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ABSTRACT

Learning to Optimize (L2O) enhances optimization efficiency with integrated neu-
ral networks. L2O paradigms achieve great outcomes, e.g., refitting optimizer,
generating unseen solutions iteratively or directly. However, conventional L2O
methods require intricate design and rely on real optimization processes and nu-
merical optimization results, limiting scalability and generalization. Our analyses
explore general framework for learning optimization, called Diff-L2O, focusing on
augmenting sampled solutions from a wider view rather than local updates in real
optimization process only. Meanwhile, we give the related generalization bound,
showing that the sample diversity of Diff-L2O brings better performance. This
bound can be simply applied to other fields, discussing diversity, mean-variance,
and different tasks. Diff-L2O’s strong compatibility is empirically verified with
only minute-level training, comparing with other hour-levels.

1 INTRODUCTION
Optimization Iterations

Limited

Approximation

Error

ODE

Unlimited but single
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Trajectories
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Figure 1: Diff-L2O’s intuitions: wider views and better
sampling diversity on solution spaces.

Learning to optimize (L2O) (Chen et al.,
2017; 2022b; Metz et al., 2022; Li & Malik,
2016) aims to improve the efficiency of op-
timization algorithms by refitting optimiza-
tion algorithms with (machine) learning.
Learning optimization algorithms involved
in iteration, it has significant advantages in
accelerating optimization algorithms (Chen
et al., 2022a; Xie et al., 2024; Zheng et al.,
2022; Cao et al., 2019).

Popular L2O algorithms with great performance are usually composed of the following paradigms.
1) Learning the settings of the optimizer so as to (Xie et al., 2024) find a set of settings that make the
optimizer search the solution space faster and more stable; 2) using a generator to guide the model
iteration, e.g., iterating the model step by step with the inference of a sequence model (Chen et al.,
2017); 3) modeling the parameter space directly and generating the parameters of the model in a
better way (Gartner et al., 2023).

However, L2O methods require delicate design and tuning, depending on real optimization processes.
These paradigms 1) do not directly model the optimization process in general but each point on
trajectories or 2) rely on the real optimization process of specific types of optimizers. These facts
limit L2O scaling up (Metz et al., 2022), and loss the advantage of the generalization capabilities
brought by machine learning. Ours below helps solving potentially unknown optimization problems
w/o sophisticated designs.

Corresponding to the two aforementioned points respectively, discussion is about 1) the feasibility
of unified modeling (Attouch et al., 2019) for the vast majority of optimization algorithms, and the
corresponding optimizers, by means of unified modeling (Xie et al., 2024); 2) propose a optimization
with wider views, i.e., find a range to the solution, rather than finding a locally best update direction.
We explore the generalization performance under this unified modeling and give the generalization
bound. We brief the main analyses that augmentation with diffusion improves generalization of the
modeled solutions.

1
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Empirically, the proposed Diff-L2O demonstrates adaptability to quickly obtain initial points and
further speed-up optimization for classic optimizers. Only second-level training time cost are needed
for Diff-L2O, comparing with other hour-level methods. It also works on deep neural networks.1 The
contributions of this work are as follows:

• We propose a fast method for solving optimization problems using diffusion models while
combining artificial and real data with guidance information.

• We analyze the key factors that can be used to model the solution space with generative
models, as well as general formulation, and related generalization bound.

• Experiments using diffusion models to model the solution space, thus accelerating optimiza-
tion, have yielded impressive results with the proposed Diff-L2O.

2 METHODOLOGY

2.1 PRELIMINARY

Optimization’s general trajectory formulation. The dynamics of optimization methods, Inertial
System of Hessian-driven Damping (Attouch et al., 2019) (ISHD), can be represented as:

ẍ+
α

t
ẋ+ β∇2f(x)ẋ+ γ∇f(x) = 0, (1)

where∇ and∇2 are the gradient and Hessian operations respectively, ẋ and ẍ are the first and second
ordered derivatives of x on time t, and, α, β and γ are hyperparameters on t (which abbreviates
αt, βt, γt) that determine the trajectories of the optimization algorithms.

In L2O cases, we want to learn the solution space of the problem minx f(x). The model is actually
approximating the ODE (i.e., the α, β and γ).

Discretization. Euler discretization is an efficient and commonly used discretization method. It is
primarily affected by non-linear sampling scenarios. In such cases, the rugged and unknown real
optimization surface limits the possibility of further acceleration Xie et al. (2024); Schuetz et al.
(2022) and can easily lead unstable results.

Stochastic optimization’s dynamics. The dynamics in Equ. 1 is the general ODE of the most
gradient-based optimization trajectories. However, more practical dynamics are stochastic ones,
which can be represented by stochastic differential equations (SDE, Ito formula of Wiener process)
dx̃ = udt+ vdw, where w is the Brownian motion, u and v are the functions on t determining the
types, which abbreviates ut and vt.

Diffusion process. The aforementioned classic formulation of a diffusion process is not enough since
due to direct expression of different common stochastic processes. So we have the following more
specific ones. In a more general case, we reformulate it into the following one.

dx̃ = x̃ṡ/sdt+ s
√
σ̇σdw, x̃ = sx̃0 + sσϵ, ϵ ∼ N (0, I), (2)

where σ and s abbreviates σt and st, x̃t is the stochastic process with given x̃0 as initial point.

2.2 DISCUSSION: MODELING SOLUTIONS IS FEASIBLE

We give an intuitive discussion in this section. See Sec. 2.3 for more details.

Takeaways. Our discussion is summarized below.
1) Optimization process’s meta features do provide information for solution space modeling;
2) The data from the real optimization process is helpful, but it is still not enough.

Case: overparameterization. We know that optimization algorithms have their own implicit biases
(or regularization) (Gunasekar et al., 2018a), when the case goes with overparameterization, e.g.
small norms, sparse solutions, flat (stable) solutions, small gradients, and maximum margin.

The implicit biases (Dauber et al., 2020; Soudry et al., 2018; Gunasekar et al., 2018b) depend on the
problem formulation and the optimization algorithm. which means that the optimization formulation

1Results on DNN are in the Appendix.
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and algorithm is informative to the expected results. Linear regression, for example, tends to a
min-norm solution with the gradient descent optimizer.

Case: underparameterization. The implicit biases within under-parameter classical problems (Bow-
man & Montúfar, 2022) can be reduced into subspaces. For example, linear regression can be
full-ranked on subspaces, maintaining the similar solution spaces with the form of implicit bias.

Case: low performance. Moreover, low performance in the under-parameterized case would not
be directly related to the feasibility of solution spaces being modeled. It would make the surface
more mundane and some SDEs more chaotic. Performance is low, yet the parameter space is easy to
approximate, because the prediction only needs to be noise, given the targeted chaotic SDE.

Thus, the optimizer, the optimizee (i.e. problem itself), and other meta-features are all informative.

Closest doesn’t mean best. Different implicit biases imply different probability distributions
of solutions. Unexplored implicit biases could bring better solutions within the solution space.
The closest approximations to the trained solutions or the converged SDEs are thus not the best.
Decoupling dependency on real optimization trajectories is a greater potential for generalization.

The closest is yet informative. Well-fit-SDE models can still tell us a lot. For example, in the case
where mode connectivity (Garipov et al., 2018) is considered, the terminal phases of the optimization
SDEs do not exactly converge, but rather swim around within a connected region toward the similar-
performance region that meets the implicit bias.

We conclude that effective parameter space modeling is diverse and trajectory-guided.

2.3 DIFF-L2O: HOW TO MODEL SOLUTIONS

According to the discussion, our approach focuses on using 1) trajectories from the optimization
process as guidance, and 2) both real and artificial SDE to ensure validity and exploration.

Artificial trajectories: diffusion process. Random noise is introduced to explore more potential
solutions near optimization trajectories. These potential solutions should follow real SDE to make
full use of the real optimization. These trajectories start from suboptimal solutions, with smooth
connections between them, thereby exploring potential solutions in the surrounding area.

Table 1: The ingredients of SDEs.
SDEs VP VE EDM

s exp{− 1
4
∆βt

2 − 1
2
β0t} 1 1

σ2 exp{ 1
2
∆βt

2 + β0t} − 1 t t2

ṡ − σσ̇

(1+σ2)3/2
0 0

σ̇
(1+σ2)(∆βt+β0)

2σ
1 2t

▷ β0 and ∆β are pre-defined parameters.

The diffusion process is simulated according to the current
big-hit diffusion models. The diffusion processes’ general
forms are shown in Equ. 2 and specialized in Tab. 1, includ-
ing DDPM (VP-SDE) (Ho et al., 2020), VE-SDE (Song
et al., 2021) and EDM(Karras et al., 2022).

Discretization and sampling. We use the simple and
efficient Euler sampler. The SDE is isotropic diffusion
using DDPM (VP-SDE) (Ho et al., 2020; Song et al.,
2021). The sampling algorithm are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 Forward Scheduling
Inputs: The starting point of the forward trajec-
tory x̃0, and a coefficient list [ᾱ0, . . . , ᾱT]

for t = 1, 2, . . . , T do
x̃t ← N (

√
ᾱtx̃0, (1− ᾱt)I)

end for
Output: [x0,x1, . . . ,xT]

Algorithm 2 Backward Sampling
Inputs: A standard Gaussian noise x̂T ∼
N (0, I), and a guidance vector g.

for t = T, T− 1, . . . , 1 do
t← TE(t)
x̂t−1 ← opt(concat(x̂t, g, t))

end for
Output: x̂0

Training: Diff-L2O. Since our approach is Euler sampling on VP-SDE, we use ϵ-parameterization to
train our diffusion model, according to DDPM. However, DDPM does not consider how the solution
behaves in the optimization process, only whether it is aligned well with white noise.

Our approach uses the aforementioned guidance (e.g., quantities in the processes, optimization
meta-features). These help the parameter space modeled to be embedded with meta-information

3
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about optimization. This brings greater generalizability. Meanwhile, we add the loss of the current
solutions on the optimization objective as a metric that is integrated uniformly into the probabilistic
modeling of the generated model (Algorihtm 3).

Algorithm 3 Diff-L2O Training
Inputs: Initial point x̂T ∼ N (0, I), guidance vec-
tor g, the optimizee’s parameter θ, the forward
trajectory {x̃0, x̃1, . . . , x̃T}, loss coefficient α

for t = T, T− 1, . . . , 1 do
t← TE(t)
x̂t−1 ← opt(concat(x̂t, g, t))
L1 ← f(θ, x̂t−1)
L2 ← MSE(x̃t−1, x̂t−1)
L ← αL1 + (1− α)L2

Update opt by minimizing L
end for

Generalization analyses. Diff-L2O augments
the diversity of the samples and hence works
better. The relevant theorem on our setting is
from the perspective of PAC-Bayesian.

The generalization gap is defined as:
∆(x̂) := ∆(f̂S , f̂D), where f̂· abbr. f(x̂; ·) :=

Ed∼·f(x̂; d)}. f̂· and f· are the problems’
expectation values of x̂ and x on probability
from approximated model q or the real solution
space distribution (w.r.t., min for simplification),
D and S are the population (test) and samples
(train), i.e., ground truth and sampled solutions
in L2O. ∆ abbr. distance ∆(x̂).

This differs the previous PAC-Bayesian bounds in the artificial samples’ distribution and x̂t ∼ qt(g)
obtained from a stochastic process of guidance g, e.g., meta-features. The time t and condition g are
omitted for simplicity below.
Theorem 2.1. (General PAC-Bayesian on stochastic solution space.) In this general theorem, ∆
requires only a non-negative general convex distance, and we do not restrict the optimization objective
to the downstream tasks. With a initial prior process p, ∀q (posterior) w/ n #samples, we have the
following bound at least 1− δ probability:

∆ ≤1−δ
1

n
{KL(q||p) + log

M
δ
}, ∀time t

whereM := Eh∼p exp{n∆(h)} is related to the optimization task, including the distance between
population and the training set.

Proof. With given probability 1− δ (w.h.p.), we have ∆(f̂S , f̂D) ≤ ϵδ(n). As our problem is defined
as min for simplification, we focus on the upper bound here.

From the expectation extended objectives: f̂D = Ex̂∼q∆ and f̂S = Ex̂∼qf(x̂;S), we decouple a
prior p from modeled distribution q with Jensen inequality, logEh∼p exp{n∆(h)} ≥ n∆−KL(q||p).
With Markov inequality, introducing probability 1-δ, ∆ ≤ 1

n{KL(q||p) + log M
δ }, w.h.p., where

M := Eh∼p exp{n∆(h)} is independent of q. It should be discussed in different optimization
objectives and downstream tasks. The all do not depend on time t here.

General generalization upper bounds are time-independent, and next we discuss specific SDE
modeling processes that are time-dependent, and their relationship to tasks.

Corollary 2.2. (Diff-L2O: Gaussian.) When p ∼ N (µ,Σ), q ∼ N (µ̂, Σ̂), the KL-divergence is

KL(q||p) := 1

2
{log |Σ|

|Σ̂|
− k + ||µ̂− µ||2Σ + tr(Σ−1Σ̂)}.

In Diff-L2O, the Gaussian is isotropic, and initial prior p ∼ N (
√
ᾱtx, (1− ᾱt)I), x ∼ D. We can

further format the bound as

∆ ≤1−δ
1

n
{k log(1− ᾱt)− log |Σ̂| − k + ||µ̂− µ||22 +

tr(Σ̂)

(1− ᾱ)
+ log

M
δ
}, where k = dim x.

Corollary 2.3. (Diff-L2O: Classification tasks.) Generalizing over the classification task, we define
f̂D and f̂S by considering the prediction error rate of the modeling probability q on the test and
training sets, and use the difference between the two as the distance ∆.

If the error rate is m/n (m misclassified samples among n samples), we have the probability:

PS̃∼D(f̂S = m/n) = Bio(m;n, f̂D), ∀m,

4
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where S̃ is a set of m independent samples. We have:

M = sup
P∈[0,1]

[

n∑
m=0

Bio(m;n,P) exp{n∆(m/n,P)}]

Thus, we have the following bound, when Diff-L2O is applied to general classification tasks or other
tasks that can be reduced into classification.

∆ ≤1−δ
k

n
[log(1− ᾱt)− 1]︸ ︷︷ ︸

diversity ↑

+
||µ̂− µ||22

n︸ ︷︷ ︸
about bias ↓

− log |Σ̂|
n

+
tr(Σ̂)

n(1− ᾱ)︸ ︷︷ ︸
about variance ↓

+ log
1

δ
( sup
P∈[0,1]

[

n∑
m=0

Bio(m;n,P) exp{n∆(m/n,P)}])}︸ ︷︷ ︸
about task(i.e., the optimizee)

.

Takeaways. From the bound, we know that:

• For any stochastic process at any time t, is a Gaussian distribution, the solution’s dimension
k have to grow linearly with the sample size n.

• A larger sample size n reduces the generalization gap, i.e., sum of bias and variance. At a
certain overall loss (e.g., the terminal phase of training), there is a classical bias-variance
trade-off.

• The ability to generalize is also related to the kind of downstream task, with specific effects
M. As in the above example,M usually takes supremum for further concentration.

Theorem expansion. Here we use the general distribution assumption for the stochastic process.
Markov inequality in the proof can be replaced with different assumptions, e.g., using Hoeffding
inequality for the sub-Gaussian, Bernstein inequality for the sub-exponential.

bound modifications w.r.t. ∆(a, b) on the left-hand side

a log a
b
+ (1− a) log 1−a

1−b
≤ 1

n
[KL(q||p) + + log

√
2n
δ

]

(b− a)2 ≤ 1
2n

[KL(q||p) + log
√

2n
δ

]

b− a ≤ 1
λ
[KL(q||p)− log(δ) + λ

n
(b− a)]

Table 2: Specialization: varied distance function ∆.

Theorem specialization. Given different as-
sumptions and tasks w.r.t.M and ∆, we have
the Table 2. Previous works are related in or-
der (Langford & Seeger, 2001; McAllester,
1998; Alquier & Guedj, 2018).

2.4 ADD-ON: OPTIMAL-FREE AND DIMENSION-FREE

Algorithm 4 Alternative oracle: optimal generator

for given #epochs do
x0 ← oracle(g)
Lpre ← f(θ, x0)
Update oracle by minimizing Lpre
Generate the forward trajectory starting from

x0: {x̃0, x̃1, . . . , x̃T}
Train opt using Algorithm 3 for one epoch
Lpost = MSE(x0, x̂0)

Update oracle by minimizing Lpost
end for

oracle is a neural network to generate
initial points. It learns from the subopti-
mal solutions, and training from scratch is
avoided. An element-wise variant for dy-
namic dimension k = dimx is provided in
the Appendix.

3 EMPIRICAL EVALUATION

3.1 OVERVIEW

Numerical evaluations are built on conven-
tional optimization problems, including con-
vex and non-convex cases. Diff-L2O is applicable on the parameter solution space of the neural
network. Summary: 1) Diff-L2O improves the conventional optimizers well; 2) vanilla Diff-L2O
also works well on non-convex problems.

3.2 SETTINGS

Compared baselines. We compare various analytical optimizers (Gradient Descent and
Adam (Kingma & Ba, 2014)) and learned optimizers (L2O-DM (Andrychowicz et al., 2016) and
L2O-RNNProp (Lv et al., 2017)). For learned optimizers, we train them on the same set of samples.

5
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Figure 2: Comparison on optimizees across
#dimension: LASSO, Rastrigin and Ackley.
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Figure 3: Ablation: compatibility of Diff-L2O
with conventional optimizers.

Training hyperparameters. The maximum step T is set to 100 when training opt. #Diffusion
steps for inference is 100. The coefficient for variance scheduling range from 1× 10−5 to 2× 10−2,
linearly increasing along t. The coefficient γ for loss balancing is set to 0.5 as default.

Optimizees’ hyperparameters. Diff-L2O is evaluated on three representative optimization problems
with varied complexities and characteristics. For all optimizees, training and testing samples are
independently drawn from a standard Gaussian distribution N (0, I). For example, in LASSO, A and
b are sampled from standard Gaussian, simplified as θ.

xLASSO = argmin
x

1

2
∥Ax− b∥22 + λ∥x∥1 (3)

Other formulations of classic problems about Rastrigin and Ackley are in Appendix.

▷ LASSO Two problem scales is related: a low-dimensional setting with design matrix A ∈ R5×10

and a medium-dimensional setting with A ∈ R25×50. The ℓ1 regularization coefficient is fixed at
λ = 0.005 for both configurations.

▷ Rastrigin We investigate both low-dimensional (d = 2) and high-dimensional (d = 10) scenarios.
The amplitude of the modulation term is set to α = 10, which controls the intensity of local minima.
It’s non-convex.

▷ Ackley Similar to the Rastrigin function, we examine the optimization performance in both
low-dimensional (d = 2) and high-dimensional (d = 10) spaces. It’s non-convex.

3.3 COMPARISON

LASSO. We first conduct experiments on the LASSO optimizees and compare the performance on
unseen optimizee problems. The experimental results are summarized in Figure 2. We can observe
that Diff-L2O converge faster compared to other baselines, achieving near-convergence range with
less than ten steps. In the absence of gradient information, Diff-L2O converges to the wall of the

6
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LASSO convex valley. This issue can be easily resolved by combining Diff-L2O and analytical
optimizers to achieve more accurate solutions.

Rastrigin. In Rastrigin tasks, our method has demonstrated faster convergence speed and also similar
or higher quality compared to baselines. Specifically, Diff-L2O achieves a loss objective of 44.09
within 10 steps, while the most competitive baseline, i.e. RNNProp, can only achieve a loss of
56.68 in 100 steps. Such an advantage is enlarged in higher-dimensional cases of the variables
as baselines suffer from the curse of dimensionality, while our method performs consistently for
different dimensions.

Ackley. On the Ackley tasks, Diff-L2O also out-performs existing baseline methods with clear
margins: in 2-dimensional case, Diff-L2O achieves a loss objective of 3.15 within 10 steps, compared
to the most competitive baseline, i.e. RNNProp, which can only achieve a loss of 4.48 in 10 steps.
In 10-dimensional case, Diff-L2O achieves a loss objective of 5.37 within 10 steps, while the most
competitive baseline can only achieve a loss of 6.08 in 100 steps. Analytical optimizers such as Adam
outperform all L2O methods due to the moderate difficulty of Ackley problems.

MNIST on DNN. We evaluate the classification performance of Diff-L2O on MNIST. In Figure 7
(Appendix), and it achieved a loss of 0.228 and accuracy of 92.06% on test set, which outperform
RNNProp that achieves a loss of 0.268 and accuracy of 90.28, and L2O-DM with a loss of 0.252 and
accuracy of 90.79 on the same test set. Detailed settings are in Appendix.

3.4 ABLATION

Ablation: compatibility with conventional optimizers. Diff-L2O works well when adapted to other
methods. The stochastic nature of diffusion models enables rapid initial convergence but may slow in
later stages, which is particularly disadvantageous for convex problems. This motivates our hybrid
approach: the diffusion model starts for initialization and traditional optimizers follow. Our results
show hybrid strategy consistently outperforms others on both convex and non-convex cases.

Settings. We evaluate all optimizees on the same test set as the comparison experiments. Our hybrid
optimization consists of two phases: an initial exploration phase utilizing our diffusion-based model
for the first 50 iterations, followed by a fine-grained fine-tuning phase with the Adam optimizer.

Analyses. Fig. 2 and 3 show that, in the comparison experiment’ convex case, the performance using
a vanilla Diff-L2O can be improved by using a combination of conventional optimizers. Diff-L2O
can be used to quickly generate foundational solutions with a small amount of fine-tuning to reach
the optimal.

Ablation: optimal-free. The training of diffusion models requires solving numerous optimization
problems of the same optimizee family, which inherently limits the model’s generalizability. The
oracle component offers a potential solution to this limitation. Therefore, we conduct an ablation
study to analyze how different oracle configurations impact the model’s performance.

Table 3: Log loss with varied oracles.
variants LASSO Rastrigin Ackley

noisy -1.306 1.727 1.301
fixed -1.427 1.657 1.281

partial -1.456 1.627 1.257
perfect -1.676 1.532 0.936
Ours -1.660 1.601 1.233

Settings. We conduct a series of experiments to understand
the effects of introduced components: (1) Noisy: we replace
oracle with a module that generates random noises; (2)
Fixed: we do not update the oracle network; (3) Partial, we
update the oracle network with Lpre only; and (4) Perfect:
oracle output always the optimal solutions.

Analyses. According to Tab. 3, In Noisy case, we find that
random initialization with poor performance. It show us that initialization strategy is necessary, even
a fixed pre-trained network. Loss term Lpre, lowering task loss, helps by making better initial points.
The benefits, however, are increased gradually comparing to perfect cases. Loss term Lpost, closing
backward and forward processes, shows the importance of samples with great diversity. All these
modules lead DIff-L2O’s performance closer to the perfect cases (starting at the optimal).

Ablation: guidance. In this part, the guidance vector g can be time step t dependent, and we denote
it by gt. In practice, gt is a crucial component in Diff-L2O. For convex problems like LASSO,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

incorporating gradient information in the guidance vector can significantly improve the convergence
speed and accuracy. However, in non-convex problems such as Rastrigin, the gradient can potentially
be a source of noise that guides the solutions to local minima.

Table 4: Log loss with different guidance vector.

variants
LASSO LASSO Rastrigin Rastrigin
(t=10) (t=100) (t=10) (t=100)

gradient -3.161 -4.011 3.064 2.738
global -1.674 -1.673 1.532 1.532

all -3.153 -3.938 1.618 1.643

Settings. we conducted experiments on LASSO
and Rastrigin optimizees using three types of guid-
ance vectors: (1) Gradient, where only the gradient
is considered as the guidance vector; (2) Global,
where the optimizees’ parameters θ are used as the
guidance vector; and (3) All, where the guidance
vector consists of both gradient and θ.

Table 5: Time costs of L2O-DM and Diff-L2O.
optimizees L2O-DM Diff-L2O

LASSO (5-dim) ∼ 4 hours 203 s
LASSO (25-dim) ∼ 6 hours 376 s
Rastrigin (2-dim) ∼ 2 hours 310 s

Rastrigin (10-dim) ∼ 2 hours 393 s
Ackley (2-dim) ∼ 3 hours 309 s
Ackley (10-dim) ∼ 3 hours 543 s

Analyses. In 1) convex cases, as shown in Tbl. 4,
the gradient largely guides whether the current
point is optimal or not and contains useful local in-
formation. The gradient-only cases are dominated
by the first-order information, and thus got a log
loss value of -3.161 and -4.011 from -3.153 and
-3.938. 2) The convergence in non-convex cases
is not strictly determined by the gradient, but gra-
dients at samples are still helpful. The result of
1.618 from t = 10 converges quickly compared to
1.643 from t = 100, and the sampling has not converged in gradient case with a gap of 0.326.
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Figure 4: Visualization: learning surface. Fast
convergence happens within several epochs.

Evaluation: training time. Table 5
demonstrates the training time of L2O-
DM (Andrychowicz et al., 2016) and our
method. It can be clearly seen that the Diff-
L2O can be trained rapidly, using merely 2% of
time compared to L2O algorithms. This rapid
training makes our model practical.

Settings. The experiments’s default settings
are on GPU 1×NVIDIA-A100 and CPU AMD
EPYC 7H12 64-Core. #iterations is 100.

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

0.2

0.4

0.6
learned distribution
true distribution

Figure 5: Visualization of the learned and the
ground-truth distribution (true). The distributions
are generally matched.

Visualization: trajectories. We demonstrate
that Diff-L2O rapidly approaches the vicinity
of optimal solutions in the early stages, notably
within the first iteration. Settings. We set the
dimension for all optimizees (LASSO, Rstrigin,
Ackley) to 2 with other hyperparameters the
same.

Analyses. Even in the non-convex case, Rast-
rigin, the learned descent trajectory of the op-
timizer reaches the area around the global opti-
mum in almost the starting iterations.

Visualization: modeled distribution. Settings.
The dimension of all optimizees are set to 2 and
other hyperparameters keep unchanged. The
learned and true distributions mean Diff-L2O in
default setting and gradient descent, respectively,
with 5000 initial points.

Analyses. The learned distribution and the dis-
tribution gotten from conventional optimizer are
matched generally. The diversity of learned distribution are greater.
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4 RELATED WORKS

Learning to optimize (L2O). L2O is an alternative optimization paradigm that aims to learn effective
optimization rules in a data-driven way. It generates optimization rules based on the performance on
a set of training problems. it has demonstrated success on a wide range of tasks, including black-box
optimization (Chen et al., 2017; Krishnamoorthy et al., 2023), Bayesian optimization (Cao et al.,
2019), minimax optimization (Shen et al., 2021; Jiang et al., 2018) and domain adaptation (Chen
et al., 2020; Li et al., 2020). More recently, L2O has demonstrated its ability of solving large-scale
problems (Metz et al., 2022; Chen et al., 2022b), making it more practical for broader applications,
e.g., conditional generation (Wang et al., 2024; 2025; Liang et al., 2025).

The architectures of the learnable optimizer for L2O works have undergone great evaluation. In the
seminal work of Andrychowicz et al. (2016), a coordinate-wise long-short-term memory (LSTM)
network Hochreiter & Schmidhuber (1997) is adopted as the backbone, which can capture the inter-
parameter dependencies with low computational overhead. Subsequently, while some works (Vicol
et al., 2021) have utilized multi-layer perceptions (MLPs) for learnable optimization, a large portion
of L2O works have adopted the recurrent neural networks (RNNs) Rumelhart et al. (1986) as the
architecture of their learnable optimizer (Chen et al., 2021). For example, Shen et al. (2021) proposes
to use two LSTM networks to solve min-max optimization problems. Cao et al. (2019) deploys
multiple LSTM networks to tackle population-based problems. Later on, researchers have explored
the possibility of using Transformers (Vaswani et al., 2017) as learnable optimizers. Chen et al.
(2022c) proposes to use Transformer as a tool for hyperparameter optimization. Jain et al. (2023);
Gärtner et al. (2023) propose L2O frameworks that apply Transformers to solve general optimization
problem and achieves faster convergence compared to traditional algorithms such as SGD and
Adam (Kingma & Ba, 2014). In this paper, we propose to apply a different paradigm, i.e., diffusion,
as the foundation of our L2O framework. This framework model solution space with a fine-grained
approximation.

Diffusion models. Diffusion probabilistic models Ho et al. (2020); Song et al. (2020) have emerged as
a powerful tool for generating high-quality samples with different modalities such as images (Dhariwal
& Nichol, 2021; Rombach et al., 2022), texts Gong et al. (2022); Xu et al. (2023), 3d objects Erkoç
et al. (2023); Gu et al. (2023), and videos (Ho et al., 2022). These models have demonstrated on-par
or better generation quality compared to their precursors such as generative adversarial networks
(GANs) (Goodfellow et al., 2020; Odena et al., 2017; Gong et al., 2019). In a typical training pipeline,
diffusion models learn their parameters through iterative addition and removal of noises; and in the
inference stage, they begin with a randomly sampled noise and generate the corresponding sample
by iteratively denoising. Conditional diffusion models as an important branch of diffusion models,
such as those in Ho & Salimans (2022); Liu et al. (2022); Chao et al. (2022), enables generations
with clear instruction. In this study, we introduce a novel conditional diffusion model that operates
within the solution space of optimization problems including weight of neural networks. Empirically,
diffusion models work well.

5 CONCLUSION

This work proposes a novel L2O framework Diff-L2O. It uses diffusion model to learn from the
solution space, accelerating the optimization process. Diff-L2O achieves great performance by
capturing a wider range near the real trajectories, which is supported by theoretical results. We
discuss the key to modeling the solution space while giving relevant generalization bound. Diff-L2O
is empirically verified to achieve significant results on multiple benchmarks, which further validates
our analyses and discussion.

Furthermore, the ablation study reveals the essence of designed components in Diff-L2O, and the
combined method demonstrates huge potential for implementing our method as initialization in
practice, which is especially useful when analytical properties are essential (e.g., convex cases).
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Figure 6: Model Training Framework for Diff− L2O. The lower part is the trajectory generated by forward
scheduling before training, and the upper part is the backward sampling from time step t to t− 1. Specifically,
x̂t concatenated with guidance vector and time step embedding vector, is passed to the opt network for one-step
denoising. Based on x̂t−1 and xt−1, we calculate the function loss for updating the opt network. (The x in
this figure is the x̃ in the main paper.)

A GLOSSARY

name notation comment

solution x ground truth solutions
trajectory {xt}t∈[Ttrain] ground truth trajectories, trained by optimizers
blurred solution x̃t solutions blurred by Gaussian noise
blurred trajectory {x̃t}t∈[Tblur]

trajectory blurred by Gaussian noise
predicted solution x̂t generated by the backward diffusion process
predicted trajectory {x̂t}t∈Tpred predicted trajectory of diffusion process
α, β, γ coefficients: SDE time dependent, especially β and γ

d differentiate operator conventional operator
∇, ∇2 gradient and Hessian matrix operators conventional operators
ȧ, ä first and second order derivation of any a conventional operators
u, v coefficients: time and Brownian motion determining Wiener process (first order)
s, σ parameters: adjustment and intensity determining general diffusion process

Table 6: Notations related in this paper.

B DETAILED SETTINGS

B.1 DEEP NEURAL NETWORK ON MNIST

Model architectures. We consider the optimizee of MLPs with single hidden layer of dimension 20
and sigmoid activation function, using the cross-entropy loss on the MNIST dataset.

Optimizees. Optimizees. To evaluate our model, we deploy the following families of problems as
the optimizees.

▷ Lasso. We target to minimize the original LASSO objective function without considering the
sparsity of the solution:

xLasso = argmin
x

1

2
∥Ax− b∥22 + λ∥x∥1 (4)

where A ∈ Rn×m represent the characteristic matrix of a lasso problem instance, which is fixed and
sampled from an i.i.d. standard Gaussian distribution. b ∈ Rn×1 refers to the vector of dependent
variables, which is also fixed and sampled from an i.i.d. standard Gaussian distribution. λ is the
regularized hyperparameter set to 0.005 in our experiment.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

▷ Rastrigin. Rastrigin is a common benchmark of non-convex optimization defined in n-dimensional
space, where n is the number of variables. It is characterized by a complex landscape of multiple
local minima and a global minimum. We consider a family of Rastrigin function, and adopt the
following definition from a seminal benchmark paper Chen et al. (2017):

xRas = argmin
x

1

2
∥Ax− b∥22 − αcT cos(2πx) + αn (5)

where A ∈ Rn×n, b ∈ Rn×1 and c ∈ Rn×1 are all sampled from an i.i.d. standard Gaussian
distribution.

▷ Ackley. Similar to Rastrigin function, Ackley function has many local minima which are comparably
larger then the unique global minimum. Compare to Rastrigin, analytical optimizers can find the
global minimum with less effort by enlarge their step-size. The problem is definded as:

xAck = argmin
x

20 + e− 20e−0.2∥Ax+b∥2 − e
1
ncTcos(2πx) (6)

where A ∈ Rn×n, b ∈ Rn×1 and c ∈ Rn×1 are all sampled from i.i.d. standard Gaussian
distributions.

Comparison: Loss Curves. The loss curves between baselines and Diff-L2O are shown in Fig. 7.

−4

−2

0

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e)

Method

L2O−DM
Diff−L2O
RNNProp

Figure 7: Comparison on MNIST.

C THE ELEMENT-WISE VARIANT OF L2O

Algorithm 3 illustrate the Global-to-Local training philosophy by considering three phases, repre-
senting early, middle and later phase respectively. For each epoch, we first loop through each time
step, and then loop through the positions, i.e. each element of the optimization variable. In early
phase, we accumulate the training loss until the last element, called "Global"; In middle phase, we
accumulate the training loss and conduct backward propagation on iterating every d

3 of elements,
which is named Local. In the later phase, where we no longer accumulate the training loss, and this is
when element-wise training is achieved.
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Algorithm 5 Diff-L2O-ELE Training
Inputs: x̂T ∼ N (0, I), a guidance vector g, its corresponding trajectory {x0,x1, . . . ,xT}, phase
indicator N1, N2, dimension d

for n = 1, 2, . . . , N do
for t = T, T− 1, . . . , 1 do

t← TE(t)
for pos = 1, 2, . . . , d do

pos← PE(pos)
xt−1,pos ← opt(concat(xt, g, t,pos))
L1 ← f(θ, x̂t−1)
L2 ← MSE(xt−1, x̂t−1)
L ← L+ γL1 + (1− γ)L2

if N < N1 then
if pos == d then

Update opt by minimizing L
L ← 0

end if
else if N1 ≤ N ≤ N2 then

if pos ∈ ⌊d3⌋, ⌊
2d
3 ⌋, ⌊d⌋ then

Update opt by minimizing L
L ← 0

end if
else

Update opt by minimizing L
L ← 0

end if
end for

end for
end for
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