.77 0.94 0.90
3 1.00 0.35 0.91 0.75 1.00 0.79 0.94 0.91
4 1.00 0.47 0.91 0.80 0.98 0.83 0.94 0.92
5 1.00 0.27 0.91 0.73 0.98 0.72 0.94 0.88
6 0.82 0.24 0.91 0.66 0.99 0.68 0.94 0.87
7 1.00 0.41 0.91 0.77 0.96 0.65 0.94 0.85
8 1.00 0.47 0.91 0.79 0.99 0.62 0.94 0.85
9 1.00 0.52 0.91 0.81 0.99 0.56 0.94 0.83
10 1.00 0.51 0.91 0.81 0.88 0.33 0.94 0.72
11 1.00 0.53 0.91 0.81 0.98 0.47 0.94 0.80
12 1.00 0.46 0.91 0.79 0.98 0.51 0.94 0.81
13 1.00 0.43 0.91 0.78 0.94 0.43 0.94 0.77
14 0.94 0.42 0.91 0.76 0.99 0.45 0.94 0.79
15 1.00 0.42 0.91 0.78 0.95 0.35 0.94 0.75
16 1.00 0.57 0.91 0.83 0.99 0.49 0.95 0.81
17 1.00 0.55 0.91 0.82 0.93 0.38 0.94 0.75
18 1.00 0.37 0.91 0.76 0.99 0.45 0.94 0.80
19 1.00 0.53 0.91 0.81 0.96 0.41 0.94 0.77
20 1.00 0.39 0.91 0.77 0.99 0.47 0.94 0.80
21 1.00 0.33 0.91 0.75 0.97 0.42 0.94 0.78
22 1.00 0.53 0.91 0.81 0.98 0.42 0.94 0.78
23 1.00 0.40 0.91 0.77 0.99 0.46 0.94 0.80
24 1.00 0.53 0.91 0.81 0.99 0.47 0.94 0.80
25 1.00 0.36 0.91 0.76 0.96 0.42 0.94 0.78
26 1.00 0.48 0.91 0.80 0.97 0.42 0.94 0.78
27 1.00 0.46 0.91 0.79 0.96 0.39 0.94 0.76
28 0.98 0.45 0.91 0.78 0.88 0.32 0.94 0.72
29 0.53 0.16 0.91 0.54 0.99 0.42 0.94 0.78
30 0.99 0.40 0.91 0.77 0.87 0.32 0.94 0.71
31 1.00 0.47 0.91 0.80 0.70 0.30 0.94 0.65
32 1.00 0.33 0.91 0.75
33 1.00 0.29 0.91 0.73
34 1.00 0.30 0.91 0.74
35 0.99 0.26 0.91 0.72
36 0.97 0.28 0.91 0.72
37 0.98 0.28 0.91 0.72
38 0.99 0.26 0.91 0.72
39 0.91 0.20 0.91 0.68
40 0.95 0.25 0.91 0.70
41 0.92 0.22 0.91 0.68
42 0.94 0.21 0.91 0.69
43 0.93 0.21 0.91 0.69
44 0.89 0.20 0.91 0.67
45 0.91 0.22 0.91 0.68
46 0.93 0.21 0.91 0.68
47 0.82 0.17 0.91 0.63

Table 8: Counterfact dataset. Editing performance across all layers
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