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Abstract

Large Language Models (LLMs) require fre-
quent updates to correct errors and keep
pace with continuously evolving knowledge
in a timely and effective manner. Recent
research in model editing has highlighted
the challenges in balancing generalization
and locality, especially in the context of
lifelong model editing. Inserting knowledge
directly into the model often causes con-
flicts and potentially disrupts other unre-
lated pre-trained knowledge. To address
this problem, we introduce UniAdapt, a
universal adapter for knowledge calibration.
Inspired by the Mixture of Experts architec-
ture and Retrieval-Augmented Generation,
UniAdapt is designed with a vector-assisted
router that is responsible for routing in-
puts to appropriate experts. The router
maintains a vector store, including multiple
shards, to construct routing vectors based
on semantic similarity search results. Uni-
Adapt is fully model-agnostic and designed
for seamless plug-and-play integration. Ex-
perimental results show that UniAdapt out-
performs existing lifelong model editors and
achieves exceptional results in most metrics.

1 Introduction

Large Language Models (LLMs) have shown
their outstanding abilities in understanding and
generating texts, resulting in widespread de-
ployment across various applications with sig-
nificant social impacts (Vaswani, 2017; Radford
et al., 2018). Although LLM is trained with
up-to-date and highly accurate data, it still
can make mistakes (Huang et al., 2023), gen-
erating hallucinated responses. Furthermore,
its world knowledge may quickly become out-
dated. Due to computational cost, retraining
or fine-tuning the model frequently is impracti-
cal. This demands a model editor that corrects
the errors and keeps pace with continuously

evolving knowledge in a timely and effective
manner.

In recent years, model editing has emerged as
a highly effective method for updating knowl-
edge within LLMs. It aims to insert or update
the responses for certain target queries, referred
to as edits, while ensuring that responses on
unrelated queries remain intact. For instance,
ROME (Meng et al., 2022a) locates and edits
knowledge within LLMs. It treats a multi-layer
perceptron (MLP) as a key-value store, where
the key encodes a subject and the value en-
codes knowledge about that subject. It uses
rank-one modification to insert key-value pairs
into the MLP module directly. WISE (Wang
et al., 2024) employs a dual parametric mem-
ory scheme that consists of a main memory
for pre-trained knowledge and a side memory
for edited knowledge. It further introduces an
activation routing mechanism that determines
which memory to access when given a query,
thus optimizing the knowledge retrieval process.
Despite the extensive effort, existing methods
still suffer from either limited success in achiev-
ing generalizability (i.e., successfully introduc-
ing the new knowledge) or locality (i.e., suc-
cessfully maintaining the model performance
on unrelated knowledge).

To address the above-mentioned problem,
we introduce UniAdapt, a universal adapter
leveraging the MoE (Shazeer et al., 2017; Fe-
dus et al., 2022) architecture and Retrieval-
Augmented Generation (RAG) (Lewis et al.,
2020; Sachan et al., 2021; Asai et al., 2023)
for knowledge calibration. UniAdapt edits a
model by adding an adapter to the selected
MLP layer, never changing the model’s weights.
The adapter comprises a vector-assisted router
and multiple parallel experts. The core idea
is that the router is responsible for routing
relevant queries to the corresponding experts.



Additionally, if no suitable expert is found, the
output of the selected layer remains unaltered
to save resources. To achieve this, the vector-
assisted router maintains multiple shards of a
vector store, storing the sentence embeddings
of newly introduced knowledge. When a query
is received, the router constructs a routing vec-
tor where each element represents the highest
semantic similarity score regarding each shard.
This routing vector determines which experts
are activated to handle the current query. The
output of our adapter is combined with the
original output to achieve precise calibration.
Overall, UniAdapt is a fully model-agnostic,
plug-and-play, and cost-effective lifelong model
editor.

Our contributions are summarized as follows.

e We analyze and identify the weakness of
the existing lifelong model editors relying
on memory, highlighting opportunities for
potential enhancements.

e We develop UniAdapt, a lifelong model
editor that is designed to route queries to
the most relevant experts based on seman-
tic similarity. Our architecture is model-
agnostic.

e Our experiments show that UniAdapt out-
performs existing lifelong model editors by
a substantial margin. UniAdapt possesses
the ability to memorize and generalize ef-
fectively, making it a superior choice for
lifelong learning tasks.

2 Lifelong Model Editing

The lifelong model editing task (Hartvigsen
et al., 2024; Wang et al., 2024) involves mak-
ing numerous updates to a pre-trained model
over time, ensuring that it consistently re-
freshes its knowledge and stays aligned with
the fast-changing information encountered in
everyday life. This task modifies an ini-
tial base model fp,, parameterized by ¢ at
the time step 0, using a dataset Deggyx =
{(X& ye) | (:Ela yl)v B (xTayT)}' Formally, at
the time step T', the model editor, denoted by
ME, inserts the T-th edit into the model fy, ,
and produces an edited model fp,.. Let P(-) be
a function that rephrases x to a set of seman-
tic equivalent inputs (we assume x € P(z)).

The task of lifelong model editing is defined as
follows:

f@T = ME(fGT_pr?yT) s.t. fOT (l’)
Ye if v € P(xe) A ($eaye) € Deait

" Val@)

The edited model fp, should produce a de-
sired output y. for each in-scope input z €
P(ze) and (Ze,Ye) € Degit, while maintain-
ing the original model’s performance fy,(x)
on an irrelevant input (x,y) € Dj., where
Diry = {(z,y) | * ¢ P(xe),Vz. € A}
It also preserves knowledge from past edits
(x<T,Y<T) € Degit- Additionally, the result of
applying fg, to z and P(x) should be identical.

To measure the efficiency of a model editor,
the edited model is subject to evaluation using
the following metrics.

Reliability. The edited model fp, should
generate the expected responses on intended
edits:

otherwise.

E(Ie,ye)GDedit]]'{a’rgma‘xyfej“(y ‘ Zlfe) = ye}

Locality. The edited model fg, should retain
original responses on inputs that are irrelevant
to intended edits:

E(x’y)EDi”:ﬂ.{argmanyQT (y | x) = f90 (y | .’E)}

Generality. The model fg,. should generalize
edits over other semantic equivalent inputs:

E(mevye)EDedit :H.{argma.nyQT (y | :1:) - ye} S.t.
T #z. Nz € P(z.)

3 Our Method: UniAdapt

In this section, we present the details of Uni-
Adapt, a universal adapter based on the MoE
architecture and a vector-assisted routing strat-
egy, as illustrated in Figure 1. UniAdapt is
appended immediately after a selected MLP
layer to calibrate the output.

3.1 UniAdapt Architecture

The core idea of UniAdapt is to introduce sev-
eral MoE-style experts to facilitate knowledge
updates and learning, while keeping all the orig-
inal parameters of LLM frozen to maintain its
original behavior. The idea is thoroughly an-
alyzed in Appendix A.2. Figure 1 introduces
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Figure 1: The architecture of UniAdapt inspired by MoE architecture. UniAdapt contains a router and
multiple parallel feed-forward layers (a.k.a experts), denoted as FFNy, FFNy,--- , FFNy. The router

maintains a vector store containing multiple shards labeled Sy, S, - -

-, Sk. The matching colors of shards

and experts indicate that each expert may hold knowledge relevant to queries associated with the shard.
In the inference phase, the router computes a routing vector to selectively choose appropriate FF'Ns,
ensuring precise calibration of the original MLP’s output (more details in 3.2).

the forward pass of UniAdapt. UniAdapt con-
sists of a router and multiple parallel experts.
This module is appended to the original MLP
to calibrate the original knowledge. The out-
puts of all experts are aggregated as a weighted
sum to produce the final output. This choice
aligns with recent experimental findings based
on knowledge probing technologies, i.e., the
MLP layers store knowledge (Geva et al., 2020).
Unlike traditional MoE, the router has a vector
store for sentence embeddings. Given a token
z; within the input sequence x = {z;}%,, our
adapter with K experts computes a gate deci-
sion vector G that decides which expert to send
the token xz; to. This is defined as follows.

G = Ho Top(R(x)) (1)

where R(-) defines a routing strategy (refer to
details in 3.2). Note that the router makes the
routing decision based on the whole sentence
x. Consequently, all tokens z; within the sen-
tence x are directed to the same experts. The
function Topy(-) keeps only the top-k values
and sets all others to zero. The function H is
the Heaviside step function that outputs 1 for
any non-negative input and 0 otherwise. Once
the gate decision vector G is obtained, the cor-
responding output h; is generated through a
weighted aggregation of each expert’s compu-
tation on z;, as follows:

K
hi=> Gy Wi (2)

k=1

where W)} represents the linear projection
weights of the k-th expert, and the gate de-
cision G; determines the contribution of the
k-th expert to the output h;. For efficiency, ex-
perts with G = 0 do not require computation.

Overall, the forward pass of the Uni-
Adapt layer, combined with the frozen original
parameters Wy, can be expressed as:

old knowledge

.
—
hi= Wo-z; +AY G- Wi Wo-zi) (3)

old knowledge k=1

knowledge update

where ) is a non-negative weighting coefficient
used to balance the old knowledge and the
knowledge update. The formula (3) shows that
UniAdapt can minimize the knowledge update
by setting A close to 0 to retain the original
output.

3.2 Vector-Assisted Router

The core concept of UniAdapt is that the router
has its own vector store to streamline the rout-
ing process. Our goal is to direct inputs that
share similar knowledge with the edits to the
appropriate experts, while inputs unrelated to
any edits will bypass expert activation, leaving
the output unchanged. To achieve this, we start
with training a router to distinguish between
related and unrelated inputs using our modified
loss function. Once trained, the router’s param-
eters are frozen. We fine-tune the adapter to
incorporate edits using the default loss function
of the model. In the following, we introduce
the details of the router.

Router Construction. Similar to the exist-
ing approaches (De Cao et al., 2021; Mitchell
et al., 2021, 2022), our vector-assisted router
is trained with a dataset. To decide whether
an input z is in P(z.) of some edit x., we in-
troduce a threshold e. If the similarity score
A(z,ze) > €, x is considered an in-scope input
of x.. Otherwise, x is irrelevant to x.. Thus,



we want the similarity scores of in-scope edits
to be larger than out-scope edits by a large
margin.

min{A(z;, ze) } > max{A(x,, z¢)}, ()
Vo, € Xe,x; € P(xe), o & P(xe)

Note that when the number of edits increases,
we observe that even though the edit x is related
to x. and not to z,, there are numerous cases
where A(x, z.) < A(z,x,). Therefore, we want
to distinguish between in-scope edits of multiple
edits. That is,

win{A(wi, 7o)} > max(A o)} o
Vae € Xey g € Xe Ao # Teyxi € Plxe)

To achieve both objectives in (4) and (5), we
design a loss that is inspired by the multiple neg-
ative ranking loss (Henderson et al., 2017). For
a single in-scope edit z. € X, we form a batch
of K sentence pairs that contain a positive pair
(e, ;) where z; € P(xe) Nz # xe and K — 1
negative pairs (z,, z,) where z, € X Axq # xe.
The training goal is to minimize the data’s ap-
proximated mean negative log probability. For
a single batch, the loss is:

L=-%%0, [A(l"ewi) —log 0! 6A($Md)} (6)

The loss aims to maximize the distance be-
tween a positive pair and multiple negative
pairs. Note that the objective in (4) is typ-
ically satisfied by most pre-trained sentence
embedding frameworks (Reimers, 2019; Gao
et al., 2021). Therefore, fine-tuning them with
the loss function in (6) is sufficient to produce
accurate similarity scores.

Routing Strategy. Similar to SERAC, we
need a memory to store the edits to make se-
mantic similarity queries. Unlike SERAC, we
aim to store sentence embeddings (rather than
the sentences themselves) in a vector store, both
to reduce memory usage and to ensure compat-
ibility with a wide range of frameworks (Douze
et al., 2024; Johnson et al., 2019).

We have multiple experts to handle input
queries. A router is used to distribute the input
queries, and only a few experts are activated
to enhance knowledge capacity (Wang et al.,
2024). To efficiently utilize these experts, we
would like to dynamically route inputs to the
most relevant experts and balance the number

of edits calibrated by each expert. To achieve
this goal, we propose a vector store sharding
mechanism. We equally divide the embeddings
of N edits into K shards, each shard stores
around N/K embeddings where K is the num-
ber of experts. Given an input z = {x;}2; and
a shard S, the router computes the routing
score for each shard as follows:

a = max{A(z,x.) | Vz. € Sk} —€¢ (7)

where € is a non-negative threshold derived
from the router construction step. The routing
score is in the range [—1, 1], if ay, is close to 1
then the input is the most similar to the shard
Sy and the router likely activates the expert
to handle the input. If o < 0 the expert Ej,
is deactivated to reduce resource consumption.
Given the routing scores for all shards, the
decision vector is formed as follows:

R(z) = (aq,. .. L AK) (8)

y Qgiy o

4 Experiments

In this section, we first present our experimental
setup. Then, we discuss the performance of
our method on two settings: single editing and
lifelong editing.

4.1 Experiment Setups

Datasets and Metrics. We use two promi-
nent model editing datasets: zsRE (Levy et al.,
2017) and Counterfact (Meng et al., 2022a) for
performance evaluation. zsRE is a context-free
Question-Answering (QA) dataset built upon
zero-shot relation extraction. Counterfact is
a more challenging dataset containing factual
knowledge with diverse subjects, relations, and
linguistic variations. We evaluate the capabil-
ity of UniAdapt using Reliability, Generality,
and Locality (defined in Sect 2) along with the
average scores over these metrics. Specifically,
each edit record contains an editing pair (ze, ye)
along with a related edit x, and an unrelated
edit z,. The Reliability assesses if the edited
model can recall the response y. from z.. The
Generality evaluates whether the edited model
can produce ¥y, given x,. The Locality measures
whether the edited model produces a consistent
response for x, both before and after the edit.



Baselines. We compare UniAdapt with mul-
tiple recently proposed baselines. We cat-
egorize them into non-memory based meth-
ods including FT-L (Meng et al., 2022a),
MEND (Mitchell et al., 2021), MEMIT (Meng
et al., 2022b) and memory-based methods
including SERAC (Mitchell et al., 2022),
GRACE (Hartvigsen et al., 2024), WISE (Wang
et al., 2024). Note that we exclude the re-
sults of MEMoe (Wang and Li, 2024b) and
LEMoE (Wang and Li, 2024a), as their source
code has not yet been made available.

FT-L is a direct fine-tuning method that
aims to limit the extent of weight modifications.
MEND is a meta-learning method that learns
auxiliary models to predict weight changes in
the editing model. MEMIT inserts thousands
of key-value pairs into multiple layers of the
network by considering a feed-forward layer as
linear associative memory.

SERAC uses external memory to explicitly
cache the edits and route an input query to
either the counterfact model or the original
model. GRACE replaces the hidden states of
inputs if its activation scores fall inside a cluster
of a codebook. WISE routes an input query
to either side memories or the main memory
using activation scores.

Implementation Details. We apply our ed-
its to GPT2-XL and LLaMA2-7B. Our router is
built on top of SBERT (Reimers and Gurevych,
2019) for similarity scores computation. We opt
for two tasks: single editing and lifelong editing
tasks. For single editing, following (Meng et al.,
2022a), the batch size is set to 5, we evaluate
edits and roll back to the initial state after each
batch of edits. For lifelong editing, the batch
size is set to 5. We insert 1000 edits and eval-
uate without rolling back. For the baselines,
WISE is only implemented for LLaMA2-7B and
MEMIT is only implemented for GPT2-XL.

4.2 Main Results

Single Editing. We evaluate the perfor-
mance of UniAdapt in the single editing setting,
T=1, and compute the average of 1000 runs.
The evaluation results are shown in Table 1.
We observe that UniAdapt consistently outper-
forms baselines across all tested models and
most metrics. The results are balanced as it
achieves scores of at least 0.97 in all metrics.

In the zsRE setting, UniAdapt achieves scores
of 1.00 and 0.98 on GPT2-XL and LLaMA2,
respectively, achieving improvements of 28%
and 0% over the second-best competitor. Sim-
ilarly, the improvements are 36% and 5% in
the Counterfact setting. A closer investigation
shows that other tools often sacrifice their gen-
erality to achieve higher locality. GRACE and
MEND achieve 0.0 in generality but 1.0 in the
locality within the zsRE setting of GPT2-XL.
Overall, this result demonstrates the efficacy
and stability of UniAdapt’s capability on han-
dling a hard dataset (i.e., Counterfact).

Although the results of UniAdapt vary across
different datasets like other baselines, it demon-
strates consistent performance across different
model architectures. Specifically, the difference
remains below 3% in all metrics and under 2%
in the average score. For the average score,
the discrepancies in GRACE, FT, and SERAC
range from 1% to 28%. FT is considered the
least stable tool as its difference is 28%. In sum-
mary, the results indicate that UniAdapt not
only achieves the highest scores but also main-
tains stability across diverse models.

Lifelong Editing. We evaluate the perfor-
mance of UniAdapt in the lifelong editing set-
ting, T=1000. The evaluation results are shown
in table 2. The results clearly show a decline
in the performance across all methods as T
increases from 1 to 1000. For example, FT and
MEMIT experience a drop of over 50% and
20% respectively in almost all settings. This is
attributed to the fact that new edits tend to
overwrite previous ones. Among these meth-
ods, UniAdapt shows a negligible decline on
the easier zsRE, and a significant advantage in
terms of generalizing ability on Counterfact. A
further analysis reveals that UniAdapt signifi-
cantly outperforms the nearest competitor by
a large margin. In the GPT2-XL setting, Uni-
Adapt has a remarkable gap of around 40% over
MEMIT on the zsRE dataset. In the LLaMA2-
7B setting, UniAdapt proves to be the best with
around 40% difference compared to WISE in
the Counterfact dataset. In both datasets, our
overall score is the highest, significantly out-
performing the other methods. Furthermore,
while the lifelong editing setting has proved to
be more challenging than the single editing set-
ting, UniAdapt maintains impressive stability



Method Model ZsRE Counterfact
ReliabilityT GeneralityT Locality?T Scorefl ReliabilityT Generality? LocalityT Scoref

GRACE 0.34 0.00 1.00 0.45 0.00 0.00 1.00 0.33
FT 0.57 0.30 0.88 0.58 0.93 0.16 0.73 0.61
MEMIT GPT2-XL 0.65 0.50 1.00 0.72 0.62 0.24 0.99 0.62
SERAC 0.43 0.29 0.85 0.52 0.44 0.01 0.95 0.47
MEND 0.07 0.07 0.99 0.37 0.00 0.00 0.97 0.32
UniAdapt 1.00 0.99 1.00 1.00 1.00 0.96 0.98 0.98
GRACE 0.97 0.00 0.34 0.44 1.00 0.00 0.78 0.59
FT 0.55 0.47 0.86 0.63 0.45 0.25 0.28 0.33
SERAC 0.52 0.41 1.00 0.64 0.45 0.12 1.00 0.52
MEND LLaMA2-TB 0.07 0.06 0.87 0.33 0.03 0.03 0.88 0.31
WISE 1.00 0.94 1.00 0.98 1.00 0.76 1.00 0.92
UniAdapt 0.97 0.96 1.00 0.98 0.97 0.95 0.98 0.97

Table 1: Main editing results with the number of edits T'=1. Bold is the best result, and underline is the

second-best result.

Method Model ZsRE Counterfact
ReliabilityT Generality? LocalityT Score?T Reliability!? GeneralityT LocalityT Scoref

GRACE 0.34 0.00 1.00 0.45 0.00 0.00 0.99 0.33
FT 0.07 0.05 0.02 0.05 0.19 0.07 0.00 0.09
MEMIT 0.51 0.45 0.31 0.42 0.82 0.55 0.05 0.47
SERAC GPT2-XL 0.19 0.19 0.85 0.41 0.00 0.00 0.96 0.32
MEND 0.21 0.20 0.99 0.47 0.00 0.00 0.99 0.33
UniAdapt 0.98 0.93 1.00 0.97 0.98 0.53 0.91 0.81
GRACE 0.98 0.01 0.34 0.44 0.99 0.00 0.77 0.59
FT 0.16 0.14 0.04 0.11 0.04 0.01 0.01 0.02
SERAC . 0.36 0.35 1.00 0.57 0.15 0.12 1.00 0.42
MEND LLaMA2-TB 0.29 0.29 0.85 0.48 0.15 0.12 0.96 0.41
WISE 0.83 0.77 1.00 0.87 0.42 0.26 0.64 0.44
UniAdapt 0.96 0.80 1.00 0.92 0.99 0.57 0.94 0.83

Table 2: Main editing results with the number of edits 7'=1000. Bold is the best result, and underline is

the second-best result.

across models. The difference remains below
7% in all metrics and under 5% in the average
score. In summary, UniAdapt excels at learn-
ing extensive new knowledge while preserving
other unrelated pre-trained knowledge.

4.3 Ablation Studies

In this section, we examine the effects of various
hyper-parameters on the performance of Uni-
Adapt. Given that zsRE has been extensively
evaluated in numerous studies, we have imple-
mented lifelong editing settings on the zsRE
dataset with LLaMA2-7b. Training time, infer-
ence time, and memory analysis are provided
in Appendix A.1

Effect of the Target Layer. We conduct
multiple experiments to assess the impact of
the choice of target layer on the performance.
We sequentially append UniAdapt to the MLP
module of each transformer block and evaluate
the performance of UniAdapt with 1000 edits.
The results are illustrated in Figure 2a across

various target layers. While locality remains
stable, both reliability and generality encounter
significant fluctuations, peaking at layer 3 and
reaching their lowest point at the final layer.
Our finding aligns with the work (Zhao et al.,
2024) that confirms the importance of editing
the model at layer 3. Notably, regardless of the
layer modified, generality consistently hits the
lowest accuracy among all metrics, indicating
that it is the most challenging metric to im-
prove. Overall, performance tends to decline
sharply as the target layer approaches the last
layer.

Effect of the Number of Experts. We
perform multiple experiments to study how
the number of experts impacts the performance.
Due to computational resource limitations, we
sequentially set the number of experts to values
in the range [1710] and evaluate UniAdapt’s per-
formance with 1000 edits. Figure 2b illustrates
the performance of UniAdapt with different
numbers of experts. We find that the locality of
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Figure 2: The performances of UniAdapt regarding to different hyper-parameters where the notation rel,
gen, loc are Reliability, Generality, and Locality respectively.

model editing does not change with the number
of experts, i.e., there is neither a decrease nor
a performance improvement. This is expected
because only relevant inputs are forwarded to
experts. The reliability exhibits slight fluctu-
ation (i.e., going upward and then downward)
when the number of experts increases. Further-
more, it consistently remains above 0.95 across
all scenarios. Unlike reliability and locality,
the generalization of knowledge fluctuates with
the number of experts, peaking when the num-
ber of experts is 4, i.e., increasing the number
of experts initially boosts overall performance,
but eventually leads to a decline. We hypothe-
size that the reason is that while having more
experts can enhance recall by providing spe-
cialized knowledge, it may also make it more
challenging for the router to effectively choose
the most suitable experts.

Effect of . We conduct multiple experiments
to evaluate the impacts of € on the performance.
We sequentially set the € to values in the range
[0.170.9] and evaluate UniAdapt’s performance
after 1000 edits. Figure 2c depicts the per-
formance of UniAdapt across various €. The
results show that e has little impact on the
reliability and generality. In contrast, local-

ity increases sharply as € is raised from 0.1 to
0.6. This can be attributed to the behavior of
the router at low € values. With a low ¢, the
router tends to misclassify unrelated inputs,
while relevant inputs remain unchanged. As
€ increases, the router becomes more selective
and only forwards inputs that are highly likely
to be relevant, leading to higher locality.

Effect of top-k routing. We conduct mul-
tiple experiments to evaluate the impacts of
top-k routing on UniAdapt’s performance. We
sequentially set K to values in the range [175],
fix the number of experts at 5, and evaluate our
performance after 1000 edits. Figure 2d depicts
the performance of UniAdapt across various K.
The results show that the locality remains un-
changed across the different K values. However,
reliability and generality consistently decrease
as K increases. This suggests that while top-k
routing does not impact locality, it hurts relia-
bility and generality as the number of routing
options increases. Interestingly, the best overall
performance is achieved when K=1, indicating
that using a single optimal routing path leads
to the highest reliability and generality. As K
increases, the UniAdapt becomes less focused
and may allocate resources to less relevant rout-



Method T Reliability?  GeneralityT LocalityT Scoref
WISE 2000 0.70 0.64 1.00 0.78
UniAdapt 0.97 0.80 0.99 0.92
WISE 3000 0.64 0.58 1.00 0.74
UniAdapt 0.96 0.77 0.99 0.91
WISE 6000 0.50 0.48 1.00 0.66
UniAdapt 0.95 0.79 0.98 0.90

Table 3: Scaling to 6000 edits on zsRE dataset with
LLaMA2-7b

ing options, leading to decreased performance
in terms of reliability and generality.

Scale up to 6K. We conduct multiple exper-
iments to assess the capability of UniAdapt on
handling long continual edits. We sequentially
scale the number of edits to 2000, 3000, and
6000 and report our results along with WISE
(the second-best competitor in our experiments)
in Table 3. From the results, we observe that
UniAdapt remains the best editor. WISE expe-
riences a significant decline in both generality
and reliability, dropping from 0.64 to 0.48 and
0.70 to 0.50 respectively. This is expected be-
cause WISE tends to incorrectly select the side
memory when the number of edits increases.
UniAdapt experiences a slight decrease of less
than 0.02 in both metrics. Overall, the results
highlight UniAdapt’s exceptional performance
on handling long continual edits, which makes
it a practical solution.

5 Related Work

Lifelong model editing is an active research
area with many attempts (Wang et al., 2024;
Meng et al., 2022b; Yu et al., 2024) demonstrat-
ing encouraging results. In the following, we
highlight some of the most relevant works.

Model Editing. UniAdapt is related to
model editing which aims to update knowledge
of pre-trained LLMs. Instead of retraining the
model which is infeasible, the task of model
editing is to fine-tune the model by either di-
rectly modifying the model parameters or dy-
namically loading new knowledge from external
storage. MEND (Mitchell et al., 2021) trains a
meta-network that modifies the parameters of
the target model. ROME (Meng et al., 2022a)
insert key-value pairs into a layer of a feed-
forward layer by considering the layer as linear
associative memory. While MEND and ROME
are effective, they suffer from low locality. To

address this, SERAC (Mitchell et al., 2022) em-
ploys a router mechanism that directs inputs
to the appropriate model (i.e., either the new
model or the original model). IKE (Zheng et al.,
2023) teaches the targeted model to revise the
output with high-quality demonstrations.

Lifelong model editing. UniAdapt is
closely related to lifelong model editing,
where thousands of edits are inserted contin-
ually. MEMIT (Meng et al., 2022b) extends
ROME to insert thousands of key-value pairs.
GRACE (Hartvigsen et al., 2024) assigns knowl-
edge into multiple clusters, allowing the sys-
tem to query and apply appropriate patches
when needed. MELO (Yu et al., 2024) ex-
tends GRACE by using dynamic Lora to store
patches. WISE (Wang et al., 2024) relies on
activation scores to route inputs to either the
main memory or side memory. Overall, these
tools employ a routing mechanism, except for
MEMIT. Both MEMoE (Wang and Li, 2024b)
and LEMoE (Wang and Li, 2024a) rely on an-
chor embeddings to distribute tokens to the
corresponding experts.

Spare Mixture of Experts (SMoE) Uni-
Adapt is closely related to SMoE, where a gate
network or router is responsible for dispatching
tokens to a subset of experts. The work (Fe-
dus et al., 2022) introduces an approach named
switch transformer to scale neural networks up
to a trillion parameters. It selectively activates
relevant experts for each input. (Shazeer et al.,
2017) features a trainable gating network to
optimize expert selection.

6 Conclusion

In this work, we present UniAdapt, a universal
adapter for knowledge calibration. UniAdapt is
fully model-agnostic and designed for seamless
plug-and-play integration. It has MoE-style ar-
chitecture and is attached to the MLP layer to
calibrate the original output. The router with
multiple shards can precisely forward queries
to the experts that store knowledge and make
no modifications when the queries are irrele-
vant. The experimental results show that Uni-
Adapt achieves the significantly improved per-
formance on various models and datasets.



7 Limitations

Our analysis revealed two key areas for improv-
ing overall performance: the routing algorithm
and the method of storing data in external
memories. Our approach focuses primarily on
the routing algorithm aspect. This inadver-
tently results in a less robust memory writing
implementation. We have computed Out of Dis-
tributions (ODD) metrics according to (Wang
et al., 2024). The results show that WISE (i.e.,
0.53) is better than UniAdapt (i.e., 0.49). Al-
though our architecture is model-agnostic, it is
slightly more complicated than others as Uni-
Adapt requires a separate training phase for
the router.
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A Appendix
A.1 Additional Experiments

Inference Time Analysis. We measured
LLAMAZ2-7b’s inference time with and without
UniAdapt after training with T=3000 on ZsRE.
Based on an average of three inference trials,
the base model took 0.014 seconds. UniAdapt
added a minor overhead of 5.75%—slightly
higher than WISE-Merge (3%) but lower than
WISE-Retrieve (7%).

Memory analysis. UniAdapt loads two
modules: a router built on top of all-MinilLM-
L6-v2 and a vector storage for embeddings.
The router requires 620 MB, while the orig-
inal LLAMAZ2-7b model requires 26,222 MB.
Each embedding has a shape of 384. For 3,000
embeddings of float32, the size is 3,000 x 384 x
4 = 4.6 MB. An expert requires 64 MB. With
a single expert, the total additional memory
needed is 688.6 MB, representing a 2.63% over-
head. When scaling UniAdapt to 8 experts and
9,000 edits, the required memory becomes 4.6 X
3+ 620 + 64 x 8 = 1,145.8 MB, with a 4.37%
overhead. The WISE’s overhead is 0.64% in
theory and 4% in practice.

Method Number Router Edit Total
of edits  train- train- (s)
ing (s)  ing (s)

UniAdapt 10 0.96 14.90 15.86
UniAdapt 100 6.08 142.80 148.88
UniAdapt 1000 55.35 1423.82 1479.17
WISE 10 0.00 94.00 94.00
WISE 100 0.00 603.12 603.12
WISE 1000 0.00 5273.82 5273.82

Table 4: Training times

Training Time Analysis. Table 4 shows
the training times of UniAdapt and WISE. Uni-
Adapt’s training time consists of two compo-
nents: router training and edit training. While
the training time increases with the number of
edits, and UniAdapt requires additional time
for router training, its total training time is still
approximately 4.5 times faster than WISE.

Comparing with MEMoE and LEMoE
While we wanted to compare with these mod-
els directly, their source code was not publicly
available at the time of our experiments. Nev-
ertheless, their reported results under the same
settings (ZsRE, Llama7b, 1000 edits) were sig-
nificantly lower than ours (Table 5):
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Model Rel Gen Loc Avg
MEMoE 0.70 0.43 1.00 0.71
LEMoE 0.80 0.60 1.00 0.82
UniAdapt 0.96 0.80 1.00 0.92

Table 5: Comparing with similar methods

A.2 Lifelong Model Editing Using
Memory

Multiple recent methods, shown in Table 6, in-
corporate memories and routing mechanisms to
process inputs efficiently. The router is crucial
in detecting and forwarding inputs to desig-
nated memories. If an input falls inside the
scope of the existing edits, the router forwards
it to the designated memory, which contains
the new knowledge, thereby increasing reliabil-
ity and generality. Conversely, inputs that fall
outside of the edits are routed to the original
model, maintaining locality. Due to the impor-
tance of the router (Zhou et al., 2022; Dikkala
et al., 2023), we prioritize optimizing routing
mechanisms over memory enhancements. In
the following, we discuss existing efforts on
improving both routing inputs and routing al-
gorithms and justify the design choices that we
make for developing our method.

Routing Input Recent research opts for ac-
tivation scores, sentence embeddings, or anchor
embeddings to construct the routing vectors.
In our method, we rely on sentence embed-
dings over activation scores and anchor em-
beddings for the following reasons. First, the
works (Geva et al., 2020; Dai et al., 2021) dis-
cover that activation scores at a specific block
capture various patterns (i.e., shallow, seman-
tic, or shallow + semantic). They also sug-
gest that lower blocks capture shallow patterns,
while upper blocks capture semantic patterns.
However, there is no definitive evidence that
the activation scores at any specific layer can ef-
fectively capture the complete semantics of the
input. Anchor embedding enhances the classifi-
cation algorithm within the router. However,
this approach is dataset-specific. When applied
to factual knowledge, anchor embedding over-
looks the full sentence context, focusing only on
the subject and objects. This may lead to mis-
classification if the relation between the entities
changes. In contrast, sentence embeddings are



Method Memory Router

Parametric Retrieval ~Algorithm Input
SERAC (Mitchell et al., 2022) v v Binary classifier Sentence embedding
GRACE (Hartvigsen et al., 2024) x v Clustering Activation score
WISE (Wang et al., 2024) v v Activation routing Activation score
MEMOoE (Wang and Li, 2024b) v x Knowledge anchor Anchor embedding
LEMoE (Wang and Li, 2024a) v x Knowledge anchor Anchor embedding
UniAdapt v v Vector-assisted routing Sentence embedding

Table 6: Different routing strategies of recent methods. Parametric memory encodes knowledge within the
model’s parameters, whereas retrieval memory stores information in an external memory system for future
access. Sentence embeddings preserve the semantic meaning of entire sentences, while activation scores
represent the outputs from the activation layers of the neural network. Anchor embedding is formed by
combining the embeddings of entities (such as subjects and objects) in a sentence with token embeddings

through a concatenation operation.

widely recognized for their ability to compute
the semantic similarity of the inputs (Reimers,
2019; Gao et al., 2021; Cer et al., 2018; Feng
et al., 2020). Second, sentence embeddings are
model-agnostic, which means that they remain
the same across different target models (i.e.,
the models that we aim to edit). On the other
hand, activation scores and anchor embeddings
are model-specific, varying across different tar-
get models. This potentially compromises the
generalizability of methods that rely on them.

Routing Algorithm. In recent studies, re-
search on the routing algorithms primarily fo-
cuses on searching for thresholds for separating
relevant and irrelevant input. In the binary
classification settings, SERAC defines a single
threshold 8 = 0.5 for any pair of inputs. In
multi-class classification settings, the cluster-
ing algorithm in GRACE creates multiple pairs
of thresholds (i.e., deferral radius €) and cor-
responding cluster centers (i.e., key K;). For
an input x, WISE computes its routing acti-
vation indicator A, and compares it with a
fixed threshold € to either forward it to the
main memory or a side memory. Additionally,
the choice of the side memory is determined
by the value of A,. In our work, we gener-
alize the routing algorithms as a sub-class of
MoE where a router aims to forward inputs to
relevant experts.

To achieve an effective lifelong model edi-
tor, we design a model-agnostic adapter that
harnesses the strength of sentence embeddings
and the MoE architecture. By employing sen-
tence embeddings, the adapter can capture the
semantic meaning of inputs effectively. The
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MoE architecture operates without altering
the model’s parameters, minimizing the poten-
tial conflicts with other unrelated pre-trained
knowledge and preserving the overall perfor-
mance.

A.3 Router functionality

Figure 3 shows the functionality of the router.

A.4 Description of Datasets

We utilized two standard datasets: zsRE (Levy
et al., 2017) and Counterfact (Meng et al.,
2022a). Table 7 illustrates examples from
these datasets, where each row has three pairs:
(eyYe), (Tirr, Yirr) and (P(ze), ye) for the eval-
uation. ZsRE is a context-free Question-
answering (QA) dataset containing factual in-
formation. In contrast, Counterfact focuses
on counterfactual information. Compared to
zsRE, the Counterfact dataset is considered
more challenging to apply, as it attempts to
erase the model’s existing contradictory infor-
mation. Consequently, it often yields lower ac-
curacy. In our experiments with these datasets,
we adopt the version proposed by (Yao et al.,
2023)

A.5 Training Detalils

In our reported results in Table 1 and Table 2,
UniAdaptis reported with the following hyper-
parameters: number of experts = 1, € = 0.6,
TopK = 1, edited layer = 0, and number of
epochs to train the adapter = 25. It is worth
noting that this configuration is not our best
— our optimal setup uses an edited layer of 3
and 4 experts.
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Figure 3: An example of the router’s functionality, similar to a retriever in RAG. Instead of retrieving
related documents, the router computes decision vectors based on the similarity scores. The similarity
scores [1.0, 0.4, 0.3] indicate that there are three shards. The first shard has the highest similarity score
thus the answer will be stored in expert 1 (also known as FFN1).

# zsRE Counterfact

Te, Ye Which college or university is related The native language of Francis
with Mobolaji Johnson? Royal Mil- Jammes is German
itary Academy Sandhurst

Tirrs Yirr ngq question: where were the The mother tongue of Frédéric
olympics held in the 1980s? Bastiat is French
Moscow, Soviet Union

P(xe),ye  Which university or university is Where Francis Jammes is from,

associated with Mobolaji Johnson?
Royal Military Academy Sand-

people speak the language of
German

hurst

Table 7: Editing dataset example

A.6 Additional Experiments

In general, an adapter’s effectiveness heavily de-
pends on the layers selected for editing. Choos-
ing the right layer for a specific dataset is cru-
cial to achieving high accuracy. In addition to
the results presented in the main content, we
explored modifying different layers of two pri-
mary models: GPT2-XL and LLaMA2-7B, to
identify the optimal layer for editing. Table 8
shows that for GPT2-XL, layer 16 achieves the
highest score of 0.83, with layers 1 and 17 ty-
ing for second at 0.82. For LLaMA2-7B, layer
4 performs best, followed closely by layer 3.
Overall, the best layer for editing varies be-
tween models. However, layer 0 emerges as a
reliable choice, consistently yielding relatively
high accuracy across models. Moreover, earlier
layers typically yield better results than later
ones.
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GPT2-XL LLaMA2-7TB

Layer Reliability?T Generality? LocalityT Scoref ReliabilityT Generality!T LocalityT Scoref
0 0.98 0.53 0.91 0.81 0.99 0.57 0.94 0.83
1 1.00 0.55 0.91 0.82 1.00 0.70 0.94 0.88
2 1.00 0.50 0.91 0.80 1.00 0.77 0.94 0.90
3 1.00 0.35 0.91 0.75 1.00 0.79 0.94 0.91
4 1.00 0.47 0.91 0.80 0.98 0.83 0.94 0.92
5 1.00 0.27 0.91 0.73 0.98 0.72 0.94 0.88
6 0.82 0.24 0.91 0.66 0.99 0.68 0.94 0.87
7 1.00 0.41 0.91 0.77 0.96 0.65 0.94 0.85
8 1.00 0.47 0.91 0.79 0.99 0.62 0.94 0.85
9 1.00 0.52 0.91 0.81 0.99 0.56 0.94 0.83
10 1.00 0.51 0.91 0.81 0.88 0.33 0.94 0.72
11 1.00 0.53 0.91 0.81 0.98 0.47 0.94 0.80
12 1.00 0.46 0.91 0.79 0.98 0.51 0.94 0.81
13 1.00 0.43 0.91 0.78 0.94 0.43 0.94 0.77
14 0.94 0.42 0.91 0.76 0.99 0.45 0.94 0.79
15 1.00 0.42 0.91 0.78 0.95 0.35 0.94 0.75
16 1.00 0.57 0.91 0.83 0.99 0.49 0.95 0.81
17 1.00 0.55 0.91 0.82 0.93 0.38 0.94 0.75
18 1.00 0.37 0.91 0.76 0.99 0.45 0.94 0.80
19 1.00 0.53 0.91 0.81 0.96 0.41 0.94 0.77
20 1.00 0.39 0.91 0.77 0.99 0.47 0.94 0.80
21 1.00 0.33 0.91 0.75 0.97 0.42 0.94 0.78
22 1.00 0.53 0.91 0.81 0.98 0.42 0.94 0.78
23 1.00 0.40 0.91 0.77 0.99 0.46 0.94 0.80
24 1.00 0.53 0.91 0.81 0.99 0.47 0.94 0.80
25 1.00 0.36 0.91 0.76 0.96 0.42 0.94 0.78
26 1.00 0.48 0.91 0.80 0.97 0.42 0.94 0.78
27 1.00 0.46 0.91 0.79 0.96 0.39 0.94 0.76
28 0.98 0.45 0.91 0.78 0.88 0.32 0.94 0.72
29 0.53 0.16 0.91 0.54 0.99 0.42 0.94 0.78
30 0.99 0.40 0.91 0.77 0.87 0.32 0.94 0.71
31 1.00 0.47 0.91 0.80 0.70 0.30 0.94 0.65
32 1.00 0.33 0.91 0.75

33 1.00 0.29 0.91 0.73

34 1.00 0.30 0.91 0.74

35 0.99 0.26 0.91 0.72

36 0.97 0.28 0.91 0.72

37 0.98 0.28 0.91 0.72

38 0.99 0.26 0.91 0.72

39 0.91 0.20 0.91 0.68

40 0.95 0.25 0.91 0.70

41 0.92 0.22 0.91 0.68

42 0.94 0.21 0.91 0.69

43 0.93 0.21 0.91 0.69

44 0.89 0.20 0.91 0.67

45 0.91 0.22 0.91 0.68

46 0.93 0.21 0.91 0.68

47 0.82 0.17 0.91 0.63

Table 8: Counterfact dataset. Editing performance across all layers
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