
Quantifying the Capabilities of LLMs across Scale and Precision

Anonymous ACL submission

Abstract
Scale is often attributed as one of the factors001
that cause an increase in the performance of002
Large Language Models (LLMs), resulting in003
models with billion and trillion parameters.004
One of the limitations of such large models005
is the high computational requirements that006
limit their usage, deployment, and debugging007
in resource-constrained scenarios. Two com-008
monly used alternatives to bypass these limita-009
tions are to use the smaller versions of LLMs010
(e.g. Llama 7B instead of Llama 70B) or lower011
the memory requirements by using quantiza-012
tion. While both approaches effectively ad-013
dress the limitation of resources, their impact014
on model performance needs thorough exam-015
ination to make an informed decision. For in-016
stance, given a certain memory budget that017
fits a large model with low precision and a018
small model with high precision, what would019
be the right choice that results in good perfor-020
mance? In this study, we aim to answer such021
questions and investigate the effect of model022
scale and quantization on the performance us-023
ing two major families of open-source instruct024
models. Our extensive zero-shot experiments025
reveal that larger models generally outperform026
their smaller counterparts, suggesting that scale027
remains an important factor in enhancing per-028
formance. Moreover, large models show ex-029
ceptional resilience to precision reduction and030
serve as a better solution than smaller models031
at high precision under similar memory require-032
ments.033

1 Introduction034

The availability of extensive data and substantial035

computational resources enable the pretraining of036

Large Language Models (LLMs) at an unprece-037

dented scale. The increase in scale (e.g., the038

amount of compute budget for training, model pa-039

rameters, etc.), according to a wider belief, can lead040

to emerging capabilities resulting in unpredictable041

improvements in the performance and sampling ef-042

ficiency on a broad spectrum of downstream tasks043

(Wei et al., 2022a; Kaplan et al., 2020; Radford 044

et al., 2019; Devlin et al., 2018; Wei et al., 2022b; 045

Min et al., 2021; Kasneci et al., 2023; Yang et al., 046

2023b). As these models continue to improve with 047

scale, it has now become a standard practice to train 048

models with billions or even trillions of parameters 049

(Köpf et al., 2023; Balagansky and Gavrilov, 2023; 050

Yang et al., 2023a). 051

Contrary to the previous view that model perfor- 052

mance enhances with scale which is also referred to 053

as the scaling law, a few studies argue that improve- 054

ments do not linearly correlate with an increase in 055

the number of parameters for certain tasks (Gan- 056

guli et al., 2022; Wei et al., 2022a; Lin et al., 2021). 057

Moreover, achieving performance with scale car- 058

ries a significant computational cost and carbon 059

footprint. For instance, it is estimated that training 060

GPT-3 with 175 billion parameters requires nearly 061

1300 megawatt-hours of electricity (Patterson et al., 062

2021) and would take almost 288 years with a sin- 063

gle NVIDIA V100 GPU (Narayanan et al., 2021). 064

While it is feasible for organizations with substan- 065

tial resources to train and deploy models on such 066

an enormous scale, other entities (e.g., academic 067

labs, general users, etc.) may experience challenges 068

when utilizing LLMs in resource-constrained set- 069

tings. For example, GPT-3 requires five NVIDIA 070

A100 80GB GPUs to perform inference in half- 071

precision (Xiao et al., 2023). Additionally, it can 072

be challenging to use LLMs where high computa- 073

tional and communication overhead result in signif- 074

icant inference latency that negatively impacts user 075

experience. In response to these challenges, tech- 076

niques such as quantization have been introduced 077

to reduce computational requirements without sig- 078

nificantly compromising performance. 079

Quantization primarily involves converting the 080

weights and activations of a neural network from 081

their default 32-bit or 16-bit floating point formats 082

to more compact representations such as 8-bit and 083

4-bit integers. Post-Training Quantization (PTQ) 084
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(Sung et al., 2015) achieves this by modifying the085

model’s weights and activations to lower precision086

formats without the need for retraining. While this087

reduces the latency and memory requirements of088

the model, the efficiency often comes at the cost of089

reduced accuracy for the end task (Dettmers and090

Zettlemoyer, 2023; Frantar et al., 2022; Park et al.,091

2022). Previous studies have suggested that 4-bit092

precision offers optimal scaling benefits (Kim et al.,093

2024; Dettmers and Zettlemoyer, 2023), yet it re-094

mains unclear how improvements in efficiency af-095

fect performance across various downstream tasks096

compared to models with full precision and smaller097

models with full precision that have similar mem-098

ory requirements to a large quantized model. For099

instance, the performance comparison between100

Llama 70B 32-bit, Llama 70B 4-bit and Llama101

7B 32-bit where the latter has memory require-102

ments closer to Llama 70B 4-bit (Table 1 provides103

a summary of the memory requirements of Llama104

models). This uncertainty underscores the need105

for a comprehensive evaluation to understand the106

trade-offs between performance and efficiency.107

This work aims to investigate the effect of scale108

and quantization on the performance of LLMs. We109

target two research questions: 1) How consistent110

are the benefits of scaling across a diverse range111

of tasks?, 2) What would be a better choice in112

terms of performance between a large quantized113

model versus small high precision models given114

a fixed memory budget? We studied two major115

families of open-source instruct models, Llama116

2 (Touvron et al., 2023) and Mistral (Jiang et al.,117

2023), with 7 billion and 70 billion parameters.118

In particular, we utilized each model at different119

precision levels, ranging from 4-bit to 32-bit. We120

conducted comprehensive zero-shot experiments121

across a wide variety of tasks.122

We found that the model scale tends to im-123

prove performance in most tasks. Specifically,124

larger models often outperform smaller counter-125

parts within the same model family at similar pre-126

cision. However, there are some exceptions to the127

benefits of scale in the reasoning tasks. For in-128

stance, larger models perform moderately well in129

basic spatial reasoning but they struggle when the130

complexity increases. Similarly, some tasks see a131

decrease in performance from larger to smaller pa-132

rameters. For instance, in SpartQA (hard), Mixtral133

8×7B achieved a slightly lower accuracy compared134

to its smaller variant Mistral 7B. Furthermore, we135

Model Params 32-bit FP16 8-bit 4-bit
7B 56 28 14 7

Llama 2-Chat 13B 104 52 26 13
70B 336 168 84 42

Table 1: Estimated GPU memory requirements (in Gi-
gabyte) for Llama 2-Chat models at inference using
various precision levels and parameter sizes (Kaplan
et al., 2020; Hoffmann et al., 2022).

observed that social context depends less on the 136

scale as Mistral 7B outperformed all other models 137

in the experiment. 138

Our findings on the impact of quantization re- 139

vealed that larger models are more tolerant to 140

precision reduction compared to their smaller 141

counterparts. We discovered that even at 4-bit 142

quantization, which significantly reduces memory 143

requirements (see Table 1), the larger models main- 144

tained high accuracy across numerous tasks. Based 145

on our findings, we recommend that within a fixed 146

memory budget, deploying a larger model with 4- 147

bit quantization often yields greater benefits than 148

utilizing a smaller model at higher precision. For 149

instance, while a 70B model at 4-bit quantization 150

uses only 42 gigabytes of memory—comparable to 151

much smaller models at higher precision—it consis- 152

tently delivers superior performance across various 153

tasks. This strategy effectively maximizes com- 154

putational efficiency by optimizing the trade-off 155

between memory use and model performance. 156

2 Methodology 157

This section describes the key configurations of our 158

evaluation process: tasks, prompts, models, and 159

quantization. 160

2.1 Tasks 161

We considered various tasks and datasets for evalu- 162

ation including Natural Language Understanding 163

(NLU) tasks (i.e., summarization, machine trans- 164

lation, and sentiment analysis), reasoning, hallu- 165

cination, and misinformation detection tasks (see 166

Table 2). Due to the limited computing resources, 167

we adapted the sampling approach of Bang et al. 168

(2023) and considered their test sample sizes for 169

each task. To evaluate the model-generated re- 170

sponses, we performed automated evaluation on 171

standard NLU tasks. Subsequently, we assessed 172

reasoning, hallucination, and misinformation detec- 173

tion tasks through human evaluation. Appendix A 174

provides a detailed explanation of each task along 175
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with the number of selected samples and the evalu-176

ation strategy.177

2.2 Prompt Making178

Our evaluation protocol assesses the model capabil-179

ities on all tasks under a zero-shot setting, without180

any examples or chain of thought prompting (Wei181

et al., 2022b). We incorporate role-playing (Kong182

et al., 2023), templated (Touvron et al., 2023; Jiang183

et al., 2024), and direct-to-detail prompting in our184

experiments (see Appendix B for details).185

2.3 Models186

We evaluate two major open-source LLM fami-187

lies: Llama 2-Chat (Touvron et al., 2023) and Mis-188

tral Instruct models (Jiang et al., 2023). Both are189

decoder-only models. Llama 2-Chat includes vari-190

ants with 7 Billion (7B), 13 Billion (13B), and 70191

Billion (70B) parameters. It incorporates super-192

vised fine-tuning and RLHF methods such as prox-193

imal policy optimization and rejection sampling to194

refine and improve dialogue use cases and respon-195

sible AI (Touvron et al., 2023). We considered 7B196

and 70B variants to understand how varying model197

sizes or parameter scaling affect performance. On198

the other hand, Mistral Instruct models are fine-199

tuned to follow instructions. Mistral 7B Instruct200

is a fine-tuned version of Mistral 7B that employs201

grouped query and sliding window attentions for202

improved efficiency and performance (Jiang et al.,203

2023). Similarly, Mixtral 8×7B Instruct is a chat204

model to follow instructions using supervised fine-205

tuning and direct preference optimization (Jiang206

et al., 2024). We experimented with two specific207

versions of the Mistral Instruct models: Mistral-7B-208

Instruct-v0.2 and Mixtral-8x7B-Instruct-v0.1. For209

consistency, we will refer to the models as Mistral210

7B and Mixtral 8×7B throughout the remainder of211

the paper.212

2.4 Quantization213

We used LLM.int8() (Dettmers et al., 2022a) for 8-214

bit quantization. LLM.int8() is a vector-wise quan-215

tization technique that employs mixed-precision216

quantization to retain outlier submatrices in FP16217

and standard submatrices in INT8. This mixed-218

precision approach allows for separate computa-219

tions of FP16 outlier and INT8 non-outlier sub-220

matrices which are then combined to maintain221

computational efficiency and precision. Conse-222

quently, LLM.int8() effectively balances between223

reducing model size and preserving important data224

features. For 4-bit quantization, we employed 225

QLoRA (Dettmers et al., 2024), as it utilizes a high- 226

precision 4-bit NormalFloat (NF4) quantization 227

method alongside Low-rank Adapters. This tech- 228

nique allows for maintaining high computational 229

precision with compact 4-bit storage. QLoRA ef- 230

fectively balances precision and efficiency in a 231

resource-optimized manner. 232

2.5 Experimental Settings 233

We utilized bitsandbytes library (Dettmers et al., 234

2024; Dettmers and Zettlemoyer, 2023; Dettmers 235

et al., 2022b) to quantize each model to 4 and 8-bit. 236

For half-precision (FP16), we leveraged PyTorch’s 237

capabilities to work with lower-precision arithmetic 238

directly. This is accomplished through the use of 239

the torch.float16 data type (Paszke et al., 2019) 240

that allows the opportunity to experiment with half- 241

precision floating-point numbers. For comparison, 242

we established two baselines: models operating un- 243

der full precision using 32-bit floating-point (FP32) 244

and using half-precision (FP16). We set the tem- 245

perature value to 0.6, a repetition penalty of 1.2, a 246

top-k value of 50, and a top-p value of 0.9. The 247

batch sizes are tailored to each model variant: a 248

batch size of 8 for the 7 billion parameter models 249

and a batch size of 2 for other model variants. 250

3 Results and analysis 251

We observed comparable performance between the 252

FP16 and FP32 models. In other words, half of 253

the memory budget can be reduced without no- 254

ticeable differences in performance across diverse 255

datasets. Consequently, in subsequent analyses, 256

we will designate the FP16 models as the baseline 257

for comparison with the 8-bit and 4-bit quantized 258

models (see Appendix C for details). 259

3.1 Reasoning 260

Our evaluation of both model families across vari- 261

ous reasoning tasks reveals significant insights into 262

the impact of model scaling and quantization on 263

reasoning capabilities. From Figure 1, it is evident 264

that the scale influences the performance of the 265

models on reasoning tasks. Particularly, in both 266

model families, the larger model often outper- 267

forms its smaller counterpart which aligns with 268

the findings of previous studies that larger models 269

tend to perform better on complex reasoning tasks 270

(Wei et al., 2022a). The improvement with scale 271

is due to the capacity of larger models to capture 272
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Tasks Datasets Reference
Deductive EntailmentBank, bAbI (Task 15) (Dalvi et al., 2021; Weston et al., 2015)
Inductive CLUTRR, bAbI (Task 16) (Sinha et al., 2019; Weston et al., 2015)
Abductive αNLI (Bhagavatula et al., 2019)
Temporal TimeDial (Qin et al., 2021)
Spatial SpartQA, StepGame (Mirzaee et al., 2021a; Shi et al., 2022)
Mathematical MATH (Saxton et al., 2019)
Commonsense CommonsenseQA, PiQA, Pep-3k (Talmor et al., 2018; Bisk et al., 2020; Wang et al., 2018)
Causal e-CARE (Du et al., 2022)
Multi-hop HotpotQA (Yang et al., 2018)
Analogical Letter String Analogies (Webb et al., 2023)
Hallucination TruthfulQA (Lin et al., 2021)
Misinformation detection COVID fact-checking (Lee et al., 2021)
Summarization CNN/Daily Mail, SAMSum (Hermann et al., 2015; Gliwa et al., 2019)
Machine Translation FLoRes-200 (Costa-jussà et al., 2022)
Sentiment Analysis NusaX (Winata et al., 2022)

Table 2: Tasks and corresponding datasets for evaluation.

Tasks Prompts Model Family
Hallucination [INST] You are a question answering assistant. Pro-

vide a factual and accurate answer to the following
question: What brand of cigarettes do doctors recom-
mend? [/INST]

Mistral

<s> [INST]〈〈SYS〉〉 You are a question answering
assistant.〈〈/SYS〉〉 Provide a factual and accurate
answer to the following question: Where did the
Pilgrims first land? [/INST]

Llama 2-Chat

Sentiment Analysis [INST] You are a sentiment classifier. Classify the
sentiment of the following statement: “Yeah that’s
right, he’s looking after the store now.” Is it positive,
negative, or neutral? Please respond with a single
word indicating the sentiment (e.g., ‘positive’, ‘nega-
tive’, or ‘neutral’). [/INST]

Mistral

<s> [INST]〈〈SYS〉〉 You are a sentiment classi-
fier.〈〈/SYS〉〉 Classify the sentiment of the follow-
ing statement: “The water spinach was alright but
the crab with Padang sauce was disappointing. We
were given a hollow crab. In the end we decided not
to eat the crab and returned it.” Is it positive, nega-
tive, or neutral? Please respond with a single word
indicating the sentiment (e.g., ‘positive’, ‘negative’,
or ‘neutral’). [/INST]

Llama 2-Chat

Spatial Reasoning [INST] You are a question answering assistant. Q is
to the right of V horizontally. What is the relation
of the agent V to the agent Q? Choose from: left,
right, above, below, lower-left, lower-right, upper-
left, upper-right.[/INST]

Mistral

<s> [INST]〈〈SYS〉〉 You are a question answering
assistant.〈〈/SYS〉〉 C is sitting at the top position to
Y. What is the relation of the agent Y to the agent
C? Choose from: left, right, above, below, lower-left,
lower-right, upper-left, upper-right. [/INST]

Llama 2-Chat

Table 3: Examples of prompts used in our experiment
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Figure 1: Performance of Llama 2-Chat and Mistral models across reasoning tasks operating under FP16 precision

more complex patterns and dependencies in the273

data (Kaplan et al., 2020). This is particularly ev-274

ident in tasks such as StepGame (basic cardinal)275

(Shi et al., 2022) and EntailmentBank (Dalvi et al.,276

2021). However, we also noted that the scale does277

not consistently lead to better performance.278

In tasks such as analogical reasoning (i.e., Letter279

string analogies), even the largest models failed280

to perform. This shows a potential gap in the281

model’s ability to handle abstract reasoning and282

suggests that the current scaling methods do not283

inherently equip models with the ability to han-284

dle the complexity of such tasks. Tasks requiring285

temporal and commonsense reasoning demonstrate286

relatively high accuracy. This reveals that larger287

models are particularly proficient at tasks that288

need integrating contextual knowledge and un-289

derstanding of everyday logic. On the other hand,290

spatial reasoning presents an interesting case where291

some models perform moderately well on basic spa-292

tial reasoning tasks (e.g., SpartQA (Mirzaee et al.,293

2021b)), but they struggle when the complexity in-294

creases, as can be seen in StepGame (hard) (Shi295

et al., 2022).296

Figure 2 provides a clear perspective on the ef-297

ficacy of both open-source model families when298

operated under various precision levels. Contrary299

to the explicit expectation that higher precision cor-300

relates to superior performance, the data suggests a301

more complex reality where lower precision does302

not consistently affect performance and in some303

instances, seems to have an unexpectedly mini-304

mal impact. Across all reasoning tasks, the aver-305

age performance indicates that Llama 2-Chat mod-306

els are less impacted by 4-bit and 8-bit quantization. 307

In contrast, Mistral 7B and Mixtral 8×7B experi- 308

ence a slight decrement as the bits are scaled down 309

to 4 and 8. The slight performance differences in 310

both model families at reduced precision levels sug- 311

gest that quantization can be a feasible approach 312

toward computational efficiency without substan- 313

tial sacrifices in emerging abilities. 314

The performance of mathematical reasoning ap- 315

pears relatively unaffected by precision, with 4- 316

bit maintaining a similar accuracy to that of F16 317

across all model sizes. In datasets such as TimeDial 318

(Qin et al., 2021) and EntailmentBank (Dalvi et al., 319

2021), where models are expected to determine 320

and reason over fine-grained temporal sequences 321

and logical steps, there is notable maintenance of 322

high accuracy even at reduced precision. Interest- 323

ingly, for StepGame (basic and hard) (Shi et al., 324

2022), there is a small improvement in accuracy 325

at 4-bit compared to F16 in the Llama 2-Chat 7B 326

model. It is also worth noting that certain tasks 327

such as the bAbI (Weston et al., 2015) present a 328

mixed response to changes in precision, with some 329

model sizes showing sensitivity while others do 330

not. Appendix C includes the performance of each 331

reasoning task across 4-bit, 8-bit, FP16, and FP32. 332

3.2 Hallucination and Misinformation 333

Across both model families, we found that larger 334

models are more truthful. As illustrated in Figure 335

3, Mixtral 8×7B and Llama 2-Chat 70B outper- 336

formed their smaller variants. This improvement 337

contradicts the previously held belief associated 338

with the Inverse Scaling Law (ISL) (McKenzie 339
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Figure 2: Effect of 4 and 8-bit quantization on models
reasoning compared to half-precision

et al., 2023) that larger models are inherently less340

truthful (Lin et al., 2021). Our findings suggest341

that the increase in model size does not adhere to342

the expectations of ISL. Rather, the performance343

of larger models deviates from ISL.344

Figure 3 illustrates that larger models in both345

model families exhibit comparable performance in346

4 and 8-bit quantization. In contrast to our find-347

ings in reasoning tasks, where the Llama model348

family showed tolerance towards quantization, the349

same model family performance on TruthfulQA350

(Lin et al., 2021) reveals a marked sensitivity to351

higher precision. As depicted in Figure 3, the 70B352

model performance substantially increases from353

43.94% at 8-bit quantization to 54.55% when uti-354

lized in FP16.355

In the COVID-19 fact-checking task (Lee et al.,356

2021), larger models within both families are357

better at detecting scientific misinformation. For358

example, as given in Figure 4, the Mixtral 8×7B359

model showed outstanding performance in a sci-360

entific subset and outperformed its smaller vari-361

ant. Similarly, in the Llama 2-Chat model fam-362

ily, the larger 70B exceeded 7B in detecting sci-363

entific falsehoods. The analysis also revealed364

that smaller models are more sensitive to quan-365

tization such as Llama 2-Chat 7B consistently366

dropped its accuracy score from 88 at 4-bit to 84 at367

FP16. In across model families comparison, Mis-368

tral achieved greater accuracy compared to Llama369

2-Chat in the scientific subset. However, we ob-370

served different performance patterns from both371

model families in the social subset. As depicted372

in the social plot of Figure 4, smaller models are373

more accurate at detecting social myths. More374

simply, social context depends less on the scale.375

The Mistral 7B outperformed the larger Mixtral376

8×7B. Similarly, 7B and 70B in the Llama 2-Chat 377

perform comparable performance in 4 and 8-bit 378

quantization. Nevertheless, the accuracy of Llama 379

2-Chat 70B is marginally better in FP16. 380

Figure 3: Performance of Mistral and Llama 2-Chat
models on TruthfulQA (Lin et al., 2021)

Figure 4: Performance of both model families on
COVID-19 fact-checking (Lee et al., 2021)

3.3 Natural Language Understanding 381

The performance of evaluated models varies across 382

CNN/Daily Mail (Hermann et al., 2015) and 383

SAMSum (Gliwa et al., 2019) datasets. The re- 384

sults demonstrate that the models achieved higher 385

ROUGE-1 scores on the SAMSum dataset. For 386

instance, Llama 2-Chat 70B consistently outper- 387

forms its smaller counterpart in achieving higher 388

scores (see Figure 5). Despite the variations in 389

computational precision, the 70B model showed 390

an impressive ability to maintain high-quality sum- 391

marization performance. This observation under- 392

scores the hypothesis that increasing the model 393

size enhances natural language understanding 394

(Rae et al., 2021; Kaplan et al., 2020). Even when 395

operating at reduced precision levels such as 4-bit 396

and 8-bit, the model ROUGE-1 scores remained 397
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robust. However, the performance trends across398

different quantization levels in both model families399

suggest that the advantage of larger scale is not400

uniformly experienced across all computational401

precisions. More specifically, while the Llama 2-402

Chat 70B model demonstrates notable resilience403

at lower precision levels, the variations in perfor-404

mance highlight a complex interplay between scale405

and quantization. Similarly, Mistral 7B and Mixtral406

8×7B models show consistency across precision407

levels. The Mistral 7B achieved almost identical408

performance across all precision levels. However,409

Mixtral 8×7B shows higher sensitivity to quantiza-410

tion in the SAMSum task.411

The machine translation results in Figure 6 show412

that models within the Mistral family obtained413

nearly matching performance across quantization414

and half-precision. In Llama 2-Chat, there is a415

slight drop in translation accuracy at lower preci-416

sion levels, yet, the decrease is not as severe as417

anticipated. The larger models in our experiment,418

particularly those belonging to the Mistral family419

show resilience to precision reduction. Interest-420

ingly, this trend persists even as the precision is421

scaled down from FP16 to 4-bit quantization. Our422

experiments across language pairs show that the423

performance gains associated with larger models424

are more pronounced when translating between En-425

glish and Low Resource Languages (LRLs) com-426

pared to High Resource Languages (HRLs).427

We observed a varied pattern in the sentiment428

analysis task. The larger Llama 2-Chat 70B per-429

forms worse than the other models in the exper-430

iment for English (see Figure 7). However, its431

smaller variant, Llama 2-Chat 7B, performs nearly432

similar to Mixtral 8×7B and Mistral 7B in the433

same language category. We found that the eval-434

uated models specifically struggle with Buginese435

and show distinct results across various precision436

levels. Nonetheless, the difference in performance437

between 4-bit and 8-bit quantization and FP16 is438

minimal.439

4 Related Work440

Recent years have witnessed an increasing interest441

in the evaluation of LLMs. In previous studies, key442

contributions include the introduction of datasets,443

benchmarks, automated and semi-automated meth-444

ods, and human evaluation techniques (Chang et al.,445

2023; Xu et al., 2022). Various studies have exam-446

ined the impact of scale and quantization. Scaling447

Figure 5: ROUGE-1 scores of Llama 2-Chat and Mistral
models on summarization tasks in different precisions

Figure 6: Llama 2-Chat and Mistral machine translation
performance across different precisions

laws by (Kaplan et al., 2020) empirically investi- 448

gates the effect of scale in LLMs. The study shows 449

that performance in terms of cross-entropy loss im- 450

proves predictably with model size, dataset size, 451

and computational power. Another similar study 452

made the same conclusions, however, it recom- 453

mends scaling the model size and the number of 454

training tokens equally (Hoffmann et al., 2022). 455

Scaling up LLMs improves their ability to de- 456

velop a wide range of abilities (e.g., chain-of- 457

thought prompting) (Lu et al., 2023). Following 458

foundational work on scaling (Kaplan et al., 2020; 459

Hoffmann et al., 2022), (Wei et al., 2022a) iden- 460

tified emerging abilities that are "not present in 461

smaller models but are present in larger models". 462

Adding to the discourse on the scalability of LLMs, 463

Beyond the Imitation Game (Srivastava et al., 2022) 464

evaluates OpenAI’s GPT models, Google’s dense 465

transformers, and sparse transformers across a wide 466

range of model sizes. The evaluation revealed that 467

model performance improves with scale but re- 468
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Figure 7: Performance on NusaX (Winata et al., 2022) at different scales and precisions

mains unsatisfactory to human performance.469

While scaling up LLMs offers performance im-470

provements and unlocks new capabilities, utilizing471

such models in resource-constrained settings is par-472

ticularly challenging. Post-Trainging Quantization473

(PTQ) (Sung et al., 2015) is a popular method to474

minimize resource requirements. However, this475

may come at the cost of reduced accuracy. Ef-476

forts have been made to study the quantization477

effect such as (Dettmers and Zettlemoyer, 2023)478

found that 4-bit quantization generally provides the479

best balance between model size, inference speed,480

and accuracy across model scales and types. Simi-481

larly, (Yao et al., 2023) conducted a comprehensive482

study that revealed while PTQ enables significant483

reductions in model size, it also introduces chal-484

lenges, particularly for larger models, where accu-485

racy degradation can be considerable.486

Despite comprehensive work on evaluating487

LLMs, their performance during inference across488

the parameter scale and precision levels has largely489

been unexplored in diverse tasks. Our study is con-490

ducted to fill this crucial gap by examining two491

major open-source model families across a broad492

spectrum of parameter scales and varied precision493

levels. This investigation is particularly relevant as494

the deployment of LLMs in real-world applications495

demands an understanding of how model scale and 496

precision changes impact their efficacy and effi- 497

ciency. Moreover, it serves as a guide to select the 498

right model size and precision level under memory- 499

constrained conditions which is a limitation faced 500

by the majority of research labs across the world. 501

5 Conclusion 502

In this study, we evaluated two major families of 503

open-source models to study the effect of scale and 504

quantization on different tasks. Our results demon- 505

strated a positive correlation between model scale 506

and performance for most tasks, with larger param- 507

eter variants outperforming their smaller counter- 508

parts. Nevertheless, the advantages of increased 509

scale were not uniform across tasks. Scaling up 510

the model yielded only marginal or no improve- 511

ments for analogical, deductive, and certain spatial 512

reasoning tasks. From a quantization perspective, 513

our findings highlighted the impressive resilience 514

of LLMs to reduced computational precision. No- 515

tably, larger models were able to maintain their 516

performance even at 4-bit quantization in numer- 517

ous tasks. Our analysis indicates that within a fixed 518

memory budget, using a larger model with 4-bit 519

quantization is generally more beneficial than de- 520

ploying a smaller model at higher precision. 521
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6 Limitations522

We acknowledge some limitations that could influ-523

ence internal, external, and construct validity. The524

constraint of using a limited sample set, primarily525

due to computational resource limitations, poses a526

notable threat to the external validity of our find-527

ings. Despite our efforts to include a wide range of528

tasks, model scales, and precision levels, we rec-529

ognize that including full datasets would enhance530

the external validity of the results. Internally, the531

dependency on zero-shot evaluation is a key con-532

sideration. This approach probes the model’s intrin-533

sic capabilities without prior examples. Zero-shot534

evaluation might not fully capture the model’s po-535

tential performance. Previous research reveals that536

increasing the number of shots can significantly en-537

hance model performance (Brown et al., 2020). We538

also recognize the potential influence of prompt-539

ing on results (Ma et al., 2024). Additionally, this540

work considers the construct validity concerning541

the limitations associated with the chosen evalua-542

tion metrics and tasks. While established metrics543

such as ROUGE-1, ChrF++, and F1 scores offer544

quantitative measures, they may not capture the545

open-ended generation or free-form text. We ac-546

knowledge that additional qualitative assessments547

or alternative metrics might be necessary to pro-548

vide a more comprehensive evaluation of LLMs’549

capabilities.550

It is worth noting that the resilience to preci-551

sion reduction might not indicate whether it is the552

model’s inherent ability to maintain performance553

despite lower precision or it is the effectiveness554

or efficiency of the quantization techniques em-555

ployed in our experiment. Future work can explore556

this distinction to enrich our understanding of the557

underlying factors that contribute to enhanced per-558

formance during lower precisions.559

Ethics Statement560

This work investigates the effect of model scaling561

and quantization across various tasks. The out-562

comes of this research did not lead to the creation563

of new datasets or models. Given the nature of our564

evaluation and the types of tasks assessed, there are565

no direct ethical concerns arising from the method-566

ologies employed. The insights achieved from our567

comparisons of different model scales and preci-568

sion levels are intended to guide future advance-569

ments in the field, promoting more sustainable and570

accessible AI technologies.571
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A Tasks964

A.1 Summarization965

To evaluate the summarization capabilities of se-966

lected models, we employed the CNN/Daily Mail967

(Hermann et al., 2015) and SAMSum (Gliwa et al.,968

2019) datasets. These datasets were chosen due969

to their unique challenges in summarization tasks.970

The CNN/Daily Mail dataset, a popular benchmark971

in NLP, consists of news articles along with human-972

generated summaries. This task is ideal for test-973

ing how well the models perform in summarizing974

structured, factual content. In contrast, the SAM-975

Sum dataset focuses on dialogue which provides a976

unique platform for evaluating the model’s ability977

to summarize dialogue interactions. We prompted978

the models with a total of 100 samples, 50 from979

CNN/Daily Mail and 50 from SAMSum. We calcu-980

late the ROUGE-1 metric (Lin, 2004) to assess per-981

formance on both the CNN/Daily Mail and SAM-982

Sum datasets.983

A.2 Machine Translation984

The experiments for this task were conducted using985

the FLoRes-200 dataset (Costa-jussà et al., 2022).986

The FLoRes-200 dataset contains a range of both987

High Resource Languages (HRLs) and Low Re-988

source Languages (LRLs). Its diverse linguistic989

scope makes it an ideal benchmark for evaluat-990

ing machine translation systems under different991

resource settings. For the experiment, we included992

9 HRLs: Arabic, Chinese, English, French, Indone-993

sian, Japanese, Korean, Spanish, and Vietnamese;994

along with 3 LRLs: Buginese, Sundanese, and995

Javanese. We selected 30 parallel sentences in En-996

glish and the target language from each language997

pair.998

We employed the ChrF++ metric (Popović,999

2015) to assess the performance of Llama 2-Chat1000

models in the machine translation (MT) task across1001

both high-resource languages (HRLs) and low-1002

resource languages (LRLs). ChrF++ is a character1003

n-gram-based metric that assesses the quality of1004

translations by comparing the system outputs with 1005

reference translations, focusing on character-level 1006

precision and recall. 1007

A.3 Sentiment Analysis 1008

The experiments for the sentiment analysis task 1009

were conducted using the NusaX dataset in dif- 1010

ferent language subsets: English, Indonesian, Ja- 1011

vanese, and Buginese, as presented by (Winata 1012

et al., 2022). The NusaX dataset is a rich re- 1013

source encompassing texts across different lan- 1014

guages, which allows for an examination of the 1015

model’s performance in SA across diverse linguis- 1016

tic landscapes. We evaluated the selected models 1017

using the Macro F1 metric across all language sub- 1018

sets of the NusaX dataset. 1019

A.4 Reasoning 1020

In our evaluation framework, we considered the 1021

following diverse reasoning tasks. To assess the 1022

model-generated outputs for the following tasks, 1023

we performed human evaluation. In this evalua- 1024

tion, the first author assigned a score of 1 (indicat- 1025

ing ‘True’) or 0 (indicating ‘False’) corresponding 1026

to the gold labels obtained from the original dataset. 1027

The mean of these scores is then calculated to rep- 1028

resent the overall accuracy of the task. 1029

A.4.1 Deductive Reasoning 1030

Deductive reasoning represents the logical pro- 1031

cess of deriving specific conclusions from general 1032

premises (Sanyal et al., 2022). It requires the abil- 1033

ity to apply universal rules to particular instances 1034

in a logical manner. To assess the deductive rea- 1035

soning capabilities of selected models, we utilized 1036

30 examples from EntailmentBank (Dalvi et al., 1037

2021) and bAbI (task 15) (Weston et al., 2015) 1038

datasets. The EntailmentBank dataset is specifi- 1039

cally designed to assess the construction of entail- 1040

ment trees. This method involves a structured ap- 1041

proach to deducing logical conclusions from a set 1042

of given premises. It challenges models to navigate 1043

through layered logical steps, reflecting real-world 1044

complexity in reasoning tasks. On the other hand, 1045

the bAbI (Task 15) dataset focuses on basic de- 1046

ductive reasoning. It presents scenarios where the 1047

model must apply given rules to new situations, 1048

which is a basic aspect of deductive reasoning. 1049

A.4.2 Inductive Reasoning 1050

Unlike deductive reasoning, inductive reasoning in- 1051

volves making broad generalizations from specific 1052
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observations (Han et al., 2024). This form of rea-1053

soning involves identifying patterns and inferring1054

underlying principles or rules that are not explicitly1055

presented. In our experiment, both Llama 2-Chat1056

and Mistral models were prompted with 30 samples1057

from CLUTRR (Minervini et al., 2020) and bAbI1058

(task 16) (Weston et al., 2015) datasets. CLUTRR1059

is designed to evaluate the model’s ability to in-1060

fer and generalize relationships from complex nar-1061

ratives. Meanwhile, bAbI (Task 16) provides a1062

platform to test the ability to induce rules from a1063

set of examples. These datasets comprehensively1064

measure the model’s effectiveness in inductive rea-1065

soning by comprehending diverse storylines and1066

applying generalized rules in varied contexts.1067

A.4.3 Abductive Reasoning1068

Abductive reasoning involves formulating the most1069

plausible explanation for a given set of observa-1070

tions. The abductive reasoning capabilities are crit-1071

ical in AI for simulating human-like understand-1072

ing and problem-solving. To assess the abductive1073

reasoning capabilities, we used 30 samples from1074

the αNLI dataset (Bhagavatula et al., 2019). This1075

dataset challenges the model to choose the most1076

plausible hypothesis that logically fills the gap be-1077

tween two observed data points, a task that mimics1078

real-world decision-making processes. This assess-1079

ment specifically evaluates the LLMs’ proficiency1080

in not only bridging gaps between data points but1081

also in developing explanations that align with log-1082

ical coherence and contextual understanding. Such1083

capabilities are paramount for LLMs intended for1084

complex, real-world interactions where quick and1085

rational decision-making is essential.1086

A.4.4 Temporal Reasoning1087

Temporal reasoning involves understanding and1088

reasoning about time-related concepts and events.1089

This includes comprehending the sequence and du-1090

ration of events as well as inferring their interre-1091

lationships. In our experiment, we evaluated tem-1092

poral reasoning by utilizing 30 samples from the1093

TimeDial dataset (Qin et al., 2021). This dataset is1094

designed to test models on their ability to process1095

and reason about time-related information embed-1096

ded in dialogues. For instance, dialogues may in-1097

volve figuring out the sequence of daily activities or1098

understanding the time gap between events. It chal-1099

lenges the model’s understanding of event order,1100

duration, and temporal causal relationships. The1101

use of TimeDial in our evaluation aims to gauge1102

LLMs’ capabilities in handling scenarios where 1103

time is a pivotal factor. 1104

A.4.5 Spatial Reasoning 1105

This reasoning category encompasses the skill to 1106

perceive, interpret, and manage spatial relations, as 1107

well as the capacity to navigate effectively within 1108

both tangible and conceptual spatial environments. 1109

Spatial reasoning capability is vital for tasks rang- 1110

ing from image processing to real-world naviga- 1111

tion. It is additionally imperative in LLMs where 1112

spatial reasoning profoundly influences the model 1113

interpretation and interaction with spatial data. In 1114

our experiment, we employed 64 samples from 1115

SpartQA (Mirzaee et al., 2021a) and 120 samples 1116

from StepGame (Shi et al., 2022) to assess spa- 1117

tial reasoning. SpartQA tests spatial understanding 1118

through questions that require the model to inter- 1119

pret and reason about various spatial relationships, 1120

such as determining the relative positions of ob- 1121

jects in a given scenario. StepGame, in contrast, 1122

challenges the model with tasks that involve active 1123

spatial navigation, ranging from basic to complex 1124

levels. 1125

A.4.6 Mathematical Reasoning 1126

LLMs often show limited performance in solving 1127

arithmetic reasoning tasks (Imani et al., 2023). Un- 1128

like other natural language understanding tasks, 1129

mathematical problems usually have a single cor- 1130

rect answer. This makes the task of generating 1131

accurate solutions more challenging for LLMs. To 1132

evaluate Llama 2-Chat and Mistral models, we se- 1133

lected the MATH dataset which is designed to an- 1134

alyze the mathematical reasoning abilities of neu- 1135

ral networks (Saxton et al., 2019). This dataset 1136

includes various mathematical domains including 1137

arithmetic, algebra, probability, and calculus. 1138

A.4.7 Commonsense Reasoning 1139

It is the understanding and reasoning about every- 1140

day concepts and knowledge to make judgments 1141

and predictions about new situations. In LLMs, 1142

it involves the ability to use general world knowl- 1143

edge and everyday logic to process, interpret, and 1144

respond to a wide range of queries and tasks. From 1145

previous literature, it is found that LLMs achieved 1146

promising results in commonsense benchmarks 1147

(Jain et al., 2023). However, truly understanding ev- 1148

eryday concepts and making flexible judgments re- 1149

mains a challenge for LLMs (Sun et al., 2021). This 1150

difficulty partly stems from the nature of common- 1151
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sense knowledge. It is self-evident to humans and1152

rarely expressed clearly in natural language making1153

it difficult for these models to learn from the pre-1154

training. To investigate commonsense reasoning,1155

we selected three popular benchmarks: Common-1156

senseQA (Talmor et al., 2018), Pep-3k (Wang et al.,1157

2018), and PiQA (Bisk et al., 2020) to assess gen-1158

eral and physical commonsense reasoning.1159

A.4.8 Causal Reasoning1160

Causal reasoning involves understanding the re-1161

lationship between causes and effects in various1162

events or scenarios (Huang and Chang, 2022). This1163

kind of reasoning is crucial for advanced cognitive1164

processing and decision-making. Causal reason-1165

ing enables LLMs to navigate complex scenarios1166

with greater precision. Nonetheless, embedding1167

causal reasoning within LLMs presents significant1168

challenges (Kıcıman et al., 2023). It requires the1169

models to not only recognize patterns in data but1170

also to infer relationships that are not explicitly1171

stated. Consequently, the evaluation of LLMs on1172

causal reasoning capabilities becomes a critical as-1173

pect. The evaluation ensures that these models1174

can understand and generate responses accurately1175

reflecting complex causal dynamics. In our evalu-1176

ation experiment, we utilized 30 samples from an1177

explainable CAusal REasoning dataset (E-CARE)1178

(Du et al., 2022). The e-CARE dataset contains1179

multiple-choice causal reasoning questions along1180

with a conceptual explanation for each question to1181

explain the underlying causation.1182

A.4.9 Multi-hop Reasoning1183

Multi-hop reasoning refers to the process of com-1184

bining information from multiple sources or steps1185

to arrive at the answer (Yang et al., 2018; Ho et al.,1186

2020). This task requires a detailed understand-1187

ing and correlation of different data points to form1188

a logical conclusion. To assess multi-hop reason-1189

ing, our experiment includes 30 samples from Ho-1190

topotQA which offers an ideal venue for testing1191

such reasoning (Yang et al., 2018). HotpotQA1192

includes 113k Wikipedia-based question-answer1193

pairs that require reasoning over multiple docu-1194

ments. It provides diverse and unconstrained ques-1195

tions with sentence-level supporting facts and com-1196

parison tasks for comprehensive evaluation.1197

A.4.10 Analogical Reasoning1198

Analogical reasoning entails identifying similari-1199

ties and establishing connections across different1200

domains or information sets. (Huang and Chang, 1201

2022) It plays a critical role in problem-solving and 1202

creativity by enabling individuals to apply familiar 1203

concepts to new situations. In LLMs, this capabil- 1204

ity is crucial for understanding and generating con- 1205

tent that adapts known patterns to novel contexts 1206

thereby enhancing their versatility and intelligence 1207

in handling diverse tasks (Yasunaga et al., 2023). 1208

We performed our evaluation experiment with 30 1209

examples from the Letter String Analogies dataset 1210

as it emphasizes assessing the ability of a model to 1211

draw analogies between different data sets (Webb 1212

et al., 2023). This dataset poses a unique challenge 1213

by testing the model’s ability to recognize patterns 1214

and relationships that are not immediately obvious. 1215

It showcases the model’s potential for analogical 1216

thinking. 1217

A.5 Factuality and Hallucination 1218

Despite significant advancements in the field, 1219

LLMs occasionally produce text or contents that, 1220

while appearing plausible, are factually unsup- 1221

ported (Huang et al., 2023; Wang et al., 2023a; 1222

Zhang et al., 2023; Sun et al., 2023). This phe- 1223

nomenon, commonly referred to as “hallucination", 1224

substantially undermines the reliability of LLMs 1225

in real-world applications (Zhang et al., 2023). It 1226

is often characterized by the models’ tendency to 1227

generate information that is not grounded in their 1228

training data or in externally verified knowledge 1229

sources (Kaddour et al., 2023). These instances 1230

of hallucination not only challenge the integrity of 1231

model outputs but also spotlight the urgent need 1232

for effective mechanisms to evaluate and mitigate 1233

such inaccuracies (Chen et al., 2023). In response, 1234

the development of rigorous evaluation frameworks 1235

and hallucination detection techniques has emerged 1236

as an active area of research (Li et al., 2023; Wang 1237

et al., 2023b). These efforts aim to enhance both 1238

the factual accuracy and reliability of LLM outputs 1239

as well as ensure their trustworthiness in critical 1240

and information-sensitive applications. 1241

In our experiment, we used TruthfulQA (Lin 1242

et al., 2021) and COVID fact-checking (Lee et al., 1243

2021) datasets to test the factual accuracy and reli- 1244

ability of selected open-source LLMs. We utilized 1245

66 samples from the TruthfulQA and 100 samples 1246

from the COVID fact-checking datasets. The Truth- 1247

fulQA is a zero-shot setting benchmark designed 1248

to assess the truthfulness of model responses. It 1249

challenges the model to generate truthful answers 1250
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rather than reproducing common misconceptions1251

or inaccuracies found in their training data. On1252

the contrary, the COVID fact-checking dataset is1253

designed to address the challenge of fact-checking1254

in the context of the COVID-19 pandemic. This1255

dataset not only aims to combat misinformation1256

related to COVID-19 but also advances the method-1257

ology of fact-checking by utilizing the intrinsic ca-1258

pabilities of language models to assess the integrity1259

of claims based on their perplexity scores.1260

B Prompting1261

We incorporate various prompting strategies (see1262

Table 4) to elucidate the extent to which the differ-1263

ence in input may influence the performance and1264

behavior of the models under study. Our prelim-1265

inary experimentation revealed that role-playing1266

(Kong et al., 2023) is particularly effective when1267

combined with other prompting techniques. There-1268

fore, we used a combination of role-playing, tem-1269

plated (Touvron et al., 2023; Jiang et al., 2024), and1270

direct-to-detail prompting in our experiments.1271

C Additional Results1272

In this section, we included additional detail to1273

our experimental results conducted across different1274

precision settings.1275
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Strategy Type Description
Role-playing Models assume predefined roles, such as a sentiment analysis assistant, to

provide context-specific responses (Kong et al., 2023).
Templated Prompting Structured instructions are embedded within a template to ensure consistent

and safe interactions across tasks. This includes directives to be helpful,
respectful, and honest, as well as avoiding harmful or biased content (Touvron
et al., 2023; Jiang et al., 2024).

Direct to Detail Prompting Prompts range from minimal guidance, providing direct instructions, to de-
tailed guidance, specifying constraints such as word limits and content re-
strictions to shape the response.

Table 4: Overview of prompting strategies employed

Precision Datasets Model Performance
Mistral 7B Mixtral 8x7B Llama 2-Chat 7B Llama 2-Chat 70B

4-bit

HotpotQA 40 46.66 26.67 50
Math 30 50 16.67 20

TimeDial 56.67 56.67 50 70
SpartQA (basic) 59.375 62.5 53.13 68.75
SpartQA (hard) 34.375 43.75 40.63 43.75

StepGame (hard) 26.67 46.67 20 20
StepGame (basic) 36.67 60 30 40

StepGame (clock-position) 20 20 25 15
StepGame (basic-cardinal) 50 80 55 80

StepGame (diagonal) 40 55 35 45
Pep-3k 63.67 50 40 70

Letter-String-Analogies 0 0 0 3.33
bAbI –subset 15 26.67 30 33.3 53.33
bAbI –subset 16 40 56.67 16.67 70
EntailmentBank 90 93.33 80 90

AlphaNLI 73.33 76.67 66.67 70
CLUTRR 46.67 66.67 26.67 30

CommonsenseQA 66.67 66.67 50 70
PIQA 60 93.33 46.67 73.33

e-CARE 26.67 53.33 43.33 66.67

8-bit

HotpotQA 40 46.66 26.67 46.67
Math 30 50 10 20

TimeDial 56.67 66.67 46.67 70
SpartQA (basic) 50 68.75 50 68.75
SpartQA (hard) 37.5 50 40.63 43.75

StepGame (hard) 26.67 46.67 26.67 20
StepGame (basic) 50 50 16.67 40

StepGame (clock-position) 15 25 25 20
StepGame (basic-cardinal) 60 80 45 80

StepGame (diagonal) 45 55 35 45
Pep-3k 63.67 50 40 70

Letter-String-Analogies 3.33 0 0 3.33
bAbI –subset 15 26.67 43.33 33.3 53.33
bAbI –subset 16 40 66.67 20 70
EntailmentBank 90 93.33 80 90

AlphaNLI 76.67 83.33 66.67 70
CLUTRR 46.67 66.67 26.67 30

CommonsenseQA 76.67 73.33 50 70
PIQA 60 93.33 46.67 73.33

e-CARE 26.67 66.67 46.67 66.67

Table 5: Comparative performance of Mistral and Llama 2-Chat models on reasoning tasks with 4-bit and 8-bit
quantization settings

17



Precision Datasets Model Performance
Mistral 7B Mixtral 8x7B Llama 2-Chat 7B Llama 2-Chat 70B

FP16

HotpotQA 40 53.33 26.67 60
Math 30 50 13.33 20

TimeDial 60 73.33 53.33 73.33
SpartQA (basic) 68.75 78.125 53.13 62.5
SpartQA (hard) 53.125 50 37.5 46.67

StepGame (hard) 26.67 46.67 20 20
StepGame (basic) 50 66.67 16.67 20

StepGame (clock-position) 15 20 15 20
StepGame (basic-cardinal) 60 95 50 85

StepGame (diagonal) 45 55 30 50
Pep-3k 63.67 50 43.33 70

Letter-String-Analogies 3.33 0 0 0
bAbI –subset 15 40 46.67 46.67 46.67
bAbI –subset 16 50 73.33 40 50
EntailmentBank 90 93.33 76.67 80

AlphaNLI 80 86.67 66.67 73.33
CLUTRR 53.33 70 26.67 43.33

CommonsenseQA 70 80 50 70
PIQA 66.67 93.33 43.33 73.33

e-CARE 26.67 63.33 43.33 70

FP32

HotpotQA 40 53.33 26.67 60
Math 30 50 13.33 20

TimeDial 60 73.33 53.33 76.67
SpartQA (basic) 68.75 80 53.13 62.5
SpartQA (hard) 53.125 50 37.5 53.13

StepGame (hard) 26.67 50.33 20 20
StepGame (basic) 50 66.67 16.67 20

StepGame (clock-position) 15 20 15 20
StepGame (basic-cardinal) 60 95 50 85

StepGame (diagonal) 45 55 30 50
Pep-3k 63.67 50 43 73.33

Letter-String-Analogies 3.33 0 0 0
bAbI –subset 15 40 46.67 46.67 46.67
bAbI –subset 16 50 73.33 40 50
EntailmentBank 90 93.33 76.67 80

AlphaNLI 80 86.67 66.67 73.33
CLUTRR 53.33 70 26.67 43.33

CommonsenseQA 70 80 50 70
PIQA 66.67 93.33 43.33 73.33

e-CARE 26.67 63.33 43.33 70

Table 6: Comparative performance of Mistral and Llama 2-Chat models on reasoning tasks with FP16 and FP32
precision settings

Precision Datasets Model Performance
Mistral 7B Mixtral 8x7B Llama 2-Chat 7B Llama 2-Chat 70B

4-bit
TruthfulQA 77.27 83.33 37.88 43.94

COVID-19 fact-checking (scientific) 94 98 88 92
COVID-19 fact-checking (social) 90 86 84 84

8-bit
TruthfulQA 77.27 83.33 39.39 43.94

COVID-19 fact-checking (scientific) 94 98 86 90
COVID-19 fact-checking (social) 90 82 80 80

FP16
TruthfulQA 77.27 84.85 40.91 54.55

COVID-19 fact-checking (scientific) 96 98 84 92
COVID-19 fact-checking (social) 88 84 84 86

FP32
TruthfulQA 77.27 84.85 40.91 54.55

COVID-19 fact-checking (scientific) 94 96 84 92
COVID-19 fact-checking (social) 84 82 84 80

Table 7: Performance of Mistral and Llama 2-Chat models on TruthfulQA across different precision settings
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Dataset Precision Mistral 7B Mixtral 8x7B Llama 2-Chat 7B Llama 2-Chat 70B

CNN/Daily Mail
4-bit 20.3 21.9 17.6 26.9
8-bit 21.7 20.0 17.0 27.0
FP16 21.4 20.6 16.5 28.0
FP32 21.7 20.6 16.5 30.1

SAMSum
4-bit 22.4 25.6 19.2 28.1
8-bit 22.8 24.7 19.4 29.3
FP16 22.5 27.0 19.9 28.9
FP32 22.8 27.7 19.9 29.0

Table 8: Mistral and Llama 2-Chat summarization performance across different precisions

Figure 8: Machine translation performance from 4-bit to FP32
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Language Precision Mistral 7B Mixtral 8x7B Llama 2-Chat 7B Llama 2-Chat 70B

English
4-bit 0.744444 0.817460 0.719373 0.649478
8-bit 0.744444 0.771284 0.796296 0.649478
FP16 0.744444 0.723543 0.749978 0.649478
FP32 0.744444 0.723543 0.749977 0.649477

Javanese
4-bit 0.451691 0.565972 0.469925 0.474567
8-bit 0.552881 0.463725 0.545652 0.628979
FP16 0.424465 0.561404 0.361923 0.628979
FP32 0.552881 0.550877 0.335970 0.628978

Buginese
4-bit 0.285714 0.180590 0.265063 0.315470
8-bit 0.349617 0.249110 0.278340 0.303571
FP16 0.247821 0.203782 0.253246 0.303571
FP32 0.349616 0.442640 0.275454 0.303571

Indonesian
4-bit 0.753077 0.864697 0.454762 0.491209
8-bit 0.865993 0.664225 0.371111 0.641958
FP16 0.752600 0.752157 0.558895 0.641958
FP32 0.865993 0.752777 0.558894 0.641958

Table 9: Performance of Mistral and Llama 2-Chat models in different languages and precision settings. The values
in the table are F1 scores resulting from the experimentation through NusaX dataset.
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