
Under review as a conference paper at ICLR 2023

GRAPH BACKUP: DATA EFFICIENT BACKUP EXPLOIT-
ING MARKOVIAN TRANSITIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The successes of deep Reinforcement Learning (RL) are limited to settings where
we have a large stream of online experiences, but applying RL in the data-efficient
setting with limited access to online interactions is still challenging. A key to
data-efficient RL is good value estimation, but current methods in this space fail to
fully utilise the structure of the trajectory data gathered from the environment. In
this paper, we treat the transition data of the MDP as a graph, and define a novel
backup operator, Graph Backup, which exploits this graph structure for better value
estimation. Compared to multi-step backup methods such as n-step Q-Learning
and TD(λ), Graph Backup can perform counterfactual credit assignment and gives
stable value estimates for a state regardless of which trajectory the state is sampled
from. Our method, when combined with popular off-policy value-based methods,
provides improved performance over one-step and multi-step methods on a suite
of data-efficient RL benchmarks including MiniGrid, Minatar and Atari100K. We
further analyse the reasons for this performance boost through a novel visualisation
of the transition graphs of Atari games.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) methods have achieved super-human performance in a varied
range of games (Mnih et al., 2015; Silver et al., 2016; Berner et al., 2019; Vinyals et al., 2019). All of
these present a proof of existence for DRL: with a large amount of online interaction, DRL-trained
policies can learn to solve problems that have similar properties to real-world decision-making tasks.
However, most real-world tasks such as autonomous driving or financial trading are hard to simulate,
and generating new interaction data can be expensive. This makes it crucial to develop data-efficient
RL approaches that solve sequential decision-making problems with limited online environment
interactions.

As many existing DRL algorithms assume access to a simulator they don’t focus on efficiently
using the available data as it’s always cheaper to simply generate fresh data from the simulator.
Data is normally stored in a buffer and only used several times for learning before being discarded.
However, there is lots of additional structure in the transition data, and a key insight of our work is to
organise the trajectories stored in the buffer as a graph (For example see Figure 1(a) which shows a
visualisation of the transition graph of the Atari game Frostbite). Our method, Graph Backup, then
exploits this transition graph to provide a novel backup operator for bootstrapped value estimation.
When estimating the value of a state, it will combine information from a subgraph rooted at the target
state, including rewards and value estimates for future states.

When the environment has Markovian transitions and crossovers between trajectories, the construction
of this data graph provides several benefits. As discussed in Section 4.2, our method exploits
intersecting trajectories to correctly propagate reward to more states, effectively by propagating
reward along an imagined trajectory. Further, while existing improvements to one-step backup (as
used in by Mnih et al. (2015)) such as multi-step backup (Moriarty & Miikkulainen, 1995; Hessel
et al., 2018; Sutton & Barto, 2018) address the problem of slow reward information propagation
(Hernandez-Garcia & Sutton, 2019), they add variance to the state value estimates as different states
can have different values estimates depending on the trajectory they were sampled from. Our method
addresses this issue by grouping states in the transition graph and averaging over outgoing transitions
at the value estimation stage.

1

Under review as a conference paper at ICLR 2023

(a) Transition Graph (b) Backup Diagrams

Figure 1: (a) shows the transition graph Frostbite, an Atari game, extracted from a replace buffer of a
Graph Backup agent after 100k steps. (b) shows backup diagrams for different backup targets. The
circles are states, the blue squares represent the actions that have been observed for the given state
node, and orange squares are actions where target net evaluation happened

We propose a specific implementation of Graph Backup, extending Tree Backup (Precup et al.,
2000) (Section 4, see Figure 7(c)). Our method improves data efficiency and final performance on
MiniGrid (Chevalier-Boisvert et al., 2018), Minatar (Young & Tian, 2019) and Atari100K when using
Graph Backup combined with DQN (Mnih et al., 2015) and Data-Efficient Rainbow (van Hasselt
et al., 2019) compared to other backup methods, showing that utilising the graph structure of the
trajectory data leads to improved performance in the data-efficient setting (Section 5). To more fully
understand where this gain in performance comes from, we further investigate the graph sparsity of
different environments in relation to the performance of Graph Backup, in part using a novel method
to visualise the full set of seen transitions and their graph structure (Section 6).

2 RELATED WORK

The idea of multi-step backup algorithms (e.g. TD(λ), n-step TD) dates back to early work in
tabular reinforcement learning (Sutton, 1988; Sutton & Barto, 2018). Two approaches to multi-
step targets are n-step methods and eligibility trace methods. The n-step method is a natural
extension of using a one-step target that takes the rewards and value estimations of n steps into
future into consideration. For example, the n-step SARSA (Rummery & Niranjan, 1994; Sutton &
Barto, 2018) target for step t is simply the sum of n-step rewards and the value at timestep t + n:
Rt+1 +Rt+2 + ...+Rt+n−1 + V (St+n). Graph Backup is an extension of an n-step backup target,
Tree Backup, which will be described in Section 3.

Eligibility trace (Sutton, 1988) methods instead estimate the λ-return, which is an infinite weighted
sum of n-step returns. The advantage of the eligibility trace method is it can be computed in an
online manner without explicit storage of all the past experiences, while still computing accurate
target value estimates. However, in the context of off-policy RL, eligibility traces are not widely
applied because the use of a replay buffer means all past experiences are already stored. In addition,
eligibility traces are designed for the case with a linear function approximator, and it’s nontrivial
to apply them to neural networks. van Hasselt et al. (2021) proposed an extension of the eligibility
trace method called expected eligibility traces. Similar to Graph Backup, this allows information
propagation across different episodes and thus enables counterfactual credit assignment. However,
similar to the original eligibility traces methods, it is a better fit for the linear and on-policy case,
whereas Graph Backup is designed for the non-linear and off-policy cases.

Since a learned model can be treated as a distilled replay buffer (van Hasselt et al., 2019), we
can view model-based reinforcement learning as related to our work. Recent examples include
Schrittwieser et al. (2020); Hessel et al. (2021); Farquhar et al. (2018); Hafner et al. (2021b); Kaiser
et al. (2020b); Ha & Schmidhuber (2018). These MCTS-based algorithms also share some similarities
with Graph Backup as they also utilise tree-structured search algorithms. However, our work is aimed
at model-free RL, and so is separate from these works.

Several recent works have also utilised the graph structure of MDP transition data. Zhu et al. (2020)
propose to use the MDP graph as an associative memory to improve Episodic Reinforcement Learning

2

Under review as a conference paper at ICLR 2023

(ERL) methods. This allows counterfactual reward propagation and can improve data efficiency.
However, the usage of a data graph in this work is different from the usage in Graph Backup: the
graph is used for control and as an auxiliary loss, rather than for target value estimation. Their
associative memory graph also doesn’t handle stochastic transitions and the return for each trajectory
is only based on observed return (no bootstraping is used), unlike our work. Topological Experience
Replay (Hong et al., 2022, TER) uses the graph structure of the data in RL for better replay buffer
sampling. TER uses the graph structure to decide which states should be sampled from the replay
buffer during learning, by implementing a sampling mechanism that samples transitions closer to the
goal first. This work is orthogonal (and possibly complementary) to ours, as TER is a replacement
for uniform or prioritized sampling from a replay buffer while Graph Backup is a replacement for
one-step or multistep backup for value estimation.

3 PRELIMINARIES: ONE-STEP AND MULTI-STEP BACKUP

Given an MDPM we denote A as the action space; S to be state space;R ⊂ R to be reward space;
and at ∈ A, st ∈ S are used to denote the specific actions and states respectively observed at step t.
We denote a trajectory of states, actions and rewards as τ = (s1, a1, r1, s2, a2, r2, ...).

For a transition (st, at, rt, st+1) the loss function of DQN methods is defined as the mean square
error1 between the predicted q-value and the backup target GaT for (st, at):

L(θ|st, at)
def
= (qθ(st, at)−Gat)

2 , (1)

where qθ represents the online network parameterized by θ. The backup target Gat is an estimation
of the optimal Q-value q∗(st, at). Vanilla DQN uses one-step bootstrapped backup, which makes
gradient descent an analogue to the update of tabular Q-learning:

Gat
t:t+1

def
= rt+1 + γmax

a′
qθ′(st+1, a

′) (2)

where θ′ are the parameters of the target network, which is standard in DQN.

The one-step target makes the propagation of the reward information to previous states slow, which
is amplified by the use of a separate frozen target network. This motivates the use of more sample-
efficient multi-step targets in DQN (Hessel et al., 2018; Hernandez-Garcia & Sutton, 2019).

A widely used multi-step backup algorithm is n-step Q-Learning (n-step-Q) (Hessel et al., 2018;
Silver et al., 2017). This method sums the rewards in next n steps, together with the maximum q
value at step n:

Gat
t:t+n

def
= rt+1 + γrt+2 + ...+ γn max

a′
qθ′(st+n, a

′). (3)

n-step-Q exploits the chain structure of the trajectories with little computational cost but at a cost of
biased target estimation. The distribution of the sum of the rewards rt+1 + γrt+2 + ...+ γn−1rt+n

are conditioned on the behaviour policy µ which generates the data. This means that in an off-policy
setting the estimated target value can be biased towards the value of the behaviour policy.

Another off-policy multi-step target is Tree Backup (Precup et al., 2000). Tree Backup is designed
for general-purpose off-policy evaluation, meaning it aims to estimate the value of any target policy
π by observing the behaviour policy µ. When the target policy is the optimal policy given by qθ′ ,
Tree Backup recursively applies one-step-Q backup to the trajectory, bootstrapping with the target
value network when the input action a isn’t that taken in the trajectory (at):

Gat
t:t+n

def
=

{
rt+1 + γmaxa′ Ga′

t+1:t+n, if t < n, a = at
qθ′(st, a), otherwise.

(4)

Despite what its name suggests, Tree Backup does not expand a tree of states and transitions, and so
still only leverages the chain structure of trajectories. The name is because the trajectory has leaves
corresponding to the actions that were not selected in the current trajectory. In Figure 7(c) we show
the backup diagram of the 3-step Tree Backup, where yellow squares are these leaf actions.

1Or sometimes the Huber Loss (Huber, 1992)

3

Under review as a conference paper at ICLR 2023

4 GRAPH BACKUP

In this section we introduce a new graph-structured backup operator, Graph Backup, extending
the multi-step method Tree Backup. Graph Backup allows counterfactual reward propagation and
variance reduction while also having the benefits of multi-step backup.

4.1 INTRODUCING GRAPH BACKUP

We propose the Graph Backup operator that propagates temporal differences across the whole data
graph rather than a single trajectory. The differences between one-step, multi-step, tree and Graph
backup are illustrated in Figure 7(c). We want a backup method that can work with stochastic
transitions, which means a single state-action pair can lead to different states. This means it’s not
obvious how to perform recursive backups to the next state, as there could be multiple next states.
We estimate the transition probability to each next state using visitation counts, and use the estimated
transition probabilities to compute the empirical mean over all possible state value estimates weighted
by the likelihood of transitioning to that state. This is easy to calculate efficiently and provides strong
results as seen in Section 5.

Denoting the set of all seen transitions to be T ⊆ S×A×R×S , a counter function f : T → N+ maps
each transition T = (s, a, r, s′) to its frequency f(T). Notabely, this counter function also plays 2
roles 1) the adjacency list of the graph; 2) to weight transitions when the same action leads to different
future states. The Graph Backup target for a state-action pair (s, a) is then the average of recursive
one-step backup of all outgoing transitions. Similar to Tree Backup, if the (s, a) has not been seen,
the target is estimated directly by the target network. Define Ts,a

def
= {(ŝ, â, r̂, ŝ′) ∈ T |ŝ = s, â = a},

the set of all (ŝ, â, r̂, ŝ) tuples starting with s, a. Extending Tree Backup, we can then define the
Graph Backup (GB) value estimate as

Ga
s

def
=

{
1

c(s,a)

∑
T∈Ts,a

f(T)
(
r̂ + γ

∑
a′ π(a′|ŝ′)Ga′

ŝ′

)
if c(s, a) > 0

qθ′(s, a)otherwise.
(5)

where c(s, a) =
∑

T∈Ts,a
f(T) is the normaliser, π is the target policy and qθ′ is the tar-

get network. In the case where target policy always chooses the action with optimal Q value
π(a|s) = 1(argmaxa′ Ga′

s = a), the formula can be simplified into:

Ga
s

def
=

{
1

c(s,a)

∑
T∈Ts,a

f(T)
(
r̂ + γmaxa′ Ga′

ŝ′

)
if c(s, a) > 0

qθ′(s, a) otherwise.
(6)

This is often the case since our implementations are based on DQN and we are interested in the
optimal Q-value. In this paper Graph Backup refers to the simplified version in Equation (6). On a
high level, Graph Backup does dynamics programming Q evaluations on a Empirical MDP, where all
the Q values for untried state-action pairs are initialized by a Q network.

Our Graph Backup implementation extends Tree Backup. However, there could be other imple-
mentations which extend other multi-step methods, such as n-step-Q backup or the n-step ver-
sion (Hernandez-Garcia & Sutton, 2019) of Retrace (Munos et al., 2016). In Appendix I, we present
a variation of Graph Backup that extends n-step-Q backup.

Note that in Equations (6), (7) and (8), the graph structure does not appear explicitly. This is because
it’s easier to mathematically formalise these backup operators using transition counts; from an
implementation perspective building and maintaining the data graph is the most efficient way of
calculating these target value estimates. To better provide intuition for Graph Backup, in Appendix C
we explicitly describe the data graph generated from an MDP and link that to Equation (6). The data
graph contains the information for calculating and sampling from T , Ts, Ts,a, c(s, a), c(s) and f(T).

4.2 ADVANTAGES OF GRAPH BACKUP

In Figure 2 we explain conceptually how Graph Backup brings benefits to value estimation and
thus the learning of the agent. We also present a more empirical analysis in Appendix M Figure 7.
Assuming the value estimates of all the states are initialised as 0, the one-step backup can update

4

Under review as a conference paper at ICLR 2023

the value of only 1 state. The multi-step backup methods can further propagate the reward to the
whole trajectory that leads to the reaching of the goal.2 However, Graph Backup goes beyond that and
propagates rewards to the states of another trajectory (the dashed line). This feature of counterfactual
reward propagation can significantly benefit the credit assignment of sparse reward tasks: During the
exploration of a sparse-reward environment, policies usually generate a large number of trajectories
that do not reach the goal, and while multi-step methods cannot efficiently leverage those transitions,
Graph Backup can reuse them by propagating rewards from the crossovers with other successful
trajectories.

The second row of Figure 2 shows another advantage of Graph Backup: reducing the variance of
the value estimate. Multi-step backup in this case will assign different value estimates for the same
state depending on the trajectory the state is sampled from (as it will appear multiple times in the
replay buffer). This brings extra noise to the value estimate which can be harmful to learning.3
In Figure 5, we showed a simple case in MiniGrid where this target value noise can constantly
disturb the convergence of DQN. Graph Backup removes this source of variance by ensuring that the
same state always has the same value estimate regardless of which trajectory it’s sampled from by
calculating the value estimate from the underlying data graph. In addition, in stochastic environments
Graph Backup reduces variance by averaging over different next states from the same state-action
pair.

Figure 2: Benefits of Graph Backup

4.3 LIMITING EXPANSION OF THE GRAPH

A naı̈ve implementation of Graph Backup would follow the definition exactly and do an exhaustive
recursive expansion of the graph. However, the computational cost of doing so can quickly blow
up with the size of the replay data.4 Therefore, similar to the n-step backup methods, we need to
limit recursive calls. For Graph Backup, this means expanding a smaller local graph from the source
state, using the target network for value estimation when reaching expansion limits. In our work, the
expansion of the local data graph has both a breadth limit b and a depth limit d. When the breadth
limit is hit (|Ts,a| > b), we will sample b transitions from Ts,a according to their frequency f , as
opposed to expanding all transitions. If the depth limit is hit (d < n) the expansion of the graph will
be terminated (so the second case in Equations (6) and (7) is taken).

The pseudocode for local graph expansion is shown in Algorithm 2. Figure 7(c) also illustrates
examples of limited expansion for Graph Backup, where faded nodes are clipped away due to hitting
the limit.

2In this case, both Tree Backup and n-step-Q backup can produce the estimation shown in the example tasks.
3In the Figure 2, the noise comes from different rewards at the end of the trajectories.
4In fact, if there are loops in the graph, the situation can be even worse as the algorithm may never converge.

5

Under review as a conference paper at ICLR 2023

In our work, we make sure the expansion will reach d steps in order to better align with multi-step
methods. This makes sure the algorithm will reduce to Tree Backup gracefully when there are
no crossovers between the trajectories. It also allows a more principled comparison between Tree
Backup and Graph Backup. For b = 1 Graph Backup will do a similar job as d-step Tree Backup, and
increasing b will gradually make the Graph Backup leverage more structure from the transition graph.

4.4 INTEGRATION OF OTHER RAINBOW COMPONENTS

To demonstrate that Graph Backup improves data efficiency in a realistic state-of-the-art algorithm,
we integrate Graph Backup inside Rainbow (Hessel et al., 2018). As a replacement for n-step-Q
backup, Graph Backup is orthogonal to all other ingredients. While some components such as
prioritized experience replay(PER) (Schaul et al., 2016), noisy networks (Fortunato et al., 2018) and
duelling network architectures (Wang et al., 2016) can be plugged in seamlessly, others require more
care, which we describe here.

Combining double DQN (van Hasselt et al., 2016) with Tree Backup and Graph Backup is quite
straightforward. Double DQN uses an online network instead of a target network to specify the
optimal policy in the bellman update, so that maxa qθ′(s, a) = qθ′(s, argmaxa qθ′(s, a)) becomes
qθ′(s, argmaxa qθ(s, a)) in one-step or n-Step-Q backup. For Tree Backup and Graph Backup, we
can take the same approach for every expanded state.

Distributional RL (Bellemare et al., 2017), specifically C51, attempts to model the whole distribution
of the state-action value rather than the expectation, using a distributional version of the bellman
update (namely, one-step backup) when applied in the DQN setting. C51 divides the support of
the value into discrete bins, called atoms, and the q network then outputs categorical probabilities
over the atoms. In the distributional bellman update, the vanilla bellman update is applied to each
atom, and the probability of the atom is distributed to the immediate neighbours of the target value.
The loss is the KL divergence between the target and predicted value distribution rather than the
mean squared error. In order to combine C51 and Tree Backup or Graph Backup, we apply the
distributional bellman update in every state node.

Algorithm 1 Double Distributional Graph Backup

Input: source state Ssource, source action Asource, frequency mapping f : T → N+, list of states in
the subgraph L, atoms z0, z1, ..., zN−1, online network p(·, ·|θ) and target network p(·, ·|θ′)

1: Set Sexpanded be the set containing all the states in list L
2: Initialize the target values Ḡa

s = qθ′(s, a),∀s ∈ Sexpanded, a ∈ A
3: for (s, a) in lmax, lmax-1, ..., l1 do
4: a∗ = argmaxa

∑
i zipi(s, a|θ)

5: mi(s, a) = 0, i ∈ 0, 1, ..., N − 1
6: for j ∈ 0, 1, ..., N − 1 do
7: for t = (s, a, r, s′) ∈ Ts,a do
8: z′j ← [r + γzj]

VMAX
VMIN

9: bj ← (z′j − VMIN)/∆z
10: l← ⌊bj⌋, u← ⌈bj⌉
11: ml(s, a)← ml(s, a) +

f(s,a,r,s′)
c(s,a) pj(xx+1, a

∗)(u− bj)

12: mu(s, a)← mu(s, a) +
f(s,a,r,s′)

c(s,a) pj(xx+1, a
∗)(bj − l)

13: end for
14: end for
15: end for
16: return m0(Ssource, Asource), ...,mN−1(Ssource, Asource)

In Algorithm 1, we combine double and distributional RL with Graph Backup given the subgraph
state list calculated by Algorithm 2. Blue lines show the changes introduced by Graph Backup.

6

Under review as a conference paper at ICLR 2023

Figure 3: Summary of training curve for Minigrid, Minatar and Atari100K. For Atari100K, we show
both the mean and IQM of the human-normalised scores.

Table 1: Numeric summary of the performance. IQM stands for interquartile mean (Agarwal et al.,
2021).

one-step n-step-Q Tree Graph

MiniGrid-IQM 0.0 0.0 0.0 0.74
MiniGrid-mean 0.14 0.02 0.2 0.58
MiniGrid-median 0.0 0.0 0.0 0.58
MinAtar100K-IQM 1.90 1.72 3.20 8.46
MinAtar100K-mean 3.07 3.76 6.26 11.83
MinAtar100K-median 2.07 1.56 3.33 4.95
Atari100K-IQM 18.85 16.55 26.76 34.25
Atari100K-mean 32.8 28.72 43.62 50.49
Atari100K-median 13.39 16.89 23.74 30.07

4.5 ASSUMPTIONS

The effectiveness of Graph Backup relies on two assumptions about the environment: (1) the transition
function of the environment is Markovian, and (2) there are crossovers between state trajectories. We
show in Section 5 that—perhaps counter-intuitively—these assumptions hold frequently enough in
high dimensional environments (Atari100 from pixel input) for Graph Backup to differentiate itself
from Tree Backup in a statistically significant manner. As such, these restrictions are not as strict as
may appear, and we further discuss how they can be relaxed in Section 7.

5 EXPERIMENTS

In order to test whether Graph Backup can bring benefits to the data efficiency of a DRL agent,
we conduct experiments on singleton-MiniGrid, MinAtar and Atari100K. These tasks have an
increasingly sparse transition graph so that we can see how many crossovers are needed for Graph
Backup to bring significant performance improvements. The baseline agent for MiniGrid and MinAtar
is DQN (Mnih et al., 2015) and for Atari100K is Data-Efficient Rainbow (van Hasselt et al., 2019).
The average training curves of the different backup methods are shown in Figure 3, where we run
each algorithm for 5 random seeds. The performance metric for Atari in the plot is the mean and
median of human-normalised scores (%). The final performance for each task and method can be
found in Table 1, where we also include both mean and median metrics. The full results of each
individual task are shown in Table 3 in Appendix.

MiniGrid We first compare the methods in 5 singleton MiniGrid tasks: Empty8x8, DoorKey6x6,
KeyCorridorS3R1, SimpleCrossingS9N2 and LavaCrossingS9N2. Every single run (out of 5) has
a different but fixed random seed within the whole training process. We set the environment to
be fully observable so that the transitions are Markovian. The overall number of possible states is
small and the data graph is thus quite dense. The reward of MiniGrid is only given at the end of the
episode, which makes credit assignment a critical problem. Among the 5 tasks, one-step backup and
Tree Backup only managed to converge within 1e5 steps for the easiest empty room task. For other
tasks with more complex navigation (SimpleCrossing and LavaCrossing) and interaction with objects
(DoorKey and KeyCorridor), only the Graph Backup converged this low data regime.

7

Under review as a conference paper at ICLR 2023

Table 2: Minatar results after 1M steps of training. Values for each individual tasks are mean ±
standard error.

one-step n-step-Q Tree Graph

Minatar-seaquest 5.98±0.97 6.93±0.72 6.57±0.43 5.87±0.86
Minatar-breakout 10.60±1.02 9.28±1.48 7.05±1.39 14.38±1.38
Minatar-asterix 14.90±3.86 11.25±1.84 7.68±1.81 8.02±1.93
Minatar-freeway 39.93±11.77 6.00±2.88 18.85±12.10 40.95±12.16
Minatar-space invaders 37.53±5.26 26.07±1.94 33.85±2.29 44.40±4.83
IQM 15.50 9.83 8.72 16.12
mean 21.79 11.91 14.80 22.72
median 14.90 9.28 7.68 14.38

Minatar 100K steps. We perform experiments on Minatar. Minatar is a collection of miniature
Atari games with a symbolic representation of the objects. The game state is fully specified by the
observation of a 10 by 10 image, where each pixel corresponds to an object. We set the overall
number of interactions to be 100,000, inspired by the Atari100K benchmark (Kaiser et al., 2020b).
We can see in Figure 3 that Graph Backup outperforms Tree Backup, n-step-Q backup and one-step
backup in terms of mean scores and interquartile mean (IQM), in the data-efficient setting.

Atari100K In order to test if Graph Backup can be applied on tasks with pixel observations, we
test it in Atari100K. As suggested by its name, Atari100K limits the number of interactions of
Atari games to 100,000, which is equivalent to 2 hours of game-play in Atari. Since the human
performance scores reported by Mnih et al. (2015) are also from human experts after 2 hours of
game-play, Atari100K is considered as a test-bed for human-level data-efficient learning. We follow
the standard frame processing protocol used by Rainbow Hessel et al. (2018) without any other
downsampling. The frame is processed into an 84 by 84 greyscale image and the observation is a
stack of 4 previous frames, which leads to very sparse transition graphs.5 The baseline we chose for
Atari100K is data-efficient Rainbow van Hasselt et al. (2019), which is a variation of Rainbow that is
optimized particularly for Atari100K. Consistent with the results in MiniGrid and MinAtar, Graph
Backup performs better than one-step and multi-step methods. The results here show: 1) Graph
Backup is robust in terms of bringing orthogonal improvements over other DQN improvements. 2)
Graph Backup works for high-dimensional, pixel-based tasks that have sparse transition graphs.

Minatar 1M steps In order to see the asymptotic performance of Graph Backup, in Table 2, we also
show the results for 1 million steps of training with hyper-parameters still kept in the data-efficient
setting. Interestingly, while Graph Backup still preserves a strong advantage over n-step-Q and Tree
Backup in terms of aggregated metrics, one-step backup shows comparable performance against
Graph Backup with more training. Looking at individual tasks, we find out Tree Backup shows
inferior performance compared to one-step backup on Breakout, Asterix and Freeway. From a
practical perspective, Minatar 1M results show Graph Backup achieves consistent performance in
multiple scenarios while the baselines (one-step backup and Tree Backup) only show their advantage
in settings with specific data availability.

6 ANALYSIS

Atari Transition Graphs. Here we study why Graph Backup can bring benefits to Atari games.
Atari games have pixel-based observations, which have 255(210∗180∗3) combinations if each pixel
can take any value independently from other pixels. The first question is then: are there crossovers in
just 100K transitions? To analyse the graph density quantitatively, we propose to measure the novel
state ratio. The novel state ratio is the ratio between the amount of non-duplicated (i.e. unique) states
and the amount of all states that the agent has seen. The novel state ratio will be 1 if there are no
overlapping states in the transition graph, in which case Graph Backup reduces to Tree Backup. The
average novel state ratio of Atari is 0.927, which means the graphs are usually quite sparse (The
average novel state ratios of MiniGrid/MinAtar are 0.006/0.298 respectively). However, if we assume

5Since the agent interacts with the environment every 4 frames, such preprocessing still assumes the transition
to be Markovian.

8

Under review as a conference paper at ICLR 2023

(a) Alien (b) Freeway (c) Asterix (d) RoadRunner

Figure 4: Transition graphs of selected Atari100K games, with data collected by a one-step DQN
agent. As there are too many state nodes, we did not paint nodes directly but rather preserve edges
(transitions), where circles represent self-loop transitions.

that duplicated states happen independently, this means that in 53% of the backup updates, there
will be a crossover on the next 10 steps, which means the Graph Backup will give a different value
estimate to multi-step methods more than half the time.

However, the crossovers are not distributed uniformly on the transitions graph. In order to investigate
the topology of the graph, we visualize the exact graph structure of the whole transition graph.
In Figure 4, we show four representative transition graphs and leave the others to Figure 8 in the
Appendix. We apply radial layouts as proposed by Wills (1999), which scales well with the number
of nodes and aligns well with the transition structure of most of the games, where the central point
corresponds to the start of the game. Many transition graphs of Atari100k games show interesting
crossover structures that can be leveraged by Graph Backup. For example, the transition graph of
Freeway forms a windmill-like pattern, where each blade corresponds to a group of trajectories that
have connections within the group but between groups. There are also some tasks (e.g. Alien) where
crossovers mostly happen in the starting stage of the game.

Explaining Crossovers. By comparing the transition graphs and the pixel observations, we can
provide two explanations for the existence of the trajectory crossovers in Atari games. The first factor
is that there is a low number of degrees of freedom for the objects and especially for the agent avatar
in many of these games. For most of the Atari games, the agent can only move on a 2D plane, which
partially alleviates the curse of dimensionality since we only need two dimensions to specify the
position of the agent. A second important factor is that Atari games always have a fixed initial state.
Although we follow prior work (Hessel et al., 2018) to add a random number of no-ops after the
start of the game, the initial observations the agent sees will still be quite similar, and this creates
crossovers at the beginning of the episode (the centre of the plot, for example for Alien in Figure 4).

In light of these characteristics, we recommend practitioners apply Graph Backup with exact state
matching to tasks that either (1) have few degrees of freedom, (2) have a discrete state space, or (3)
are highly repetitive with minimal noise. There are many real-world tasks that have similar properties,
such as any 2D navigation (e.g. household cleaning robots), power management and manufacturing
in assembly lines.

7 LIMITATIONS AND FUTURE EXTENSIONS

The high-level insight of Graph Backup is to treat all the transition data as a collective entity rather
than independent trajectories, and exploit its (graphical) structure for sake of efficient learning. This
work shows a simple implementation of this idea, by building the graph with exact state matching.
While there are already a large class of tasks that have crossovers, we expect in future to extend
Graph Backup to cover even more challenging tasks. For example, with a learned or human-crafted
discrete representation of the true state (van den Oord et al., 2017; Hu et al., 2017; Hafner et al.,
2021a; Kaiser et al., 2020a) or with a similarity kernel measuring distance between states, Graph
Backup might be able to tackle continuous control or tasks with partial observability.

9

Under review as a conference paper at ICLR 2023

8 REPRODUCIBILITY STATEMENT

The code to reproduce all the experiment results are available in the supplementary materials.
README includes guides to setup and environment and commands (with hyperparameters) to run
the experiments. Experiments for all environments can be run on CPUs but (a single) GPU can speed
up for Atari tasks. Besides codes, pseudo-code in Algorithm 2 and Algorithm 1 and hyperparameters
described in Appendix D can also be helpful to reproduce the results if readers are interested in
implementing by themselves.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C. Courville, and Marc G. Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
29304–29320, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
f514cec81cb148559cf475e7426eed5e-Abstract.html.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
volume 70 of Proceedings of Machine Learning Research, pp. 449–458. PMLR, 2017. URL
http://proceedings.mlr.press/v70/bellemare17a.html.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson. Treeqn and atreec:
Differentiable tree-structured models for deep reinforcement learning. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=H1dh6Ax0Z.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband,
Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy networks for exploration. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=
rywHCPkAW.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Samy Ben-
gio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
2455–2467, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
2de5d16682c3c35007e4e92982f1a2ba-Abstract.html.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021a. URL https://openreview.
net/forum?id=0oabwyZbOu.

10

https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
http://proceedings.mlr.press/v70/bellemare17a.html
http://arxiv.org/abs/1912.06680
https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=H1dh6Ax0Z
https://openreview.net/forum?id=H1dh6Ax0Z
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu

Under review as a conference paper at ICLR 2023

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021b. URL https://openreview.
net/forum?id=0oabwyZbOu.

J. Fernando Hernandez-Garcia and Richard S. Sutton. Understanding multi-step deep reinforcement
learning: A systematic study of the DQN target. CoRR, abs/1901.07510, 2019. URL http:
//arxiv.org/abs/1901.07510.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Sheila A. McIlraith and Kilian Q. Weinberger
(eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pp. 3215–3222. AAAI Press, 2018. URL https://www.aaai.org/
ocs/index.php/AAAI/AAAI18/paper/view/17204.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado van Hasselt. Muesli: Combining improvements in policy
optimization. arXiv preprint arXiv:2104.06159, 2021.

Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, Joni Pajarinen, and Pulkit Agrawal. Topological
experience replay. CoRR, abs/2203.15845, 2022. doi: 10.48550/arXiv.2203.15845. URL https:
//doi.org/10.48550/arXiv.2203.15845.

Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama. Learning
discrete representations via information maximizing self-augmented training. In Doina Pre-
cup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pp. 1558–1567. PMLR, 2017. URL http://proceedings.
mlr.press/v70/hu17b.html.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pp. 492–518.
Springer, 1992.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020a. URL https://openreview.net/
forum?id=S1xCPJHtDB.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning for
atari. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020b. URL https://openreview.net/
forum?id=S1xCPJHtDB.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep re-
inforcement learning. Nat., 518(7540):529–533, 2015. doi: 10.1038/nature14236. URL
https://doi.org/10.1038/nature14236.

David E. Moriarty and Risto Miikkulainen. Efficient learning from delayed rewards through symbiotic
evolution. In Armand Prieditis and Stuart J. Russell (eds.), Machine Learning, Proceedings of the
Twelfth International Conference on Machine Learning, Tahoe City, California, USA, July 9-12,
1995, pp. 396–404. Morgan Kaufmann, 1995. doi: 10.1016/b978-1-55860-377-6.50056-6. URL
https://doi.org/10.1016/b978-1-55860-377-6.50056-6.

11

https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
http://arxiv.org/abs/1901.07510
http://arxiv.org/abs/1901.07510
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://doi.org/10.48550/arXiv.2203.15845
https://doi.org/10.48550/arXiv.2203.15845
http://proceedings.mlr.press/v70/hu17b.html
http://proceedings.mlr.press/v70/hu17b.html
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/b978-1-55860-377-6.50056-6

Under review as a conference paper at ICLR 2023

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc G. Bellemare. Safe and efficient off-
policy reinforcement learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle
Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 1046–1054, 2016. URL https://proceedings.neurips.cc/paper/2016/
hash/c3992e9a68c5ae12bd18488bc579b30d-Abstract.html.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Pat Langley (ed.), Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000,
pp. 759–766. Morgan Kaufmann, 2000.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. Citeseer, 1994.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.05952.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip
Bachman. Data-efficient reinforcement learning with self-predictive representations. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=uCQfPZwRaUu.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nat., 529(7587):484–489, 2016. doi:
10.1038/nature16961. URL https://doi.org/10.1038/nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Ahmed Touati, Pierre-Luc Bacon, Doina Precup, and Pascal Vincent. Convergent TREE BACKUP and
RETRACE with function approximation. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp.
4962–4971. PMLR, 2018. URL http://proceedings.mlr.press/v80/touati18a.
html.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 6306–6315, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html.

12

https://proceedings.neurips.cc/paper/2016/hash/c3992e9a68c5ae12bd18488bc579b30d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c3992e9a68c5ae12bd18488bc579b30d-Abstract.html
http://arxiv.org/abs/1511.05952
https://openreview.net/forum?id=uCQfPZwRaUu
https://doi.org/10.1038/nature16961
http://proceedings.mlr.press/v80/touati18a.html
http://proceedings.mlr.press/v80/touati18a.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/7a98af17e63a0ac09ce2e96d03992fbc-Abstract.html

Under review as a conference paper at ICLR 2023

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp.
2094–2100. AAAI Press, 2016. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12389.

Hado van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models
in reinforcement learning? In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
14322–14333, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1b742ae215adf18b75449c6e272fd92d-Abstract.html.

Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, and Diana
Borsa. Expected eligibility traces. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 9997–10005. AAAI Press, 2021. URL https://ojs.aaai.
org/index.php/AAAI/article/view/17200.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David
Silver. Grandmaster level in starcraft II using multi-agent reinforcement learning. Nat., 575(7782):
350–354, 2019. doi: 10.1038/s41586-019-1724-z. URL https://doi.org/10.1038/
s41586-019-1724-z.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and
Kilian Q. Weinberger (eds.), Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pp. 1995–2003. JMLR.org, 2016. URL http://proceedings.
mlr.press/v48/wangf16.html.

Graham J. Wills. Nicheworks—interactive visualization of very large graphs. Journal of Compu-
tational and Graphical Statistics, 8(2):190–212, 1999. doi: 10.1080/10618600.1999.10474810.
URL https://doi.org/10.1080/10618600.1999.10474810.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=HkxjqxBYDB.

13

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://proceedings.neurips.cc/paper/2019/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/17200
https://ojs.aaai.org/index.php/AAAI/article/view/17200
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
http://proceedings.mlr.press/v48/wangf16.html
http://proceedings.mlr.press/v48/wangf16.html
https://doi.org/10.1080/10618600.1999.10474810
https://openreview.net/forum?id=HkxjqxBYDB
https://openreview.net/forum?id=HkxjqxBYDB

Under review as a conference paper at ICLR 2023

Algorithm 2 Local Graph Expansion

Input: source state Ssource, source action Asource, depth limit d, breath limit b, frequency mapping
f : T → N+

1: Initialize the set containing states on the boundary of expansion Snew ← {Ssource}
2: Initialize the list of expanded state-action pairs L, denoting the last element in the list to be lmax
3: for i = 0 to d do
4: Find all transitions on boundary Tnew ← {t|∀t = (s, a, r, s′) ∈ T , s ∈ Snew}
5: Sample b transitions from Tnew with p(t) ∝ f(t), getting Tpruned = {t1, t2, ..., tb}
6: Append state-action pairs to list L, {lmax+1, lmax+2, ...} = {(s, a)|∀(s, a, r, s′) ∈ Tpruned}
7: Update boundary states Snew = {s′|∀(s, a, r, s′) ∈ Tpruned}
8: end for
9: return L

A OTHER EMPIRICAL FINDINGS

In general, the experiments in three different settings shows Graph Backup consistently brings
improvements over multi-step methods. Besides that, we also find that the improvements of n-step-Q
backup over one-step backup are actually quite limited in the data-efficient setting, whereas Tree
Backup performs significantly better than n-step-Q backup. This can be explained by the off-policy
nature of Tree Backup, as it can bring the benefits of multi-step reward propagation without biasing
the value estimation. In data-efficient setting, the flaw of n-step-Q is amplified as the learning relies
more on historical rather than freshly sampled data. Interestingly, Tree Backup has not received a
lot of attention in DRL community. Hernandez-Garcia & Sutton (2019) tested Tree Backup in a toy
mountain car experiment which shows n-step-Q performs best among multiple multi-step methods,
including Tree Backup. (Touati et al., 2018) points out the instability of Tree Backup when combined
with functional approximation, both with theoretical analysis and empirically evaluation on some
constructed counter-example MDPs. However, our experiments on a larger scale and more diverse
set of tasks show Tree Backup has superior sample efficiency when combined with a modern DRL
method.

B STABLE VALUE ESTIMATE

Graph backup can integrate information from a subgraph, yielding a more accurate and stable value
estimation. On the other hand, the nested max operators might lead to overestimation of the value.
Here we try to analyse the value estimation given by different backup operators.

We collect 5000 transitions with random walks in a MiniGrid 5x5 Empty Room environment, and
have the agents to learn the q∗ from this static dataset. In Figure 5, we show the mean and standard
deviation of latest 10 estimates of the same state-action pairs. Both mean and standard deviation are
averaged over different state-action pairs. The value estimate of Graph Backup quickly stabilize after
a few hundred optimization iterations as the mean value converged and the standard deviation reduce
to near 0. However, all other backup methods keep giving a varied estimate for the exact same states
leading to a higher standard deviation and a fluctuating mean. In terms of over-estimation, the graph
backup does give a slightly higher estimate at first (the little bump in the curve), however, it quickly
recovers to a stable value.

C DATA GRAPH DEFINITION

An MDP data graph is a bipartite multigraph (Sseen,N , Eout, Ein), where Sseen ⊆ S is the set of seen
state nodes, N ⊆ Sseen ×A is the set of (state conditioned) action nodes, Eout is a multiset of edges
pointing from state nodes to action nodes and Ein is a multiset of reward-weighted edges pointing
from action nodes to state nodes. A state node can point to multiple action nodes because multiple
actions might be tried, and the action nodes can point to multiple state nodes because of the stochastic
dynamics. When a new transition (s, a, r, s′) is observed, edge (s, (s, a)) will be added to Ein and
((s, a), r, s′) will be added to Eout. A visual example of this data graph can be seen in the Graph
Backup diagram in Figure 7(c) with tried (blue) action nodes only.

14

Under review as a conference paper at ICLR 2023

Figure 5: Mean and standard deviation of the value estimate for the same state-action pairs for a fixed
dataset collected in MiniGrid Empty Room. The x-axis is the number of optimization steps.

Relating this data graph to Equation (6), we can see c(s, a) is the number of (s, (s, a)) edges in Ein
and f((s, a, r, s′)) is the number of ((s, a), r, s′) edges Eout.

D DETAILS ABOUT EXPERIMENT SETUP

The Graph Backup and multi-step backup both use a depth limit of 5 for MiniGrid and MinAtar, and
10 for Atari100K. The breath limit for GB-limited is 50 for MiniGrid, 20 for Minatar and 10 for
Atari100K.

For MiniGrid and MinAtar, all backup methods are based on the vanilla DQN. The q network has
2 convolutions layers and 2 dense layers, and we follow the hyper-parameters of Rainbow (Hessel
et al., 2018) with target network update frequency of 8000, ϵ-greedy exploration with ϵ = 0.02. The
learning rate is 0.001 for MiniGrid, 0.000065 for Minatar. The discounting factor is 0.95 for MiniGrid
and 0.99 for Minatar. The replay frequency is 1 for MiniGrid, and 4 for Minatar. Since we tested
the algorithm in a data-efficient setting, the size of the replay buffer is set to be equal to the overall
training steps.

As for Atari100K, our baselines and Graph Backup agents are based on Data-Efficient Rainbow (van
Hasselt et al., 2019) with the same hyper-parameters of Schwarzer et al. (2021).

E GRAPH SPARSITY

Across different tasks, we can see a correlation between the density of the transition graph and the
improvement of Graph Backup. For MiniGrid tasks where the possible number of states is limited, the
Graph Backup brings much larger improvements, whereas, for MinAtar and Atari, the graph is sparse
as there are multiple other objects besides the agent that can move in the game world. To analyse the
graph density qualitatively, we propose the metric of the novel state ratio. The novel state ratio is the
ratio between the number of non-duplicated states and the number of all states that the agent has seen.
The novel state ratio will be 1 if there are no overlapping states in the transition graph, in which case
Graph Backup reduces to Tree Backup. The average novel state ratio of MiniGrid/MinAtar/Atari are
0.006/0.298/0.927 respectively. The relative average improvements of Graph Backup compared to
Tree Backup are 190%/89%/17% on these three group of tasks. The graph density alone, however,
is not a reliable indicator to (linearly) predict how much improvement the Graph Backup can bring
to a specific task. Although we know the Graph Backup will be the same as Tree Backup if the
graph has no crossovers, more crossovers do not always guarantee larger performance improvement.

15

Under review as a conference paper at ICLR 2023

When we investigate the normalised performance6 gain and the novel state ratio for each individual
task we tested, the correlation is -0.29. Other factors like the structure of the graph and reward
density or simply the performance upper bound can also affect the performance gain. As mentioned
in Section 4.2, Graph Backup seems to bring more benefits in sparse reward tasks, which can be
explained by its counterfactual reward propagation. And the structure pattern of the graph, given the
same amount of crossovers, can also play a role.

F GRAPH STRUCTURE VISUALISATION

In order to investigate the topology of the graph, we visualize the exact graph structure of the whole
transition graph. In Figure 4, we show four representative transition graphs and leave the others to
Figure 8 in the Appendix. We apply radial layouts as proposed by Wills (1999), which scales well
with the number of nodes and aligns well with the transition structure of most of the games. Since
the common protocol for evaluating DRL agents in Atari games involves a random number of no-ops
before the agent takes over the game, the initial states can vary for different episodes. To adjust for
this, we create a hypothetical meta-initial state pointing to all initial states of a game. The meta-initial
state is then treated as the root of the whole graph, displayed in the centre of each plot.

A lot of transition graphs of Atari100K show interesting crossover structures that can be leveraged by
Graph Backup. For example, the transition graph of Freeway forms a windmill-like pattern, where
each blade corresponds to a group of trajectories that have connections within the group but between
groups. There are also some tasks (e.g. Alien) where crossovers only happen at the start of the game.
In such a case, the Graph Backup will not be helpful for most of the source states.

We also find some MinAtar and Atari games have self-loop states (e.g. Asterix), represented as circles
in the graph. After further investigations, we found the existence of self-loops is because some of the
state transitions in MinAtar and Atari will not make observation changes (such as periodically moving
objects). This actually violates the underlining assumptions of Graph Backup that the transitions
must be Markovian, which can explain why Graph Backup is inferior to Tree Backup in some of the
Tasks. On the other hand, the fact Graph Backup still outperforms multi-step methods on average
suggests that Graph Backup is robust against minor violations of Markovian Assumption.

G FULL EXPERIMENT RESULTS

In Table 3, we show the results of each individual task and the mean/median of the average perfor-
mance in each group of tasks.

H ALL TRANSITION GRAPHS

In Table 3, we visualise all the transition graphs of Atari100K.

I MIXED GRAPH BACKUP

By extending the N-Step-Q backup with the graph structure, we can get another backup target, named
mixed Graph Backup (GB-mixed). GB-mixed only applies the max operator on the boundary nodes
of the transition graph. Define Ts

def
= {(ŝ, â, r̂, ŝ′) ∈ T |ŝ = s} and c(s) =

∑
T∈Ts

f(T) similarly to
before. The GB-mixed target for the state value is then:

Ḡs =

{
1

c(s)

∑
T∈Ts

f(T) (r̂ + γGŝ′) if c(s) > 0

maxa qθ′(s, a) otherwise
(7)

6The scores of MiniGrid are treated as normalised as it is. The scores of MinAtar are normalised by step
5-million-steps DQN performance reported by Young & Tian (2019)

16

Under review as a conference paper at ICLR 2023

Table 3: Full Results of all the Tasks. The agent for MiniGrid and MinAtar is based on DQN, and the
agent for Atari100K is based on Data-Efficient Rainbow. The default backup operator for rainbow
is n-step-Q. The values in the table for MiniGrid and Minatar are raw game scores and those for
Atari100K are human-normalised scores.

one-step n-step-Q tree graph

MiniGrid-LavaCrossingS9N2-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.38±0.21
MiniGrid-Empty-8x8-v0 0.69±0.07 0.11±0.03 0.96±0.00 0.96±0.00
MiniGrid-SimpleCrossingS9N2-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.21±0.17
MiniGrid-KeyCorridorS3R1-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.76±0.17
MiniGrid-DoorKey-6x6-v0 0.00±0.00 0.00±0.00 0.04±0.04 0.58±0.21
IQM 0.0 0.0 0.0 0.74
mean 0.14 0.02 0.2 0.58
median 0.0 0.0 0.0 0.58

Minatar-seaquest 0.53±0.11 1.12±0.18 2.68±0.17 1.77±0.29
Minatar-breakout 2.42±0.35 1.56±0.13 4.58±0.14 4.95±0.45
Minatar-asterix 2.07±0.59 2.05±0.40 3.33±0.57 2.21±0.53
Minatar-freeway 0.99±0.56 0.29±0.17 0.46±0.18 30.28±4.32
Minatar-space invaders 9.32±0.57 13.78±1.94 20.23±1.30 19.93±1.63
IQM 1.90 1.72 3.20 8.46
mean 3.07 3.76 6.26 11.83
median 2.07 1.56 3.33 4.95

alien 5.58±0.12 9.49±1.31 7.88±0.23 6.01±0.56
amidar 6.49±0.37 8.46±1.10 5.06±0.00 5.77±0.93
assault 83.90±1.83 42.79±5.25 98.27±4.19 102.50±4.28
asterix 4.74±0.14 3.24±0.59 7.11±1.61 3.50±0.38
bank heist 2.72±0.64 8.26±1.04 63.31±19.18 38.13±20.33
battle zone 9.31±2.53 21.83±1.09 22.64±3.80 29.51±4.62
boxing -98.42±40.41 -16.63±4.91 77.19±35.70 53.14±45.08
breakout 48.73±10.02 30.53±1.23 57.30±4.30 65.30±7.05
chopper command 8.52±1.15 9.50±1.25 6.36±2.13 11.08±1.50
crazy climber 101.27±27.40 34.85±4.54 110.68±8.89 113.45±17.38
demon attack 24.65±6.86 3.40±0.68 24.84±4.00 23.83±5.59
freeway 53.29±17.20 61.25±22.38 35.81±22.65 64.16±20.67
frostbite 3.84±0.14 4.56±0.14 4.31±0.07 4.40±0.12
gopher 18.48±5.57 7.40±1.14 19.48±4.91 16.54±5.34
hero 17.08±6.95 22.54±1.18 31.25±3.28 30.63±1.23
jamesbond 75.72±25.42 53.47±6.90 92.52±7.21 78.80±10.82
kangaroo 29.61±4.05 143.46±40.42 76.86±27.87 141.14±37.87
krull 154.52±19.33 112.99±16.28 159.09±6.34 174.77±17.05
kung fu master 93.31±19.35 28.07±4.81 62.37±4.70 92.06±10.15
ms pacman 9.71±0.38 12.94±1.31 9.11±1.06 14.60±1.11
pong 1.15±0.35 70.69±14.10 11.10±6.90 27.00±2.43
private eye 0.11±0.00 0.11±0.00 0.11±0.00 -0.05±0.00
qbert 3.97±0.59 8.75±2.97 13.41±2.85 19.27±3.69
road runner 167.53±63.50 42.90±9.81 116.12±51.72 164.74±58.58
seaquest 1.51±0.12 0.96±0.11 1.14±0.18 1.06±0.19
up n down 25.33±1.72 20.84±0.73 20.76±2.95 31.45±1.32
IQM 18.85 16.55 26.76 34.25
mean 32.8 28.72 43.62 50.49
median 13.39 16.89 23.74 30.07

17

Under review as a conference paper at ICLR 2023

Table 4: The unnormalised scores for Atari100K. Note that taking average of these scores will lead to
a evaluation metric highly weighted by games with higher score range.

one-step n-step-Q tree graph

alien 612.93±8.14 714.60±88.06 771.30±15.97 642.70±38.67
amidar 117.01±6.37 179.38±3.76 92.51±0.00 104.65±16.04
assault 658.32±9.51 422.47±16.69 733.00±21.74 754.98±22.23
asterix 603.33±25.95 497.25±8.16 799.67±133.22 500.67±31.82
bank heist 34.27±4.74 79.50±1.24 482.00±141.69 295.97±150.20
battle zone 5603.33±880.01 11800.00±0.00 10243.33±1323.66 12636.67±1608.85
boxing -11.71±4.85 0.00±0.00 9.36±4.28 6.48±5.41
breakout 15.73±2.88 10.60±0.00 18.20±1.24 20.51±2.03
chopper command 1371.67±75.49 1103.00±0.00 1229.33±140.01 1539.67±98.61
crazy climber 36148.17±6862.90 22990.00±0.00 38503.67±2226.05 39198.67±4354.52
demon attack 600.42±124.86 182.00±11.81 603.90±72.76 585.48±101.56
freeway 15.78±5.09 14.96±6.69 10.60±6.70 18.99±6.12
frostbite 229.07±13.21 246.15±6.46 249.37±3.01 252.93±5.05
gopher 655.77±120.05 341.50±11.23 677.40±105.83 613.93±115.14
hero 6116.58±2072.96 7414.70±0.00 10340.43±978.17 10154.15±365.49
jamesbond 236.33±69.60 140.75±7.04 282.33±19.74 244.75±29.63
kangaroo 935.33±120.86 1907.00±207.06 2344.67±831.42 4262.33±1129.61
krull 3247.53±206.32 3004.35±13.30 3296.30±67.65 3463.70±182.04
kung fu master 21233.33±4348.28 9761.50±794.92 14277.67±1055.47 20952.00±2281.75
ms pacman 952.40±25.32 1015.65±6.69 912.40±70.82 1277.30±73.99
pong -20.29±0.13 0.00±0.00 -16.78±2.44 -11.17±0.86
private eye 100.00±0.00 0.00±0.00 100.00±0.00 -10.34±0.00
qbert 692.00±78.34 1176.75±0.00 1945.67±379.41 2724.75±489.89
road runner 13134.67±4973.98 4187.00±0.00 9108.00±4051.97 12916.67±4588.43
seaquest 703.13±50.67 529.20±0.00 596.27±69.83 514.53±78.49
up n down 3360.67±191.43 3303.50±0.00 2849.73±329.41 4043.07±147.85
mean 3744.07 2731.61 3863.86 4527.08

18

Under review as a conference paper at ICLR 2023

The GB-mixed target for the state-action value is then a frequency-weighted average of the next state
target:

Ḡa
s =

{
1

c(s,a)

∑
T∈Ts,a

f(T) (r̂ + γGŝ′) if c(s, a) > 0

qθ′(s, a) otherwise
(8)

Similar to N-Step-Q backup, GB-mixed is not a strictly off-policy backup operator. The value of
boundary states is estimated in an off-policy manner while the rewards of interior paths are on-policy,
hence the name mixed Graph Backup. GB-mixed is a biased backup operator when evaluating the
target policy. However, it can also be less noisy than GB-nested since there the nested max operators
can propagate over-optimistic value estimation error from every step to the source state.

J GRAPH DENSITY OF ATARI100K

We also explore the role of graph density in the same set of tasks. In Figure 6, we show the correlation
between relative performance and novel state ratio, where each point represents a task in Atari100K.
The relative performance is the human normalised score of GB-nested divided by that of Tree Backup.
It indicates how many benefits the agent can get from leveraging the graph structure. There is a
negative correlation of -0.22 between the novel states ratio and relative performance. Although the
correlation is weaker than in the case of cross-group comparison, the graph density can still affect the
effectiveness of Graph Backup.

Figure 6: Relative performance and novel state ratio

K MINATAR 1M

Table 2 shows the performance of different methods after 1M steps of training. Both one-step and
Graph Backup achieves the means scores close to the DQN asymptotic performance reported by
Young & Tian (2019). This shows that even with more training data, Graph Backup is able to converge
to the same level of performance as one-step backup. Surprisingly, though, the n-step-Q backup and
Tree Backup both perform worse than one-step backup with more data. This can be explained by
the innate problems of n-step-Q and nested max operators. Strictly speaking, n-step-Q is not an
off-policy backup operator because it always uses online reward sequences for the estimation of its
value, which can counter its advantages in longer reward propagation. This can be especially true
for Minatar because its framerate is much lower than vanilla Atari and longer reward propagation
may not be as important. For Tree Backup and Graph Backup, the nested max operator may cause
an overestimation of values. We leave methods that address this problem for future work. With
the over-estimation dealt with properly, Graph Backup may show even stronger performance in an
asymptotic setting.

L COMPUTATIONAL OVERHEAD

19

Under review as a conference paper at ICLR 2023

In contrast to model-based planning methods, Graph Backup does not bring computational overhead
at action selection. Therefore, during deployment, decision latency and the computational cost will
be the same as for previous methods, which we believe is important in a Data-Efficient setting, where
it’s both important and required to leverage additional computing at training time to make up for the
limited number of samples from the environment. On the other hand, the computational overhead of
Graph Backup during training is nuanced and is heavily dependent on the implementation, the base
algorithm, hyperparameters and the network architecture. In our implementation, the subgraph is
constructed from the adjacency list (python dictionary), and the value for expanded state nodes can be
computed in a batched way. This is quite different from model-based planning methods like MCTS
where the tree expansion is conditioned on the policy and value estimation of parent nodes. Due to
the easy parallelization of the neural network inference, the main bottleneck becomes the sub-graph
expansion itself. Our implementation did the graph expansion and backup with python code and the
different samples in a batch are processed sequentially, which makes the training 2-5 times slower
than a one-step backup. However, this is just a simple proof of the algorithm’s performance, and
the implementation could easily be sped up drastically by JIT compilation or multi-threading (or
multi-processing).

M VALUE ESTIMATION VISUALIZATIONS

In Figure 7, we visualize the value estimates for all positions in an empty room environment. An
agent starts at the bottom left corner and tries to reach the top right goal position. We fix the value of
the goal position to be 1, and all other value estimations come from the Q network when the agent
is in such a position and facing right. The discount factor γ = 0.95 is the same as in our empirical
evaluations so the ground truth value for the initial position is 0.57. We fixed the random seeds of the
agents and all of them will find the first reward in step 1957 and the training starts at step 2000. We
can see graph backup quickly converge to the ground truth value estimation for half of the states at
step 3000, whereas other backup methods only failed to correctly estimate the value of the initial
state even after 30000 steps of training.

An interesting observation is the value is not overestimated for Graph Backup even though it has a
lot of nested max operators. On the other hand, values of some states are over-estimated by Tree
Backup agent and one-step backup agents at step 30000. This can be explained by the combination
of counterfactual credit assignments and online interactions. If the value of a state is overestimated,
such excess value will quickly propagate to a lot of the interconnected states. Therefore, the agent
will then actively try to reach the over-estimated states and such overestimation will then be corrected.
Another interpretation is the overestimation comes from the extra noise of one-step and Tree Backup.
In Figure 5, even training the value from the logged data, Tree Backup and one-step backup will
sometimes give higher value estimation than Graph Backup.

(a) One-step Backup (b) n-step-Q Backup

(c) Tree Backup (d) Graph Backup

Figure 7: Value Map of Empty Room

20

Under review as a conference paper at ICLR 2023

(a) Alien (b) Amidar

(c) Assault (d) Asterix

(e) Bank Heist (f) Battle Zone

21

Under review as a conference paper at ICLR 2023

(g) Boxing (h) Breakout

(i) Chopper Command (j) Crazy Climber

(k) Demon Attack (l) Freeway

22

Under review as a conference paper at ICLR 2023

(m) Frostbite (n) Gopher

(o) Hero (p) Jamesbond

(q) Kangaroo (r) Krull

23

Under review as a conference paper at ICLR 2023

(s) Kung Fu Master (t) Ms Pacman

(u) Pong (v) Private Eye

(w) Qbert (x) Road Runner

24

Under review as a conference paper at ICLR 2023

(y) Seaquest (z) Up N Down

Figure 8: All Transition Graphs of Atari100K

25

