
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAKE OPTIMIZATION ONCE AND FOR ALL WITH FINE-
GRAINED GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to Optimize (L2O) enhances optimization efficiency with integrated neu-
ral networks. L2O paradigms achieve great outcomes, e.g., refitting optimizer,
generating unseen solutions iteratively or directly. However, conventional L2O
methods require intricate design and rely on real optimization processes and nu-
merical optimization results, limiting scalability and generalization. Our analyses
explore general framework for learning optimization, called Diff-L2O, focusing on
augmenting sampled solutions from a wider view rather than local updates in real
optimization process only. Meanwhile, we give the related generalization bound,
showing that the sample diversity of Diff-L2O brings better performance. This
bound can be simply applied to other fields, discussing diversity, mean-variance,
and different tasks. Diff-L2O’s strong compatibility is empirically verified with
only minute-level training, comparing with other hour-levels.

1 INTRODUCTION
Optimization Iterations

Limited

Approximation

Error

ODE

Unlimited but single

None

Diff-L2O (Ours)

Diverse

Minimal

Trajectories

Large

Figure 1: Diff-L2O’s intuitions: wider views and better
sampling diversity on solution spaces.

Learning to optimize (L2O) (Chen et al.,
2017; 2022b; Metz et al., 2022; Li & Malik,
2016) aims to improve the efficiency of op-
timization algorithms by refitting optimiza-
tion algorithms with (machine) learning.
Learning optimization algorithms involved
in iteration, it has significant advantages in
accelerating optimization algorithms (Chen
et al., 2022a; Xie et al., 2024; Zheng et al.,
2022; Cao et al., 2019).

Popular L2O algorithms with great performance are usually composed of the following paradigms.
1) Learning the settings of the optimizer so as to (Xie et al., 2024) find a set of settings that make the
optimizer search the solution space faster and more stable; 2) using a generator to guide the model
iteration, e.g., iterating the model step by step with the inference of a sequence model (Chen et al.,
2017); 3) modeling the parameter space directly and generating the parameters of the model in a
better way (Gartner et al., 2023).

However, L2O methods require delicate design and tuning, depending on real optimization processes.
These paradigms 1) do not directly model the optimization process in general but each point on
trajectories or 2) rely on the real optimization process of specific types of optimizers. These facts
limit L2O scaling up (Metz et al., 2022), and loss the advantage of the generalization capabilities
brought by machine learning. Ours below helps solving potentially unknown optimization problems
w/o sophisticated designs.

Corresponding to the two aforementioned points respectively, discussion is about 1) the feasibility
of unified modeling (Attouch et al., 2019) for the vast majority of optimization algorithms, and the
corresponding optimizers, by means of unified modeling (Xie et al., 2024); 2) propose a optimization
with wider views, i.e., find a range to the solution, rather than finding a locally best update direction.
We explore the generalization performance under this unified modeling and give the generalization
bound. We brief the main analyses that augmentation with diffusion improves generalization of the
modeled solutions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Empirically, the proposed Diff-L2O demonstrates adaptability to quickly obtain initial points and
further speed-up optimization for classic optimizers. Only second-level training time cost are needed
for Diff-L2O, comparing with other hour-level methods. It also works on deep neural networks.1 The
contributions of this work are as follows:

• We propose a fast method for solving optimization problems using diffusion models while
combining artificial and real data with guidance information.

• We analyze the key factors that can be used to model the solution space with generative
models, as well as general formulation, and related generalization bound.

• Experiments using diffusion models to model the solution space, thus accelerating optimiza-
tion, have yielded impressive results with the proposed Diff-L2O.

2 METHODOLOGY

2.1 PRELIMINARY

Optimization’s general trajectory formulation. The dynamics of optimization methods, Inertial
System of Hessian-driven Damping (Attouch et al., 2019) (ISHD), can be represented as:

ẍ+
α

t
ẋ+ β∇2f(x)ẋ+ γ∇f(x) = 0, (1)

where∇ and∇2 are the gradient and Hessian operations respectively, ẋ and ẍ are the first and second
ordered derivatives of x on time t, and, α, β and γ are hyperparameters on t (which abbreviates
αt, βt, γt) that determine the trajectories of the optimization algorithms.

In L2O cases, we want to learn the solution space of the problem minx f(x). The model is actually
approximating the ODE (i.e., the α, β and γ).

Discretization. Euler discretization is an efficient and commonly used discretization method. It is
primarily affected by non-linear sampling scenarios. In such cases, the rugged and unknown real
optimization surface limits the possibility of further acceleration Xie et al. (2024); Schuetz et al.
(2022) and can easily lead unstable results.

Stochastic optimization’s dynamics. The dynamics in Equ. 1 is the general ODE of the most
gradient-based optimization trajectories. However, more practical dynamics are stochastic ones,
which can be represented by stochastic differential equations (SDE, Ito formula of Wiener process)
dx̃ = udt+ vdw, where w is the Brownian motion, u and v are the functions on t determining the
types, which abbreviates ut and vt.

Diffusion process. The aforementioned classic formulation of a diffusion process is not enough since
due to direct expression of different common stochastic processes. So we have the following more
specific ones. In a more general case, we reformulate it into the following one.

dx̃ = x̃ṡ/sdt+ s
√
σ̇σdw, x̃ = sx̃0 + sσϵ, ϵ ∼ N (0, I), (2)

where σ and s abbreviates σt and st, x̃t is the stochastic process with given x̃0 as initial point.

2.2 DISCUSSION: MODELING SOLUTIONS IS FEASIBLE

We give an intuitive discussion in this section. See Sec. 2.3 for more details.

Takeaways. Our discussion is summarized below.
1) Optimization process’s meta features do provide information for solution space modeling;
2) The data from the real optimization process is helpful, but it is still not enough.

Case: overparameterization. We know that optimization algorithms have their own implicit biases
(or regularization) (Gunasekar et al., 2018a), when the case goes with overparameterization, e.g.
small norms, sparse solutions, flat (stable) solutions, small gradients, and maximum margin.

The implicit biases (Dauber et al., 2020; Soudry et al., 2018; Gunasekar et al., 2018b) depend on the
problem formulation and the optimization algorithm. which means that the optimization formulation

1Results on DNN are in the Appendix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and algorithm is informative to the expected results. Linear regression, for example, tends to a
min-norm solution with the gradient descent optimizer.

Case: underparameterization. The implicit biases within under-parameter classical problems (Bow-
man & Montúfar, 2022) can be reduced into subspaces. For example, linear regression can be
full-ranked on subspaces, maintaining the similar solution spaces with the form of implicit bias.

Case: low performance. Moreover, low performance in the under-parameterized case would not
be directly related to the feasibility of solution spaces being modeled. It would make the surface
more mundane and some SDEs more chaotic. Performance is low, yet the parameter space is easy to
approximate, because the prediction only needs to be noise, given the targeted chaotic SDE.

Thus, the optimizer, the optimizee (i.e. problem itself), and other meta-features are all informative.

Closest doesn’t mean best. Different implicit biases imply different probability distributions
of solutions. Unexplored implicit biases could bring better solutions within the solution space.
The closest approximations to the trained solutions or the converged SDEs are thus not the best.
Decoupling dependency on real optimization trajectories is a greater potential for generalization.

The closest is yet informative. Well-fit-SDE models can still tell us a lot. For example, in the case
where mode connectivity (Garipov et al., 2018) is considered, the terminal phases of the optimization
SDEs do not exactly converge, but rather swim around within a connected region toward the similar-
performance region that meets the implicit bias.

We conclude that effective parameter space modeling is diverse and trajectory-guided.

2.3 DIFF-L2O: HOW TO MODEL SOLUTIONS

According to the discussion, our approach focuses on using 1) trajectories from the optimization
process as guidance, and 2) both real and artificial SDE to ensure validity and exploration.

Artificial trajectories: diffusion process. Random noise is introduced to explore more potential
solutions near optimization trajectories. These potential solutions should follow real SDE to make
full use of the real optimization. These trajectories start from suboptimal solutions, with smooth
connections between them, thereby exploring potential solutions in the surrounding area.

Table 1: The ingredients of SDEs.
SDEs VP VE EDM

s exp{− 1
4
∆βt

2 − 1
2
β0t} 1 1

σ2 exp{ 1
2
∆βt

2 + β0t} − 1 t t2

ṡ − σσ̇

(1+σ2)3/2
0 0

σ̇
(1+σ2)(∆βt+β0)

2σ
1 2t

▷ β0 and ∆β are pre-defined parameters.

The diffusion process is simulated according to the current
big-hit diffusion models. The diffusion processes’ general
forms are shown in Equ. 2 and specialized in Tab. 1, includ-
ing DDPM (VP-SDE) (Ho et al., 2020), VE-SDE (Song
et al., 2021) and EDM(Karras et al., 2022).

Discretization and sampling. We use the simple and
efficient Euler sampler. The SDE is isotropic diffusion
using DDPM (VP-SDE) (Ho et al., 2020; Song et al.,
2021). The sampling algorithm are shown in Algorithm 1 and Algorithm 2.

Algorithm 1 Forward Scheduling
Inputs: The starting point of the forward trajec-
tory x̃0, and a coefficient list [ᾱ0, . . . , ᾱT]

for t = 1, 2, . . . , T do
x̃t ← N (

√
ᾱtx̃0, (1− ᾱt)I)

end for
Output: [x0,x1, . . . ,xT]

Algorithm 2 Backward Sampling
Inputs: A standard Gaussian noise x̂T ∼
N (0, I), and a guidance vector g.

for t = T, T− 1, . . . , 1 do
t← TE(t)
x̂t−1 ← opt(concat(x̂t, g, t))

end for
Output: x̂0

Training: Diff-L2O. Since our approach is Euler sampling on VP-SDE, we use ϵ-parameterization to
train our diffusion model, according to DDPM. However, DDPM does not consider how the solution
behaves in the optimization process, only whether it is aligned well with white noise.

Our approach uses the aforementioned guidance (e.g., quantities in the processes, optimization
meta-features). These help the parameter space modeled to be embedded with meta-information

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

about optimization. This brings greater generalizability. Meanwhile, we add the loss of the current
solutions on the optimization objective as a metric that is integrated uniformly into the probabilistic
modeling of the generated model (Algorihtm 3).

Algorithm 3 Diff-L2O Training
Inputs: Initial point x̂T ∼ N (0, I), guidance vec-
tor g, the optimizee’s parameter θ, the forward
trajectory {x̃0, x̃1, . . . , x̃T}, loss coefficient α

for t = T, T− 1, . . . , 1 do
t← TE(t)
x̂t−1 ← opt(concat(x̂t, g, t))
L1 ← f(θ, x̂t−1)
L2 ← MSE(x̃t−1, x̂t−1)
L ← αL1 + (1− α)L2

Update opt by minimizing L
end for

Generalization analyses. Diff-L2O augments
the diversity of the samples and hence works
better. The relevant theorem on our setting is
from the perspective of PAC-Bayesian.

The generalization gap is defined as:
∆(x̂) := ∆(f̂S , f̂D), where f̂· abbr. f(x̂; ·) :=

Ed∼·f(x̂; d)}. f̂· and f· are the problems’
expectation values of x̂ and x on probability
from approximated model q or the real solution
space distribution (w.r.t., min for simplification),
D and S are the population (test) and samples
(train), i.e., ground truth and sampled solutions
in L2O. ∆ abbr. distance ∆(x̂).

This differs the previous PAC-Bayesian bounds in the artificial samples’ distribution and x̂t ∼ qt(g)
obtained from a stochastic process of guidance g, e.g., meta-features. The time t and condition g are
omitted for simplicity below.
Theorem 2.1. (General PAC-Bayesian on stochastic solution space.) In this general theorem, ∆
requires only a non-negative general convex distance, and we do not restrict the optimization objective
to the downstream tasks. With a initial prior process p, ∀q (posterior) w/ n #samples, we have the
following bound at least 1− δ probability:

∆ ≤1−δ
1

n
{KL(q||p) + log

M
δ
}, ∀time t

whereM := Eh∼p exp{n∆(h)} is related to the optimization task, including the distance between
population and the training set.

Proof. With given probability 1− δ (w.h.p.), we have ∆(f̂S , f̂D) ≤ ϵδ(n). As our problem is defined
as min for simplification, we focus on the upper bound here.

From the expectation extended objectives: f̂D = Ex̂∼q∆ and f̂S = Ex̂∼qf(x̂;S), we decouple a
prior p from modeled distribution q with Jensen inequality, logEh∼p exp{n∆(h)} ≥ n∆−KL(q||p).
With Markov inequality, introducing probability 1-δ, ∆ ≤ 1

n{KL(q||p) + log M
δ }, w.h.p., where

M := Eh∼p exp{n∆(h)} is independent of q. It should be discussed in different optimization
objectives and downstream tasks. The all do not depend on time t here.

General generalization upper bounds are time-independent, and next we discuss specific SDE
modeling processes that are time-dependent, and their relationship to tasks.

Corollary 2.2. (Diff-L2O: Gaussian.) When p ∼ N (µ,Σ), q ∼ N (µ̂, Σ̂), the KL-divergence is

KL(q||p) := 1

2
{log |Σ|

|Σ̂|
− k + ||µ̂− µ||2Σ + tr(Σ−1Σ̂)}.

In Diff-L2O, the Gaussian is isotropic, and initial prior p ∼ N (
√
ᾱtx, (1− ᾱt)I), x ∼ D. We can

further format the bound as

∆ ≤1−δ
1

n
{k log(1− ᾱt)− log |Σ̂| − k + ||µ̂− µ||22 +

tr(Σ̂)

(1− ᾱ)
+ log

M
δ
}, where k = dim x.

Corollary 2.3. (Diff-L2O: Classification tasks.) Generalizing over the classification task, we define
f̂D and f̂S by considering the prediction error rate of the modeling probability q on the test and
training sets, and use the difference between the two as the distance ∆.

If the error rate is m/n (m misclassified samples among n samples), we have the probability:

PS̃∼D(f̂S = m/n) = Bio(m;n, f̂D), ∀m,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where S̃ is a set of m independent samples. We have:

M = sup
P∈[0,1]

[

n∑
m=0

Bio(m;n,P) exp{n∆(m/n,P)}]

Thus, we have the following bound, when Diff-L2O is applied to general classification tasks or other
tasks that can be reduced into classification.

∆ ≤1−δ
k

n
[log(1− ᾱt)− 1]︸ ︷︷ ︸

diversity ↑

+
||µ̂− µ||22

n︸ ︷︷ ︸
about bias ↓

− log |Σ̂|
n

+
tr(Σ̂)

n(1− ᾱ)︸ ︷︷ ︸
about variance ↓

+ log
1

δ
(sup
P∈[0,1]

[

n∑
m=0

Bio(m;n,P) exp{n∆(m/n,P)}])}︸ ︷︷ ︸
about task(i.e., the optimizee)

.

Takeaways. From the bound, we know that:

• For any stochastic process at any time t, is a Gaussian distribution, the solution’s dimension
k have to grow linearly with the sample size n.

• A larger sample size n reduces the generalization gap, i.e., sum of bias and variance. At a
certain overall loss (e.g., the terminal phase of training), there is a classical bias-variance
trade-off.

• The ability to generalize is also related to the kind of downstream task, with specific effects
M. As in the above example,M usually takes supremum for further concentration.

Theorem expansion. Here we use the general distribution assumption for the stochastic process.
Markov inequality in the proof can be replaced with different assumptions, e.g., using Hoeffding
inequality for the sub-Gaussian, Bernstein inequality for the sub-exponential.

bound modifications w.r.t. ∆(a, b) on the left-hand side

a log a
b
+ (1− a) log 1−a

1−b
≤ 1

n
[KL(q||p) + + log

√
2n
δ

]

(b− a)2 ≤ 1
2n

[KL(q||p) + log
√

2n
δ

]

b− a ≤ 1
λ
[KL(q||p)− log(δ) + λ

n
(b− a)]

Table 2: Specialization: varied distance function ∆.

Theorem specialization. Given different as-
sumptions and tasks w.r.t.M and ∆, we have
the Table 2. Previous works are related in or-
der (Langford & Seeger, 2001; McAllester,
1998; Alquier & Guedj, 2018).

2.4 ADD-ON: OPTIMAL-FREE AND DIMENSION-FREE

Algorithm 4 Alternative oracle: optimal generator

for given #epochs do
x0 ← oracle(g)
Lpre ← f(θ, x0)
Update oracle by minimizing Lpre
Generate the forward trajectory starting from

x0: {x̃0, x̃1, . . . , x̃T}
Train opt using Algorithm 3 for one epoch
Lpost = MSE(x0, x̂0)

Update oracle by minimizing Lpost
end for

oracle is a neural network to generate
initial points. It learns from the subopti-
mal solutions, and training from scratch is
avoided. An element-wise variant for dy-
namic dimension k = dimx is provided in
the Appendix.

3 EMPIRICAL EVALUATION

3.1 OVERVIEW

Numerical evaluations are built on conven-
tional optimization problems, including con-
vex and non-convex cases. Diff-L2O is applicable on the parameter solution space of the neural
network. Summary: 1) Diff-L2O improves the conventional optimizers well; 2) vanilla Diff-L2O
also works well on non-convex problems.

3.2 SETTINGS

Compared baselines. We compare various analytical optimizers (Gradient Descent and
Adam (Kingma & Ba, 2014)) and learned optimizers (L2O-DM (Andrychowicz et al., 2016) and
L2O-RNNProp (Lv et al., 2017)). For learned optimizers, we train them on the same set of samples.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

−4

−2

0

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
L2O−DM
Diff−L2O
GD
RNNProp

−4

−2

0

2

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
L2O−DM
Diff−L2O
GD
RNNProp

LASSO dimx = 10 (left) and dimx = 50
(Right).

1.6

2.0

2.4

2.8

3.2

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e) Method

Adam
L2O−DM
Diff−L2O
GD
RNNProp

3.9

4.2

4.5

4.8

5.1

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e) Method

Adam
L2O−DM
Diff−L2O
GD
RNNProp

Rastrigin dimx = 2 (left) and dimx = 10
(Right).

1.00

1.25

1.50

1.75

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e) Method

Adam
L2O−DM
Diff−L2O
GD
RNNProp

1.0

1.5

2.0

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
L2O−DM
Diff−L2O
GD
RNNProp

Ackley dimx = 2 (left) and dimx = 10
(Right).

Figure 2: Comparison on optimizees across
#dimension: LASSO, Rastrigin and Ackley.

−4

−2

0

0 250 500 750 1000
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
Diff−L2O
Combined

−4

−2

0

2

0 250 500 750 1000
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
Diff−L2O
Combined

LASSO dimx = 10 (left) and dimx = 50
(Right).

1.5

2.0

2.5

3.0

0 250 500 750 1000
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
Diff−L2O
Combined

3.5

4.0

4.5

5.0

0 250 500 750 1000
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
Diff−L2O
Combined

Rastrigin dimx = 2 (left) and dimx = 10
(Right).

1.0

1.5

0 250 500 750 1000
Steps

lo
g(

O
bj

ec
tiv

e)
Method

Adam
Diff−L2O
Combined

1.0

1.5

2.0

0 250 500 750 1000
Steps

lo
g(

O
bj

ec
tiv

e)

Method

Adam
Diff−L2O
Combined

Ackley dimx = 2 (left) and dimx = 10
(Right).

Figure 3: Ablation: compatibility of Diff-L2O
with conventional optimizers.

Training hyperparameters. The maximum step T is set to 100 when training opt. #Diffusion
steps for inference is 100. The coefficient for variance scheduling range from 1× 10−5 to 2× 10−2,
linearly increasing along t. The coefficient γ for loss balancing is set to 0.5 as default.

Optimizees’ hyperparameters. Diff-L2O is evaluated on three representative optimization problems
with varied complexities and characteristics. For all optimizees, training and testing samples are
independently drawn from a standard Gaussian distribution N (0, I). For example, in LASSO, A and
b are sampled from standard Gaussian, simplified as θ.

xLASSO = argmin
x

1

2
∥Ax− b∥22 + λ∥x∥1 (3)

Other formulations of classic problems about Rastrigin and Ackley are in Appendix.

▷ LASSO Two problem scales is related: a low-dimensional setting with design matrix A ∈ R5×10

and a medium-dimensional setting with A ∈ R25×50. The ℓ1 regularization coefficient is fixed at
λ = 0.005 for both configurations.

▷ Rastrigin We investigate both low-dimensional (d = 2) and high-dimensional (d = 10) scenarios.
The amplitude of the modulation term is set to α = 10, which controls the intensity of local minima.
It’s non-convex.

▷ Ackley Similar to the Rastrigin function, we examine the optimization performance in both
low-dimensional (d = 2) and high-dimensional (d = 10) spaces. It’s non-convex.

3.3 COMPARISON

LASSO. We first conduct experiments on the LASSO optimizees and compare the performance on
unseen optimizee problems. The experimental results are summarized in Figure 2. We can observe
that Diff-L2O converge faster compared to other baselines, achieving near-convergence range with
less than ten steps. In the absence of gradient information, Diff-L2O converges to the wall of the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LASSO convex valley. This issue can be easily resolved by combining Diff-L2O and analytical
optimizers to achieve more accurate solutions.

Rastrigin. In Rastrigin tasks, our method has demonstrated faster convergence speed and also similar
or higher quality compared to baselines. Specifically, Diff-L2O achieves a loss objective of 44.09
within 10 steps, while the most competitive baseline, i.e. RNNProp, can only achieve a loss of
56.68 in 100 steps. Such an advantage is enlarged in higher-dimensional cases of the variables
as baselines suffer from the curse of dimensionality, while our method performs consistently for
different dimensions.

Ackley. On the Ackley tasks, Diff-L2O also out-performs existing baseline methods with clear
margins: in 2-dimensional case, Diff-L2O achieves a loss objective of 3.15 within 10 steps, compared
to the most competitive baseline, i.e. RNNProp, which can only achieve a loss of 4.48 in 10 steps.
In 10-dimensional case, Diff-L2O achieves a loss objective of 5.37 within 10 steps, while the most
competitive baseline can only achieve a loss of 6.08 in 100 steps. Analytical optimizers such as Adam
outperform all L2O methods due to the moderate difficulty of Ackley problems.

MNIST on DNN. We evaluate the classification performance of Diff-L2O on MNIST. In Figure 7
(Appendix), and it achieved a loss of 0.228 and accuracy of 92.06% on test set, which outperform
RNNProp that achieves a loss of 0.268 and accuracy of 90.28, and L2O-DM with a loss of 0.252 and
accuracy of 90.79 on the same test set. Detailed settings are in Appendix.

3.4 ABLATION

Ablation: compatibility with conventional optimizers. Diff-L2O works well when adapted to other
methods. The stochastic nature of diffusion models enables rapid initial convergence but may slow in
later stages, which is particularly disadvantageous for convex problems. This motivates our hybrid
approach: the diffusion model starts for initialization and traditional optimizers follow. Our results
show hybrid strategy consistently outperforms others on both convex and non-convex cases.

Settings. We evaluate all optimizees on the same test set as the comparison experiments. Our hybrid
optimization consists of two phases: an initial exploration phase utilizing our diffusion-based model
for the first 50 iterations, followed by a fine-grained fine-tuning phase with the Adam optimizer.

Analyses. Fig. 2 and 3 show that, in the comparison experiment’ convex case, the performance using
a vanilla Diff-L2O can be improved by using a combination of conventional optimizers. Diff-L2O
can be used to quickly generate foundational solutions with a small amount of fine-tuning to reach
the optimal.

Ablation: optimal-free. The training of diffusion models requires solving numerous optimization
problems of the same optimizee family, which inherently limits the model’s generalizability. The
oracle component offers a potential solution to this limitation. Therefore, we conduct an ablation
study to analyze how different oracle configurations impact the model’s performance.

Table 3: Log loss with varied oracles.
variants LASSO Rastrigin Ackley

noisy -1.306 1.727 1.301
fixed -1.427 1.657 1.281

partial -1.456 1.627 1.257
perfect -1.676 1.532 0.936
Ours -1.660 1.601 1.233

Settings. We conduct a series of experiments to understand
the effects of introduced components: (1) Noisy: we replace
oracle with a module that generates random noises; (2)
Fixed: we do not update the oracle network; (3) Partial, we
update the oracle network with Lpre only; and (4) Perfect:
oracle output always the optimal solutions.

Analyses. According to Tab. 3, In Noisy case, we find that
random initialization with poor performance. It show us that initialization strategy is necessary, even
a fixed pre-trained network. Loss term Lpre, lowering task loss, helps by making better initial points.
The benefits, however, are increased gradually comparing to perfect cases. Loss term Lpost, closing
backward and forward processes, shows the importance of samples with great diversity. All these
modules lead DIff-L2O’s performance closer to the perfect cases (starting at the optimal).

Ablation: guidance. In this part, the guidance vector g can be time step t dependent, and we denote
it by gt. In practice, gt is a crucial component in Diff-L2O. For convex problems like LASSO,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

incorporating gradient information in the guidance vector can significantly improve the convergence
speed and accuracy. However, in non-convex problems such as Rastrigin, the gradient can potentially
be a source of noise that guides the solutions to local minima.

Table 4: Log loss with different guidance vector.

variants
LASSO LASSO Rastrigin Rastrigin
(t=10) (t=100) (t=10) (t=100)

gradient -3.161 -4.011 3.064 2.738
global -1.674 -1.673 1.532 1.532

all -3.153 -3.938 1.618 1.643

Settings. we conducted experiments on LASSO
and Rastrigin optimizees using three types of guid-
ance vectors: (1) Gradient, where only the gradient
is considered as the guidance vector; (2) Global,
where the optimizees’ parameters θ are used as the
guidance vector; and (3) All, where the guidance
vector consists of both gradient and θ.

Table 5: Time costs of L2O-DM and Diff-L2O.
optimizees L2O-DM Diff-L2O

LASSO (5-dim) ∼ 4 hours 203 s
LASSO (25-dim) ∼ 6 hours 376 s
Rastrigin (2-dim) ∼ 2 hours 310 s

Rastrigin (10-dim) ∼ 2 hours 393 s
Ackley (2-dim) ∼ 3 hours 309 s
Ackley (10-dim) ∼ 3 hours 543 s

Analyses. In 1) convex cases, as shown in Tbl. 4,
the gradient largely guides whether the current
point is optimal or not and contains useful local in-
formation. The gradient-only cases are dominated
by the first-order information, and thus got a log
loss value of -3.161 and -4.011 from -3.153 and
-3.938. 2) The convergence in non-convex cases
is not strictly determined by the gradient, but gra-
dients at samples are still helpful. The result of
1.618 from t = 10 converges quickly compared to
1.643 from t = 100, and the sampling has not converged in gradient case with a gap of 0.326.

X

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

Y

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

Ras Loss

10

20

30

40

50

Trajectory

Figure 4: Visualization: learning surface. Fast
convergence happens within several epochs.

Evaluation: training time. Table 5
demonstrates the training time of L2O-
DM (Andrychowicz et al., 2016) and our
method. It can be clearly seen that the Diff-
L2O can be trained rapidly, using merely 2% of
time compared to L2O algorithms. This rapid
training makes our model practical.

Settings. The experiments’s default settings
are on GPU 1×NVIDIA-A100 and CPU AMD
EPYC 7H12 64-Core. #iterations is 100.

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

0.2

0.4

0.6
learned distribution
true distribution

Figure 5: Visualization of the learned and the
ground-truth distribution (true). The distributions
are generally matched.

Visualization: trajectories. We demonstrate
that Diff-L2O rapidly approaches the vicinity
of optimal solutions in the early stages, notably
within the first iteration. Settings. We set the
dimension for all optimizees (LASSO, Rstrigin,
Ackley) to 2 with other hyperparameters the
same.

Analyses. Even in the non-convex case, Rast-
rigin, the learned descent trajectory of the op-
timizer reaches the area around the global opti-
mum in almost the starting iterations.

Visualization: modeled distribution. Settings.
The dimension of all optimizees are set to 2 and
other hyperparameters keep unchanged. The
learned and true distributions mean Diff-L2O in
default setting and gradient descent, respectively,
with 5000 initial points.

Analyses. The learned distribution and the dis-
tribution gotten from conventional optimizer are
matched generally. The diversity of learned distribution are greater.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

Learning to optimize (L2O). L2O is an alternative optimization paradigm that aims to learn effective
optimization rules in a data-driven way. It generates optimization rules based on the performance on
a set of training problems. it has demonstrated success on a wide range of tasks, including black-box
optimization (Chen et al., 2017; Krishnamoorthy et al., 2023), Bayesian optimization (Cao et al.,
2019), minimax optimization (Shen et al., 2021; Jiang et al., 2018) and domain adaptation (Chen
et al., 2020; Li et al., 2020). More recently, L2O has demonstrated its ability of solving large-scale
problems (Metz et al., 2022; Chen et al., 2022b), making it more practical for broader applications,
e.g., conditional generation (Wang et al., 2024; 2025; Liang et al., 2025).

The architectures of the learnable optimizer for L2O works have undergone great evaluation. In the
seminal work of Andrychowicz et al. (2016), a coordinate-wise long-short-term memory (LSTM)
network Hochreiter & Schmidhuber (1997) is adopted as the backbone, which can capture the inter-
parameter dependencies with low computational overhead. Subsequently, while some works (Vicol
et al., 2021) have utilized multi-layer perceptions (MLPs) for learnable optimization, a large portion
of L2O works have adopted the recurrent neural networks (RNNs) Rumelhart et al. (1986) as the
architecture of their learnable optimizer (Chen et al., 2021). For example, Shen et al. (2021) proposes
to use two LSTM networks to solve min-max optimization problems. Cao et al. (2019) deploys
multiple LSTM networks to tackle population-based problems. Later on, researchers have explored
the possibility of using Transformers (Vaswani et al., 2017) as learnable optimizers. Chen et al.
(2022c) proposes to use Transformer as a tool for hyperparameter optimization. Jain et al. (2023);
Gärtner et al. (2023) propose L2O frameworks that apply Transformers to solve general optimization
problem and achieves faster convergence compared to traditional algorithms such as SGD and
Adam (Kingma & Ba, 2014). In this paper, we propose to apply a different paradigm, i.e., diffusion,
as the foundation of our L2O framework. This framework model solution space with a fine-grained
approximation.

Diffusion models. Diffusion probabilistic models Ho et al. (2020); Song et al. (2020) have emerged as
a powerful tool for generating high-quality samples with different modalities such as images (Dhariwal
& Nichol, 2021; Rombach et al., 2022), texts Gong et al. (2022); Xu et al. (2023), 3d objects Erkoç
et al. (2023); Gu et al. (2023), and videos (Ho et al., 2022). These models have demonstrated on-par
or better generation quality compared to their precursors such as generative adversarial networks
(GANs) (Goodfellow et al., 2020; Odena et al., 2017; Gong et al., 2019). In a typical training pipeline,
diffusion models learn their parameters through iterative addition and removal of noises; and in the
inference stage, they begin with a randomly sampled noise and generate the corresponding sample
by iteratively denoising. Conditional diffusion models as an important branch of diffusion models,
such as those in Ho & Salimans (2022); Liu et al. (2022); Chao et al. (2022), enables generations
with clear instruction. In this study, we introduce a novel conditional diffusion model that operates
within the solution space of optimization problems including weight of neural networks. Empirically,
diffusion models work well.

5 CONCLUSION

This work proposes a novel L2O framework Diff-L2O. It uses diffusion model to learn from the
solution space, accelerating the optimization process. Diff-L2O achieves great performance by
capturing a wider range near the real trajectories, which is supported by theoretical results. We
discuss the key to modeling the solution space while giving relevant generalization bound. Diff-L2O
is empirically verified to achieve significant results on multiple benchmarks, which further validates
our analyses and discussion.

Furthermore, the ablation study reveals the essence of designed components in Diff-L2O, and the
combined method demonstrates huge potential for implementing our method as initialization in
practice, which is especially useful when analytical properties are essential (e.g., convex cases).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pierre Alquier and Benjamin Guedj. Simpler pac-bayesian bounds for hostile data. Machine Learning,
107(5):887–902, 2018.

Marcin Andrychowicz, Misha Denil, Sergio G’omez Colmenarejo, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information Processing Systems (NIPS), volume 29,
pp. 3981–3989, 2016.

H. Attouch, Z. Chbani, J. Fadili, and H. Riahi. First-order optimization algorithms via inertial systems
with hessian driven damping. arXiv preprint, arXiv:1907.10536, 2019.

Benjamin Bowman and Guido Montúfar. Implicit bias of mse gradient optimization in underparame-
terized neural networks. arXiv preprint arXiv:2201.04738, 2022.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen Lo, Chia-Che Chang, Yu-Lun Liu, Yu-Lin
Chang, Chia-Ping Chen, and Chun-Yi Lee. Denoising likelihood score matching for conditional
score-based data generation. arXiv preprint arXiv:2203.14206, 2022.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828,
2021.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning to optimize: A primer and a benchmark. Journal of Machine Learning Research,
23:1–59, 2022a.

Wuyang Chen, Zhiding Yu, Zhangyang Wang, and Animashree Anandkumar. Automated synthetic-
to-real generalization. In International Conference on Machine Learning (ICML), pp. 1746–1756,
2020.

Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Ahmed Awadallah, and Zhangyang Wang.
Scalable learning to optimize: A learned optimizer can train big models. In European Conference
on Computer Vision, pp. 389–405. Springer, 2022b.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando De Freitas. Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learning (ICML), pp. 748–756, 2017.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. Advances in Neural Information Process-
ing Systems, 35:32053–32068, 2022c.

Assaf Dauber, Meir Feder, Tomer Koren, and Roi Livni. Can implicit bias explain generalization?
stochastic convex optimization as a case study. Advances in Neural Information Processing
Systems, 33:7743–7753, 2020.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. arXiv preprint arXiv:2303.17015, 2023.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Erik Gartner, Luke Metz, Mykhaylo Andriluka, C. Daniel Freeman, and Cristian Sminchisescu.
Transformer-based learned optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

Erik Gärtner, Luke Metz, Mykhaylo Andriluka, C Daniel Freeman, and Cristian Sminchisescu.
Transformer-based learned optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11970–11979, 2023.

Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and Kayhan Batmanghelich. Twin auxiliary
classifiers gan. In Advances in Neural Information Processing Systems, volume 32, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Jiatao Gu, Qingzhe Gao, Shuangfei Zhai, Baoquan Chen, Lingjie Liu, and Josh Susskind. Learning
controllable 3d diffusion models from single-view images. arXiv preprint arXiv:2304.06700, 2023.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Deepali Jain, Krzysztof Marcin Choromanski, Sumeet Singh, Vikas Sindhwani, Tingnan Zhang, Jie
Tan, and Avinava Dubey. Mnemosyne: Learning to train transformers with transformers. arXiv
preprint arXiv:2302.01128, 2023.

Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, and Tuo Zhao. Learning to defend by learning to
attack. In arXiv preprint arXiv:1811.01213, 2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. arXiv preprint arXiv:2306.07180, 2023.

John Langford and Matthias Seeger. Bounds for averaging classifiers. School of Computer Science,
Carnegie Mellon University, 2001.

Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. Halo: Hardware-
aware learning to optimize. In European Conference on Computer Vision (ECCV), pp. 500–518.
Springer, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai Li,
Peihao Wang, Konstantin Schürholt, Damian Borth, Michael M. Bronstein, Yang You, Zhangyang
Wang, and Kai Wang. Drag-and-drop llms: Zero-shot prompt-to-weights. arXiv preprint
arXiv:2506.16406, 2025.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. arXiv preprint arXiv:2206.01714, 2022.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. In International Conference on Machine Learning (ICML), pp. 2247–2255, 2017.

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual conference
on Computational learning theory, pp. 230–234, 1998.

Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agarwal, Ben Poole, Igor Mordatch, Adam Roberts, and Jascha Sohl-Dickstein. Velo:
Training versatile learned optimizers by scaling up. arXiv preprint arXiv:2211.09760v1, 2022.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier gans. In International Conference on Machine Learning, pp. 2642–2651. PMLR, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. arXiv preprint, arXiv:2107.01188, 2022.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning a minimax optimizer: A pilot study. In International Conference on Learning
Representations (ICLR), 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled
computation graphs with persistent evolution strategies. In International Conference on Machine
Learning, pp. 10553–10563. PMLR, 2021.

Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor
Darrell, Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144,
2024.

Kai Wang, Dongwen Tang, Wangbo Zhao, and Yang You. Recurrent diffusion for large-scale
parameter generation. arXiv preprint arXiv:2501.11587, 2025.

Zhonglin Xie, Wotao Yin, and Zaiwen Wen. Ode-based learning to optimize. arXiv preprint
arXiv:2406.02006v1, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xingqian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text,
images and variations all in one diffusion model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7754–7765, 2023.

Wenqing Zheng, Tianlong Chen, Ting-Kuei Hu, and Zhangyang Wang. Symbolic learning to optimize:
Towards interpretability and scalability. arXiv preprint arXiv:2203.06578, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

𝒙𝟎,𝒕 𝒙𝒏,𝒕… 𝒙𝟎,𝒕−𝟏 𝒙𝒏,𝒕−𝟏…
Add noise

Forward Scheduling

Backward Sampling

Training Module

Update

opt network

by loss 𝓛

opt network

g … tෝ𝒙𝟎,𝒕 ෝ𝒙𝒏,𝒕 g … t-𝟏ෝ𝒙𝟎,𝒕−𝟏 ෝ𝒙𝒏,𝒕−𝟏

𝓛𝟏 = 𝒇 ෝ𝒙𝒕−𝟏

𝓛𝟐 =
𝟏

𝒏
ෝ𝒙𝒕−𝟏 − 𝒙𝒕−𝟏 𝟐

𝟐

𝓛 = 𝜸𝓛𝟏 + 𝟏 − 𝜸 𝓛𝟐

Figure 6: Model Training Framework for Diff− L2O. The lower part is the trajectory generated by forward
scheduling before training, and the upper part is the backward sampling from time step t to t− 1. Specifically,
x̂t concatenated with guidance vector and time step embedding vector, is passed to the opt network for one-step
denoising. Based on x̂t−1 and xt−1, we calculate the function loss for updating the opt network. (The x in
this figure is the x̃ in the main paper.)

A GLOSSARY

name notation comment

solution x ground truth solutions
trajectory {xt}t∈[Ttrain] ground truth trajectories, trained by optimizers
blurred solution x̃t solutions blurred by Gaussian noise
blurred trajectory {x̃t}t∈[Tblur]

trajectory blurred by Gaussian noise
predicted solution x̂t generated by the backward diffusion process
predicted trajectory {x̂t}t∈Tpred predicted trajectory of diffusion process
α, β, γ coefficients: SDE time dependent, especially β and γ

d differentiate operator conventional operator
∇, ∇2 gradient and Hessian matrix operators conventional operators
ȧ, ä first and second order derivation of any a conventional operators
u, v coefficients: time and Brownian motion determining Wiener process (first order)
s, σ parameters: adjustment and intensity determining general diffusion process

Table 6: Notations related in this paper.

B DETAILED SETTINGS

B.1 DEEP NEURAL NETWORK ON MNIST

Model architectures. We consider the optimizee of MLPs with single hidden layer of dimension 20
and sigmoid activation function, using the cross-entropy loss on the MNIST dataset.

Optimizees. Optimizees. To evaluate our model, we deploy the following families of problems as
the optimizees.

▷ Lasso. We target to minimize the original LASSO objective function without considering the
sparsity of the solution:

xLasso = argmin
x

1

2
∥Ax− b∥22 + λ∥x∥1 (4)

where A ∈ Rn×m represent the characteristic matrix of a lasso problem instance, which is fixed and
sampled from an i.i.d. standard Gaussian distribution. b ∈ Rn×1 refers to the vector of dependent
variables, which is also fixed and sampled from an i.i.d. standard Gaussian distribution. λ is the
regularized hyperparameter set to 0.005 in our experiment.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

▷ Rastrigin. Rastrigin is a common benchmark of non-convex optimization defined in n-dimensional
space, where n is the number of variables. It is characterized by a complex landscape of multiple
local minima and a global minimum. We consider a family of Rastrigin function, and adopt the
following definition from a seminal benchmark paper Chen et al. (2017):

xRas = argmin
x

1

2
∥Ax− b∥22 − αcT cos(2πx) + αn (5)

where A ∈ Rn×n, b ∈ Rn×1 and c ∈ Rn×1 are all sampled from an i.i.d. standard Gaussian
distribution.

▷ Ackley. Similar to Rastrigin function, Ackley function has many local minima which are comparably
larger then the unique global minimum. Compare to Rastrigin, analytical optimizers can find the
global minimum with less effort by enlarge their step-size. The problem is definded as:

xAck = argmin
x

20 + e− 20e−0.2∥Ax+b∥2 − e
1
ncTcos(2πx) (6)

where A ∈ Rn×n, b ∈ Rn×1 and c ∈ Rn×1 are all sampled from i.i.d. standard Gaussian
distributions.

Comparison: Loss Curves. The loss curves between baselines and Diff-L2O are shown in Fig. 7.

−4

−2

0

0 25 50 75 100
Steps

lo
g(

O
bj

ec
tiv

e)

Method

L2O−DM
Diff−L2O
RNNProp

Figure 7: Comparison on MNIST.

C THE ELEMENT-WISE VARIANT OF L2O

Algorithm 3 illustrate the Global-to-Local training philosophy by considering three phases, repre-
senting early, middle and later phase respectively. For each epoch, we first loop through each time
step, and then loop through the positions, i.e. each element of the optimization variable. In early
phase, we accumulate the training loss until the last element, called "Global"; In middle phase, we
accumulate the training loss and conduct backward propagation on iterating every d

3 of elements,
which is named Local. In the later phase, where we no longer accumulate the training loss, and this is
when element-wise training is achieved.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 5 Diff-L2O-ELE Training
Inputs: x̂T ∼ N (0, I), a guidance vector g, its corresponding trajectory {x0,x1, . . . ,xT}, phase
indicator N1, N2, dimension d

for n = 1, 2, . . . , N do
for t = T, T− 1, . . . , 1 do

t← TE(t)
for pos = 1, 2, . . . , d do

pos← PE(pos)
xt−1,pos ← opt(concat(xt, g, t,pos))
L1 ← f(θ, x̂t−1)
L2 ← MSE(xt−1, x̂t−1)
L ← L+ γL1 + (1− γ)L2

if N < N1 then
if pos == d then

Update opt by minimizing L
L ← 0

end if
else if N1 ≤ N ≤ N2 then

if pos ∈ ⌊d3⌋, ⌊
2d
3 ⌋, ⌊d⌋ then

Update opt by minimizing L
L ← 0

end if
else

Update opt by minimizing L
L ← 0

end if
end for

end for
end for

16

	Introduction
	Methodology
	Preliminary
	Discussion: modeling solutions is feasible
	Diff-L2O: How to model solutions
	Add-on: optimal-free and dimension-free

	Empirical Evaluation
	Overview
	Settings
	Comparison
	Ablation

	Related Works
	Conclusion
	Glossary
	Detailed Settings
	Deep Neural Network on MNIST

	The element-wise variant of L2O

