Under review as a conference paper at ICLR 2026

MAKE OPTIMIZATION ONCE AND FOR ALL WITH FINE-
GRAINED GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to Optimize (L20) enhances optimization efficiency with integrated neu-
ral networks. L20 paradigms achieve great outcomes, e.g., refitting optimizer,
generating unseen solutions iteratively or directly. However, conventional L20
methods require intricate design and rely on real optimization processes and nu-
merical optimization results, limiting scalability and generalization. Our analyses
explore general framework for learning optimization, called Diff-L20, focusing on
augmenting sampled solutions from a wider view rather than local updates in real
optimization process only. Meanwhile, we give the related generalization bound,
showing that the sample diversity of Diff-L.20 brings better performance. This
bound can be simply applied to other fields, discussing diversity, mean-variance,
and different tasks. Diff-L20’s strong compatibility is empirically verified with
only minute-level training, comparing with other hour-levels.

1 INTRODUCTION

Optimization Iterations ODE Diff-L20 (Ours)
Learning to optimize (L20) (Chen et al., ~ A ,A
2017:2022b; Metz et al.,[2022; |Li & Malik| ' I/ i
2016) aims to improve the efficiency of op- ' w
timization algorithms by refitting optimiza- N\ A
tion algorithms with (machine) learning. B '
Learning optimization algorithms involved Trajectories Limited Unlimited but single
n 1terat19n, 1t hgls §1gq1ﬁcant advantages n Apprg):il:ration Large None
accelerating optimization algorithms (Chen 7

et al| 2022a; [Xie et al| 2024; Zheng et al, Figure 1: Diff-L20’s intuitions: wider views and better
5022: ICao et al., 2019). sampling diversity on solution spaces.

Popular L20 algorithms with great performance are usually composed of the following paradigms.
1) Learning the settings of the optimizer so as to (Xie et al.,2024) find a set of settings that make the
optimizer search the solution space faster and more stable; 2) using a generator to guide the model
iteration, e.g., iterating the model step by step with the inference of a sequence model (Chen et al.,
2017); 3) modeling the parameter space directly and generating the parameters of the model in a
better way (Gartner et al.| [2023).

However, L20 methods require delicate design and tuning, depending on real optimization processes.
These paradigms 1) do not directly model the optimization process in general but each point on
trajectories or 2) rely on the real optimization process of specific types of optimizers. These facts
limit L20 scaling up (Metz et al., [2022), and loss the advantage of the generalization capabilities
brought by machine learning. Ours below helps solving potentially unknown optimization problems
w/o sophisticated designs.

Corresponding to the two aforementioned points respectively, discussion is about 1) the feasibility
of unified modeling (Attouch et al.,2019) for the vast majority of optimization algorithms, and the
corresponding optimizers, by means of unified modeling (Xie et al.,|2024)); 2) propose a optimization
with wider views, i.e., find a range to the solution, rather than finding a locally best update direction.
We explore the generalization performance under this unified modeling and give the generalization
bound. We brief the main analyses that augmentation with diffusion improves generalization of the
modeled solutions.

Under review as a conference paper at ICLR 2026

Empirically, the proposed Diff-L.20 demonstrates adaptability to quickly obtain initial points and
further speed-up optimization for classic optimizers. Only second-level training time cost are needed
for Diff-L.20, comparing with other hour-level methods. It also works on deep neural networksﬂ The
contributions of this work are as follows:
* We propose a fast method for solving optimization problems using diffusion models while
combining artificial and real data with guidance information.

* We analyze the key factors that can be used to model the solution space with generative
models, as well as general formulation, and related generalization bound.

» Experiments using diffusion models to model the solution space, thus accelerating optimiza-
tion, have yielded impressive results with the proposed Diff-L.20.

2 METHODOLOGY
2.1 PRELIMINARY

Optimization’s general trajectory formulation. The dynamics of optimization methods, Inertial
System of Hessian-driven Damping (Attouch et al., 2019) (ISHD), can be represented as:

4 %:&—&-BVZf(x):b—i—'ny(a:) —0, (D

where V and V? are the gradient and Hessian operations respectively, & and & are the first and second
ordered derivatives of = on time ¢, and, «, 3 and ~y are hyperparameters on ¢ (which abbreviates
o, B, v¢) that determine the trajectories of the optimization algorithms.

In L20 cases, we want to learn the solution space of the problem min, f(x). The model is actually
approximating the ODE (i.e., the «, 5 and).

Discretization. Euler discretization is an efficient and commonly used discretization method. It is
primarily affected by non-linear sampling scenarios. In such cases, the rugged and unknown real
optimization surface limits the possibility of further acceleration Xie et al. (2024); Schuetz et al.
(2022) and can easily lead unstable results.

Stochastic optimization’s dynamics. The dynamics in Equ. [I]is the general ODE of the most
gradient-based optimization trajectories. However, more practical dynamics are stochastic ones,
which can be represented by stochastic differential equations (SDE, Ito formula of Wiener process)
dz = udt 4+ vdw, where w is the Brownian motion, u and v are the functions on ¢ determining the
types, which abbreviates u; and v;.

Diffusion process. The aforementioned classic formulation of a diffusion process is not enough since
due to direct expression of different common stochastic processes. So we have the following more
specific ones. In a more general case, we reformulate it into the following one.

dz = £$/sdt + sVoodw, T = sTg + soe, e ~ N(0,1), 2)

where o and s abbreviates o; and sy, T is the stochastic process with given Z as initial point.

2.2 DISCUSSION: MODELING SOLUTIONS IS FEASIBLE

We give an intuitive discussion in this section. See Sec.[2.3]for more details.

Takeaways. Our discussion is summarized below.
1) Optimization process’s meta features do provide information for solution space modeling;
2) The data from the real optimization process is helpful, but it is still not enough.

Case: overparameterization. We know that optimization algorithms have their own implicit biases
(or regularization) (Gunasekar et al.l [2018a), when the case goes with overparameterization, e.g.
small norms, sparse solutions, flat (stable) solutions, small gradients, and maximum margin.

The implicit biases (Dauber et al., 2020; Soudry et al., 2018; (Gunasekar et al.,[2018b) depend on the
problem formulation and the optimization algorithm. which means that the optimization formulation

'Results on DNN are in the Appendix.

Under review as a conference paper at ICLR 2026

and algorithm is informative to the expected results. Linear regression, for example, tends to a
min-norm solution with the gradient descent optimizer.

Case: underparameterization. The implicit biases within under-parameter classical problems (Bow+{
man & Montufar, [2022) can be reduced into subspaces. For example, linear regression can be
full-ranked on subspaces, maintaining the similar solution spaces with the form of implicit bias.

Case: low performance. Moreover, low performance in the under-parameterized case would not
be directly related to the feasibility of solution spaces being modeled. It would make the surface
more mundane and some SDEs more chaotic. Performance is low, yet the parameter space is easy to
approximate, because the prediction only needs to be noise, given the targeted chaotic SDE.

Thus, the optimizer, the optimizee (i.e. problem itself), and other meta-features are all informative.

Closest doesn’t mean best. Different implicit biases imply different probability distributions
of solutions. Unexplored implicit biases could bring better solutions within the solution space.
The closest approximations to the trained solutions or the converged SDEs are thus not the best.
Decoupling dependency on real optimization trajectories is a greater potential for generalization.

The closest is yet informative. Well-fit-SDE models can still tell us a lot. For example, in the case
where mode connectivity (Garipov et al.l 2018) is considered, the terminal phases of the optimization
SDEs do not exactly converge, but rather swim around within a connected region toward the similar-
performance region that meets the implicit bias.

We conclude that effective parameter space modeling is diverse and trajectory-guided.

2.3 DIFrF-L20: HOW TO MODEL SOLUTIONS

According to the discussion, our approach focuses on using 1) trajectories from the optimization
process as guidance, and 2) both real and artificial SDE to ensure validity and exploration.

Artificial trajectories: diffusion process. Random noise is introduced to explore more potential
solutions near optimization trajectories. These potential solutions should follow real SDE to make
full use of the real optimization. These trajectories start from suboptimal solutions, with smooth
connections between them, thereby exploring potential solutions in the surrounding area.

The diffusion process is simulated according to the current ~ Table 1: The ingredients of SDEs.
big-hit diffusion models. The diffusion processes’ general =~ SDEs VP VE EDM
forms are shown in Equ.@]and specialized in Tab.E], includ- s exp{— i Apt® — % Gott 1 1
ing DDPM (VP-SDE) (Ho et al.| 2020), VE-SDE (Song 0? oxp{iAst® 4 Both—1 t
et al} 2021) and EDM(Karras et al| 2022). | PLast

TG 0 0
Discretization and sampling. We use the simple and & (14+0)(Agt+Bo0) 1 9

20

efficient Euler sampler. The SDE is isotropic diffusion > Bo and A are pre-defined parameters.

using DDPM (VP-SDE) (Ho et al.| [2020; |Song et al.,
2021). The sampling algorithm are shown in Algorithm [T]and Algorithm 2]

Algorithm 1 Forward Scheduling Algorithm 2 Backward Sampling
Inputs: The starting point of the forward trajec- Inputs: A standard Gaussian noise & -~
tory Zo, and a coefficient list [ay, . . . , drr] N(0,1), and a guidance vector g.
fort=1,2,...,Tdo fort=T,T—1,...,1do
Tt +— N (T, (1 — ap)I) t + TE(¢)
end for &i_1 « opt(concat (&, g,t))
Output: [xg, T1,. .., %7 end for

Output: 2,

Training: Diff-L.20. Since our approach is Euler sampling on VP-SDE, we use e-parameterization to
train our diffusion model, according to DDPM. However, DDPM does not consider how the solution
behaves in the optimization process, only whether it is aligned well with white noise.

Our approach uses the aforementioned guidance (e.g., quantities in the processes, optimization
meta-features). These help the parameter space modeled to be embedded with meta-information

Under review as a conference paper at ICLR 2026

about optimization. This brings greater generalizability. Meanwhile, we add the loss of the current
solutions on the optimization objective as a metric that is integrated uniformly into the probabilistic
modeling of the generated model (Algorihtm [3).

Generalization analyses. Diff-L20 augments - - —
the diversity of the samples and hence works Algorithm 3 Diff-L20 Training
better. The relevant theorem on our setting is Inputs: Initial point Zr ~ N(0,I), guidance vec-

from the perspective of PAC-Bayesian. tor g, the optimizee’s parameter 6, the forward
traject 20,1, ..., L1}, | fficient

The generalization gap is defined as: ra:'zi ;)rz gx%’fll’ ,xlT‘{looss coctiicient @

A(Z) = A(fs,fp), where f. abbr. f(&;-) = i T’E(t) LR

Eq.f(Z;d)}. f. and f. are the problems’ Z4—1 < opt(concat(iy,g,t))

expectation values of Z and x on probability L1+ f(0,3_1)

from approximated model g or the real solution Lo+ MSE(&¢_1,3-1)

space distribution (w.r.., min for simplification), L ali+(1—a)ly

D and S are the population (test) and samples Update opt by minimizing £

(train), i.e., ground truth and sampled solutions end for

in L20. A abbr. distance A(Z).

This differs the previous PAC-Bayesian bounds in the artificial samples’ distribution and &; ~ ¢;(g)
obtained from a stochastic process of guidance g, e.g., meta-features. The time ¢ and condition g are
omitted for simplicity below.

Theorem 2.1. (General PAC-Bayesian on stochastic solution space.) In this general theorem, A
requires only a non-negative general convex distance, and we do not restrict the optimization objective
to the downstream tasks. With a initial prior process p, ¥q (posterior) w/ n #samples, we have the
following bound at least 1 — § probability:

1
A <15 {KL(gllp) + log 7). Viime

where M := Ey,, exp{nA(h)} is related to the optimization task, including the distance between
population and the training set.

Proof. With given probability 1 — & (w.h.p.), we have A(fs, fp) < e5(n). As our problem is defined
as min for simplification, we focus on the upper bound here.

From the expectation extended objectives: fD =E; (A and fs = E;,f(Z;5), we decouple a
prior p from modeled distribution g with Jensen inequality, log E, exp{nA(h)} > nA—KL(q||p).
With Markov inequality, introducing probability 1-6, A < 1{KL(q||p) + log %!}, w.h.p., where
M = Ej,exp{nA(h)} is independent of ¢. It should be discussed in different optimization
objectives and downstream tasks. The all do not depend on time ¢ here. O

General generalization upper bounds are time-independent, and next we discuss specific SDE
modeling processes that are time-dependent, and their relationship to tasks.

Corollary 2.2. (Diff-L20: Gaussian.) Whenp ~ N (u, %), ¢ ~ N ({1, X), the KL-divergence is

1o [E - g
KL(qgl[p) := 5{log ST i = pll% + tr(E7'8)}.
In Diff-L20, the Gaussian is isotropic, and initial prior p ~ N (y/agz, (1 — ay)I), © ~ D. We can
further format the bound as

tr(3)
(1-a)
Qorollary 2.3. (Diff-L20: Classification tasks.) Generalizing over the classification task, we define

fp and fs by considering the prediction error rate of the modeling probability q on the test and
training sets, and use the difference between the two as the distance A.

1 N
A< s E{k‘log(l —ay) —log |8 =k + || — pl|3 + + log %} where k = dim .

If the error rate is m/n (m misclassified samples among n samples), we have the probability:

P;._p(fs =m/n) = Bio(m;n, fp),¥m,

Under review as a conference paper at ICLR 2026

where S is a set of m independent samples. We have:
M= sup [Z Bio(m;n, P) exp{nA(m/n, P)}]
Pel0,1] ;oo
Thus, we have the following bound, when Diff-L.20 is applied to general classification tasks or other
tasks that can be reduced into classification.

n— |2 log|: tr(3
L= plBloglS) ()

k
A <iog ~flog(1 - Gr) — 1]

n n n(l —a)
—_——
diversity T about bias | about variance |,

n

1 .
+ log E(Psel[lol?l] [mz:o Bio(m;n, P) exp{nA(m/n,P)}])}.

about task(i.e., the optimizee)

Takeaways. From the bound, we know that:

* For any stochastic process at any time ¢, is a Gaussian distribution, the solution’s dimension
k have to grow linearly with the sample size n.

* A larger sample size n reduces the generalization gap, i.e., sum of bias and variance. At a
certain overall loss (e.g., the terminal phase of training), there is a classical bias-variance
trade-off.

* The ability to generalize is also related to the kind of downstream task, with specific effects
M. As in the above example, M usually takes supremum for further concentration.

Theorem expansion. Here we use the general distribution assumption for the stochastic process.
Markov inequality in the proof can be replaced with different assumptions, e.g., using Hoeffding
inequality for the sub-Gaussian, Bernstein inequality for the sub-exponential.

Theorem specialization. Given different as- bound modifications w.r.t. A(a,b) on the left-hand side

sumptions and tasks w.r. M and A, we have alog § + (1 —a)log 1=¢ < [KL(q||p) + +log Van]
the Table2l Previous works are related in or- (b —a)? < 2 [KL(ql[p) + log ¥22]
der (Langford & Seeger, [2001; McAllester, b—a < L[KL(q||p) — log(8) + 2 (b — a)]

1998; |Alquier & Gued], 2018). Table 2: Specialization: varied distance function A.

2.4 ADD-ON: OPTIMAL-FREE AND DIMENSION-FREE
oracle is a neural network to generate Algorithm 4 Alternative oracle: optimal generator

initial points. It learns from the subopti- for given #epochs do

mal solutions, and training from scratch is xg + oracle(y)

avoided. An element-wise variant for dy- Lo < f(6,20)

namic dimension £ = dim x is provided in Update oracle by minimizing Ly

the Appendix. Generate the forward trajectory starting from
Zo- {{io.,fl,...,?i"r})

3 EMPIRICAL EVALUATION Train opt using Algorithm 3]for one epoch

Epost = MSE(I(M SEO)
3.1 OVERVIEW
Update oracle by minimizing Lpos

Numerical evaluations are built on conven-
end for

tional optimization problems, including con-
vex and non-convex cases. Diff-L.20 is applicable on the parameter solution space of the neural
network. Summary: 1) Diff-L20 improves the conventional optimizers well; 2) vanilla Diff-L20
also works well on non-convex problems.

3.2 SETTINGS

Compared baselines. We compare various analytical optimizers (Gradient Descent and
Adam (Kingma & Bal 2014)) and learned optimizers (L20-DM (Andrychowicz et al., [2016) and
L20O-RNNProp (Lv et al., 2017)). For learned optimizers, we train them on the same set of samples.

Under review as a conference paper at ICLR 2026

Method Method
Adam Adam
— L20-DM 2 — L20-DM
— Dif-L20 — Dif-L20

6D 6D
RNNProp o RNNProp

log(Objective)
log(Objective)

)

0 100 0 160
Steps Steps

LASSO dim, = 10 (left) and dim, = 50
(Right).

Method

Method

Adam
— Dif-L20
— Combined

log(Objective)
log(Objective)

o 250 1000 6 250

500 500
Steps Steps

LASSO dim, = 10 (left) and dim, = 50
(Right).

Method

— L20-DM
— Dif-L20

log(Objective)
log(Objective)

6D
20 RNNProp

Method

log(Objective)

6 100 6

0
Steps

5
Steps

Rastrigin dim,, = 2 (left) and dim, = 10
(Right).

A\

5 Method
Adam
— L20-DM
— Dif-120

Method
50
— L20-DM
D20

log(Objective)

log(Objective)

WA — e
RNNBiop

6D
RNNProp

o 25 160 6

50 50
Steps Steps

Ackley dim, = 2 (left) and dim, = 10
(Right).

o 2%0 st0 50
Steps Steps

Rastrigin dim,, = 2 (left) and dim, = 10
(Right).

log(Objective)

250

S0 7o 1000 o 250
Steps

50
Steps

Ackley dim, = 2 (left) and dim, = 10
(Right).

Figure 2: Comparison on optimizees across Figure 3: Ablation: compatibility of Diff-L20
#dimension: LASSO, Rastrigin and Ackley. with conventional optimizers.

Training hyperparameters. The maximum step T is set to 100 when training opt. #Diffusion
steps for inference is 100. The coefficient for variance scheduling range from 1 x 1075 to 2 x 1072,
linearly increasing along ¢. The coefficient y for loss balancing is set to 0.5 as default.

Optimizees’ hyperparameters. Diff-L.20 is evaluated on three representative optimization problems
with varied complexities and characteristics. For all optimizees, training and testing samples are
independently drawn from a standard Gaussian distribution A/(0, I). For example, in LASSO, A and
b are sampled from standard Gaussian, simplified as 6.

wLASSO

o1
= arg min §||Aw—b|\%+)\||az||1 3)
xr

Other formulations of classic problems about Rastrigin and Ackley are in Appendix.

> LASSO Two problem scales is related: a low-dimensional setting with design matrix A € R>*10
and a medium-dimensional setting with A € R25*50, The ¢, regularization coefficient is fixed at
A = 0.005 for both configurations.

> Rastrigin We investigate both low-dimensional (d = 2) and high-dimensional (d = 10) scenarios.

The amplitude of the modulation term is set to a = 10, which controls the intensity of local minima.
It’s non-convex.

> Ackley Similar to the Rastrigin function, we examine the optimization performance in both
low-dimensional (d = 2) and high-dimensional (d = 10) spaces. It’s non-convex.

3.3 COMPARISON

LASSO. We first conduct experiments on the LASSO optimizees and compare the performance on
unseen optimizee problems. The experimental results are summarized in Figure[2] We can observe
that Diff-L.20 converge faster compared to other baselines, achieving near-convergence range with
less than ten steps. In the absence of gradient information, Diff-L20 converges to the wall of the

Under review as a conference paper at ICLR 2026

LASSO convex valley. This issue can be easily resolved by combining Diff-L.20 and analytical
optimizers to achieve more accurate solutions.

Rastrigin. In Rastrigin tasks, our method has demonstrated faster convergence speed and also similar
or higher quality compared to baselines. Specifically, Diff-L.20 achieves a loss objective of 44.09
within 10 steps, while the most competitive baseline, i.e. RNNProp, can only achieve a loss of
56.68 in 100 steps. Such an advantage is enlarged in higher-dimensional cases of the variables
as baselines suffer from the curse of dimensionality, while our method performs consistently for
different dimensions.

Ackley. On the Ackley tasks, Diff-L.20 also out-performs existing baseline methods with clear
margins: in 2-dimensional case, Diff-L.20 achieves a loss objective of 3.15 within 10 steps, compared
to the most competitive baseline, i.e. RNNProp, which can only achieve a loss of 4.48 in 10 steps.
In 10-dimensional case, Diff-L.20 achieves a loss objective of 5.37 within 10 steps, while the most
competitive baseline can only achieve a loss of 6.08 in 100 steps. Analytical optimizers such as Adam
outperform all L20 methods due to the moderate difficulty of Ackley problems.

MNIST on DNN. We evaluate the classification performance of Diff-L20 on MNIST. In Figure[7]
(Appendix), and it achieved a loss of 0.228 and accuracy of 92.06% on test set, which outperform
RNNProp that achieves a loss of 0.268 and accuracy of 90.28, and L20-DM with a loss of 0.252 and
accuracy of 90.79 on the same test set. Detailed settings are in Appendix.

3.4 ABLATION

Ablation: compatibility with conventional optimizers. Diff-L20 works well when adapted to other
methods. The stochastic nature of diffusion models enables rapid initial convergence but may slow in
later stages, which is particularly disadvantageous for convex problems. This motivates our hybrid
approach: the diffusion model starts for initialization and traditional optimizers follow. Our results
show hybrid strategy consistently outperforms others on both convex and non-convex cases.

Settings. We evaluate all optimizees on the same test set as the comparison experiments. Our hybrid
optimization consists of two phases: an initial exploration phase utilizing our diffusion-based model
for the first 50 iterations, followed by a fine-grained fine-tuning phase with the Adam optimizer.

Analyses. Fig.[2]and[3|show that, in the comparison experiment’ convex case, the performance using
a vanilla Diff-L.20 can be improved by using a combination of conventional optimizers. Diff-L.20
can be used to quickly generate foundational solutions with a small amount of fine-tuning to reach
the optimal.

Ablation: optimal-free. The training of diffusion models requires solving numerous optimization
problems of the same optimizee family, which inherently limits the model’s generalizability. The
oracle component offers a potential solution to this limitation. Therefore, we conduct an ablation
study to analyze how different oracle configurations impact the model’s performance.

Table 3: Log loss with varied oracles.

ings. n ries of experimen nderstan ..
Settings. We conduct a series of experiments to understand variants LASSO Rastrigin Ackley

the effects of introduced components: (1) Noisy: we replace

oracle with a module that generates random noises; (2) moisy ~ -1.306 1727 1.301
Fixed: we do not update the oracle network; (3) Partial, we fixed -1.427 1.657 1.281
update the oracle network with Ly only; and (4) Perfect: partial -1.456 1.627 1.257
oracle output always the optimal solutions. perfect -1.676 1532 0.936

Analyses. According to Tab. 3] In Noisy case, we find that Ours ~ -1.660 1.601 1233
random initialization with poor performance. It show us that initialization strategy is necessary, even
a fixed pre-trained network. Loss term Ly, lowering task loss, helps by making better initial points.
The benefits, however, are increased gradually comparing to perfect cases. Loss term Lo, closing
backward and forward processes, shows the importance of samples with great diversity. All these
modules lead DIff-L20’s performance closer to the perfect cases (starting at the optimal).

Ablation: guidance. In this part, the guidance vector g can be time step ¢ dependent, and we denote
it by g¢. In practice, g; is a crucial component in Diff-L.20. For convex problems like LASSO,

Under review as a conference paper at ICLR 2026

incorporating gradient information in the guidance vector can significantly improve the convergence
speed and accuracy. However, in non-convex problems such as Rastrigin, the gradient can potentially
be a source of noise that guides the solutions to local minima.

Settings. we conducted experiments on LASSO ' Typle 4: Log loss with different guidance vector.

and Rastrigin optimizees using three types of guid-
ance vectors: (1) Gradient, where only the gradient
is considered as the guidance vector; (2) Global,
where the optimizees’ parameters 6 are used as the
guidance vector; and (3) All, where the guidance
vector consists of both gradient and 6.

LASSO LASSO Rastrigin Rastrigin

variants
(t=10) (t=100) (t=10) (t=100)
gradient -3.161 -4.011 3.064 2.738
global -1.674 -1.673 1.532 1.532
all -3.153 -3.938 1.618 1.643

Analyses. In 1) convex cases, as shown in TbL. B, Typle 5: Time costs of L20-DM and Diff-L20.

the gradient largely guides whether the current
point is optimal or not and contains useful local in-
formation. The gradient-only cases are dominated
by the first-order information, and thus got a log
loss value of -3.161 and -4.011 from -3.153 and
-3.938. 2) The convergence in non-convex cases
is not strictly determined by the gradient, but gra-
dients at samples are still helpful. The result of
1.618 from ¢ = 10 converges quickly compared to

optimizees L20-DM Diff-L20
LASSO (5-dim) ~ 4 hours 203 s
LASSO (25-dim) ~ 6 hours 376's
Rastrigin (2-dim) ~ 2 hours 310s
Rastrigin (10-dim) ~ 2 hours 393 s
Ackley (2-dim) ~ 3 hours 309 s
Ackley (10-dim) ~ 3 hours 543 s

1.643 from ¢ = 100, and the sampling has not converged in gradient case with a gap of 0.326.

Evaluation: training time. Table
demonstrates the training time of L20O-
DM (Andrychowicz et all 2016) and our
method. It can be clearly seen that the Diff-
L20 can be trained rapidly, using merely 2% of
time compared to L20 algorithms. This rapid
training makes our model practical.

Settings. The experiments’s default settings
are on GPU 1 xNVIDIA-A100 and CPU AMD

Trajectory

EPYC 7H12 64-Core. #iterations is 100. Figure 4: Visualization: learning surface. Fast

Visualization: trajectories. We demonstrate
that Diff-L20 rapidly approaches the vicinity
of optimal solutions in the early stages, notably
within the first iteration. Settings. We set the

dimension for all optimizees (LASSO, Rstrigin,
Ackley) to 2 with other hyperparameters the
same.

Analyses. Even in the non-convex case, Rast-
rigin, the learned descent trajectory of the op-
timizer reaches the area around the global opti-
mum in almost the starting iterations.

Visualization: modeled distribution. Settings.

convergence happens within several epochs.
learned distribution
0.6 true distribution
0 e @®
0.4
0.2
0.0 1 L & ¢ »
_02 4
-0.4 1 ,
» # e
>
~0.6

The dimension of all optimizees are set to 2 and
other hyperparameters keep unchanged. The
learned and true distributions mean Diff-L20 in
default setting and gradient descent, respectively,
with 5000 initial points.

-06 -04 -02 0.0 0.2

0.4 0.6

Figure 5: Visualization of the learned and the
Analyses. The learned distribution and the dis- ground—truth distribution (true). The distributions
tribution gotten from conventional optimizer are are generally matched.
matched generally. The diversity of learned distribution are greater.

Under review as a conference paper at ICLR 2026

4 RELATED WORKS

Learning to optimize (.20). L20 is an alternative optimization paradigm that aims to learn effective
optimization rules in a data-driven way. It generates optimization rules based on the performance on
a set of training problems. it has demonstrated success on a wide range of tasks, including black-box
optimization (Chen et al.,|2017; |Krishnamoorthy et al., 2023)), Bayesian optimization (Cao et al.,
2019), minimax optimization (Shen et al.l 2021} Jiang et al., 2018)) and domain adaptation (Chen
et al.| 2020; [Li et al.| |2020). More recently, L20O has demonstrated its ability of solving large-scale
problems (Metz et al., [2022; |(Chen et al., |2022b), making it more practical for broader applications,
e.g., conditional generation (Wang et al., [2024; 2025} |[Liang et al., 2025).

The architectures of the learnable optimizer for L20 works have undergone great evaluation. In the
seminal work of /Andrychowicz et al.[(2016)), a coordinate-wise long-short-term memory (LSTM)
network |[Hochreiter & Schmidhuber (1997) is adopted as the backbone, which can capture the inter-
parameter dependencies with low computational overhead. Subsequently, while some works (Vicol
et al.||2021) have utilized multi-layer perceptions (MLPs) for learnable optimization, a large portion
of L20 works have adopted the recurrent neural networks (RNNs) Rumelhart et al.|(1986)) as the
architecture of their learnable optimizer (Chen et al., 2021)). For example, Shen et al.| (2021)) proposes
to use two LSTM networks to solve min-max optimization problems. |Cao et al.| (2019) deploys
multiple LSTM networks to tackle population-based problems. Later on, researchers have explored
the possibility of using Transformers (Vaswani et al.| [2017)) as learnable optimizers. |Chen et al.
(2022c)) proposes to use Transformer as a tool for hyperparameter optimization. [Jain et al.[(2023);
Girtner et al.|(2023)) propose L20 frameworks that apply Transformers to solve general optimization
problem and achieves faster convergence compared to traditional algorithms such as SGD and
Adam (Kingma & Ba,|2014). In this paper, we propose to apply a different paradigm, i.e., diffusion,
as the foundation of our L20 framework. This framework model solution space with a fine-grained
approximation.

Diffusion models. Diffusion probabilistic models Ho et al.[(2020); Song et al.[(2020) have emerged as
a powerful tool for generating high-quality samples with different modalities such as images (Dhariwal
& Nichol, |2021; [Rombach et al.| |2022), texts|Gong et al.|(2022)); Xu et al.|(2023)), 3d objects Erkoc
et al.| (2023);|Gu et al.|(2023)), and videos (Ho et al., [2022). These models have demonstrated on-par
or better generation quality compared to their precursors such as generative adversarial networks
(GANSs) (Goodfellow et al.l[2020;|Odena et al., 2017;|Gong et al.,2019). In a typical training pipeline,
diffusion models learn their parameters through iterative addition and removal of noises; and in the
inference stage, they begin with a randomly sampled noise and generate the corresponding sample
by iteratively denoising. Conditional diffusion models as an important branch of diffusion models,
such as those in|Ho & Salimans|(2022); |Liu et al.| (2022)); |(Chao et al.| (2022)), enables generations
with clear instruction. In this study, we introduce a novel conditional diffusion model that operates
within the solution space of optimization problems including weight of neural networks. Empirically,
diffusion models work well.

5 CONCLUSION

This work proposes a novel L20 framework Diff-L.20. It uses diffusion model to learn from the
solution space, accelerating the optimization process. Diff-L20 achieves great performance by
capturing a wider range near the real trajectories, which is supported by theoretical results. We
discuss the key to modeling the solution space while giving relevant generalization bound. Diff-L20
is empirically verified to achieve significant results on multiple benchmarks, which further validates
our analyses and discussion.

Furthermore, the ablation study reveals the essence of designed components in Diff-L.20, and the
combined method demonstrates huge potential for implementing our method as initialization in
practice, which is especially useful when analytical properties are essential (e.g., convex cases).

Under review as a conference paper at ICLR 2026

REFERENCES

Pierre Alquier and Benjamin Gued;j. Simpler pac-bayesian bounds for hostile data. Machine Learning,
107(5):887-902, 2018.

Marcin Andrychowicz, Misha Denil, Sergio G’omez Colmenarejo, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information Processing Systems (NIPS), volume 29,
pp- 3981-3989, 2016.

H. Attouch, Z. Chbani, J. Fadili, and H. Riahi. First-order optimization algorithms via inertial systems
with hessian driven damping. arXiv preprint, arXiv:1907.10536, 2019.

Benjamin Bowman and Guido Montifar. Implicit bias of mse gradient optimization in underparame-
terized neural networks. arXiv preprint arXiv:2201.04738, 2022.

Yue Cao, Tianlong Chen, Zhangyang Wang, and Yang Shen. Learning to optimize in swarms.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Chen-Hao Chao, Wei-Fang Sun, Bo-Wun Cheng, Yi-Chen Lo, Chia-Che Chang, Yu-Lun Liu, Yu-Lin
Chang, Chia-Ping Chen, and Chun-Yi Lee. Denoising likelihood score matching for conditional
score-based data generation. arXiv preprint arXiv:2203.14206, 2022.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828,
2021.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning to optimize: A primer and a benchmark. Journal of Machine Learning Research,
23:1-59, 2022a.

Wuyang Chen, Zhiding Yu, Zhangyang Wang, and Animashree Anandkumar. Automated synthetic-
to-real generalization. In International Conference on Machine Learning (ICML), pp. 1746—1756,
2020.

Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Chen, Ahmed Awadallah, and Zhangyang Wang.
Scalable learning to optimize: A learned optimizer can train big models. In European Conference
on Computer Vision, pp. 389—405. Springer, 2022b.

Yutian Chen, Matthew W Hoffman, Sergio Gémez Colmenarejo, Misha Denil, Timothy P Lillicrap,
Matt Botvinick, and Nando De Freitas. Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learning (ICML), pp. 748-756, 2017.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning
universal hyperparameter optimizers with transformers. Advances in Neural Information Process-
ing Systems, 35:32053-32068, 2022c.

Assaf Dauber, Meir Feder, Tomer Koren, and Roi Livni. Can implicit bias explain generalization?
stochastic convex optimization as a case study. Advances in Neural Information Processing
Systems, 33:7743-7753, 2020.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Ziya Erkog, Fangchang Ma, Qi Shan, Matthias NieBner, and Angela Dai. Hyperdiffusion: Generating
implicit neural fields with weight-space diffusion. arXiv preprint arXiv:2303.17015, 2023.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

10

Under review as a conference paper at ICLR 2026

Erik Gartner, Luke Metz, Mykhaylo Andriluka, C. Daniel Freeman, and Cristian Sminchisescu.
Transformer-based learned optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2023.

Erik Girtner, Luke Metz, Mykhaylo Andriluka, C Daniel Freeman, and Cristian Sminchisescu.
Transformer-based learned optimization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11970-11979, 2023.

Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and Kayhan Batmanghelich. Twin auxiliary
classifiers gan. In Advances in Neural Information Processing Systems, volume 32, 2019.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
sequence text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

Jiatao Gu, Qingzhe Gao, Shuangfei Zhai, Baoquan Chen, Lingjie Liu, and Josh Susskind. Learning
controllable 3d diffusion models from single-view images. arXiv preprint arXiv:2304.06700, 2023.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832—1841.
PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Deepali Jain, Krzysztof Marcin Choromanski, Sumeet Singh, Vikas Sindhwani, Tingnan Zhang, Jie
Tan, and Avinava Dubey. Mnemosyne: Learning to train transformers with transformers. arXiv
preprint arXiv:2302.01128, 2023.

Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, and Tuo Zhao. Learning to defend by learning to
attack. In arXiv preprint arXiv:1811.01213, 2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for
black-box optimization. arXiv preprint arXiv:2306.07180, 2023.

John Langford and Matthias Seeger. Bounds for averaging classifiers. School of Computer Science,
Carnegie Mellon University, 2001.

Chaojian Li, Tianlong Chen, Haoran You, Zhangyang Wang, and Yingyan Lin. Halo: Hardware-
aware learning to optimize. In European Conference on Computer Vision (ECCV), pp. 500-518.
Springer, 2020.

11

Under review as a conference paper at ICLR 2026

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai Li,
Peihao Wang, Konstantin Schiirholt, Damian Borth, Michael M. Bronstein, Yang You, Zhangyang
Wang, and Kai Wang. Drag-and-drop llms: Zero-shot prompt-to-weights. arXiv preprint
arXiv:2506.16406, 2025.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
generation with composable diffusion models. arXiv preprint arXiv:2206.01714, 2022.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. In International Conference on Machine Learning (ICML), pp. 2247-2255, 2017.

David A McAllester. Some pac-bayesian theorems. In Proceedings of the eleventh annual conference
on Computational learning theory, pp. 230-234, 1998.

Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agarwal, Ben Poole, Igor Mordatch, Adam Roberts, and Jascha Sohl-Dickstein. Velo:
Training versatile learned optimizers by scaling up. arXiv preprint arXiv:2211.09760v1, 2022.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier gans. In International Conference on Machine Learning, pp. 2642-2651. PMLR, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, 1986.

Martin J. A. Schuetz, J. Kyle Brubaker, and Helmut G. Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. arXiv preprint, arXiv:2107.01188, 2022.

Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, and Zhangyang
Wang. Learning a minimax optimizer: A pilot study. In International Conference on Learning
Representations (ICLR), 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1-57,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled
computation graphs with persistent evolution strategies. In International Conference on Machine
Learning, pp. 10553-10563. PMLR, 2021.

Kai Wang, Dongwen Tang, Boya Zeng, Yida Yin, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor
Darrell, Zhuang Liu, and Yang You. Neural network diffusion. arXiv preprint arXiv:2402.13144,
2024.

Kai Wang, Dongwen Tang, Wangbo Zhao, and Yang You. Recurrent diffusion for large-scale
parameter generation. arXiv preprint arXiv:2501.11587, 2025.

Zhonglin Xie, Wotao Yin, and Zaiwen Wen. Ode-based learning to optimize. arXiv preprint
arXiv:2406.02006v1, 2024.

12

Under review as a conference paper at ICLR 2026

Xingqgian Xu, Zhangyang Wang, Gong Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text,
images and variations all in one diffusion model. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. T7154-7765, 2023.

Wengqing Zheng, Tianlong Chen, Ting-Kuei Hu, and Zhangyang Wang. Symbolic learning to optimize:
Towards interpretability and scalability. arXiv preprint arXiv:2203.06578, 2022.

13

Under review as a conference paper at ICLR 2026

Backward Sampling

Ly =f(Xe-1)

=—|z Hz
L, = Xe— X¢—
2 n t-1 t-1112

Xnt

L=yLi+(1-pL,

opt network Update
. opt networkI
Add noise by loss £
<] Xor Xnt Xot-1 oo |Xne—f<—
—— e J

Forward Scheduling

Figure 6: Model Training Framework for Diff — L20. The lower part is the trajectory generated by forward
scheduling before training, and the upper part is the backward sampling from time step ¢ to ¢ — 1. Specifically,
&+ concatenated with guidance vector and time step embedding vector, is passed to the opt network for one-step
denoising. Based on &;—1 and x¢_1, we calculate the function loss for updating the opt network. (The z in
this figure is the Z in the main paper.)

A GLOSSARY

name notation comment

solution T ground truth solutions

trajectory {ze b e Tl ground truth trajectories, trained by optimizers
blurred solution Tt solutions blurred by Gaussian noise

blurred trajectory {i’t}tG[Tbluq trajectory blurred by Gaussian noise

predicted solution Tt generated by the backward diffusion process
predicted trajectory {2t} eTye predicted trajectory of diffusion process

a, B, coefficients: SDE time dependent, especially 8 and y

d differentiate operator conventional operator

v, V? gradient and Hessian matrix operators conventional operators

a, a first and second order derivation of any a conventional operators

U, v coefficients: time and Brownian motion determining Wiener process (first order)
S, 0 parameters: adjustment and intensity determining general diffusion process

Table 6: Notations related in this paper.

B DETAILED SETTINGS

B.1 DEEP NEURAL NETWORK ON MNIST

Model architectures. We consider the optimizee of MLPs with single hidden layer of dimension 20
and sigmoid activation function, using the cross-entropy loss on the MNIST dataset.

Optimizees. Optimizees. To evaluate our model, we deploy the following families of problems as

the optimizees.

> Lasso. We target to minimize the original LASSO objective function without considering the
sparsity of the solution:

o1

1550 — arg min §\|Aa:fb||§+)\|\wH1)]
T

where A € R™*™ represent the characteristic matrix of a lasso problem instance, which is fixed and

sampled from an i.i.d. standard Gaussian distribution. b € R™*! refers to the vector of dependent

variables, which is also fixed and sampled from an i.i.d. standard Gaussian distribution. A\ is the

regularized hyperparameter set to 0.005 in our experiment.

14

Under review as a conference paper at ICLR 2026

> Rastrigin. Rastrigin is a common benchmark of non-convex optimization defined in n-dimensional
space, where n is the number of variables. It is characterized by a complex landscape of multiple
local minima and a global minimum. We consider a family of Rastrigin function, and adopt the
following definition from a seminal benchmark paper|Chen et al.| (2017):

1
"% = arg min §||A:c —b||2 — ac’ cos(2nz) + an 5)
x

where A € R™*" b € R*"*! and ¢ € R™*! are all sampled from an i.i.d. standard Gaussian
distribution.

> Ackley. Similar to Rastrigin function, Ackley function has many local minima which are comparably
larger then the unique global minimum. Compare to Rastrigin, analytical optimizers can find the
global minimum with less effort by enlarge their step-size. The problem is definded as:

Ack

A% = argmin 20 + e — 20¢0-2lA@+bl:
x

. e%cTcos(%rw) (6)

where A € R™*", b € R"™! and ¢ € R"*! are all sampled from i.i.d. standard Gaussian
distributions.

Comparison: Loss Curves. The loss curves between baselines and Diff-L.20 are shown in Fig.

<0
=
=
(8]
Q
Q
)
o -
L Method
— L20-DM
— Diff-L20
_a RNNProp
0 25 50 75 100

Steps

Figure 7: Comparison on MNIST.

C THE ELEMENT-WISE VARIANT OF L20

Algorithm [3]illustrate the Global-to-Local training philosophy by considering three phases, repre-
senting early, middle and later phase respectively. For each epoch, we first loop through each time
step, and then loop through the positions, i.e. each element of the optimization variable. In early
phase, we accumulate the training loss until the last element, called "Global"; In middle phase, we
accumulate the training loss and conduct backward propagation on iterating every g of elements,
which is named Local. In the later phase, where we no longer accumulate the training loss, and this is
when element-wise training is achieved.

15

Under review as a conference paper at ICLR 2026

Algorithm 5 Diff-L20-ELE Training

Inputs: & ~ A(0,1), a guidance vector g, its corresponding trajectory {xo, €1, ..., @1}, phase
indicator Ny, Ny, dimension d
forn=1,2,...,Ndo
fort=T,T—1,...,1do
t + TE(t)
for pos =1,2,...,ddo
pos + PE(pos)
Ti_1,pos < opt(concat(xy,g,t, pos))
L1 [0, %1 1)
[,2 — MSE(wt,l, i!tfl)
L+ L4+~L14+(1—7)Ls
if N < N; then
if pos == d then
Update opt by minimizing £
L+0
end if
else if N; < N < Ny then
if pos € [2],|2],|d| then
Update opt by minimizing £
L0
end if
else
Update opt by minimizing £
L+0
end if
end for
end for
end for

16

	Introduction
	Methodology
	Preliminary
	Discussion: modeling solutions is feasible
	Diff-L2O: How to model solutions
	Add-on: optimal-free and dimension-free

	Empirical Evaluation
	Overview
	Settings
	Comparison
	Ablation

	Related Works
	Conclusion
	Glossary
	Detailed Settings
	Deep Neural Network on MNIST

	The element-wise variant of L2O

