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Figure 1. OVDiff is an open-vocabulary segmentation method that, given an image and a free-form set of class names, can segment any
user-defined classes. It is fully automatic and does not require any further training.

Abstract

Open-vocabulary segmentation is the task of segmenting001
anything that can be named in an image. Recently, large-002
scale vision-language modelling has led to significant ad-003
vances in open-vocabulary segmentation, but at the cost of004
gargantuan and increasing training and annotation efforts.005
Hence, we ask if it is possible to use existing foundation006
models to synthesise on-demand efficient segmentation al-007
gorithms for specific class sets, making them applicable008
in an open-vocabulary setting without the need to collect009
further data, annotations or perform training. To that end,010
we present OVDiff, a novel method that leverages genera-011
tive text-to-image diffusion models for unsupervised open-012
vocabulary segmentation. OVDiff synthesises support image013
sets for arbitrary textual categories, creating for each a set014
of prototypes representative of both the category and its015
surrounding context (background). It relies solely on pre-016
trained components and outputs the synthesised segmenter017
directly, without training. Our approach shows strong per-018
formance on a range of benchmarks, obtaining a lead of019
more than 5% over prior work on PASCAL VOC.020

1. Introduction 021

Open-vocabulary semantic segmentation is the task of seg- 022
menting images into regions matching several free-form 023
textual categories. As the field of Computer Vision moves to- 024
wards large-scale general-purpose models, open-vocabulary 025
“foundation” models have similarly emerged. Yet, the devel- 026
opment of ones suitable for dense localisation tasks such as 027
semantic segmentation incurs both enormous training costs 028
and requires expensive mask annotations. Instead, we show 029
that the open-vocabulary segmentation task can be effec- 030
tively tackled starting from a set of frozen foundation models, 031
without requiring additional data or even fine-tuning. 032

In order to do so, we introduce OVDiff, a method that 033
turns existing foundation models into a “factory” of image 034
segmenters, i.e., using foundation models to synthesise on- 035
demand a segmenter for any new concepts specified in natu- 036
ral language. Thus, OVDiff can be used for open-vocabulary 037
segmentation, where it achieves state-of-the-art results in 038
standard benchmarks. Moreover, once synthesised, the seg- 039
menters can be efficiently applied to any number of images 040
and easily extended to new categories. 041

Specifically, segmenting an image using OVDiff can be 042
done in three steps: generation, representation, and match- 043
ing. Given a textual prompt, OVDiff uses an off-the-shelf 044
text-to-image generator like StableDiffusion [50] to generate 045
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a support set of images. In the representation step, we use a046
feature extractor (that can be the same network as in the gen-047
eration step) to extract feature prototypes that represent the048
textual category. Finally, we use simple nearest-neighbour049
matching scheme to segment the target image using the pro-050
totypes computed in the previous step.051

This approach differs from prior work that largely ap-052
proaches the problem in either of two ways. Starting from053
multi-modal representations (e.g., CLIP [46]) to bridge vi-054
sion and language, the first way relies on labelled data to055
fine-tune image-level representations for the segmentation056
task. Hence, in line with the zero-shot setting [6], these057
methods require costly dense annotations for some known058
categories while also extending the segmentation to unseen059
categories by incorporating language.060

The second category of prior work [9, 37, 43, 49, 70, 71]061
observes that large-scale vision-language models such as062
CLIP have a limited understanding of the positioning of063
objects within an image and extend these models with ad-064
ditional grouping mechanisms for better localisation using065
only image-level captions, but no mask supervision. This,066
however, requires expensive additional contrastive training067
at scale. Despite yielding promising results, there are some068
additional pitfalls to this approach. Firstly, as the text might069
not exhaustively describe all entities in the image or might070
mention elements that are not depicted, the training signal071
can be noisy. Secondly, similar captions may be used to072
describe a wide range of visual appearances, or a similar073
concept might be described differently, sometimes even de-074
pending on the other context present. There is ambiguity and075
a difference in detail between visual and textual data. Lastly,076
most methods resort to heuristics to segment the background077
(i.e., leave some pixels unlabelled), as it often cannot be078
described as a textual category. The usual approach is to079
threshold the similarities to all categories. Finding an appro-080
priate threshold, however, can be challenging and may vary081
depending on the image, often resulting in imprecise object082
boundaries. Effectively handling the background remains an083
open issue.084

Our three-step approach departs substantially from both085
of these schemes. We show that large-scale text-to-image086
generative models, such as StableDiffusion [50], can help087
bridge the vision-and-language gap without the need for088
annotations or costly training. Furthermore, diffusion models089
also produce latent spaces that are semantically meaningful090
and well-localised. This solves a second problem: multi-091
modal embeddings are difficult to learn and often suffer from092
ambiguities and differences in detail between modalities.093
Instead, our approach can use unimodal features for open-094
vocabulary segmentation, which offers several advantages.095
Firstly, as text-to-image generators encode a distribution of096
possible images, this offers a means to deal with intra-class097
variation and captures the ambiguity in textual descriptions.098

Secondly, the generative image models encode not only the 099
visual appearance of objects but also provide contextual 100
priors, which we use for direct background segmentation. 101

This work presents a simple framework that achieves 102
state-of-the-art performance across open-vocabulary seg- 103
mentation benchmarks. It combines several off-the-shelf 104
pre-trained networks into a segmenter “factory” that seg- 105
ments images into arbitrary textual categories in three simple 106
steps. OVDiff requires no additional data, mask supervision, 107
nor fine-tuning. To summarise, we make the following core 108
contributions: (1) We introduce a method to use pre-trained 109
diffusion models for the task of open-vocabulary segmen- 110
tation, that requires no additional data, mask supervision, 111
or fine-tuning. (2) We propose a principled way to handle 112
backgrounds by forming prototypes from contextual priors 113
built into text-to-image generative models. (3) A set of addi- 114
tional techniques for further improving performance, such as 115
multiple prototypes, category filtering and "stuff" filtering. 116

2. Related work 117

Zero-shot open-vocabulary segmentation. Open- 118
vocabulary semantic segmentation is a relatively new 119
problem and is typically approached in two ways. The first 120
line of work poses the problem as “zero-shot”, i.e., segment- 121
ing unseen classes after training on a set of observed classes 122
with dense annotations. Early approaches [6, 11, 20, 31] 123
explore generative networks to sample features using 124
conditional language embeddings for classes. In [30, 69] 125
image encoders are trained to output dense features that 126
can be correlated with word2vec [41] and CLIP [46] text 127
embeddings. Follow-up works [15, 19, 33, 73] approach 128
the problem in two steps, predicting class-agnostic masks 129
and aligning the embeddings of masks with language. 130
IFSeg [74] generates synthetic feature maps by pasting 131
CLIP text embeddings into a known spatial configuration to 132
use as additional supervision. Different from our approach, 133
all these works rely on mask supervision for a set of known 134
classes. 135

The second line of work eliminates the need for mask 136
annotations and instead aims to align image regions with 137
language using only image-text pairs. This is largely en- 138
abled by recent advancements in large-scale vision-language 139
models [46]. Some methods introduce internal group- 140
ing mechanisms such as hierarchical grouping [49, 70], 141
slot-attention [71], or cross-attention to learn cluster cen- 142
troids [35, 37]. Assignment to language queries is performed 143
at group level. Another line of work [9, 43, 48, 79] aims to 144
learn dense features that are better localised when correlated 145
with language embeddings at pixel level. With the exception 146
of [48, 68, 79], thresholding is often required to determine 147
the background during inference. Alternatively, a curated 148
list of background prompts can be used [48]. 149

Our method falls into the second category. However, 150
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in contrast to prior work, we leverage a generative model151
to translate language queries to pre-trained image feature152
extractors without further training. We also segment the153
background directly, without relying on thresholding or154
curated list of background prompts. A closely related ap-155
proach to ours is ReCO [56], where CLIP is used for im-156
age retrieval compiling a set of exemplar images from Im-157
ageNet for a given language query, which is then used for158
co-segmentation. In our method, the shortcoming of an im-159
age database is addressed by synthesising data on-demand.160
Furthermore, instead of co-segmentation, we leverage the161
cross-attention of the generator to extract objects. Instead162
of similarity of support images, we use diverse samples and163
both foreground and contextual backgrounds.164

Diffusion models. Diffusion models [26, 59, 60] are a class165
of generative methods that have seen tremendous success in166
text-to-image systems such as DALL-E [47], Imagen [52],167
and Stable Diffusion [50], trained on Internet-scale data168
such as LAION-5B [54]. The step-wise generative process169
and the language conditioning make pre-trained diffusion170
models attractive also for discriminative tasks. They have171
been recently used in few-shot classification [77], few-shot172
segmentation [2] and panoptic segmentation [72], and to173
generate pairs of images and segmentation masks [32]. How-174
ever, these methods rely on dense manual annotations to175
associate diffusion features with the desired output.176

Annotation-free discriminative approaches such as [13,177
29] use pre-trained diffusion models as zero-shot classifiers.178
DiffuMask [67] uses prompt engineering to synthesise a179
dataset of “known” and “unseen” categories and trains a180
closed-set segmenter with masks obtained from the cross-181
attention maps of the diffusion model. DiffusionSeg [38]182
uses DDIM inversion [60] to obtain feature maps and at-183
tention masks of object-centric images to perform unsuper-184
vised object discovery, but relies on ImageNet labels and185
is not open-vocabulary. Our approach also leverages the186
rich semantic information present in diffusion models for187
segmentation; unlike these methods, however, it is open-set188
and does not require further training.189

Unsupervised segmentation. Our work is also related to190
unsupervised segmentation approaches. While early works191
relied on hand-crafted priors [12, 44, 66, 75, 76] later ap-192
proaches leverage feature extractors such as DINO [8] and193
perform further analysis of these methods [21, 39, 55, 57,194
58, 63–65]. Some approaches make use of generative meth-195
ods, usually GANs, to separate images in foreground and196
background layers [3–5, 10] or analyse latent structure to197
induce known foreground-background changes [40, 62] to198
synthesise a training dataset with labels. Largely focused on199
unsupervised saliency prediction, these methods are class-200
agnostic and do not incorporate language.201

3. Method 202

We present OVDiff, a method for open-vocabulary segmenta- 203
tion, i.e., semantic segmentation of any category described in 204
natural language. We achieve this goal in three steps: (1) we 205
leverage text-to-image generative models to generate a set 206
of images representative of the described category, (2) use 207
these to ground representations from off-the-shelf pretrained 208
feature extractors, and (3) match these against input image 209
features to perform segmentation. 210

3.1. OVDiff: Diffusion-based open-vocabulary seg- 211
mentation 212

Our goal is to devise an algorithm which, given a new vo- 213
cabulary of categories ci ∈ C formulated as natural language 214
queries, can segment any image against it. Let I ∈ RH×W×3 215
be an image to be segmented. Let Φv : RH×W×3 → 216
RH′W ′×D be an off-the-shelf visual feature extractor and 217
Φt : Rdt → RD a text encoder. Assuming that image and 218
text encoders are aligned, one can achieve segmentation by 219
simply computing a similarity function, for example, the 220

cosine similarity s(Φv(I),Φt(ci)), with s(x, y) = xT y
∥x∥∥y∥ , 221

between the encoded image Φv(I) and an encoding of a 222
class label ci. To meaningfully compare different modalities, 223
image and text features must lie in a shared representation 224
space, which is typically learned by jointly training Φv and 225
Φt using image-text or image-label pairs [46]. 226

We propose two modifications to this approach. First, we 227
observe that it is better to compare representations of the 228
same modality than across vision and language modalities. 229
We thus replace Φt(ci) with a D-dimensional visual repre- 230
sentation P̄ of class ci, which we refer to as a prototype. In 231
this case, the same feature extractor can be used for both pro- 232
totypes and target images; thus, their comparison becomes 233
straightforward and does not necessitate further training. 234
Second, we propose utilising multiple prototypes per cate- 235
gory instead of a single class embedding. This enables us to 236
accommodate intra-class variations in appearance, and, as 237
we explain later, it also allows us to exploit contextual priors, 238
which in turn help to segment the background. 239

Our approach, thus, proceeds in three steps: (1) a set 240
of support images is sampled based on vocabulary C, (2) a 241
set of prototypes P is calculated, and (3) a set of images 242
{I1, I2 . . . } is segmented against these prototypes. We ob- 243
serve that in practical applications, whole image collections 244
are processed using the same vocabulary, as altering the set 245
of target classes for individual images in an informed way 246
would already require some knowledge of their contents. 247
Steps (1) and (2) are, thus, performed very infrequently, and 248
their cost is heavily amortised. Next, we detail each step. 249
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Figure 2. OVDiff overview. Prototype sampling: text queries are used to sample a set of support images which are further processed by
a feature extractor and a segmenter forming positive and negative (background) prototypes. Segmentation: image features are compared
against prototypes.The CLIP filter removes irrelevant prototypes based on global image contents.

3.2. Support set generation250

To construct a set of prototypes, the first step of our approach251
is to sample a support set of images representative of each252
category ci. This can be accomplished by leveraging pre-253
trained text-conditional generative models. Sampling images254
from a generative model, as opposed to a curated dataset of255
real images, aligns well with the goals of open-vocabulary256
segmentation as it enables the construction of prototypes for257
any user-specified category or description, even those for258
which a manually labelled set may not be readily available259
(e.g., ci = “donut with chocolate glaze”).260

Specifically, for each query ci, we define a prompt “A261
good picture of a ⟨ci⟩” and generate a small batch262
of N support images S = {S1, S2, . . . , SN | Sn ∈ Rhw×3}263
of height h and width w using Stable Diffusion [50].264

3.3. Representing categories265

Naïvely, prototypes P̄ci could be constructed by averaging266
all features across all images for class ci. This is unlikely to267
result in good prototypes because not all pixels in the sam-268
pled images correspond to the class specified by ci. Instead,269
we propose to extract the class prototypes as follows.270

Class prototypes. Our approach generates two sets of pro-271
totypes, positive and negative, for each class. Positive proto-272
types are extracted from image regions that are associated273
with ⟨ci⟩, while negative prototypes represent “background”274
regions. Thus, to obtain prototypes, the first step is segment-275
ing the sampled images into foreground and background. To276
identify regions most associated with ci, we use the fact that277
the layout of a generated image is largely dependent on the278
cross-attention maps of the diffusion model [24], i.e., pixels279
attend more strongly to words that describe them. For a given280
word or description (in our case ci), one can generate a set281
of attribution maps A = {A1, A2, . . . , AN | An ∈ Rhw},282
corresponding to the support set S, by summing the cross-283
attention maps across all layers, heads, and denoising steps284

of the network [61]. 285
Yet, thresholding these attribution maps may not be op- 286

timal for segmenting foreground/background, as they are 287
often coarse or incomplete, and sometimes only parts of 288
objects receive high activation. To improve segmentation 289
quality, we propose to optionally leverage an unsupervised 290
instance segmentation method Γ. Unsupervised segmenters 291
are not vocabulary-aware and may produce multiple binary 292
object proposals. We denote these as Mn = {Mnr | Mnr ∈ 293
{0, 1}hw}, where n indexes the support images and r in- 294
dexes the object masks (including a mask for the back- 295
ground). We thus construct a promptable extension of Γ 296
segmenter to select appropriate proposals for foreground 297
and background: for each image, we select from Mn the 298
mask with the highest (lowest) average attribution as the 299
foreground (background): 300

M fg
n =M∈Mn

M⊤An

M⊤M
, Mbg

n =M∈Mn

M⊤An

M⊤M
. (1) 301

Prototype aggregation. We can compute prototypes P g
n for 302

foreground and background regions (g ∈ {fg,bg}) as 303

P g
n =

(M̂g
n)

⊤Φv(Sn)

mg
n

∈ RD, (2) 304

where M̂g
n denotes a resized version of Mg

n that matches 305
the spatial dimensions of Φv(Sn), and mg

n = (M̂g
n)

⊤M̂g
n 306

counts the number of pixels within each mask. In other 307
words, prototypes are obtained by means of an off-the-shelf 308
pretrained feature extractor and computed as the average 309
feature within each mask. 310

We refer to these as instance prototypes because they are 311
computed from each image individually, and each image in 312
the support set can be viewed as an instance of class ci. 313

In addition to instance prototypes, we found it helpful 314
to also compute class-level prototypes P̄ g by averaging the 315
instance prototypes weighted by their mask sizes as P̄ g = 316∑N

n=1 m
g
nP

g
n/

∑N
n=1 m

g
n. 317
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Finally, we propose to augment the set of class and in-318
stance prototypes using K-Means clustering of the masked319
features to obtain part-level prototypes. We perform spa-320
tial clustering separately on foreground and background re-321
gions and take each cluster centroid as a prototype P g

k with322
1 ≤ k ≤ K. The intuition behind this is to enable seg-323
mentation at the level of parts, support greater intra-class324
variability, and a wider range of feature extractors that might325
not be scale invariant.326

We consider the union of all these feature prototypes:327

Pg = P̄ g ∪ {P g
n | 1 ≤ n ≤ N} ∪ {P g

k | 1 ≤ k ≤ K} (3)328

for g ∈ {fg,bg}, and associate them with a single category.329

We note that this process is repeated for each ci ∈ C and330
we hereby refer to P fg (and Pbg) as P fg

ci (Pbg
ci ), i.e., as the331

foreground (background) prototypes of class ci.332

Since P fg
ci (Pbg

ci ) depend only on class ci, they can be333
precomputed, and the set of classes can be dynamically334
expanded without the need to adapt existing prototypes.335

3.4. Segmentation via prototype matching336

To perform segmentation of any target image I given a337
vocabulary C, we first extract image features using the338
same visual encoder Φv used for the prototypes. The vo-339
cabulary is expanded with an additional background class340
Ĉ = {cbg}∪C, for which the positive (foreground) prototype341
is the union of all background prototypes in the vocabulary:342
P fg
cbg

=
⋃

ci∈C Pbg
ci . Then, a segmentation map can simply343

be obtained by matching dense image features to prototypes344
using cosine similarity. A class with the highest similarity in345
its prototype set is chosen:346

M =c∈Ĉ max
P∈Pfg

c

s(Φv(I), P ). (4)347

Category pre-filtering. To limit the impact of spurious cor-348
relations that might exist in the feature space of the visual349
encoder, we introduce a pre-filtering process for the target vo-350
cabulary given image I . Specifically, we leverage CLIP [46]351
as a strong open-vocabulary classifier but propose to apply352
it in a multi-label fashion to constrain the segmentation to353
the subset of categories C′ ⊆ C that appear in the target354
image. First, we encode the target image and each category355
using CLIP. Any categories that do not score higher than356
1/|C| are removed from consideration, that is we keep the357
subset {P g

c′ | c′ ∈ C′}, g ∈ {fg,bg}. If more than η cat-358
egories are present, then the top-η are selected. We then359
form “multi-label” prompts as “⟨ca⟩ and ⟨cb⟩ and ...”360
where the categories are selected among the top scoring ones361
taking into account all 2η combinations. The best-scoring362
multi-label prompt determines the final list of categories to363
be used in Equation (4).364

Table 1. Open-vocabulary segmentation. Comparison of our ap-
proach, OVDiff, to the state of the art (under the mIoU metric). Our
results are an average of 5 seeds ±σ. ∗results from [9].

Method Support Further VOC Context ObjectSet Training

ReCo∗ [56] Real ✗ 25.1 19.9 15.7
ViL-Seg [35] ✗ ✓ 37.3 18.9 -
MaskCLIP∗ [79] ✗ ✗ 38.8 23.6 20.6
TCL [9] ✗ ✓ 51.2 24.3 30.4
CLIPpy [48] ✗ ✓ 52.2 - 32.0
GroupViT [70] ✗ ✓ 52.3 22.4 -
ViewCo [49] ✗ ✓ 52.4 23.0 23.5
SegCLIP [37] ✗ ✓ 52.6 24.7 26.5
OVSegmentor [71] ✗ ✓ 53.8 20.4 25.1
CLIP-DIY [68] ✗ ✗ 59.9 – 31.0
OVDiff (-CutLER) Synth. ✗ 62.8 28.6 34.9
OVDiff Synth. ✗ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

TCL [9] (+PAMR) ✗ ✓ 55.0 30.4 31.6
OVDiff (+PAMR) Synth. ✗ 68.4 ± 0.2 31.2 ± 0.4 36.2 ± 0.4

Table 2. Segmentation performance of OVDiff based on different
feature extractors.

Feature MAE DINO CLIP CLIP SD SD + DINO
Extractor (token) (keys) + CLIP

VOC 54.9 59.1 51.4 61.8 64.4 66.4

“Stuff” filtering. Occasionally, ci might not describe a 365
countable object category but an identifiable region in the 366
image, e.g., sky, often referred to as a “stuff” class. “Stuff” 367
classes warrant additional consideration as they might appear 368
as background in images of other categories, e.g., boat im- 369
ages might often contain regions of water and sky. As a 370
result, the process outlined above might sample background 371
prototypes for one class that coincide with the foreground 372
prototypes of another. To mitigate this issue, we introduce 373
an additional filtering step to detect and reject such proto- 374
types, when the full vocabulary, i.e., the set of classes under 375
consideration, is known. First, we only consider foreground 376
prototypes for “stuff” classes. Additionally, any negative 377
prototypes of “thing” classes with high cosine similarity 378
with any of the “stuff” class prototypes are simply removed. 379
In our experiments, we use ChatGPT [45] to automatically 380
categorise a set of classes as “thing” or “stuff”. 381

4. Experiments 382

We evaluate OVDiff on the open-vocabulary semantic seg- 383
mentation task. First, we consider different feature extractors 384
and investigate how they can be grounded by leveraging our 385
approach. We then compare our method with prior work. We 386
ablate the components of OVDiff, visualize the prototypes, 387
and conclude with a qualitative comparison with prior works 388
on in-the-wild images. 389
Datasets and implementation details. As the approach 390
does not require further training of components, we only 391
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Figure 3. Qualitative results. OVDiff in comparison to TCL (+ PAMR). OVDiff provides more accurate segmentations across a range objects
and stuff classes with well defined object boundaries that separate from the background well.

consider data for evaluation. Following prior work [70],392
to assess the segmentation performance, we report mean393
Intersection-over-Union (mIoU) on validation splits of PAS-394
CAL VOC (VOC) [18], PASCAL Context (Context) [42] and395
COCO-Object (Object) [7] datasets, with 20, 59, and 80 fore-396
ground classes, respectively. These datasets include a back-397
ground class to reflect a realistic setting of non-exhaustive398
vocabularies. Context also contains both “things” and “stuff”399
classes. We also evaluate without background on VOC, Con-400
text, ADE20K [78], COCO-Stuff [7] and Cityscapes [14],401
with 20, 59, 150, 171, and 19 classes, respectively, but do not402
consider this a realistic setting as it relies on knowing which403
pixels cannot be described by a set of categories. Thus we404
leave such evaluation to Appendix A.3. Similar to [9, 70, 71],405
we employ a sliding window approach. We use two scales to406
aid with the limited resolution of off-the-shelf feature extrac-407
tors with square window sizes of 448 and 336 and a stride408
of 224 pixels. We set the size of the support set to N = 32.409
For the diffusion model, we use Stable Diffusion v1.5; for410
unsupervised segmenter Γ, we employ CutLER [64].411

4.1. Grounding feature extractors412

Our method can be combined with any pretrained visual413
feature extractor for constructing prototypes and extracting414
image features. To verify this quantitatively, we experiment415
with various self-supervised ViT feature extractors (Tab. 2):416
DINO [8], MAE [23], and CLIP [46]. We also use SD as a417
feature extractor.418

We find that SD performs the best, though CLIP and419
DINO also show strong performance based on our experi-420
ments on VOC. MAE shows the weakest performance, which421
may be attributed to its lack of semanticity [23]; yet it is still422
competitive with the majority of purposefully trained net-423
works when employed as part of our approach. We find that424
taking keys of the second to last layer in CLIP yields better425

results than using patch tokens (CLIP token). As feature 426
extractors have different training objectives, we hypothesise 427
that their feature spaces might be complementary. Thus, we 428
also consider an ensemble approach. In this case, the cosine 429
distances formed between features of different extractors 430
and respective prototypes are averaged. The combination 431
of SD, DINO, and CLIP performs the best. We adopt this 432
formulation for the main set of experiments. 433

4.2. Comparison to existing methods 434

In Tab. 1, we compare our method with prior work that does 435
not rely on manual mask annotation on three datasets: VOC, 436
Context, Object. We include a brief overview of the meth- 437
ods in the supplement. We find that our method compares 438
favourably, outperforming other methods in all settings. In 439
particular, results on VOC show the largest margin, with 440
more than 5% improvement over prior work. 441

We also consider a version of our method, OVDiff (- 442
CutLER), that does not rely on an additional unsupervised 443
segmenter Γ. Instead, the attention masks are thresholded. 444
We observe that such a version of OVDiff has strong per- 445
formance, outperforming prior work as well. CutLER is 446
helpful, but not a critical component, and OVDiff performs 447
strongly without it. 448

In the same table, we also combine our method with 449
PAMR [1], the post-processing approach employed by TCL. 450
We find that it improves results for our method, though im- 451
provements are less drastic since our method already yields 452
better segmentation and boundaries. 453

Qualitative results are shown in Fig. 3. This figure high- 454
lights a key benefit of our approach: the ability to exploit 455
contextual priors through the use of background prototypes, 456
which in turn allows for the direct assignment of pixels to 457
a background class. This improves segmentation quality 458
because it makes it easier to differentiate objects from the 459
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Figure 4. Analysis of the segmentation output by linking regions to samples in the support set. Left: our results for different classes. Middle:
select color-coded regions “activated” by different prototypes for the class. Right: regions in the support set images corresponding to these
(part-level) prototypes.

Table 3. Ablation of different components. Each component is
removed in isolation, measuring the drop (∆) in mIoU on VOC
and Context datasets. Using SD features.

Configuration VOC ∆ Context ∆

Full 64.4 29.4

w/o bg prototypes 53.2 -11.2 28.9 -0.5
w/o category filter 54.4 -10.0 25.2 -4.2
w/o “stuff” filter n/a 26.9 -2.5
w/o CutLER 60.4 -4.0 27.6 -1.8
w/o sliding window 62.2 -2.2 28.6 -0.8
only average P̄ 62.5 -1.9 28.4 -1.0

background and to delineate their boundaries. In comparison,460
TCL predictions are very coarse and contain more noise.461

Computation cost. We focus on a construction of a method462
to show that existing foundational diffusion models can be463
used for segmentation with great efficacy without further464
training. OVDiff requires computing prototypes instead.465
With our unoptimized implementation, we measure around466
110 ± 10s to calculate prototypes using SD for a single467
class, or around 1.14 TFLOP/s-hours of compute. While the468
focus of this study is not computational efficiency, we can469
compare prototype sampling to the cost of additional training470
of other methods: TCL requires 2688, GroupViT 10752, and471
OVSegmentor 624 TFLOP/s-hours.1 While training has an472
upfront compute cost and requires special infrastructure (e.g.473
OVSegmentor uses 16×A100s), OVDiff’s prototype set can474
be grown progressively as needed, while showing better475
performance.476

1Estimated as training time × num. GPUs × theoretical peak TFLOP/s
for GPU type.

Figure 5. PascalVOC results with increasing support size N .

4.3. Ablations 477

Next, we ablate the components of OVDiff on VOC and Con- 478
text datasets. For these experiments, only SD is employed 479
as a feature extractor. We remove individual components 480
and measure the change in segmentation performance, sum- 481
marising the results in Tab. 3. Our first observation is that 482
background prototypes have a major impact on performance. 483
When removing them from consideration, we instead thresh- 484
old the similarity scores of the images with the foreground 485
prototypes (set to 0.72, determined via grid search); in this 486
case, the performance drops significantly, which again high- 487
lights the importance of leveraging contextual priors. On 488
Context, the impact is less significant, likely due to the 489
fact that the dataset contains “stuff” categories. Remov- 490
ing the instance- and part-level prototypes also negatively 491
affects performance. Additionally, removing the category 492
pre-filtering has a major impact. We hypothesize that this 493
introduces spurious correlations between prototypes of dif- 494
ferent classes. On Context, “stuff” filtering is also important. 495
We again consider the importance of using an unsupervised 496
segmenter, CutLER, for prototype mask extractions, using 497
thresholding instead. We find this slightly reduces perfor- 498
mance in this setting as well. Overall, background prototypes 499
and pre-filtering contribute the most. 500

Finally, we measure the effect of varying the size of the 501
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Figure 6. Qualitative comparison on challenging in-the-wild images with TCL, which struggles with object boundaries, missing parts of
objects, or including surroundings. Our method has more appropriate boundaries and makes fever errors overall, but does produce a small
halo effect around objects due to the upscaling of feature extractors.

support set N in Fig. 5. We find that OVDiff already shows502
strong performance even at a low number of samples for503
each query. With increasing the number of samples, the504
performance improves, saturating at around N = 32. which505
we use in our main experiments.506

4.4. Explaining segmentations507

We inspect how our method segments certain regions by508
considering which prototype from P fg

c was used to assign509
a class c to a pixel. Prototypes map to regions in the sup-510
port set from where they were aggregated, e.g., instances511
prototypes are associated with foreground masks M fg

n and512
part prototypes with centroids/clusters. By following these513
mappings, a set of support image regions can be retrieved514
for each segmentation decision, providing a degree of ex-515
plainability. Fig. 4 illustrates this for examples of dog, cat,516
and bird classes. For visualisation purposes, selected pro-517
totypes and corresponding regions are shown. On the left,518
we show the full segmentation result of each image. In the519
middle, we select regions that correlate best with certain520
class prototypes. On the right, we retrieve images from the521
support set and highlight where each prototype emerged.522
We find that meaningful part segmentation merges due to523
clustering the support image features, and similar regions524
are segmented by corresponding prototypes. However, some-525
times region covered in the input image will not fully align526
with the whole prototype (e.g. cat’s face around the eyes or527
lower belly/tail of bird). Each segmentation is explained528
by precise regions in a small support set.529

4.5. In-the-wild530

In Fig. 6, we investigate OVDiff on chal lenging in-the-wild531
images with simple and complex backgrounds. We compare532
with TCL+PAMR. In the first three images, both methods533

correctly detect the objects identified by the queries. OVDiff 534
has small false positive "corgi" patches. TCL however misses 535
large parts of the objects, such as most of the person, and 536
parts of animal bodies. The distinction between the house 537
and the bridge in the second image is also better with OVD- 538
iff. We also note that our segmentations sometimes have 539
halos around objects. This is caused by upscaling the low- 540
resolution feature extractor (SD in this case). The last two 541
images contain challenging scenarios where both approaches 542
struggle. The fourth image only contains similar objects 543
of the same type. Both methods incorrectly identify plain 544
donuts as either of the specified queries. OVDiff however 545
correctly identifies chocolate donuts with varied sprinkles 546
and separates all donuts from the background. In the final 547
picture, the query “red car” is added, although no such object 548
is present. The extra query causes TCL to incorrectly iden- 549
tify parts of the red bus as a car. Both methods incorrectly 550
segment the gray car in the distance. However, overall, our 551
method is more robust and delineates objects better despite 552
the lack of specialized training or post-processing. 553

5. Conclusion 554

We introduce OVDiff, an open-vocabulary segmentation 555
method that operates in two stages. First, given queries, 556
support images are sampled and their features are extracted 557
to create class prototypes. These prototypes are then com- 558
pared to features from an inference image. This approach 559
offers multiple advantages: diverse prototypes accommodat- 560
ing various visual appearances and negative prototypes for 561
background localisation. OVDiff outperforms prior work 562
on benchmarks, exhibiting fewer errors, effectively separat- 563
ing objects from background, and providing explainability 564
through segmentation mapping to support set regions. 565
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Supplementary Material912

In this supplementary material, we provide additional exper-913
imental results, including further ablations and qualitative914
comparisons (Appendix A), consider the limitations and915
broader impacts of our work (Appendix B), and conclude916
with additional details concerning the implementation (Ap-917
pendix C).918

A. Additional experiments919

This section provides additional experimental results of920
OVDiff.921

A.1. Additional Comparisons922

Category filter. To ensure that the category pre-filtering923
does not give our approach an unfair advantage, we augment924
two methods (TCL [9] and OVSegmentor [71], which are925
the closest baselines with code and checkpoints available)926
with our category pre-filtering. We evaluate on the Pascal927
VOC dataset (where the category filter shows a significant928
impact; see Table 3) and report the results in Tab. A.1. We929
observe that TCL improves by 0.6, while the performance930
of OVSegmentor drops by 0.1. On the contrary, our method931
benefits substantially from this component, but it still shows932
stronger performance without the filter than baselines with.933
Influence of Γ segmentation method. We also further in-934
vestigate the use of CutLER [64] to obtain segmentation935
masks. We also provide example results of segmentation in936
Fig. C.4. In Tab. A.2, we devise a baseline where CutLER-937
predicted masks are used to average the CLIP image en-938
coder’s final spatial tokens after projection. Averaged tokens939
are compared with CLIP text embeddings to assign a class.940
While relying on pre-trained components (like ours), this941
avoids support set generation. In the same table, we also con-942
sider whether the objectness prior provided by CutLER could943
be beneficial to other methods as well. We consider a version944
of TCL [9] and OVSegmentor [71] which we augment with945
CutLER. That is, after methods assign class probabilities to946
each pixel/patch, a majority voting for a class is performed in947
every region predicted by CutLER. This combines CutLER’s948
understanding of objects and their boundaries, aspects where949
prior methods struggle, with open-vocabulary segmentation.950
However, we observe that this negatively impacts the perfor-951
mance of these methods, which we attribute to only a limited952
performance of CutLER in complex scenes present in the953
datasets. Finally, we also include a version of OVDiff that954
does not rely on CutLER for mask extractions, instead using955
thresholded masks. We observe that such a version of our956
method also has strong performance.957

We additionally experiment with stronger segmenters to958
understand the influence of FG/BG mask quality. We replace959
our FG/BG segmentation approach with strong supervised960
models: with SAM, we achieve 67.1 on VOC, and with961

Table A.1. Use of category filter component. OVDiff without
category filter outperforms prior work with cat. filter.

Model Category filter
✗ ✓

OVSegmentor 53.8 53.7
TCL 51.2 51.8
TCL (+PAMR) 55.0 56.0
OVDiff 56.2 66.4

Table A.2. Application of CutLER. Prior work does not benefit
from using CutLER during inference, while OVDiff shows strong
results without it.

Model CutLER VOC Context Object

CLIP ✓ 33.0 11.6 11.1
OVSegmentor 53.8 20.4 25.1
OVSegmentor ✓ 38.7 14.4 16.8
TCL 51.2 24.3 30.4
TCL ✓ 43.1 20.5 22.7
OVDiff 62.8 28.6 34.9
OVDiff ✓ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Grounded SAM, 68.5. This slightly improves results from 962
66.3 of our configuration with CutLER, but the performance 963
gain is not large and thus not critical. 964

Class prompts. We additionally consider whether correc- 965
tions introduced to class prompts might have similarly pro- 966
vided additional benefits to our approach (see Appendix C.3 967
for details). To that end, we also evaluate TCL and OVSeg- 968
menter (methods that do not rely on additional prompt cu- 969
ration) with our corrected prompts and consider a version 970
of our method without such corrections in Tab. A.3. We 971
observe only marginal to no impact on the performance. 972

Prompt template Finally, we consider the prompt tem- 973
plate employed when sampling support image set: “A good 974
picture of a ⟨ci⟩” for class prompt ci. This template 975
is generic and broadly applicable to virtually any natural 976
language specification of a target class. While prior work 977
adopts prompt expansion by considering a list of synonyms 978
and subcategories, it is not entirely clear how such a strat- 979
egy could be systematically performed for any in-the-wild 980
prompts, such as a “chocolate glazed donut”. We experiment 981
with a list of synonyms and subclasses, as employed by [48], 982
on VOC datasets measuring 66.4 mIoU, which is similar to 983
our single prompt performance 66.3 ± 0.2. Curating such 984
lists automatically is an interesting future scaling direction. 985

A.2. Additional ablations 986

Prototype combinations. In Tab. A.6, we consider the three 987
different types of prototypes described in Section 3 and test 988
their performance individually and in various combinations. 989
We find that the “part” prototypes obtained by K-means 990
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Table A.3. Using corrected prompts. We consider if corrected class
names benefit prior work. We observe negligible to no effect.

Model Correction VOC Context Object

OVSegmentor 53.8 20.4 25.1
OVSegmentor ✓ 53.9 20.4 25.1
TCL 51.2 24.3 30.4
TCL ✓ 50.6 24.3 30.4
OVDiff 66.1 29.5 34.9
OVDiff ✓ 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

Table A.4. Choice of K for number of centroids.

K VOC Context

8 63.8 29.2
16 64.0 29.3
32 64.4 29.4
64 64.3 28.0

Table A.5. Ablation of different SD feature configurations. Remov-
ing first and last cross attention layers, mid, 1st and 2nd upsampling
blocks (all layers in the block) has a negative effect.

1st Mid Up-1 Up-2 Last
layer block block block layer Context

✓ ✓ ✓ ✓ ✓ 29.4
✓ ✓ ✓ ✓ 29.4

✓ ✓ ✓ ✓ 29.2
✓ ✓ ✓ ✓ 27.3
✓ ✓ ✓ ✓ 28.9
✓ ✓ ✓ ✓ 29.3

Table A.6. Ablation of various configurations for prototypes. We
consider average P̄ , instance Pn, and part Pk prototypes individ-
ually and in various combinations on VOC and Context datasets.
Combination of all three types of prototypes shows strongest re-
sults.

P̄ Pn Pk VOC Context

✓ ✓ ✓ 64.4 29.4
✓ ✓ 61.7 29.3
✓ ✓ 63.5 29.4

✓ ✓ 62.5 28.4
✓ 63.7 28.8

✓ 60.0 29.0
✓ 62.5 28.4

clustering show strong performance when considered indi-991
vidually on VOC. Instance prototypes show strong individual992
performance on Context, as well as in combination with the993
average category prototype. The combination of all three994
types shows the strongest results across the two datasets,995
which is what we adopt in our main set of experiments.996

We also consider the treatment of prototypes under the997

stuff filter. We investigate the impact of not excluding back- 998
ground prototypes for “stuff" classes. In this setting, we 999
measure 29.1 on Context, which is a slight reduction in per- 1000
formance. We also investigate the benefit of categorisation 1001
into “things” and “stuff” used in the stuff filter component. 1002
Instead, we filter all background prototypes using all fore- 1003
ground prototypes. In this configuration, we measure 27.6 1004
on Context. Both configurations show a reduction from 29.4, 1005
measuring using the stuff filter with categorisation in “stuff” 1006
and “things”, as used in our main experiments. Finally, 1007
we experiment by removing part-level prototypes for “stuff” 1008
classes, which also results in a performance drop to 28.0. 1009

K - number of clusters. In Tab. A.4, we investigate the 1010
sensitivity of the method to the choice of K for the number 1011
of “part” prototypes extracted using K-means clustering. 1012
Although our setting K = 32 obtains slightly better results 1013
on Context and VOC, other values result in comparable 1014
segmentation performance suggesting that OVDiff is not 1015
sensitive to the choice of K and a range of values is viable. 1016

SD features. When using Stable Diffusion as a feature ex- 1017
tractor, we consider various combinations of layers/blocks 1018
in the UNet architecture. We follow the nomenclature used 1019
in the Stable Diffusion implementation where consecutive 1020
layers of Unet are organised into blocks. There are 3 down- 1021
sampling blocks with 2 cross-attention layers each, a mid- 1022
block with a single cross-attention, and 3 up-sampling blocks 1023
with 3 cross-attention layers each. We report our findings in 1024
Tab. A.5. Including the first and last cross-attention layers in 1025
the feature extraction process has a small positive impact on 1026
segmentation performance, which we attribute to the high 1027
feature resolution. We also consider excluding features from 1028
the middle block of the network due to small 8× 8 resolu- 1029
tion but observe a small negative impact on performance on 1030
the Context dataset. We also investigate whether including 1031
the first (Up-1) and the second upsampling (Up-2) blocks 1032
are necessary. Without them, the performance drops the 1033
most out of the configurations considered. Thus, we use a 1034
concatenation of features from the middle, first and second 1035
upsampling blocks and the first and last layers in our main 1036
experiments. 1037

A.3. Evaluation without background 1038

One of the notable advantages of our approach is the ability 1039
to represent background regions via (negative) prototypes, 1040
leading to improved segmentation performance. Neverthe- 1041
less, we hereby also evaluate our method under a differ- 1042
ent evaluation protocol adopted in prior work, which ex- 1043
cludes the background class from the evaluation. We note 1044
that prior work often requires additional considerations to 1045
handle background, such as thresholding. In this setting, 1046
however, the background class is not predicted, and the 1047
set of categories, thus, must be exhaustive. As in practice, 1048
this is not the case, and datasets contain unlabelled pixels 1049
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Figure A.1. Qualitative comparison on in-the-wild images. OVDiff performs significantly better than prior state-of-the-art, TCL, on wildlife
images containing multiple instances, studio photos with simple backgrounds, images containing multiple categories and an image containing
a rare instance of a class.

Table A.7. Comparison with methods when background is excluded
(decided by ground truth). OVDiff shows comparable performance
to prior works despite only relying on pretrained feature extractors.
∗ result from [9].

Method VOC-20 Context-59 ADE Stuff City

CLIPpy – – 13.5 – –
OVSegmentor – – 5.6 – –
GroupViT∗ 79.7 23.4 9.2 15.3 11.1
MaskCLIP∗ 74.9 26.4 9.8 16.4 12.6
ReCo∗ 57.5 22.3 11.2 14.8 21.1
TCL 77.5 30.3 14.9 19.6 23.1
OVDiff 80.9 32.9 14.1 20.3 23.4

(or simply a background label), such image areas are re-1050
moved from consideration. Consequently, less emphasis1051
is placed on object boundaries in this setting. As in this1052
setting the background prediction is invalid, we do not con-1053
sider negative prototypes. For this setting, we benchmark on1054
5 datasets following [9]: PascalVOC without background,1055
termed VOC-20, Pascal Context without background, termed1056
Context-59, and ADE20k [78], which contains 150 fore-1057
ground classes, termed ADE-150, COCO-Stuff, termed Stuff,1058
and Cityscapes, termed City. This setting tests the ability of1059
various methods to discriminate between different classes,1060
which for OVDiff is inherent to the choice of feature ex-1061
tractors. Despite this, our method shows competitive perfor-1062
mance accross wide range of benchmarks Tab. A.7.1063

A.4. Qualitative results 1064

We include additional qualitative results from the benchmark 1065
datasets in Fig. A.2. Our method achieves high-quality seg- 1066
mentation across all examples without any post-processing 1067
or refinement steps. In Fig. A.3, we show examples of sup- 1068
port images sampled for some things, and stuff categories. In 1069
Fig. C.5, we show examples of support set images sampled 1070
for rare pikachu class. 1071

B. Broader impact 1072

Semantic segmentation is a component in a vast and diverse 1073
spectrum of applications in healthcare, image processing, 1074
computer graphics, surveillance and more. As for any foun- 1075
dational technology, applications can be good or bad. OVD- 1076
iff is similarly widely applicable. It also makes it easier to 1077
use semantic segmentation in new applications by leverag- 1078
ing existing and new pre-trained models. This is a bonus 1079
for inclusivity, affordability, and, potentially, environmental 1080
impact (as it requires no additional training, which is usu- 1081
ally computationally intensive); however, these features also 1082
mean that it is easier for bad actors to use the technology. 1083

Because OVDiff does not require further training, it is 1084
more versatile but also inherits the weaknesses of the com- 1085
ponents it is built on. For example, it might contain the 1086
biases (e.g., gender bias) of its components, in particular 1087
Stable Diffusion [53], which is used for generating support 1088
images for any given category/description. Thus, it should 1089
not be exposed without further filtering and detection of, e.g., 1090
NSFW material in the sampled support set. Finally, OVDiff 1091
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Figure A.2. Additional qualitative results. Images from Pascal VOC (top), Pascal Context (middle), and COCO Object (bottom).

is also bound by the licenses of its components.1092

B.1. Limitations1093

As OVDiff relies on pretrained components, it inherits some1094
of their limitations. OVDiff works with the limited resolution1095

of feature extractors, due to which it might occasionally 1096
miss tiny objects. Furthermore, OVDiff cannot segment 1097
what the generator cannot generate. For example, current 1098
diffusion models struggle with producing legible text, which 1099
can make it difficult to segment specific words. Furthermore, 1100
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(a) boat (b) person

(c) sky (d) water

(e) light (f) parking meter

(g) mountain (h) horse

Figure A.3. Images sampled for a support set of some categories.

applications in domains far from the generator’s training data1101
(e.g. medical imaging) are unlikely to work out of the box.1102

C. OVDiff: Further details 1103

In this section, we provide additional details concerning the 1104
implementation of OVDiff. We begin with a brief overview 1105
of the attention mechanism and diffusion models central to 1106
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extracting features and sampling images. We review differ-1107
ent feature extractors used. We specify the hyperparameter1108
setting for all our experiments and provide an overview of1109
the exchange with ChatGPT used to categorise classes into1110
“thing” and “stuff”.1111

C.1. Preliminaries1112

Attention. In this work, we make use of pre-trained1113
ViT [16] networks as feature extractors, which repeatedly1114
apply multi-headed attention layers. In an attention layer,1115
input sequences X ∈ Rlx×d and Y ∈ Rly×d are linearly1116
project to forms keys, queries, and values: K = WkY, Q =1117
WqX, V = WvX . In self-attention, X = Y . Attention is1118
calculated as A = softmax( 1√

d
QK⊤), and softmax is ap-1119

plied along the sequence dimension ly . The layer outputs an1120
update Z = X +A ·V . ViTs use multiple heads, replicating1121
the above process in parallel with different projection matri-1122
ces Wk,Wq,Wv . In this work, we consider queries and keys1123
of attention layers as points where useful features that form1124
meaningful inner products can be extracted. As we detail1125
later (Appendix C.2), we use the keys from attention layers1126
of ViT feature extractors (DINO/MAE/CLIP), concatenating1127
multiple heads if present.1128

Text-to-image diffusion models. Diffusion models are a1129
class of generative models that form samples starting with1130
noise and gradually denoising it. We focus on latent diffusion1131
models [50] which operate in the latent space of an image1132
VAE [28] forming powerful conditional image generators.1133
During training, an image is encoded into VAE latent space,1134
forming a latent vector z0. A noise is injected forming1135
a sample zτ ∼ N (zτ ;

√
1− ατz0, ατI) for timestep τ ∈1136

{1 . . . T}, where ατ are variance values that define a noise1137
schedule such that the resulting zT is approximately unit1138
normal. A conditional UNet [51], ϵθ(zt, t, c), is trained to1139
predict the injected noise, minimising the mean squared error1140
Et (αt∥ϵθ(zt, t, c)− z0∥2) for some caption c and additional1141
constants at. The network forms new samples by reversing1142
the noise-injecting chain. Starting from ẑT ∼ N (ẑT ; 0, I),1143
one iterates ẑt−1 = 1√

1−αt
(ẑt+αtϵθ(ẑt, t, c))+

√
αtẑt until1144

ẑ0 is formed and decoded into image space using the VAE1145
decoder. The conditional UNet uses cross-attention layers1146
between image patches and language (CLIP) embeddings to1147
condition on text c and achieve text-to-image generation.1148

C.2. Feature extractors1149

OVDiff is buildable on top of any pre-trained feature extrac-1150
tor. In our experiments, we have considered several networks1151
as feature extractors with various self-supervised training1152
regimes:1153

• DINO [8] is a self-supervised method that trains networks1154
by exploring alignment between multiple views using an1155
exponential moving average teacher network. We use1156

the ViT-B/8 model pre-trained on ImageNet2 and extract 1157
features from the keys of the last attention layer. 1158

• MAE [22] is a self-supervised method that uses masked 1159
image inpainting as a learning objective, where a portion 1160
of image patches are dropped, and the network seeks to 1161
reconstruct the full input. We use the ViT-L/16 model 1162
pre-trained on ImageNet at a resolution of 448 [27].3 The 1163
keys of the last layer of the encoder network are used. No 1164
masking is performed. 1165

• CLIP [46] is trained using image-text pairs on an internal 1166
dataset WIT-400M. We use ViT-B/16 model4. We consider 1167
two locations to obtain dense features: keys from a self- 1168
attention layer of the image encoder and tokens which are 1169
the outputs of transformer layers. We find that keys of the 1170
second-to-last layer give better performance. 1171

• We also consider Stable Diffusion5 (v1.5) itself as a fea- 1172
ture extractor. To that end, we use the queries from the 1173
cross-attention layers in the UNet denoiser, which corre- 1174
spond to the image modality. Its UNet is organised into 1175
three downsampling blocks, a middle block, and three 1176
upsampling blocks. We observe that the middle layers 1177
have the most semantic content, so we consider the mid- 1178
dle block, 1st and 2nd upsampling blocks and aggregate 1179
features from all three cross-attention layers in each block. 1180
As the features are quite low in resolution, we include the 1181
first downsampling cross-attention layer and the last up- 1182
sampling cross-attention layer as well. The feature maps 1183
are bilinearly upsampled to resolution 64 × 64 and con- 1184
catenated. A noise appropriate for τ = 200 timesteps is 1185
added to the input. For feature extraction, we run SD in 1186
unconditional mode, supplying an empty string for text 1187
caption. 1188

Figure C.4. FG/BG segmenta-
tion of classes of water, snow
and grass. The foreground is
in red, while the background is
shown in blue.

Figure C.5. Example images
from the support set of a rare
pikachu class.

2Model and code available at https : / / github . com /
facebookresearch/dino.

3Model and code from https : / / github . com /
facebookresearch/long_seq_mae.

4Model and code from https://github.com/openai/CLIP.
5We use implementation from https : / / github . com /

huggingface/diffusers.
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C.3. Datasets1189

We evaluate on validation splits of PASCAL VOC (VOC),1190
Pascal Context (Context) and COCO-Object (Object)1191
datasets. PASCAL VOC [17, 18] has 21 classes: 20 fore-1192
ground plus a background class. For Pascal Context [42],1193
we use the common variant with 59 foreground classes and1194
1 background class. It contains both “things” and “stuff”1195
classes. The COCO-Object is a variant of COCO-Stuff [7]1196
with 80 “thing” classes and one class for the background.1197
Textual class names are used as natural language specifica-1198
tions of names. We renamed or specified certain class names1199
to fix errors (e.g. pottedplant → potted plant),1200
resolve ambiguity better (e.g. mouse → computer1201
mouse) or change to more common spelling/word (e.g.1202
aeroplane → airplane), resulting in 14 fixes. We1203
experiment and measure the impact of this in Appendix A.11204
for our and prior work.1205

C.4. Comparative baselines1206

We briefly review the prior work in used in our experi-1207
ments, mainly in Table 1. We consider baselines that do1208
not rely on mask annotations and have code and check-1209
points available or detail their evaluation protocol that1210
matches that used in other prior works [9, 70, 71].Most1211
prior work [9, 35, 37, 49, 70, 71] trains image and text1212
encoders on large image-text datasets with a contrastive1213
loss. The methods mainly differ in their architecture and1214
use of grouping mechanisms to ground image-level text on1215
regions. ViL-Seg [35] uses online clustering, GroupViT [70]1216
and ViewCo [49] employ group tokens. OVSegmentor [71]1217
uses slot-attention and SegCLIP [37] a grouping mecha-1218
nism with learnable centers. CLIPPy [48], TCL [9], and1219
MaskCLIP [79] predict classes for each image patch: [48]1220
use max-pooling aggregation, [9] self-masking, and [79]1221
modify CLIP for dense predictions. To assign a background1222
label [9, 35, 37, 49, 70] use thresholding while [48] uses1223
dataset-specific prompts. CLIP-DIY [68] leverages CLIP1224
as a zero-shot classifier and applies it on multiple scales to1225
form a dense segmentation. ReCO [56] is closer in spirit to1226
our approach as it uses a support set for each prompt; this set,1227
however, is CLIP-retrieved from curated image collections,1228
which may not be applicable for any category in-the-wild.1229

We also note that prior work builds on top of similar1230
pre-trained components such as CLIP in [9, 37, 56, 79],1231
OpenCLIP in [68], DINO + T5/RoBERTa in [48, 71]. We1232
additionally make use of StableDiffusion, which is trained1233
on a larger dataset (3B, compared to 400M of CLIP or 2B or1234
OpenCLIP). OVDiff is, however, fundamentally different to1235
all prior work, as (a) it generates a support set of synthetic1236
images given a class description, and (b) it does not rely on1237
additional training data and further training for learning to1238
segment.1239

C.5. Hyperparameters 1240

OVDiff has relatively few hyperparameters and we use the 1241
same set in all experiments. Unless otherwise specified, 1242
N = 32 images are sampled using classifier-free guid- 1243
ance scale [25] of 8.0 and 30 denoising steps. We employ 1244
DPM-Solver scheduler [36]. When sampling images for 1245
the support sets, we also use a negative prompt “text, low 1246
quality, blurry, cartoon, meme, low resolution, bad, poor, 1247
faded". If/when segmenter Γ fails to extract any components 1248
in a sampled image, a fallback of adaptive thresholding of 1249
An is used, following [34]. During inference, we set η = 10, 1250
which results in 1024 text prompts processed in parallel, a 1251
choice made mainly due to computational constraints. We 1252
set the thresholds for the “stuff” filter between background 1253
prototypes for “things” classes and the foreground of “stuff” 1254
at 0.85 for all feature extractors. When sampling, a seed 1255
is set for each category individually to aid reproducibility. 1256
With our unoptimized implementation, we measure around 1257
110±10s to calculate prototypes (sample images, extract fea- 1258
tures and aggregate) for a single category or 50.2±2s without 1259
clustering using SD. Using CLIP, we measure 49.2± 0.2s 1260
with clustering and 47.7± 0.2s without. We note that sam- 1261
pling time grows linearly: we measure 55s for 16, 110s for 1262
32, and 213s for 64 images per class. The prototype storage 1263
requirements are 0.39MB using CLIP/DINO for each class. 1264

We additionally measure the speed of inference at 0.6s 1265
per image, which is slightly slower but comparable to 0.2s 1266
for TCL and 0.08s for OVSegmentor. We performed infer- 1267
ence measurements using SD on the same machine with a 1268
2080Ti GPU using 21 classes and the same resolution/sliding 1269
window settings for all methods. 1270

C.6. Interaction with ChatGPT 1271

We interact with ChatGPT to categorise classes into “stuff” 1272
and “things” for the stuff filter component. Due to input lim- 1273
its, the categories are processed in blocks. Specifically, we 1274
input “In semantic segmentation, there are "stuff" or "thing" 1275
classes. Please indicate whether the following class prompts 1276
should be considered "stuff" or "things":”. We show the out- 1277
put in Tab. C.8. Note there are several errors in the response, 1278
e.g. glass, blanket, and trade name are actually in- 1279
stances of tableware, bedding and signage, respectively, so 1280
should more appropriately be treated as “things”. Similarly, 1281
land and sand might be more appropriately handled as 1282
“stuff”, same as snow and ground. Despite this, We find 1283
ChatGPT contains sufficient knowledge when prompted with 1284
"in semantic segmentation". We have estimated the accuracy 1285
of ChatGPT in thing/stuff classification using the categories 1286
of COCO-Stuff, which are defined as 80 "things" and 91 1287
"stuff" categories. ChatGPT achieves an accuracy rate of 1288
88.9% in this case. We also measure the impact the potential 1289
errors have on our performance by providing “oracle" an- 1290
swers on the Context dataset. We measure 29.6 mIoU, which 1291
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Table C.8. Response from interaction with ChatGPT. We used
ChatGPT model to automatically categorise classes in “stuff” or
“things”.

airplane: thing window: thing awning: thing
bag: thing wood: stuff streetlight: thing
bed: thing windowpane: thing booth: thing
bedclothes: stuff earth: thing television receiver: thing
bench: thing painting: thing dirt track: thing
bicycle: thing shelf: thing apparel: thing
bird: thing house: thing pole: thing
boat: thing sea: thing land: thing
book: thing mirror: thing bannister: thing
bottle: thing rug: thing escalator: thing
building: thing field: thing ottoman: thing
bus: thing armchair: thing buffet: thing
cabinet: thing seat: thing poster: thing
car: thing desk: thing stage: thing
cat: thing wardrobe: thing van: thing
ceiling: stuff lamp: thing ship: thing
chair: thing bathtub: thing fountain: thing
cloth: stuff railing: thing conveyer belt: thing
computer: thing cushion: thing canopy: thing
cow: thing base: thing washer: thing
cup: thing box: thing plaything: thing
curtain: stuff column: thing swimming pool: thing
dog: thing signboard: thing stool: thing
door: thing chest of drawers:thing barrel: thing
fence: stuff counter: thing basket: thing
floor: stuff sand: thing waterfall: thing
flower: thing sink: thing tent: thing
food: thing skyscraper: thing minibike: thing
grass: stuff fireplace: thing cradle: thing
ground: stuff refrigerator: thing oven: thing
horse: thing grandstand: thing ball: thing
keyboard: thing path: thing step: stuff
light: thing stairs: thing tank: thing
motorbike: thing runway: thing trade name: stuff
mountain: stuff case: thing microwave: thing
mouse: thing pool table: thing pot: thing
person: thing pillow: thing animal: thing
plate: thing screen door: thing lake: stuff
platform: stuff stairway: thing dishwasher: thing
plant: thing river: thing screen: thing
road: stuff bridge: thing blanket: stuff
rock: stuff bookcase: thing sculpture: thing
sheep: thing blind: thing hood: thing
shelves: thing coffee table: thing sconce: thing
sidewalk: stuff toilet: thing vase: thing
sign: thing hill: thing traffic light: thing
sky: stuff countertop: thing tray: stuff
snow: stuff stove: thing ashcan: thing
sofa: thing palm: thing fan: thing
table: thing kitchen island: thing pier: thing
track: stuff swivel chair: thing crt screen: thing
train: thing bar: thing bulletin board: thing
tree: thing arcade machine: thing shower: thing
truck: thing hovel: thing radiator: thing
monitor: thing towel: thing glass: stuff
wall: stuff tower: thing clock: thing
water: stuff chandelier: thing flag: thing

is similar to 29.7±0.3 of using ChatGPT, showing that small1292
errors do not drastically affect the method, however, enable1293
using “stuff" filter component, which improves performance1294
(see Table 3).1295
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