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Abstract

Discovering dependence patterns between vari-
ables from observational data is a fundamental
issue in data analysis. However, existing testing
methods often fail to detect subtle yet critical pat-
terns that occur within small regions of the data
distribution–patterns we term rare dependence.
These rare dependencies obscure the true underly-
ing dependence structure in variables, particularly
in causal discovery tasks. To address this issue,
we propose a novel testing method that combines
kernel-based (conditional) independence testing
with adaptive sample importance reweighting. By
learning and assigning higher importance weights
to data points exhibiting significant dependence,
our method amplifies the dependence patterns and
detects them successfully. Theoretically, we ana-
lyze the asymptotic distributions of the statistics
in this method and show the uniform bound of
the learning scheme. Furthermore, we integrate
our tests into the PC algorithm, a constraint-based
approach for causal discovery, equipping it to un-
cover causal relationships even in the presence
of rare dependence. Empirical evaluation of syn-
thetic and real-world datasets comprehensively
demonstrates the efficacy of our method.
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1. Introduction
Statistical independence testing, which aims to asses
whether two variables are independent according to sam-
ples, is a fundamental problem in data analysis and scien-
tific inference. Such tests have applications in a variety
of fields. For example, in brain analysis using fMRI data,
identifying which brain areas are involved in specific activi-
ties and determining statistical associations between these
activities is crucial (Fan et al., 2017). Other applications
include self-supervised learning (Li et al., 2021), feature
selection (Candes et al., 2018), causal inference (Imbens &
Rubin, 2015) and more.
Example 1.1. X ∼ U(−20, 20), Y = s · e−x2

+ ϵ, ϵ ∼
N (0, 0.25), s ∈ {−1, 1} with equal probability.
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Figure 1. 1000 samples generated following Example 1.1. p-value
of HSIC with default settings on the whole sample is 0.1359 while
p-value on the samples within the red rectangle is 6.8× 10−11.

Recently, methods have been proposed to test for non-linear
dependence (Gretton et al., 2005a; Póczos et al., 2012;
Lopez-Paz & Oquab, 2016; Sen et al., 2017; Gao et al.,
2018; Li et al., 2024b). Although existing independence
tests have achieved significant success, they still fail to de-
tect dependence patterns that are significant only within
a small range of the entire distribution’s support, which
we term rare dependence. For instance, in Example 1.1,
the dependence pattern here “exists everywhere”, but it is
only significant in a small range of X near zero and the
dependence is further contaminated by the noise. Many
conventional independence tests, such as HSIC (Gretton
et al., 2005a), struggle to reject the null hypothesis for the
samples shown in Fig. 1.

Such rare dependence patterns are also commonly ob-
served in real-world scenarios. In economics, income and
consumption may appear weakly related in low-income
groups but become strongly coupled at higher income lev-
els. In psychology (Keles et al., 2020), the impact of so-
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cial media on adolescent mental health becomes significant
only with excessive usage. Similar rare dependencies oc-
cur in medicine (Angst & Clark, 2006), biomedical infer-
ence (Tikka et al., 2019), physics (Aryasetiawan et al., 2004;
Hwang et al., 2023), autonomous driving (Hwang et al.,
2024), online advertising (Oentaryo et al., 2014), and soci-
ology (Huang, 2017), highlighting the practical relevance
of detecting rare dependencies. Misclassifying these de-
pendencies as independent can sometimes lead to severe
consequences. For example, in causal discovery, such false
negatives can propagate errors throughout the graph during
the execution of the PC algorithm (Spirtes et al., 2000).

In Example 1.1, dependence is weak and difficult to detect
on the whole sample. However, by focusing more “atten-
tion” on the red rectangle in Fig. 1, the dependence pattern
becomes more obvious and easier to detect. Motivated by
this, we design a framework that automatically identifies
and amplifies the significantly dependent subsamples and
then tests the independence accordingly through reweighted
samples. Specifically, the framework assigns an importance
weight to each data point, which is produced by a learnable
reweighting function. This function is trained by maxi-
mizing the reweighted kernel-based dependence measure,
which quantifies the dependence between variables calcu-
lated on the reweighted samples. The test results based on
the data reweighted by the optimized function are then used
to decide the null hypothesis. In summary, the proposed
framework adaptively assigns more “attention” to the depen-
dent sub-samples, successfully detecting rare dependence.

Besides, we extend the idea to detect conditional rare de-
pendence. Moreover, we design a constraint-based method
to discover causal relations in the presence of rare depen-
dence, which incorporates the proposed reweighting tests.
We summarize our contributions as follows.

• We propose a novel testing method that combines
kernel-based independence tests with adaptive sam-
ple importance reweighting to detect dependence even
when rare dependence exists. The data point exhibits a
more significant dependence pattern will be automati-
cally assigned with larger weights.

• We also extend the idea to detect conditional rare inde-
pendence. In addition, we integrate our tests into the
PC algorithm for causal discovery in the presence of
rare dependence.

• Theoretically, we obtain the uniform bound of our
learning scheme and derive the asymptotic properties
of the importance reweighting statistics of the tests.

• Empirically, we conduct extensive experiments on syn-
thetic and real-world data that demonstrate the efficacy
of our method.

2. Background
Notations. We use uppercase letters X,Y, Z to denote ran-
dom variables1. Their domains are denoted by X ,Y,Z re-
spectively. Consider a continuous feature mapping ψ : X 7→
FX with the corresponding measureable positive definite
kernel kX := ⟨ψ,ψ⟩, whereFX is the corresponding Repro-
ducing Kernel Hilbert Space (RKHS). We set ψX = ψ(X)
for simplicity. We denote the probability distribution of X
as PX = P(X), and the corresponding square-integrable
spaces as L2

X . We assume that FX ⊂ L2
X . The notations

for Y,Z are defined by analogy with ϕ and φ as feature
mappings.

Assume the observed samples D = {(xi, yi)}ni=1 are inde-
pendent and identically distributed (i.i.d.) samples drawn
from PXY . Independence tests calculate the test statistics
T : X × Y → R from observed data D to summarize the
information about the hypothesis

H0 : X ⊥⊥ Y v.s. H1 : X ⊥̸⊥ Y.

The value of the statistics will be compared to a specific
threshold to determine whether to reject the null hypothesis
H0 or not. The performance of an independence test can be
evaluated from two aspects: the rate of rejectingH0 when
it is true (Type I error rate); and the rate of not rejectingH0

when it is false (Type II error rate). Good tests are expected
to control the probability of type I errors by a significance
level α, and a large power, i.e., 1− Type II error rate.

Our statistical independence test is based on a kernel-based
independence test, Hilbert-Schmidt Independence Criterion.

Definition 2.1. (Gretton et al., 2007) The Hilbert-Schmidt
Independence Criterion between X and Y , denoted as
HSIC(X,Y ), is the HS norm of the covariance operator

∥ΣXY ∥2HS = ∥EPXY
[(ψX − µX)⊗ (ϕY − µY )]∥2HS .

where µX ≜ EPX
[ψ(X)], µY ≜ EPY

[ϕ(Y )], ⊗ is the ten-
sor product, and ∥ · ∥HS is the Hilbert-Schmidt norm.

For characteristic kernels (Gretton, 2015), the independence
relationship X ⊥⊥ Y can be judged by HSIC(X,Y ) = 0.

3. Method
In this section, we develop a principled framework for de-
tecting dependence. We first describe our motivation with
some examples (§ 3.1). We define the importance reweight-
ing functions then derive and analyze the reweighted statis-
tics with carefully defined importance reweighting functions
(§ 3.2), and propose a novel framework, that is, an opti-
mization problem to learn the reweighting function and an

1In some cases, if there is no confusion, it can also be used as
sets of random variables.
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algorithm to test for independence (§ 3.3). Next, a theoreti-
cal bound is given to guarantee the generalizability of our
method (§ 3.4). Finally, an extension of our framework for
conditional independence (CI) is proposed (§ 3.5).

3.1. Motivation

Recall the dependence we mentioned and exemplified in the
introduction. We summarize them as “rare dependence” in
our paper: the dependence between two variables is signifi-
cant only on a small portion of the data. Next, we present
another example to show the challenges of the independence
test when rare dependence occurs. For all tests in this paper,
we choose a significance level of α = 0.05.

Example 3.1. X ∼ U(−4, 1). If X ∈ [−4, 0) ∪
(0.25, 1], Y ∼ U(0, 1). IfX ∈ [0, 0.25], Y = 0.9·X+0.1·ϵ
where ϵ ∼ U(0, 1). It is clear that X ⊥̸⊥ Y according to the
data generating process, while HSIC test on whole samples
(see scatter plot in Fig. 2) fails to catch the dependence.
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X

0.0

0.5

1.0

Y

Figure 2. 1000 data points generated following Example 3.1. p-
value of HSIC on whole sample is 0.0613, p-value of HSIC on
samples within the red rectangle is 0.0027.

Notice that, when rare dependence happens, even collecting
more data may not be helpful if we equally consider all
data points. Inspired by the definition of “rare events” in
(Wang, 2020; Wang et al., 2021), suppose that we have the
sample {xi, yi, ci}ni ∼ a kind of distribution that satisfies
P(C = 1) → 0, nP(C = 1) → ∞ as n → ∞, where
C ∈ {0, 1} with C = 1 when X ⊥̸⊥ Y and C = 0 when
X ⊥⊥ Y . As shown in Fig. 3, in this case the probability of
Type II error will become larger as n→∞.

Now we turn to the reason why HSIC tests with subsamples
can detect the dependence. Notice that the significantly
dependent subsamples in both Example 1.1 and 3.1 can be
tracked through the values of the variable X . And tests
on these subsamples are able to reject independence. This
observation leads to the proposed method, which reweights
the data points using a learned function that takes a reference
variable as the input. Note that although this paper mainly
focus on HSIC, this behavior also holds in many other
popular independence tests, e.g., randomized dependence
coefficient (Lopez-Paz et al., 2013) etc.

3.2. Dependent Subsample Extraction by Reweighting

Let X and Y be two different random variables (or disjoint
sets of variables), and suppose we fail to see a clear de-
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Figure 3. Illustration of distributions of HSIC under H0 and H1 in
the “rare events” setting. Here na and nb denote the sample sizes
used in the two settings of the estimated statistical components
(asymptotic distribution, mean value of the H1 distribution, and the
critical value) with nb > na. Note that under H1, as n → ∞, the
ratio of dependent sub-population goes to 0, leading to the mean
value of HSIC approaches 0. Therefore the probability of Type II
error will increase, making the tests prone to not reject H0.

pendence pattern for (X,Y ) directly. We aim to find the
significantly dependent sub-population and change the orig-
inal distribution by reweighting to enlarge the dependence.
We use the weights produced by the reweighting functions
β(·) as defined below.

Definition 3.2 (Reweighting function and reweighted distri-
bution). Let B be the set of reweighting functions,

B ≜
{
β : C → R≥0 | EPXY

[β(C)] = 1
}
. (1)

C is a reference variable that can be either X or Y (or a
subset ofX or Y ) and C is the domain of C correspondingly.
Then ∀β ∈ B, the corresponding reweighted distribution P̃,
which is well defined with the same support of PXY , can be
determined by the probability density function (p.d.f.)

P̃(X,Y ) = β(C)P(X,Y ). (2)

Since the case in which X and Y are sets of random vari-
ables are easily generalized, we regard X and Y as random
variables in the following discussions for simplicity. If
X ⊥⊥ Y holds, it is imperative to avoid introducing spu-
rious dependence after reweighting, as formalized in the
following proposition:

Proposition 3.3 (Maintain the independence after reweight-
ing). If X and Y are independent and C is either X or
Y but not both, then X and Y are still independent in the
reweighted distribution of (X,Y ) with weight β(C).

The proof can be found in Appendix C.1. Since it is symmet-
ric with respect to X or Y , we set C = X in the following
discussion, unless stated otherwise.

As mentioned in Section 3.1, even though a rare depen-
dence exists, it is still possible to detect it by identifying
subsamples with significant dependence and increasing their
importance ratios in the dependence measure. Therefore,
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we aim to find an importance reweighting function β(·) to
make the dependency pattern between variables as clear as
possible. To compare different reweighting functions, we
first propose a statistic that quantifies the dependence in the
reweighted distribution P̃ induced by a given reweighting
function. This statistic can be directly computed from the
original samples, eliminating the need for resampling.

Reweighted Hilbert-Schmidt Independence Criterion

With a fixed function β(·), at the population level, the HSIC
calculated on the reweighted distribution P̃ is∥∥EP̃

[
(ψX − EP̃[ψX ])⊗ (ϕY − EP̃[ϕY ])

]∥∥2
HS , (3)

where P̃ = P̃XY = β(X)PXY . Rewrite it including only
the initial distribution (X,Y ) ∼ PXY and β(·), we obtain
the reweighted HSIC (RHSIC), HSICβ(X,Y ) ≜

∥EP[β(X)(ψX−EP[β(X)ψX ])⊗(ϕY−EP[β(X)ϕY ])]∥2HS .

Consider the test statistic on the dataset D = {(xi, yi)}ni=1.
Denote βk ≜ β(xk) as the weight for a data point (xk, yk),
and β is the weight vector for D. A biased estimator of
HSICβ(X,Y ) using plug-in estimation method is

HSICβ
b (D) =

1

n2
Tr [KXHβKY Hβ ] , (4)

where KX and KY are kernel matrices calculated on sam-
ples, i.e., [KX ]i,j = kX(xi, xj), [KY ]i,j = kY (yi, yj).
Hβ ≜ Dβ(I − 1

n11
TDβ), I is the identity matrix, 1 is

the vector of all 1s, and Dβ ≜ diag(β1, . . . , βn). When
βk ≡ 1, it becomes the original HSIC.

We learn the optimal reweighting function to reweight
the samples and test independence by maximizing this
reweighted statistic. Next we analyze its asymptotic be-
haviors underH0 andH1.

Asymptotic Distribution for Reweighted HSIC

We now describe the null distributions of the test statis-
tics given a known reweighting function β(·). Suppose
D = {wi}ni=1 = {(xi, yi)}ni=1. We first define a symmetric
function that satisfies HSICβ

b (D) =
1
n4

∑n
i,j,q,r h

β
ijqr as

hβijqr ≜
1

4!

(i,j,q,r)∑
(s,t,u,v)

(βsβtk
st
Xk

st
Y

+βsβtβuβvk
st
Xk

uv
Y − 2βsβtβuk

st
Xk

su
Y ).

(5)

Here the sum represents all ordered quadruples (s, t, u, v)
drawn without replacement from (i, j, q, r) and βi = β(xi).
Assume E[(hβijqr)2] < ∞, we have We first define a sym-
metric function that satisfies

Theorem 3.4 (Null distribution). Under H0, we have
Eih

β
ijqr = 0. In this case, HSICβ

b (D) converges in dis-
tribution to a weighted sum of X 2 variables, i.e.,

nHSICβ
b (D)

d−→
∞∑
l=1

λβl χ
2
1l, (6)

where χ2
1l are i.i.d. chi-square variables with freedom one.

Denote wi ≜ (xi, yi), λ
β
l are the solutions to the eigenvalue

problem integrating over the distribution of variableswi, wq ,
and wr:

λβl ψl(wj) =

∫
βiqr · hβijqrψl(wi)dFi,q,r. (7)

Next, we give a theorem about the asymptotic distribution
when HSICβ(X,Y) > 0, i.e., X ̸⊥⊥ Y . This distribution
would be useful in analyzing consistency.

Theorem 3.5. When HSICβ(X,Y ) > 0, HSICβ
b (D) con-

verges in distribution to a Gaussian according to:

√
n
(
HSICβ

b (D)−HSICβ(X,Y )
)

d−→ N (0, σ2
β). (8)

The variance σ2
β = 16(Ei(Ej,q,rh

β
ijqr)

2−HSICβ(X,Y )2),
where Ej,q,r ≜ Ewj ,wq,wr

.

3.3. Testing Procedure and Whole Algorithm

Recall that in Pro. 3.3 we require infinite samples. In prac-
tice, we only have access to finite samples, introducing
dependence between the samples and the function β(·) thus
breaking the factorizable condition. Empirically, it man-
ifests as the estimated β̂(·) overfitting the given samples
and always reporting dependence even for independent vari-
ables. To avoid it, we split the data into two independent
parts. Suppose we have i.i.d. samples D = {(xi, yi)}ni=1.
We randomly split it into disjoint training (Dtr) and testing
(Dte) data. We optimize the function β̂(·) on Dtr, and then
use it to perform a test on Dte. The split ratio is set to 0.5.

Proposition 3.6. Suppose the sample data are i.i.d. and
randomly split into Dte = {xte, yte} and Dtr correspond-
ingly. β̂(·) maximizes the dependence measure ofDtr. Then
β̂(·) is independent of Dte.

Therefore, if X ⊥⊥ Y , we have that β̂(xte) is also indepen-
dent of Y , and thus no spurious dependence between X and
Y would be introduced in the reweighted distribution using
β̂(xte).

Final Objective Function

To ensure that our learned β̂(·) satisfies Def. 3.2, we con-
strain β̂i ≥ 0 and 1

n

∑n
i=1 β̂i = 1. Besides, we add two

regularization terms. First, we aim to select more data
points to avoid trivial solutions (e.g., a few extreme βi val-
ues assigned to uninformative noise samples while all others
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are set to zero). This is achieved by minimizing the sam-
ple variance of βi, expressed as 1

n

∑n
i=1(βi − 1)2, which

encourages the value of βi to approach 1. Second, we
ensure the smoothness of the function β(·) by employing
the smoothness functional, which could bring more stable
generalization by avoiding abrupt changes for nearby in-
puts. Here we assume that β(·) belongs to an RKHS, while
the approach can also be applied to other function spaces,
such as neural networks. In an RKHS, with the reproduc-
ing property, we can represent β(X) as ⟨ψT

X , ω⟩FX
, where

ω ≜ ψT
Xα =

∑n
i=1 αiψ(xi)

T , with α being the parameter
vector. This formulation naturally results in the regulariza-
tion term ∥ω∥2FX

= αTKXα, which corresponds to the
smoothness functional in an RKHS (Evgeniou et al., 2000).

In summary, we learn the reweighting function β(·) by solv-
ing the following constrained optimization problem:

argmin
β

− log ĴUI
β + λ1∥ω∥2FX

+
λ2
n

n∑
i=1

(βi − 1)2,

s.t. βi ≥ 0,

n∑
i=1

βi = n,

(9)

where ĴUI
β ≜ HSICβ

b (Dtr), λ1 and λ2 are hyperparameters
that control the regularization terms. In practice, using a
normalized version of the statistics during optimization may
help avoid overfitting or amplifying noise. Therefore, in the

experiment, we use ĴUI
1β =

ĴUI
β

ĴUI
2β ĴUI

3β

instead of ĴUI
β , where

ĴUI
2β = 1

n Tr [KxHβ ] and ĴUI
3β = 1

n Tr [KyHβ ].

The null distribution in (6) has a complex form (weighted
sum of χ2

1s) and is hard to calculate the threshold. Instead, in
implementation we use the permutation test to approximate
the 1−α quantile. It permutes the ordering of the Y samples
for B times while that of X is kept fixed, using the critical
value of this statistic distribution to estimate the true one.
The whole algorithm is included in Algorithm 1.

Algorithm 1 Reweighted HSIC (RHSIC)

1: Input: D: samples. C: reference variable. α: signifi-
cance level. B: the number of permutations.

2: Output: p-value and test statistics value.
3: Split D into Dtr = {xtr, ytr} and Dte = {xte, yte}.
4: Optimize the constrained problem (9) on Dtr, to obtain

the reweighting function β̂(·).
5: Use β̂ = β̂(xte) to calculate Tobs = HSICβ̂

b (Dte).
6: for all k ∈ {1, . . . , B} do
7: Permute yte to get ỹkte and D̃k

te = xte ∪ ỹkte.
8: Calculate k-th statistics Tk = HSICβ̂

b (D̃k
te).

9: end for
10: Compute p-value by p = 1

B

∑B
k=1 I[Tk ≥ Tobs] where

I denotes the indicator function.

3.4. Generalizability of the Learned Functions

By optimizing Problem (9), we can obtain an empirical op-
timal reweighting function β̂(·) on D. The key question
remaining is whether β̂(·) will generalize well to the pop-
ulation level P(X,Y ). That is, given a sufficiently large
dataset, can the difference between HSICβ̂(X,Y ) and the
optimal reweighted dependence measure HSICβ∗

(X,Y ) di-
minish and convergence to 0. Through some analysis, we
can see that HSICβ̂(X,Y ) − HSICβ∗

(X,Y ) is bounded
by 2 supβ∈B |HSICβ(X,Y ) − HSICβ

b (D)|. Therefore, to
establish convergence, it suffices to show that as the sample
size n → ∞, HSICβ

b (D) converges to HSICβ(X,Y ) for
each β ∈ B. If this condition holds, we can conclude the
convergence property of HSICβ̂(X,Y ) to HSICβ∗

(X,Y )
as n→∞. In the following, we present this result.

Theorem 3.7 (Uniform Bound). Suppose X ⊂ Rd is a
closed and bounded space and the values of the kernels
kX and kY are also bounded. Assume that the reweighting
functions β ∈ B are continuous and Lipschitz. Then with
probability at least 1− δ, we have

sup
β∈B

∣∣∣HSICβ
b (D)−HSICβ(X,Y )

∣∣∣
∼ O

(√
1

n
log

1

δ
+

log n

n
2
3

+
1

n
1
3

)
.

(10)

The details of the proof can be found in Appendix D.5. This
bound guarantees that if our optimization process succeeds,
the value of HSICβ̂

b (D) with empirically learned function
can converge to the optimal value HSICβ∗

(X,Y ) as n→
∞ with a rate shown in Eq. (10).

3.5. Conditional Independence Test Version

In this section, we extend our method to the Conditional
Independence (CI) test. We first provide the conditional ver-
sion of some previous results. The input of the reweighting
function β(·) now also includes the conditioning set.

Definition 3.8 (Conditional version of reweighting function
and reweighted distribution). Let C be either X or Y with
domain C, the reweighting function set B satisfies

B =
{
β : C × Z → R≥0 | EPXY |Z [β(C,Z)] = 1

}
. (11)

Then ∀β ∈ B, the corresponding reweighted distribution
P̃XY |Z , which is well defined with the same support of
PXY |Z , can be determined by the conditional p.d.f.

P̃(X,Y | Z) = β(C,Z)P(X,Y | Z). (12)

Proposition 3.9 (Maintain the conditional independence
after reweighting). If X and Y are conditionally indepen-
dent given Z and that C is either X or Y but not both, then
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X and Y are still conditionally independent given Z after
being reweighted by the weight β(C,Z).

We then introduce the reweighted statistic to calculate the
conditional dependence measure in the reweighted distri-
bution without resampling data. Recall that HSIC is based
on the idea that independence can be related to uncorre-
latedness between functions in RKHS FX and FY . For
the statistic (JCI ) of the kernel-based CI test (KCIT), un-
correlatedness is assessed between functions in restricted
function spaces, where the effect of Z is accounted for using
methods such as regression (Zhang et al., 2012).

Lemma 3.10 (Characterization based on conditional cross–
covariance operators (Fukumizu et al., 2007)). Denote
Ẍ ≜ (X,Z), kẌ ≜ kXkZ , and FẌ the RKHS correspond-
ing to kẌ . Assume FX ⊂ L2

X ,FY ⊂ L2
Y , and FZ ⊂ L2

Z .
Further assume that kẌkY is a characteristic2 kernel on
(X × Y)×Z , and that FZ + R (the direct sum of the two
RKHSs) is dense in L2(PZ). Then

ΣẌY |Z = 0⇐⇒ X ⊥⊥ Y |Z. (13)

ΣẌY |Z can be replaced with ΣẌŸ |Z , where Ÿ ≜ (Y,Z).

Therefore the statistic is defined as JCI ≜
∥∥∥ΣẌY |Z

∥∥∥2
HS

.
Actually, according to the discussion in Appendix E.4, we
can interpret ΣẌY |Z as the partial covariance and obtain
it using the cross-covariance between residuals of feature
maps regressed on Z. That is, ΣrẌrY = ΣẌY |Z , where rX
and rY represent the residual of X and Y regressed on Z.

Reweighted Conditional Dependence Measure

With a fixed function β(·), at the population level, define

the reweighted KCIT (RKCIT), JCI
β ≜

∥∥∥Σβ

ẌY |Z

∥∥∥2
HS

, as:∥∥∥EP̃

[
(ψβ

Ẍ|Z − EP̃[ψ
β

Ẍ|Z ])⊗ (ϕβY |Z − EP̃[ϕ
β
Y |Z ])

]∥∥∥2
HS

,

where ψβ

Ẍ|Z ≜ ψẌ −EP̃[ψẌ |Z] , ϕβY |Z ≜ ϕY −EP̃[ϕY |Z]
are the residuals of original feature maps regressing on
Z. Here P̃ = β(X,Z)P(X,Y, Z). Denote the central-
ized kernel matrices for Ẍ, Y, Z as K̃Ẍ , K̃Y and K̃Z ,
respectively. Given importance weights β and the fea-
ture map ψ(·), the unbiased estimator of the centraliza-
tion now becomes ψ̃β

u(x) = ψ(x) − 1
n

∑n
i=1 βiψ(xi) =

ψ(x)(In − 1
nDβ11

T ). Therefore we have the centralized
kernel matrix K̃β

Z = (In− 1
n11

TDβ)KZ(In− 1
nDβ11

T ).
K̃β

Ẍ
and K̃β

Y are defined similarly. We use kernel ridge re-
gression to estimate conditional expectations and obtain the

residual matrix Rβ
Z = ϵ

[
K̃β

ZDβ + ϵI
]−1

. The estimated

2Many popular kernels are characteristic, e.g., Gaussian,
Laplace, etc. See the formal definition in Appendix E.1.

residuals become Rβ
Z · ψ(Ẍ) and Rβ

Z · ϕ(Y ). An estimator
of the statistic JCI

β calculated on D = {(xi, yi, zi)}ni=1 is:

ĴCI
β =

1

n2
Tr
[
K̃β

Ẍ|ZK̃
β
Y |Z

]
, (14)

K̃β

Ẍ|Z := Rβ
ZK̃

β

Ẍ
RβT

Z Dβ , K̃β
Y |Z := Rβ

ZK̃
β
Y R

βT

Z Dβ .
Therefore, for the CI test, the final objective function is
similar to the optimization problem (9) with ĴUI

β replaced
by ĴCI

β . As in the unconditional case, in the experiment we
use a normalized version of this conditional dependence
measure with the denominators ĴCI

2β = Tr[K̃β

Ẍ|Z ] and

ĴCI
3β = Tr[K̃β

Y |Z ].

Similar to independent tests, we also use a permutation test
to approximate the 1 − α quantile of the null distribution
to test for CI. The difference is that the permutation should
break the dependence between Y and X while maintaining
the conditional distribution of Y given Z. Therefore, we use
a local permutation method on Y that utilizes the nearest-
neighbor search for Z (Runge, 2018).

4. Application in Causal Discovery
In this section, we discuss how to discover causal relations
when some rare dependence patterns exist. We propose
a new constraint-based causal discovery method, named
RD-PC (Rare Dependence PC), which leverages the PC
algorithm (Spirtes et al., 2000) equipped with our proposed
RKCIT to test for CI. Here we assume that no latent con-
founders exist. With the Markov and faithfulness assump-
tion, the d-separation in the ground-truth causal graph G
should theoretically exhibit an equivalent relation with the
CI relations implied by the distribution. However, rare
dependence is hard to detect, which would result in the dele-
tion of some true edges and may even lead to erroneous
propagation.

Here, we assume a known reference variableC. Specifically,
for two variables X and Y from the node set V that exhibit
rare dependence, their dependence is significant only within
a region of C’s distribution. Here, C could be a third vari-
able other than X and Y , providing additional information
that enables RKCIT to recover dependence more effectively,
thereby enhancing its flexibility.

With some abuse of notation, here we use KCIT(X,Y |Z)
to represent the result of testing X ⊥⊥ Y |Z by KCIT.
RKCITβ(C)(X,Y |Z) is defined similarly.
Assumption 4.1. ∀X,Y ∈ V, Z ⊆ V \ {X,Y }, if
KCIT(X,Y |Z) rejects the null hypothesis, thenX ̸⊥⊥ Y |Z.
Besides, if both KCIT(X,Y |Z) and RKCITβ(C)(X,Y |Z)
fails to reject the null hypothesis, then X ⊥⊥ Y |Z.

Assumption 4.1 ensures the reliability of the dependence
detected by KCIT. In addition, it also ensures the reliability
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of the independence detected by RKCIT. Then we derive the
following rule to check the adjacency between two variables.

Rule 1. For any X,Y ∈ V, if ∃Z ⊆ V\{X,Y } s.t. both
KCIT(X,Y |Z) and RKCITβ(C)(X,Y |Z) fail to reject
the null hypothesis, then X and Y are not adjacent in G.

On the other hand, although RKCITβ(C)(X,Y |Z) could
discover more dependence, it introduces an extra variable
C, which sometimes rejects the null hypothesis even when
X ⊥⊥ Y |Z. We summarize the scenarios in the following:

Proposition 4.2. For a pair of variablesX,Y ∈ V , suppose
that ∃Z ⊆ V \{X,Y } s.t. KCIT(X,Y |Z) fails to reject
the null hypothesis. Besides, for all these Z, we have that
RKCITβ(C)(X,Y |Z) rejects the null hypothesis. Then,
under Assumption 4.1, i) X and Y are adjacent with a rare
dependence, or ii) X and Y are not adjacent in G and C
must be the direct common effect of X and Y .

Proposition 4.2 tells us that if X → C ← Y forms a V -
structure, Rule 1 can not correctly remove the edge between
X and Y when executing the PC algorithm to recover the
causal skeleton. Consequently, the inferred graph tends to
be a superset of the true one. To recover the true causal
skeleton and eliminate extraneous edges, we introduce our
correction methods.

Rule 2. For two variables X,Y ∈ V that satisfy the con-
dition in Proposition 4.2, if there exists Z ⊆ V\{X,Y },
such that RKCITβ(Cperm)(X,Y |Z) fail to reject the null
hypothesis, then X and Y are not adjacent in G. Here
Cperm denotes the shuffled C in dataset D.

Based on Rule 1 and Rule 2, we summarize the procedure of
RD-PC in Algorithm 2. Theorem 4.3 shows its soundness.

Theorem 4.3. With Assumption 4.1, the causal Markov
assumption and faithfulness assumption, Algorithm 2 cor-
rectly recovers the underlying causal graph structure up to
its Markov equivalence class.

We provide the proof and more discussion in Appendix F.

5. Experiments
We apply the proposed testing method to both synthetic and
real data to evaluate their performance. Due to space limita-
tion, causal discovery experiments see Appendix G.1. Codes
are available at https://github.com/leeedwina430/RKCIT.

5.1. Simulation Experiments

For testing independence, we conduct experiments with
varying numbers of samples and different levels of rare
dependence in two generating settings. For testing CI, we
further provide a comparison between various dimensions
of the conditioning set. More details see Appendix G.

Algorithm 2 Rare Dependence PC (RD-PC)

1: Input: D: dataset. V: node set. C: reference variable.
2: Output: causal graph G.
3: Stage 1: Causal skeleton discovery.
4: Initialize a complete undirected graph G on V.
5: Remove the edge connected to C in G by Rule 1.
6: For X,Y ∈ V \ {C}, remove the edge (X,Y ) in G by

Rule 1. If both X and Y are not adjacent to C, using
KCIT only is enough.

7: Stage 2: Eliminating extraneous edges.
ForX,Y ∈V\{C}, if bothX and Y are adjacent toC,
check whether (X,Y ) are the extraneous edge. Shuffle
data of C in D as Cperm, if Rule 2 is satisfied, remove
the edge (X,Y ), and orient X → C and Y → C.

8: Stage 3: Determining the orientation.
Orient edges in G with the same orientation procedure
as the PC algorithm (Meek, 1995).

5.1.1. INDEPENDENCE TESTS

We use the following two generation process, which covers
two common scenarios where rare dependency occurs.

Data Generation I (DG I). We slightly modify Example 1.1
with different variance σ2 for ϵ ∼ N (0, σ2) to evaluate
power. To test Type I error, we set Y = ϵwith fixed σ = 0.5.

Data Generation II (DG II). We use a variant of the exper-
iment in (Strobl et al., 2019). To evaluate the Type I error,
we generate data that follows X = f1(εx), Y = f2(εy),
where εx, εy are independently drawn from N (0, 1) and f1
and f2 are smooth functions chosen uniformly from a set
(see Appendix G.1). To compare the power, we generate
X = f1(εx)+ εb, and then we generate Y = f2(εy)+ εb if
X < τ where τ is a threshold, and Y = f2(εy) otherwise.

Baselines. All the baselines follow their default settings un-
less stated otherwise. HSIC (Gretton et al., 2007): the orig-
inal HSIC test using gamma approximation. RDC (Lopez-
Paz et al., 2013): use canonical correlation between a finite
set of random Fourier features. FHSIC (Zhang et al., 2018):
HSIC using finite-dimensional random Fourier feature map-
pings to approximate kernels. FisherScan (Ma & Mao,
2019): Generalized Fisher’s exact test on contingency tables
and continuous sample spaces. LFHSIC (Ren et al., 2024):
HSIC test with adaptively learned bandwidth. For all the
other methods in our paper, including ours, use Gaussian
kernel with median heuristic bandwidth.

Results. In Fig. 4, we demonstrate that our method consis-
tently controls Type I errors and that its power outperforms
other baselines in both Data Generation I and II. For DG
I, our method performs well because we not only try to
find the sub-samples but also reweight them with a weight
possibly larger than 1, effectively enlarging the size of the
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Figure 4. Left: Type I error rate and power of independence tests on DG I and DG II with 1000 samples. The first graph shows the Type I
error rate for 6 methods in both data generations, where the significance level 0.05 is annotated as the black line. The second and third
graphs show the test power for DG I and II with different parameters respectively. Right: Type I error rate and power of CI tests with
different sizes of conditional set Z. We fix the sample size n = 1000 and the ratio of the rare dependence τ = 0.1.

dependent sub-sample. For DG II, the advantage of our
method becomes more obvious when the data become more
imbalanced, i.e., τ → 0. For visualization of the important
sub-samples found in example data, see Appendix G.

On the left of Fig. 5 compares the Type I error and power
of the methods with different sample sizes n, where n ∈
{500, 1000, 1500, 2000, 2500, 3000}. We fix σ = 0.5 and
τ = 0.01 for DG I and DG II respectively. Most meth-
ods including ours succeed in controlling Type I error rate
around 0.05, while LFHSIC and HSIC have a relatively
unstable Type I error rate. Our method again consistently
performs better in testing power, which confirms the need
for sample-level importance reweighting when facing rare
dependence. We note that the performance of the baselines
also improves as n increases, which is expected since the
range of the significant dependent region is fixed. Note
that HSIC almost always overlaps with LFHSIC for DG
II, manifesting that optimizing the bandwidth of kernels is
not enough to detect rare dependence. RDC performs well
in DG I while it struggles in DG II, further showing the
genericity of our method.

5.1.2. CI TESTS

Data Generation. We follow the synthetic experiment
proposed in (Scetbon et al., 2022) with a slight variation. To
compare the Type I error, we generate simulated data by:

X = f1(Z̄ + εx), Y = f2(Z̄ + εy)

Above, Z̄ is the average of Z = (Z1, · · · , Zdz
), εx and εy

are sampled independently from N (0, 1), and f1 and f2 are
smooth functions chosen from the same set as in DG II The
following generating function is for evaluating power:{
X = f1(Z̄ + εx) + εb, Y = f2(Z̄ + εy) + εb, if X < τ,

X = f1(Z̄ + εx) + εb, Y = f2(Z̄ + εy), if X ≥ τ.

where Q ∼ U(0, 1), εb ∼ N (0, 1), τ ∈ [0, 1] is a threshold
and we set τ equals to the τ -th percentile of X .

Baselines. We compare with the following CI methods:

KCIT (Zhang et al., 2012), RCIT (Strobl et al., 2019),
CCIT (Sen et al., 2017), GCIT (Bellot & van der Schaar,
2019), FCIT (Chalupka et al., 2018), GCM (Shah & Peters,
2020), and NNLSCIT (Li et al., 2024b). Results of some
baselines are shown in Appendix G for beauty.

Results. In the right of Fig. 4, we fix τ = 0.03 and compare
the performance of different methods with various dimen-
sions of the conditional set Z. Most methods except KCIT
maintain Type I error around 0.05. This behaviour may
be attributed to the error caused by gamma distribution ap-
proximating the null distribution. On average, our method
significantly outperforms other methods in testing power
and achieves a power 50% better than KCIT. All the base-
lines here are unsensitive to the increasing of the dimension
of the conditioning variable.

We also enumerate τ ∈ (0.01, 0.03) to generate samples
with different ratios of the sub-samples that are significantly
dependent, as shown in Fig. 5. We use this setting to model
different levels of rare dependence. The dimension of the
conditioning variable Z is fixed at 10 and the number of
samples n = 1000. Our method achieves a better perfor-
mance than the baselines, especially compared to KCIT.

5.2. Real-world Experiments

Sachs Dataset. We apply our RHSIC to a flow cytometry
dataset (Sachs et al., 2005), which gives n = 853 obser-
vational measurements of 11 proteins. Here we focus on
the dependence relationship between (PKA, PJINK). This
pair is dependent according to the ground truth causal graph
in Fig. 11. However, as the results discussed in (Mooij &
Heskes, 2013), many popular (conditional) independence
tests cannot detect this dependence relation. We compared
our RHSIC with HSIC since theoretically these two pairs
are dependent conditioning on an empty set. The p-value
produced by HSIC with default settings is 0.601, while our
method successfully detected the dependence with p-value
= 0.004. See Appendix G.3 for more details.

Financial Dataset. We also apply our method to monthly
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Figure 5. Left: Type I error rate and Power of DG I (first and second figure) and DG II (third and fourth figure) with different sample
sizes. The first row represents Type I error rates and the second row shows test power. Right: Testing powers of CI tests with various
ratios of significantly dependent sub-samples. We fix the number of samples n = 1000 and the size of conditional set Z as 10.

JPY/USD exchange rates (E) and U.S. federal funds rates (F)
from 1990 to 2010, sourced from Federal Reserve Economic
Data (FRED). Each month records a datapoint, resulting in
251 samples in total. While the original HSIC fails to reject
independence with p-value equals to 0.2174, RHSIC de-
tects dependence with p = 0.0005 using F as the reference
variable. The learned weights assign higher importance to
the samples in 2001 and 2008. These correspond to the Dot-
com recession and the global financial crisis, respectively —
showing that our method not only detects rare dependence
but also provides interpretable insights.

6. Discussion
Some previous works fall into the subset of our setting.
A line of research focusing on “local dependence” (Ab-
berger, 2002; Üçer & Bayramoğlu, 2007; Sricharan et al.,
2011; Tjøstheim et al., 2022; Gorsky & Ma, 2022) actually
helps quantify and visualize a fine-grained dependence rela-
tionship while lacking a formal testing procedure or being
restricted to a hard “local region”. Context-Specific Inde-
pendence (CSI) (Pensar et al., 2016; Hwang et al., 2023;
Poole & Zhang, 2003; Boutilier et al., 2013; Pensar et al.,
2015; Hwang et al., 2024) aims to find a more fine-grained
independence relation, which is conceptually related to our
objective, though approached from the perspective of in-
dependence rather than dependence. The complementarity
actually enables our methods to handle such cases, as dis-
cussed in the next paragraph. (Wang, 2020; Wang et al.,
2021) defined a term “rare events” to describe extremely im-
balanced data for parameter estimation. The data-generating
process proposed is a specific instantiation of our setting
similar to Example 3.1 and thus solvable by our tests.

The importance weights learned by our method naturally
highlight subgroups of data that contribute most to captur-
ing the underlying dependence signal. As demonstrated in
our real-world dataset analysis, these weights enhance inter-
pretability for downstream applications. Notably, the algo-
rithm in Sec. 4 is capable of uncovering fine-grained causal
structures by highlighting context-dependent relationships.
This, in turn, facilitates the identification of context-specific

biomarkers for targeted interventions in precision medicine
and supports the inference of group-specific causal effects.
Additionally, fine-grained causal structures support context-
aware fairness by mitigating biases arising from majority
groups. As discussed earlier, our method is well-suited to
handle context-specific or local independence scenarios, due
to the complementary nature of its objectives. For example,
Example 3.1 and Data Generation II & III in our experi-
ments involve local dependence, and our method performs
well in these cases, as the low (near-zero) weight samples
often help to identify locally independent regions.

7. Conclusion
We focus on the problem of testing conditional indepen-
dence in the presence of rare dependence, where the de-
pendence is significant only in small regions of the sample.
We propose a reweighted (conditional) dependence mea-
sure, which adaptively reweights samples to enhance the
ability to detect subtle dependence structures. We provide
an asymptotic analysis of the reweighted statistics and a con-
sistency analysis of our approach to ensure its theoretical
soundness. The theoretical results are applied to the causal
discovery task, demonstrating their applicability in structure
learning in the presence of rare dependence. Extensive ex-
periments on synthetic and real-world datasets validated the
effectiveness of our method, highlighting its potential for
broad applications in data analysis. Future work can explore
extending our reweighting methods to other tasks.
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A. Notations

Table 1. Notation Table
Symbol Description

X,Y, Z Random variables (or sets of variables)
X ,Y,Z Domains for random variables
FX ,FY ,FZ Reproducing kernel Hilbert spaces (RKHS)
x, y, z Sample vectors (or matrices)
xi, yi, zi Specific values of sample vectors (or matrices)
kX(x, x′), kY (y, y

′), kZ(z, z
′) Kernel functions on the input spaces X ,Y,Z

ψ(·), ϕ(·), φ(·) Feature maps for X,Y, Z
KX ,KY ,KZ Kernel matrice on samples x, y, z
ΣXY Cross-Covariance operator
∥ · ∥F Norm in a RKHS
E[X] Expectation of X
Var[X] Variance of X
Cov[X] Covariance of X and Y
R≥0 The set of positive real numbers (including 0)
B(R) Borel σ-algebra on R
PXY Joint distribution of X and Y
PXY |Z Joint distribution of X and Y conditioned on Z
Tr[·] The trace of a matrix
⊗ Tensor product
O Big O notion
n Number of samples
X ⊥⊥ Y X is independent of Y
(i)nr The set of all r-tuples drawn without replacement
(n)k Number of permutations
N (Ω, ϵ, ∥ · ∥∞) Covering number with radii ϵ for Ω equipped with infinite norm
N (0, 1) Normal distribution with zero mean and standard deviation 1
U(0, 1) Uniform distribution in (0, 1)
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B. Related Works
In this section, we provide a more comprehensive review of literature.

B.1. Independence Tests

Traditional independent tests for discrete/categorical data include F-test (Tiku, 1967) and Chi-squared test (Greenwood &
Nikulin, 1996). Testing independence for continuous variables is more challenging. Pearson correlation coefficient (Benesty
et al., 2009) is often used to measure the correlation between variables. However, it only reflects linear dependence. In order
to measure broader dependence, a class of kernel-based independence testing (Bach & Jordan, 2002; Gretton et al., 2005b;
2003; 2005a) was proposed. These methods are mainly based on the framework proposed by Rényi (Rényi, 1959) to measure
the nonlinear dependence of variables by sufficiently adequate mappings under function classes. Under the reproducing
kernel Hilbert space (RKHS) (Berlinet & Thomas-Agnan, 2011) space, the kernel function is defined as a distance metric
induced by the inner product of the feature mapping. One widely-used kernel-based independence test is the Hilbert Schmidt
Independence Criterion (HSIC) (Gretton et al., 2005a), which measures dependence by the squared Hilbert-Schmidt norm
induced by the cross-covariance operators in the RKHS space. Besides, the random dependence coefficient (Lopez-Paz
et al., 2013) (RDC) was proposed. Compared to the kernel-based method, RDC is computationally efficient and easily
implemented. This method ensures the marginal invariance by using copula transformation, and measures the dependence
between variables by maximizing the correlation under random projection of copula transformation.

B.2. CI Tests

Conditional independent tests are generally more difficult than independent tests due to the hardness of estimating the
conditional density distribution compared to the marginal distribution. A class of metric-based CI test (Su & White, 2007)
employs a number of kernel smoothers to estimate conditional characteristic functions. This type of kernel smoothing
estimation has a large computational cost when the condition set is high-dimensional. Another widely used method is
kernel-based conditional independence testing such as KCIT (Zhang et al., 2012). KCIT is based on the partial association
framework proposed by Daudin (Daudin, 1980) and uses conditional cross-correlation operators to identify conditional
independence. Later, the approximate kernel-based method RCIT (Strobl et al., 2019) was proposed, which uses random
Fourier features to approximate the Gaussian kernel, resulting in an improvement in the computational efficiency of KCIT.
Another class of methods (Doran et al., 2014; Bellot & van der Schaar, 2019; Shi et al., 2021; Runge, 2018; Sen et al.,
2017; Mukherjee et al., 2020) obtains the distribution of the statistic under the null hypothesis by estimating the conditional
density function or conditional mutual information, followed by a hypothesis test to determine conditional independence.
The permutation-based method (Doran et al., 2014) obtains resampled samples of factorized distribution by performing
permutations on the samples that satisfy a specific structure. Some other methods (Bellot & van der Schaar, 2019; Shi et al.,
2021), use generative models to estimate the conditional density. The method (Runge, 2018; Mukherjee et al., 2020) uses
k-nearest-neighbor (KNN) to obtain a factorized distribution or estimate Kullback–Leibler (KL) divergence by classification
to estimate conditional mutual information for judging conditional independence.

B.3. Context-specific Independence or Local (In-)Dependence

The methods for measuring local (in-)dependence (Pensar et al., 2016; Tjøstheim et al., 2022; Hwang et al., 2023) help
visualize the fine-grained dependence relationship while lack a formal testing procedure. Context-Specific Independence
(CSI) (Poole & Zhang, 2003; Boutilier et al., 2013; Poole, 2013; Pensar et al., 2015; Hwang et al., 2024) aims to find a more
fine-grained independence relation, which is conceptually related to our objective, though approached from the perspective
of independence rather than dependence. The methods are mainly to find the specific contexts (subspaces of the variable
domain) that conditional independence relationships hold. It is a widely used local independence relationships. To encode
CSI relationships in graphical models, (Pensar et al., 2015) introduced Labeled Directed Acyclic Graphs (LDAGs). Later,
(Pensar et al., 2016) introduced partial conditional independence (PCI), which is a generalization of CSI. Several recent
efforts have aimed to identify local causal structures for continuous variables. However, CSI aims to find independence
while we focus on dependence. And CSI has a hard threshold for independent and dependent samples, making it a more
restricted scenario compared to rare dependence in our paper (Pensar et al., 2015).
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B.4. Causal Discovery

Traditional causal discovery methods include constraint-based and score-based methods. Constraint-based methods such as
PC (Spirtes et al., 2000) first use CI tests to obtain the causal skeleton, then employ V -structures and consistent propagation
to infer the directions. Score-based methods such as GES (Chickering, 2002) search for the best-scored candidate graph
with a pre-defined score function (e.g., BIC/MDL score (Chickering & Heckerman, 1997), BGe score (Geiger & Heckerman,
1994) for linear-Gaussian models, the BDeu/BDe (Buntine, 1991; Heckerman et al., 1995) score for discrete data. When the
number of variables is large, the score-based methods usually employ a heuristic strategy to speed up the search process.
Recently, NOTEARS (Zheng et al., 2018) innovatively proposes a differentiable characterization of acyclicity, which
converts score-based causal discovery from a combinatorial optimization problem to a continuous optimization problem.
Following that, some variants (Yu et al., 2019; Ng et al., 2020; Wei et al., 2020; Zheng et al., 2020) were proposed to extend
NOTEARS into more scenarios. Without further assumptions, we can only recover the underlying causal graph up to is
Markov equivalence class. To make it fully identifiable, a widely used class of methods (Shimizu, 2014; Hoyer et al., 2008;
Zhang & Hyvarinen, 2012) assumes that the data generation process satisfies a specific functional model. These function
causal model-based causal discovery methods can use asymmetries in statistical dependencies to determine the direction
between variables.

C. Reweighting Functions and the Reweighted Distribution
C.1. Proof of Proposition 3.3

Proposition 3.3 (Maintain the independence after reweighting). If X and Y are independent and C is either X or Y but not
both, then X and Y are still independent in the reweighted distribution of (X,Y ) with weight β(C).

Proof. First we consider the case C = X . Define P̃X ≜ β(X) · PX . Since X ⊥⊥ Y , PX · PY |X = PXPY .

P̃XY = β(X) · PX · PY |X = β(X)PXPY = P̃XPY . (15)

And in the other case, C = Y . Define this time P̃Y ≜ β(Y ) · PY . Similarly we have

P̃XY = β(Y ) · PX · PY |X = β(Y )PXPY = PX P̃Y , (16)

That is, P̃XY is factorable in terms of X and Y , meaning that X and Y are still independent according to P̃XY .

C.2. Proof of Proposition 3.9

Proposition 3.9 (Maintain the conditional independence after reweighting). If X and Y are conditionally independent given
Z and that C is either X or Y but not both, then X and Y are still conditionally independent given Z after reweighted by
the weight β(C,Z).

Proof. Similar to the unconditional independence, we first set C = X and define P̃X|Z ≜ β(X,Z) · PX|Z , we have

P̃XY |Z = β(X,Z) · PX|Z · PY |XZ = β(X,Z) · PX|Z · PY |Z = P̃X|ZPY |Z , (17)

since X ⊥⊥ Y |Z gives us PX|Z · PY |XZ = PX|Z · PY |Z . Next, set C = Y and define P̃Y |Z ≜ β(Y,Z) · PY |Z , we have

P̃XY |Z = β(Y,Z) · PX|Z · PY |XZ = β(Y, Z) · PX|Z · PY |Z = P̃X|Z P̃Y |Z . (18)

That is, P̃XY |Z is factorable in terms of (X,Z) and (Y, Z), meaning that X and Y are still conditionally independent given
Z according to P̃XY |Z .

C.3. When C is a Third Variable

We first state a more general case of the definition of the reweighting function and reweighted distribution.
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Definition C.1 (Reweighting function and reweighted distribution). C is either a subset of X or Y , or it represents another
variable tha is independent of (X,Y ). Let C and Z be the domain of C and Z. The reweighting function set B satisfies

B =
{
β : C × Z → R+ | EPXY |Z [β(C,Z)] = 1

}
.

Then ∀β ∈ B, the corresponding reweighted distribution P̃XY C|Z , which is well defined with the same support of PXY C|Z ,
can be determined by the conditional probability density function

P̃(X,Y,C | Z) = β(C,Z)P(X,Y,C | Z). (19)

The reweighting function and the reweighted distribution in the unconditional case are a special case of this definition where
the conditioning set Z is empty. In fact, the results of Proposition 3.3 can be generalized to the case when C is neither X nor
Y , which is useful in the causal discovery settings in our paper. In general, the following proposition imposes the constraint
that C cannot be a common effect of X and Y .

Proposition C.2 (Extention of Proposition 3.3). If X and Y are independent and that C is a subset of X or Y , or C is a
variable that satisfies β(C) = βX(X̃)βY (Ỹ ), where X̃ and Ỹ are subsets of X and Y , then X and Y are still independent
in the importance reweighed distribution of (X,Y ) with weight β(C).

The results in Proposition 3.9 can also be generalized to the case where C is a third variable that is neither X nor Y .

Proposition C.3 (Extention of Proposition 3.9). Consider that X and Y are independent given Z and C̈ = {C,Z} where
C is a subset of X or Y or C̈ is a variable that satisfies β(C̈) = βXZ(X̃, Z)βY Z(Ỹ , Z), where X̃ and Ỹ are subsets of X
and Y . Then, X and Y are still independent given Z in the importance reweighed distribution of (X,Y, Z) with weight
β(C̈).

Note that when C = Z it reduces to the original conditional distribution (βk ≡ 1).

C.4. Proof of Proposition 3.6

Proposition 3.6 Suppose the sample data are i.i.d. and randomly split into Dte = {xte, yte} and Dtr correspondingly. β̂(·)
maximizes the dependence measure of Dtr. Then β̂(·) is independent of Dte.

Proof. Since the sample data are i.i.d., ∀i ̸= j, (xi, yi) ⊥⊥ (xj , yj). By randomly splitting the entire dataset, we have
Dte ⊥⊥ Dtr. We can denote β̂(·) = f(Dtr), where f is a measurable function of Dtr. By a standard result in probability
(Casella & Berger, 2002, Theorem 4.3.5 and 4.6.12), if X and Y are independent, then any measurable function of X is also
independent of Y . Applying this fact here gives β̂(·) ⊥⊥ Dte.

D. Details about the Unconditional Independence Statistic
We first give some preliminaries for later proof and derivation.

Definition D.1 (U -statistics). The statistic Un defined as follows is called a U -statistic with symmetric function h of order
m:

Un =

(
n

m

)−1∑
c

h (Xi1 , . . . , Xim) , (20)

where
∑

c denotes the summation over the
(
n
m

)
combinations of m distinct elements {i1, . . . , im} from {1, . . . , n}.

For every U -statistic Un as an estimator of ϑ = E [h (X1, . . . , Xm)], there is a closely related V -statistic defined by

Vn =
1

nm

n∑
i1=1

· · ·
n∑

im=1

h (Xi1 , . . . , Xim) .

Proposition D.2. Let Vn be defined by the above function and we have n i.i.d. samples {xi}ni=1 drawn from PX .
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(i) Assume that E[|h (Xi1 , . . . , Xim)|] <∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m. Then the bias of Vn satisfies

bVn
(PX) = O

(
n−1

)
.

(ii) Assume that E
[
h (Xi1 , . . . , Xim)

2
]
<∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m. Then the variance of Vn satisfies

Var(Vn) = Var(Un) +O(n−2).

We also define some more statistics for later derivation. For k = 1, . . . ,m, let

hk(x1, . . . , xk) = E [h(X1, . . . , Xm) | X1 = x1, . . . , Xk = xk]

= E [h(x1, . . . , xk, Xk+1, . . . , Xm)] .

Note that hm = h. Further define ζk ≜ Var (hk(X1, . . . , Xk)).
Theorem D.3 ((Shao, 2008), Theorem 3.16). Let Vn be a V-statistics with E

[
h(Xi1 , . . . , Xim)2

]
<∞ for all 1 ≤ i1 ≤

· · · ≤ im ≤ m.

(i) If ζ1 ≜ Var(h1(X1)) > 0, then
√
n (Vn − ϑ)

d−→ N(0,m2ζ1).

(ii) If ζ1 = 0 but ζ2 ≜ Var(h2(X1, X2)) > 0, then

n (Vn − ϑ)
d−→ m(m− 1)

2

∞∑
j=1

λjχ
2
1j ,

where χ2
1j ’s are i.i.d. random variables having the chi-square distribution χ2

1 and λj ’s are some constants (which
may depend on PX ) satisfying

∑∞
j=1 λ

2
j = ζ2.

D.1. Characterization of Unconditional Independence

For (X,Y ) ∈ X × Y , the cross-covariance operator ΣXY : FY → FX is defined by (Fukumizu et al., 2004):

∀f ∈ FX , g ∈ FY , ⟨f,ΣXY g⟩FX
= EXY [f(X)g(Y )]− EX [f(X)]EY [g(Y )]. (21)

and the covariance operator itself can be written as

ΣXY := EXY [(ψ(X)− µX)⊗ (ϕ(Y )− µY )] , µX ≜ EXψ(X), µY ≜ EY ϕ(Y ), (22)

where ⊗ is the tensor product. This operator is a generalization of the cross-covariance matrix between random vectors.
HSIC is the squared Hilbert-Schmidt norm (the sum of the squared singular values) of this operator, as mentioned in Def. 2.1

HSIC(X,Y ) = EXX′Y Y ′ [kX(X,X ′)kY (Y, Y
′)] + EXX′ [kX(X,X ′)]EY Y ′ [kY (Y, Y

′)] (23)
− 2EXY [EX′ [kX(X,X ′)]EY ′ [kY (Y, Y

′)]] .

Assuming the expectations exist, where X ′ denotes an independent copy of X . An unbiased estimator of HSIC in sample
D = {(xi, yi)}ni=1 drawn from distribution PXY is the sum of three U -statistics: (Gretton et al., 2007)

HSICu(D) =
1

(n)2

∑
(i,j)∈in2

kijXk
ij
Y +

1

(n)4

∑
(i,j,q,r)∈in4

kijXk
qr
Y − 2

1

(n)3

∑
(i,j,q)∈in3

kijXk
iq
Y , (24)

where kijX := kX(xi, xj), k
ij
Y := kY (yi, yj), (n)m := n!

(n−m)! , and the index set inr denotes the set all r-tuples drawn
without replacement from the set {1, . . . , n}. A biased estimator is the one replacing U -statistics with V -statistics, as in

HSICb(D) =
1

n2

n∑
i,j

kijXk
ij
Y +

1

n4

n∑
i,j,q,r

kijXk
qr
Y − 2

1

n3

n∑
i,j,q

kijXk
iq
Y =

1

n2
Tr(KXHKY H), (25)

where the summation indices now denote all r-tuples drawn with replacement from {1, . . . , n} and H = I − 1
n11

⊤.
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D.2. Derivation of the Importance Reweighted Statistics for UI Test

We first consider the statistic for the reweighted distribution on the population level. Given a known reweighting function
β(·), we use β to represent β(x), µβ

X = EP̃X
[ψX ] = EPX

[β · ψX ], and µβ
Y = EP̃Y

[ϕY ] = EPXY
[β · ϕY ]. Then

HSICβ(X,Y ) =
∥∥∥Σβ

XY

∥∥∥2
HS

=
∥∥∥EP̃

[
(ψX − µβ

X)⊗ (ϕY − µβ
Y )
]∥∥∥2

HS
=
∥∥∥EP

[
β(ψX − µβ

X)⊗ (ϕY − µβ
Y )
]∥∥∥2

HS
.

Suppose now we have data samples D and obtain its estimator. Let ψi(x) be the ith dimension of ψ(x) and set βk ≜ β(xk).
Define Hβ ≜ Dβ

(
I − 1

n11
⊤Dβ

)
and Dβ ≜ diag (β1, . . . , βn), that is, the diagonal matrix with βi on its diagonal. We

know the estimator of
∥∥∥Σβ

XY

∥∥∥2
HS

is
∥∥∥Σ̂β

XY

∥∥∥2
HS

=
∥∥∥ÊP̃

[
(ψX − µ̂β

X)⊗ (ϕY − µ̂β
Y )
]∥∥∥2

HS
. Then on the sample level:

HSICβ
b (D) =

∥∥∥Σ̂β
XY

∥∥∥2
HS

=

∥∥∥∥∥ 1n
n∑

k=1

[
βk

(
ψ(xk)−

1

n

n∑
p=1

βpϕ(xp))

)
⊗

(
ϕ(yk)−

1

n

n∑
q=1

βqϕ(yq)

)]∥∥∥∥∥
2

HS

=

∥∥∥∥∥∥ 1n
n∑

k=1

βk

(
ψ(xk)−

1

n

n∑
q=1

βqψ(xq)

)(
ϕ(xk)−

1

n

n∑
q=1

βqϕ(yq)

)T
∥∥∥∥∥∥
2

HS

=
1

n2

∑
i,j

[
ψi(x)

[
I − 1

n
Dβ11

T

]
Dβ

[
I − 1

n
Dβ11

T

]T
ϕj(y)

T

]2
=

1

n2
Tr
[
ψXHβϕ

T
Y · ϕY Hβψ

T
X

]
=

1

n2
Tr [KXHβKY Hβ ] .

On the other hand, we can also obtain the estimators through U -statistics and V -statistics, which is helpful for the later
analysis regarding the asymptotic distributions. On the population level,

HSICβ(X,Y ) = EX,Y,X′,Y ′ [⟨β ψ(X)⊗ ϕ(Y ), β ψ(X)⊗ ϕ(Y )⟩HS ] +
〈
µβ
X ⊗ µ

β
Y , µ

β
X ⊗ µ

β
Y

〉
HS

− 2EX,Y

[〈
µβ
X ⊗ µ

β
Y , β ψ(X)⊗ ϕ(Y )

〉
HS

]
= EX,Ẋ,Y,Ẏ

[
ββ̇ kX(X, Ẋ)kY (Y, Ẏ )

]
+ EẊ,Ẍ

[
β̇β̈ kX(Ẋ, Ẍ)

]
EY,Y̊

[
ββ̊ kY (Y, Y̊ )

]
− 2EX,Y

[
β EẊ

[
β̇ kX(X, Ẋ)

]
EŸ

[
β̈ kY (Y, Ÿ )

]]
.

Here (Ẋ, Ẏ ), (Ẍ, Ÿ ), and (X̊, Y̊ ) are independent copies of (X,Y ), with corresponding weights β̇, β̈ and β̊. The HS norm
of Σβ

XY exists when the various expectations over the kernels are bounded, which is true as long as the kernels k and l
are bounded. Based on the last equation we can unbiasedly estimate the reweighted HSIC in terms of the sum of three
U-statistics:

HSICβ
u(D) =

1

(n)2

∑
(i,j)∈in2

βiβjk
ij
Xk

ij
Y +

1

(n)4

∑
(i,j,q,r)∈in4

βiβjβqβrk
ij
Xk

qr
Y − 2

1

(n)3

∑
(i,j,q)∈in3

βiβjβqk
ij
Xk

iq
Y ,

which can also be formulated as one U-statistics as follow (from a similar extension by (Song et al., 2007))

HSICβ
u(D) = (n)−1

4

n∑
(i,j,q,r)∈in4

hβ(i, j, q, r), (26)

hβ(i, j, q, r) ≜
1

4!

(i,j,q,r)∑
(s,t,u,v)

(βsβtk
st
Xk

st
Y + βsβtβuβvk

st
Xk

uv
Y − 2βsβtβuk

st
Xk

su
Y ). (27)

The last sum represents all ordered quadruples (s, t, u, v) selected without replacement from (i, j, q, r). Note that
hβ(i, j, q, r) is hβijqr in paper. We can substitute the U -statistics with V -statistics and get the biased estimator of HSIC:

HSICβ
b (D) =

1

n2

n∑
i,j

βiβjk
ij
Xk

ij
Y +

1

n4

n∑
i,j,q,r

βiβjβqβrk
ij
Xk

qr
Y − 2

1

n3

n∑
i,j,q

βiβjβqk
ij
Xk

iq
Y =

1

n4

n∑
i,j,q,r

hβ(i, j, q, r). (28)
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D.3. Proof of the Asymptotic distribution of Reweighted HSIC

Theorem 3.4 (Null distribution). Define D = {(xi, yi)}ni=1 = {wi}ni=1. UnderH0, the V -statistic HSICβ
b (D) in Eq. (28)

is degenerate, meaning Eih
β
ijqr = 0. In this case, HSICβ

b (D) converges in distribution according to

mHSICβ
b (D)

D−→
∞∑
l=1

λlχ
2
1l, (29)

where χ2
1l are i.i.d. chi-square variables, and λl are the solutions to the eigenvalue problem

λlψl (wj) =

∫
βiqr · hβijqrψl (wi) dFi,q,r, (30)

where the integral is over the distribution of variables wi, wq , and wr.

Proof. First we discuss the value of ζ1 and ζ2 for HSICβ
u(D). We calculate Ejqr

[
hβ(i, j, q, r) | i

]
first for ζ1 =

Vari
(
hβi (i, j, q, r)

)
= Vari

(
Ejqr

[
hβ(i, j, q, r) | i

])
:

E
[
hβ(i, j, q, r)

]
=

1

4!

(i,j,q,r)∑
(s,t,u,v)

E[βsβtkstX(kstY + βuβvk
uv
Y − 2βuk

su
Y )]

=
1

4!

(i,j,q,r)∑
(s,t,u,v)

E[βsβtkstX ][E[kstY ] + E[βuβv]E[kuvY ]− E[2βuksuY ]].

The seconod equation is due to the independence between X and Y underH0 and in this case we set the input of β as X .
We enumerate all the posibilities of the terms including is:

i = s : βiE
[
βtk

it
X

]
· E
[
kitY + kuvY − 2kiuY

]
, i = t : βiE

[
βsk

st
X

]
· E
[
ksiY + kuvY − 2ksuY

]
,

i = u : E
[
βsβtk

st
X

]
· E
[
kstY + βik

iv
Y − 2βik

si
Y

]
, i = v : E

[
βsβtk

st
X

]
· E
[
kstY + βilui

− 2ksuY
]
.

When conditioned on i, we have E[kisY ] = E[kitY ] = E[kiuY ] = E[kivY ] and E[kstY ] = E[kuvY ] = E[ksuY ], etc. Therefore,

we have E
[
hβ(i, j, q, r) | i

]
= 0 for arbitray i, which means ζ1 = 0. Besides, for ζ2 = Varij

(
hβij(i, j, q, r)

)
=

Varij
(
Eqr

[
hβ(i, j, q, r) | i, j

])
we also have the following enumerations:

i = s, j = t : βiβjk
ij
X · E

[
kijY + kuvY − 2kiuY

]
, j = u : βiE

[
βtk

it
X

]
· E
[
kitY + βjk

jv
Y − 2βjk

ij
Y

]
,

j = v : βiE
[
βtk

it
X

]
· E
[
kitY + βjk

uj
Y − 2kiuY

]
,

i = t, j = s : βiβjk
ij
X · E

[
kijY + kuvY − 2kjuY

]
, j = u : βiE

[
βsk

si
X

]
· E
[
ksiY + βjk

jv
Y − 2βjk

sj
Y

]
,

j = v : βiE
[
βsk

si
X

]
· E
[
ksiY + βjk

uj
Y − 2ksuY

]
,

i = u, j = s : βjE
[
βtk

jt
X

]
· E
[
kjtY + βik

iv
Y − 2βik

ij
Y

]
, j = t : βjE

[
βsk

sj
X

]
· E
[
ksjY + βik

iv
Y − 2βik

si
Y

]
,

j = v : E
[
βsβtk

st
X

]
· E
[
kstY + βjk

ij
Y − 2ksiY

]
,

i = v, j = s : βjE
[
βtk

jt
X

]
· E
[
kjtY + βik

ui
Y − 2kjuY

]
, j = t : βjE

[
βsk

sj
X

]
· E
[
ksjY + βik

ui
Y − 2ksuY

]
,

j = u : E
[
βsβtk

st
X

]
· E
[
kstY + βiβjk

ij
Y − 2βjk

sj
Y

]
.
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Different from the previous discussion, this time it’s unable to eliminate the terms and Eqr

[
hβ(i, j, q, r) | i, j

]
turns out to

be a function of i and j, i.e., ζ2 > 0. Then we apply the results in Theorem D.3, and we would have

√
n
(
HSICβ

b (D)−HSICβ(X,Y )
)

d−→
∞∑
j=1

λjχ
2
1j . (31)

where χ2
1j are i.i.d. Chi-square variables, and λls are the solutions to the eigenvalue problem

λlψl (wj) =

∫
hβijqrψl (wi) dF

β
i,q,r =

∫
βiqr · hβijqrψl (wi) dFi,q,r, (32)

where the integral is over the distribution of variables wi, wq , and wr.

Theorem 3.5. Given known β(·) function, where βi = β(xi). Given n i.i.d samples D = {(xi, yi)}ni=1 with distribution
PXY . Using the symmetric kernel function hβ(i, j, q, r) we defined above, and assume E

(
hβ(i, j, q, r)2

)
<∞. UnderH1,

an observation of HSICβ(X,Y ), denoted as HSICβ
b (D), converges in distribution as n→∞ to a Gaussian according to

√
n
(
HSICβ

b (D)−HSICβ(X,Y )
)

D−→ N (0, σ2
β). (33)

The variance is σ2
β = 16

(
Ei

(
Ej,q,rh

β
ijqr

)2
−HSICβ(X,Y )2

)
, where Ej,q,r := Ewj ,wq,wr

.

Proof. We know for the biased estimator HSICβ
b (D) in Eq. (28), its associated U -statistic HSICβ

u(D) in Eq. (26) has

ζ1 = Vari
(
hβi (i, j, q, r)

)
= Vari

(
Ejqr

[
hβ(i, j, q, r) | i

])
.

Since under H1, Ejqr

[
hβ(i, j, q, r | i)

]
would clearly change value for different index i when n→∞, therefore ζ1 > 0.

Then we have HSICβ
u(D) converges in distribution as Eq. 8 with variance σ2

β , according to theorem D.3. Since the difference
between HSICβ

b (D) and HSICβ
u(D) drops as 1/n as shown in Proposition D.2, HSICβ

b (D) converges asymptotically to the
same distribution.

D.4. Derivation of Regularization and Objective Function

For unconditional independence test, we use the negative logarithm of the normalized reweighted HSIC as the dependence
loss. The normalized HSICβ on the population level is shown below, whose estimator is illustrated in paper

JUI
β =

JUI
1β

JUI
2β J

UI
3β

, where JUI
1β =

∑
i,j

EP̃XY

[(
ψi(X)− EP̃X

ψi(X)
) (
ϕj(Y )− EP̃Y

ϕj(Y )
)]2

,

JUI
2β =

∑
i

EP̃X

[(
ψi(X)− EP̃X

ψi(X)
)2]

, JUI
3β =

∑
j

EP̃Y

[(
ϕj(Y )− EP̃Y

ϕj(Y )
)2]

.

This measure can be considered as a generalization of the squared correlation coefficient. If we replace the operators with
normal covariance matrices and HS norms with Frobenious norms (i.e., use an identity map of feature maps ϕ and φ, which
will be specified later), then the above measure is the squared correlation coefficient between X and Y .

Proposition D.4. The normalized reweighted HSIC, as JUI
β defined above, ranges from 0 to 1, i.e., JUI

β ∈ [0, 1].

Proof. From Cauchy-Schwarz inequality, we have for all i, j

CovP̃XY
[ψi(X), ϕj(Y )] ≤

√
VarP̃X

[ψi(X)]VarP̃Y
[ϕj(Y )]

E2
P̃XY

[(
ψi(X)− EP̃X

ψi(X)
) (
ϕj(Y )− EP̃Y

ϕj(Y )
)]
≤ EP̃X

[(
ψi(X)− EP̃X

ψi(X)
)2]EP̃Y

[(
ϕj(Y )− EP̃Y

ϕj(Y )
)2]

.

Summing over all the i and j gives us JUI
1β ≤ JUI

2β J
UI
3β . The equality is achieved when X = Y .
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On the sample level, we use the normalized HSICβ
b , ĴUI

β =
ĴUI
1β

ĴUI
2β ĴUI

3β

, where the denominators can be calculated by,

ĴUI
2 =

∑
i

Ê
(
[ψ(x)]i − Ê[ψ(x)]i

)2
=

1

n

∑
i

 n∑
k=1

βk

(
ψi(xk)−

1

n

n∑
q=1

βqψi(xq)

)2


=
1

n

∑
i

[
ψi(x)

[
I − 1

n
Dβ11

T

]
Dβ

[
I − 1

n
Dβ11

T

]T
ψi(x)

T

]

=
1

n
Tr
[
ψ(x)Hβψ(x)

T
]
=

1

n
Tr [KXHβ ] .

And the derivation of the estimator for ĴUI
3 is similar and we have ĴUI

3 =
∑

j Ê
(
[ϕ(y)]j − Ê[ϕ(y)]j

)2
= 1

n Tr [KY Hβ ].

For regularization terms, suppose the reweighting function β(·) is selected from an RKHS, i.e., β ∈ B ⊂ FX . Then we can
denote β as β(X) = ψXω = KXα, where ω is the vector of coefficients that represent β in X’s RKHS, i.e., ω = ψT

Xα,
and α is a vector of parameters. In order to ensure the smoothness of β function to avoid drastic changes for nearby inputs,
we want ∥ω∥2 = α⊤KZα to be as small as possible. At the same time, we want to select as many data points as possible,
i.e., βi = β(xi) should preferably be close to 1. Notice that β(X) has a mean of 1, so this condition can be achieved by
minimizing the sample variance of βi, i.e.,

1

n

n∑
i=1

(βi − 1)
2
=

1

n
∥KZα− 1∥2 =

1

n
(α⊤KZ − 1⊤)(KZα− 1) =

1

n
α⊤K2

Zα−
2

n
1⊤KZα+ 1. (34)

Note that overall these two regularization terms make the variance of the importance reweighted distribution larger. Adding
all the regularization terms and simplifying the calculation by taking logarithm, the final expected minimization objective
function subject to constraint

∑n
i=1 βi = n and βi ≥ 0,∀i is:

argmin
α

L ⇐⇒ argmin
α

− log ĴUI
β + λ1∥ω∥2 +

λ2
n

n∑
i=1

(βi − 1)
2
,

where ĴUI
β =

Tr[KXHβKY Hβ ]
Tr[KXHβ ] Tr[KY Hβ ]

and

L =− log Tr

[
KXDβ

(
I − 1

n
11⊤Dβ

)
KY Dβ

(
I − 1

n
11⊤Dβ

)]
+ logTr

[
KXDβ

(
I − 1

n
11⊤Dβ

)]
+ logTr

[
KY Dβ

(
I − 1

n
11⊤Dβ

)]
+

1

2
α⊤
(
λ1KZ +

λ2
n
K2

Z

)
α− λ2

n
1⊤KZ α⃗.

(35)

That is, we actually find the optimized α and then calculate β = KXα instead of optimizing β directly. We can also translate
it into an unconstrained optimization problem, where β = softmax(ϵ) and argmin is taken w.r.t. ϵ. Note that through
this transformation, we restrict β satisfies the constraints for each optimization step, while in constrained optimization we
allow a slight violation (e.g, trust-region Newton-CG (trust-ncg) and Sequential Least Squares Quadratic Programming
(SLSQP)). We see the constrianed method significantly outperforms the unconstrained method, which demonstrates that a
looser constraint space help find the better solution. For conditional independence test, we substitute ĴCI

1β , ĴCI
2β , and ĴCI

3β

with ĴCI
1β , ĴCI

2β , and ĴCI
3β , and get the final objective function accordingly.

D.5. Proof of the Uniform Convergence Bound

To measure whether our estimated reweighting function (β̂) obtained in D generalizes well on the whole population, we
are interested in bounding the difference of HSICβ̂(X,Y ) and the optimal reweighted measure HSICβ∗

(X,Y ), using a
decomposition described below.
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Overall Learning Framework

HSICβ∗
(X,Y )−HSICβ̂(X,Y )

=
[
HSICβ∗

(X,Y )−HSICβ∗

b (D)
]

︸ ︷︷ ︸
A

+
[
HSICβ∗

b (D)−HSICβ̂
b (D)

]
︸ ︷︷ ︸

B

+
[
HSICβ̂

b (D)−HSICβ̂(X,Y )
]

︸ ︷︷ ︸
C

≤ sup
β∈B

[
HSICβ(X,Y )−HSICβ

b (D)
]

︸ ︷︷ ︸
A′

+ 0 +
[
HSICβ̂

b (D)−HSICβ̂(X,Y )
]

︸ ︷︷ ︸
C

≤ 2 sup
β∈B

∣∣∣HSICβ(X,Y )−HSICβ
b (D)

∣∣∣︸ ︷︷ ︸
A′′

.

Therefore, if we can prove A′′ → 0 as the sample size n→∞, which requires HSICβ(X,Y ) convergences to HSICβ
b (D)

for each β ∈ B, we can actually obtain the convergence property of HSICβ̂(X,Y ) to HSICβ∗
(X,Y ) as n → ∞. In the

following, we will represent this uniform convergence result. First, we list some required assumptions in the proof.

Assumptions

(i) X ⊂ Rd is a closed and bounded space.

(ii) The functions β(·) ∈ B are continuous and Lipschitz.

(iii) The kernels kX and kY are uniformly bounded by the lower bound 0 and the upper bound:

sup
x∈X

kX(x, x) ≤ ν1, sup
y∈Y

kY (y, y) ≤ ν2.

For the kernels we use for experiments in paper (e.g., Gaussian kernels), ν1 = ν2 = ν = 1.

Remark D.5. Based on assumption (i), let x ∈ [−M1,M1], ∀x ∈ X . In practice this condition is easily satisfied since we
usually normalize the input data into [0, 1] or with mean 0 and standard deviation 1. For assumption (ii), we set the Lipschitz
parameter as M2, i.e., for all x, x′ ∈ X and x, x′ ∈ [−M1,M1], |β(x) − β(x′)| ≤ M2|x − x′|. Furthermore, with these
assumptions, the value of β(x) is also bounded. We denote the bound as R, i.e., β(x) ∈ [0, R],∀x ∈ [−M1,M1]. Therefore
∀β ∈ B, ∥β(x)∥∞ ≤ R,∀x ∈ X . Note that the assumptions (i) and (ii) do not restrict the specific form of the kernels, and
common kernels (Gaussian, Laplacian, etc.) and the kernels used in our paper satisfy these properties.

Lemma D.6 (McDiarmid’s Inequality). Consider n independent random variables X1, . . . , Xn, and a real-valued function
f (X1, . . . , Xn) that satisfies the following inequality

sup
x1,...,xn,x′

i

|f (x1, . . . , xn)− f (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

for all 1 ≤ i ≤ n. Then for all ϵ > 0 :

P [f (X1, . . . , Xn) ≥ Ef (X1, . . . , Xn) + ϵ] ≤ exp

(
−2ϵ2∑n
i=1 c

2
i

)
.

Similarly:

P [f (X1, . . . , Xn) ≤ Ef (X1, . . . , Xn)− ϵ] ≤ exp

(
−2ϵ2∑n
i=1 c

2
i

)
.

Lemma D.7 (Covering Number of Lipschitz Function Class). LetF be the set of functions defined on the interval [−M1,M1]
with the following properties:

F = {f : [−M1,M1]→ [0, R], |f(x)− f(y)| ≤M2|x− y|, ∀x, y ∈ [−M1,M1]} ,
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where M1, R,M2 > 0. Then, the ϵ-covering number N(F , ϵ, ∥ · ∥∞) of F under the ∥ · ∥∞ norm satisfies:

N (F , ϵ, ∥ · ∥∞) ≤ (4R/ϵ)
8M1M2/ϵ

for any ϵ ∈ (0,min{R, 2M1M2}).

Proof. Partition in the domain: Divide the domain [−M1,M1] into a uniform grid of points:

X = {x1, x2, . . . , xN}, xi = −M1 + (i− 1)δ, δ =
ϵ

M2
.

The number of grid points is:
N = ⌈2M1/δ⌉ = ⌈2M1M2/ϵ⌉ ≤ 4M1M2/ϵ,

since 2M1M2/ϵ ≥ 1.

Discretization of Function Values: At each sampling point xi ∈ X , the function value f(xi) is restricted to [0, R]. To
ensure a precision of ϵ, discretize [0, R] into steps of size ϵ:

Y = {0, ϵ, 2ϵ, . . . , R}.

The number of discrete values is:
⌈R/ϵ⌉ ≤ 2R/ϵ,

since R/ϵ ≥ 1.

Function Set Construction: Using the discretized values at the grid points, the set of possible functions is:

Fcover = {f : X → Y} .

The total number of such functions is:
|Fcover| = (2R/ϵ)

4M1M2/ϵ .

Covering Property: By Lipschitz continuity, any function f ∈ F can be approximated by a function in Fcover with a
maximum error of ϵ in the ∥ · ∥∞ norm. Thus all the close balls whose centers are in Fcover can cover F . Notice that those
centers may lie outside F . Consider close balls {B̄(g, ϵ)} where g ∈ Fcover but g ̸∈ F . Choose a h ∈ B̄(g, ϵ)

⋂
F if any.

Thus close balls {B̄(h, 2ϵ)} can cover F . Furthermore, the ∥ · ∥∞-covering number for F satisfies:

N (F , ϵ, ∥ · ∥∞) ≤ (4R/ϵ)
8M1M2/ϵ .

Without loss of generality, for the ease of notation, we define M =M1M2 in our proof.

Theorem D.8. Let ηβ denote HSICβ(X,Y ) on the importance reweighted distribution P̃XY , η̂(u)β denote the corresponding

(unbiased) estimator of ηβ , ∆(u)
η (β) := η̂

(u)
β − ηβ represents a random error function. η̂(b)β and ∆

(b)
η (β) are their biased

counterparts. Under assumptions (i) to (iii), then we have that with probability at least 1− δ,

sup
β

∣∣∆(u)
η (β)

∣∣≤ (1 + 3R+ 2R2)2R2ν2
√

2

n
log

2

δ
+

16M

3R

log n

n
2
3

+
4

n
1
3

(1 + 3R+ 2R2)R2ν2. (36)

Proof. We use McDiarmid’s inequality in Lemma D.6 to obtain the bound.

First, for fixed β = β(x), we show that ∆η(β) fits the bounded differences property. Since we fix the weights in this part,
for simplicity we omit the subscript β from the statistics, e.g., shorten η̂(u)β to η̂. Then we replace (x1, y1) with (x′1, y

′
1) and

keep the remaining samples the same. The newly obtained samples are named as D′, and its corresponding weights are
β′ = β(x′) = ψ(x′)Tω. Define βij = βiβj , βijq = βiβjβq, βijqr = βiβjβqβr. The difference between

η̂ :=
1

(n)2

∑
(i,j)∈in2

βijk
ij
Xk

ij
Y +

1

(n)4

∑
(i,j,q,r)∈in4

βijqrk
ij
Xk

qr
Y −

2

(n)3

∑
(i,j,q)∈in3

βijqk
ij
Xk

iq
Y , (37)

24



Extracting Rare Dependence Patterns via Adaptive Sample Reweighting

and the new substitution η̂′ := HSICβ
u(D′) can be given by (also define β′

ij = β′
iβ

′
j , β

′
ijq = β′

iβ
′
jβ

′
q, and β′

ijqr = β′
iβ

′
jβ

′
qβ

′
r)∣∣η̂ − η̂′∣∣ ≤ 1

(n)2

∑
(i,j)∈in2
1∈{i,j}

∣∣βijkijXkijY − β′
ijk

′ij
X k

′ij
Y

∣∣+ 1

(n)4

∑
(i,j,q,r)∈in4
1∈{i,j,q,r}

∣∣βijqrkijXkqrY − β′
ijqrk

′ij
X k

′qr
Y

∣∣+ 2

(n)3

∑
(i,j,q)∈in3
1∈{i,j,q}

∣∣βijqkijXkiqY
−β′

ijqk
′ij
X k

′iq
Y

∣∣ ≤ 2 · (n− 1)1
(n)2

R2ν2 + 4 · (n− 1)3
(n)4

R4ν2 + 3 · 2(n− 1)2
(n)3

R3ν2 =
2(1 + 3R+ 2R2)R2ν2

n
.

Since for all i, j, the term kijX , k
ij
Y , k

′ij
X , k

′ij
Y are all in the range [0, ν] by assumption D.5.i and βi ∈ [0, R] by assump-

tion D.5.ii. Also note that all the terms that none of i, j, q, r are one is zero. Now using McDiarmid’s inequality, we finish
the first part of the proof, that is, for fixed β, with probability at least 1− δ,

∣∣∆(u)
η (β)

∣∣ ≤ (1 + 3R+ 2R2)R2ν2
√

2

n
log

2

δ
. (38)

Next, we consider the case where β changes. Take the function space B as an example. Firstly since the function space B is
compact, the covering number N (B, r), defined as the smallest number of closed balls with centers in B and radii r whose
union covers B, is finite. According to Lemma D.7, for many smooth kernels, e.g., Gaussian kernel, we have

N (B, r, ∥ · ∥∞) ≤ (4R/r)
8M/r ⇒ logN (B, r, ∥ · ∥∞) ≤ 8M

r
log

(
R

r

)
. (39)

Also, combining with the assumption D.5.ii, we have for any two β, β̃ ∈ B,

∣∣η̂(u)β − η̂(u)
β̃

∣∣ ≤ 1

(n)2

∑
(i,j)∈in2

∣∣(βij − β̃ij) kijXkijY ∣∣+ 1

(n)4

∑
(i,j,q,r)∈in4

∣∣(βijqr − β̃ijqr) kijXkqrY ∣∣
+

2

(n)3

∑
(i,j,q)∈in3

∣∣(βijq − β̃ijq) kijXkiqY ∣∣ ≤ 2(1 + 3R+ 2R2)Rν2
∥∥∥β(x)− β̃(x)∥∥∥

∞
.

We derive the last inequality term by term. For the first term, since ∥β(x)∥∞ ≤ R and |kijXk
qr
Y | ≤ |k

ij
X ||k

ij
Y | ≤ ν2, we have

1

(n)2

∑
(i,j)∈in2

∣∣(βij − β̃ij) kijXkijY ∣∣ = 1

(n)2

∑
(i,j)∈in2

∣∣(βi − β̃i)βj + β̃i

(
βj − β̃j

) ∣∣·∣∣kijXkijY ∣∣≤ 2Rν2
∥∥∥β(x)− β̃(x)∥∥∥

∞
.

Similarly , for the second and third term we have

1

(n)4

∑
(i,j,q,r)∈in4

∣∣(βijqr − β̃ijqr) kijXkqrY ∣∣ = 1

(n)2

∑
(i,j)∈in2

∣∣(βi − β̃i)βjqr + β̃i

(
βj − β̃j

)
βqr

+ β̃ij

(
βq − β̃q

)
βr + β̃ijq

(
βr − β̃r

) ∣∣·∣∣kijXkqrY ∣∣ ≤ 4R3ν2
∥∥∥β(x)− β̃(x)∥∥∥

∞
.

2

(n)3

∑
(i,j,q)∈in3

∣∣(βijq − β̃ijq) kijXkiqY ∣∣ = 2

(n)3

∑
(i,j,q)∈in3

∣∣(βi − β̃i)βjq + β̃i

(
βj − β̃j

)
βq

+β̃ij

(
βq − β̃q

) ∣∣·∣∣kijXkqrY ∣∣ ≤ 6R2ν2
∥∥∥β(x)− β̃(x)∥∥∥

∞
.

and using the property of unbiased estimate, then∣∣ηβ − ηβ̃∣∣ = ∣∣Eη̂(u)β − Eη̂(u)
β̃

∣∣≤ E
[∣∣η̂(u)β − η̂(u)

β̃

∣∣]≤ 2(1 + 3R+ 2R2)Rν2
∥∥∥β(x)− β̃(x)∥∥∥

∞
. (40)

As a result, for any function β ∈ B, we can find a function βk in the cover set such that∥∥β(x)− βk(x)
∥∥
∞ ≤ r, (41)
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and define (1 + 3R+ 2R2)R ≜ A which gives us∣∣∆(u)
η (β)

∣∣ ≤ ∣∣∆(u)
η (βk)

∣∣+4(1 + 3R+ 2R2)Rν2r =
∣∣∆(u)

η (βk)
∣∣+4Aν2r. (42)

Combining with the result in the first part, we show that with probability at least 1− δ,

sup
β

∣∣∆(u)
η (β)

∣∣ ≤ max
k

∣∣∆(u)
η (βk)

∣∣+4Aν2r

≤ A2ν2
√

2

n
log

2N (B, r, ∥ · ∥∞)

δ
+ 4Aν2r.

(43)

We finish the proof of this part by combining inequality (39) and setting the radis r = Rn−
1
3 .

Therefore, omit the constants and we have the following uniform bound:

Theorem 3.7 (Uniform Bound). Suppose X is a closed and bounded space and the values of the kernels kX and kY are
also bounded. Assume the reweighting functions β ∈ B are continuous and Lipschitz. Then with probability at least 1− δ,

sup
β∈B

∣∣∣HSICβ
b (D)−HSICβ(X,Y )

∣∣∣ ∼ O(√ 1

n
log

1

δ
+

log n

n
2
3

+
1

n
1
3

)
. (44)

D.6. Relation with (Xu & Zheng, 2024).

(Xu & Zheng, 2024) focuses on representation learning and proposes a feature learning framework maximizing dependence
with the target by using an extension of Rényi maximal correlation (RMC) in L2 space, with functions parameterized via
neural networks. While the goals are different - our paper focuses on hypothesis testing, both works leverage dependence-
maximization criteria to learn meaningful functions. Theoretically, RMC provides a general measure of nonlinear dependence
via optimal function pairs in L2. Modal decomposition captures the full spectrum of the cross-covariance operator, with the
leading mode corresponding to RMC. Restricting to RKHS and aggregating all squared singular values yields HSIC. While
RMC is more general, its estimation and statistical inference in L2 neural networks is challenging. In contrast, our methods
inherit the kernel-based formulation of HSIC, allowing efficient estimation by kernel trick and asymptotic distribution
analysis with statistical guarantees.

E. Details about the Conditional Independence Statistic
E.1. Characterization of Conditional Independence

We first define characteristic kernel:

Lemma E.1 (Characteristic Kernel (Fukumizu et al., 2007)). A kernel KX is characteristic, if ∀f ∈ FX the condition
EX∼PX

[f(X)] = EX∼QX
[f(X)] implies PX = QX , where PX and QX are two probability distributions of X .

Characteristic kernels have several interesting and useful properties. Most common kernels we used are characteristic, like
the Gaussian kernel and Laplacian kernel. As shown in Lemma 3.10, if we use characteristic kernel and define Ẍ ≜ (X,Z),
the characterization of CI could be related to the partial cross-covariance operator as ΣẌY |Z = 0⇐⇒ X ⊥ Y |Z, where
ΣẌY |Z = ΣẌY − ΣẌZΣ

−1
ZZΣZY .

We then explain more about the partial cross-covariance operator. For (X,Y ) ∈ X × Y , the cross-covariance operator
ΣXY : FY → FX is defined by (Fukumizu et al., 2004)

⟨f,ΣXY g⟩FX
= EXY [f(X)g(Y )]− EX [f(X)]EY [g(Y )], ∀f ∈ FX , g ∈ FY . (45)

The partial cross-covariance operator is defined as

ΣXY |Z = ΣXY − ΣXZΣ
−1
ZZΣZY .

3 (46)

3If ΣZZ is not invertible, use the right inverse instead of the inverse. See (Fukumizu et al., 2007).
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which can be understood by analogy to the partial cross-covariance between X and Y given Z when they are jointly
Gaussian variables. Generally speaking, it can be seen as a partial cross-covariance between functions: {f(X),∀f ∈ FX}
and {g(Y ),∀g ∈ FY } given {q(Z),∀q ∈ FZ} (Li et al., 2024a). From this point of view, another characterization of CI
would be more intuitive, which enforces the uncorrelatedness of functions in suitable spaces. We introduce it as follows.

Lemma E.2 (Characterization of CI based on Partial Association (Daudin, 1980)). Let the probability distribution of
X be denoted by PX , and similarly for the joint probability distribution of Ẍ as PXZ or PẌ . Define the spaces of
square-integrable functions of X and Ẍ as L2

X and L2
Ẍ

, respectively, which satisfy L2
X =

{
f(X)|E[f2] <∞

}
and

L2
Ẍ

=
{
g(Ẍ)|E[g2] <∞

}
. Notations are similar for Y . Then the conditional independence relation between X and Y

given Z, i.e., X ⊥⊥ Y |Z, is

⇐⇒ E(fg) = 0, ∀f ∈ SẌ and ∀g ∈ SŸ , (47)

⇐⇒ E(fg̃) = 0, ∀f ∈ SẌ and ∀g̃ ∈ L2
Ÿ
, (48)

⇐⇒ E (fg′) = 0, ∀f ∈ SẌ and ∀g′ ∈ S ′Y |Z , (49)

⇐⇒ E (fg̃′) = 0, ∀f ∈ SẌ and ∀g̃′ ∈ L2
Y . (50)

Where the subspaces of L2 are defined as follows:

SẌ ≜
{
f ∈ L2

Ẍ
| E(f |Z) = 0

}
,

SŸ ≜
{
g ∈ L2

Ÿ
| E(g|Z) = 0

}
,

S ′Y |Z ≜
{
g′ | g′ = g(Y )− E(g|Z), g ∈ L2

Y

}
.

Note the subspaces SẌ ,SŸ , and S ′Y |Z can be constructed from the corresponding L2 spaces via nonlinear regression. For

instance, ∀f ∈ L2
Ẍ

, its projection in subspace f̃ ∈ SẌ is given by

f̃(Ẍ) = f(Ẍ)− E(f |Z) = f(Ẍ)− h∗f (Z) (51)

where h∗f (Z) ∈ L2
Z is the regression function of f(Ẍ) on Z.

We can clearly see the connection between the lemma E.2 and CI characterization for Gaussian variables using un-
correlatedness between variables. Particularly, we can regard Eq. (47) as the uncorrelatedness between any residual
function of Ẍ given Z and Ÿ given Z. If we consider spaces FẌ and FY instead of L2

XY and L2
Y , lemma E.2 is then

reduced to lemma 3.10. (Zhang et al., 2012) provided a way to derive the KCIT statistic according to Lemma E.2, i.e.
JCI = ∥Cov (ψẌ − E(ψẌ |Z), ϕY − E(ϕY |Z))∥2HS .

E.2. Derivation of the Importance Reweighted Statistics for CI Test

By the meaning of importance reweighting, with a fixed function β(·), at the population level, we can define the statistic of
the reweighted KCIT (RKCIT) as:

JCI
β ≜

∥∥∥Σβ

ẌY |Z

∥∥∥2
HS

=
∥∥∥EP̃

[
(ψβ

Ẍ|Z − EP̃[ψ
β

Ẍ|Z ])⊗ (ϕβY |Z − EP̃[ϕ
β
Y |Z ])

]∥∥∥2
HS

,

where ψβ

Ẍ|Z ≜ ψẌ − EP̃[ψẌ |Z] , ϕβY |Z ≜ ϕY − EP̃[ϕY |Z] are the residuals of feature maps regressing on Z. Here

P̃ = β(X,Z)P(X,Y, Z). Suppose that x ≜ (x1, . . . , xt, . . . , xn) are the i.i.d. samples for X , and y, z are the i.i.d. samples
for Y , Z. Denote the centralized kernel matrices for Ẍ, Y, Z as K̃Ẍ , K̃Y and K̃Z , respectively. Given importance weights
β and the feature map ψ(·), the unbiased estimator ψ̃β

u(x) of the centralization ψ̃β(x) = ψβ(x)− E[ψβ(x)] now becomes
ψ̃β
u(x) = ψ(x)− 1

n

∑n
i=1 βiψ(xi) = ψ(x)(In − 1

nDβ11
T ). Therefore we have the reweighted centralized kernel matrix

K̃β
Z = ψ̃β

u(x)
T ψ̃β

u(x) = (In − 1
n11

TDβ)KZ(In − 1
nDβ11

T ). K̃β

Ẍ
and K̃β

Y are defined similarly.

We use kernel ridge regression to estimate conditional expectations. The estimator of the covariance operator is

Σ̂β
XY =

1

n

n∑
k=1

(
βkψ̃

β
u(xk)ϕ̃

β
u(yk)

T
)
=

1

n
ψ̃β
u(x)Dβ ϕ̃

β
u(y)

T , (52)
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where Dβ ≜ diag(β1, β2, . . . , βn). The estimators of other covariance operators, i.e., Σ̂β
XZ , Σ̂β

Y Z , and Σ̂β
ZZ , are sim-

ilar. Now we calculate the estimators of the residuals and get the residual matrix Rβ
Z under reweighted distributions.

Notice that ÊPẌ
[ψ̃β

Ẍ
|Z] = φ̃β

u(z)
T
[
Σ̂β

ZZ + λIdim(φZ)

]−1

Σ̂β

ZẌ
using kernel ridge regression. We used the identity

PBT
(
BPBT +R

)−1
=
(
P−1 +BTR−1B

)−1
BTR−1 in the derivation.

ψβ T

Ẍ|Z = ψ̃β
u(ẍ)

T − ÊPẌ
[ψ̃β

Ẍ
|Z] = ψ̃β

u(ẍ)
T − φ̃β

u(z)
T
[
Σ̂β

ZZ + λIdim(φZ)

]−1

Σ̂β

ZẌ
(53)

= ψ̃β
u(ẍ)

T − φ̃β
u(z)

T

[
1

n
φ̃β
u(z)Dβφ̃

β
u(z)

T + λIdim(φZ)

]−1
1

n
φ̃β
u(z)Dβψ̃

β
u(ẍ)

T (54)

= ψ̃β
u(ẍ)

T − φ̃β
u(z)

T
[
φ̃β
u(z)Dβφ̃

β
u(z)

T + ϵIdim(φZ)

]−1
φ̃β
u(z)Dβψ̃

β
u(ẍ)

T (55)

= ψ̃β
u(ẍ)

T − φ̃β
u(z)

T 1

ϵ
IZ φ̃

β
u(z)

[
φ̃β
u(z)

T 1

ϵ
Inφ̃

β
u(z) +D 1

β

]−1

ψ̃β
u(ẍ)

T (56)

= ψ̃β
u(ẍ)

T − φ̃β
u(z)

T φ̃β
u(z)

[
φ̃β
u(z)

T φ̃β
u(z) + ϵD 1

β

]−1

ψ̃β
u(ẍ)

T (57)

= ϵD 1
β

[
K̃β

z + ϵD 1
β

]−1

ψ̃β
u(ẍ)

T (58)

= ϵ
[
K̃β

z Dβ + ϵIn

]−1

ψ̃β
u(ẍ)

T = Rβ
Z · ψ̃

β
u(ẍ)

T . (59)

Therefore the residual matrix Rβ
Z = ϵ

[
K̃β

ZDβ + ϵI
]−1

. The estimated residuals become Rβ
Z · ψ̃β

u(ẍ)
T and Rβ

Z · ϕ̃βu(y)T .

Since the covariance operator of the residuals is Cov(ψβ

Ẍ|Z , ϕ
β
Y |Z) = E[ψβ

Ẍ|Z ⊗ ϕ
β
Y |Z ], then the statistic of RKCIT is

ĴCI
β =

∥∥∥∥ 1nψ̃β

Ẍ|ZDβϕ̃
β T
Y |Z

∥∥∥∥2
HS

=
1

n2
Tr
[
ψ̃β

Ẍ|ZDβϕ̃
β T
Y |Z · ϕ̃

β
Y |ZDβψ̃

β T

Ẍ|Z

]
=

1

n2
Tr
[
Rβ

Z · ψ̃
β
u(ẍ)

T ψ̃β
u(ẍ) ·R

β T
Z DβR

β
Z · ϕ̃

β
u(y)

T ϕ̃βu(y) ·R
β T
Z Dβ

]
=

1

n2
Tr
[
Rβ

ZK̃
β

Ẍ
Rβ T

Z DβR
β
ZK̃

β
Y R

β T
Z Dβ

]
=

1

n2
Tr
[
K̃β

Ẍ|ZK̃
β
Y |Z

]
,

where
K̃β

Ẍ|Z = Rβ
ZK̃

β

Ẍ
Rβ T

Z Dβ , K̃
β
Y |Z = Rβ

ZK̃
β
Y R

β T
Z Dβ .

Therefore, for the CI test, the final objective function is similar to the optimization problem (9) with ĴUI
β replaced by ĴCI

β .
As in the unconditional case, in the experiment we use a normalized version of this conditional dependence measure with
the denominators ĴCI

2β = Tr[K̃β

Ẍ|Z ] and ĴCI
3β = Tr[K̃β

Y |Z ], which can be obtained in a similar manner:

ĴCI
2β =

∥∥∥∥ 1nψ̃β

Ẍ|ZDβψ̃
β T

Ẍ|Z

∥∥∥∥
HS

=
1

n
Tr
[
K̃β

Ẍ|Z

]
,

ĴCI
3β =

∥∥∥∥ 1nϕ̃βY |ZDβϕ̃
β T
Y |Z

∥∥∥∥
HS

=
1

n
Tr
[
K̃β

Y |Z

]
.

E.3. Discussion about the Asymptotic distribution of Reweighted KCI

(Zhang et al., 2012) gave the asymptotic distribution of ĴCI underH0, which follows the distribution of a weighted sum of
chi-square variables that is slightly more complex than that of HSIC. However, the author did not provide the distribution
under H1. For the purpose of conditional independence testing, we compute the distribution under H0 of ĴCI

β using the
permutation test. We argue that the ground-truth asymptotic distribution has a similar form to the original ĴCI since we
analyze the asymptotic characteristics of a reweighted distribution.
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E.4. Discussion of Uniform bound for Reweighted CI test

Actually, after giving the convergence rate of the estimated kernel ridge regression, the derivation of the uniform bound for
ĴCI
β is similar to that of HSICβ

b with the minor difference that ĴCI
β is calculated for residual variables. We leave this as the

future extension of this work.

F. Details about Causal Discovery
F.1. Proof of Rare Dependence PC.

In this section, to ensure the asymptotic correctness of the PC algorithm, all theoretical results are based on the assumptions
of causal Markov, faithfulness, and causal sufficiency. These explicit definitions can refer to standard literature (Spirtes
et al., 2000). If there is no further statement, we assume that these assumptions hold.

Assumption 4.1. ∀X,Y ∈ V, Z ⊆ V \ {X,Y }, if KCIT(X,Y |Z) rejects the null hypothesis, then X ⊥̸⊥ Y |Z. Besides, if
both KCIT(X,Y |Z) and RKCITβ(C)(X,Y |Z) fails to reject the null hypothesis, then X ⊥⊥ Y |Z.

Rule 1. ∀ X,Y ∈ V, if ∃Z ⊆ V\{X,Y } s.t. both KCIT(X,Y |Z) and RKCITβ(C)(X,Y |Z) fail to reject the null
hypothesis, then X and Y are not adjacent in G.

Proof. We prove this by contradiction. Suppose X and Y are adjacent in G. Without loss of generality, let X → Y in
G. There are two cases we need to consider: (i) there does not exist rare dependence in P(X,Y ), and (ii) there exists rare
dependence in P(X,Y ).

Case I: If there does not exist rare dependence in P(X,Y ) and X → Y , then ̸ ∃Z ⊂ V\{X,Y } such that X ⊥⊥ Y | Z
holds, according to the faithfulness assumption. This violates the condition that ∃Z ⊆ V\{X,Y } s.t. KCIT(X,Y |Z)
accept the null hypothesis. Furthermore, by Proposition C.2, RKCITβ(C)(X,Y | Z) also fails to reject the null hypothesis.
Thus, X and Y are not adjacent in G.

Case II: According to Assumption 4.1, if both KCIT(X,Y |Z) and RKCITβ(C)(X,Y |Z) fail to reject the null hy-
pothesis, then X ⊥⊥ Y |Z. This violates the condition that X → Y in G (If there exists rare dependence in P(X,Y ),
RKCITβ(C)(X,Y |Z) reject the null hypothesis under the large sample).

In summary, X and Y are not adjacent in G.

Proposition 4.2. For a pair of variables X,Y ∈ V , if (a) ∀Z ⊆ V \{X,Y } s.t. KCIT(X,Y |Z) fails to reject the
null hypothesis, and (b) for all these Z, we have that RKCITβ(C)(X,Y |Z) rejects the null hypothesis. Then, under
Assumption 4.1, i) X and Y are adjacent with a rare dependence, or ii) X and Y are not adjacent in G and C must be the
direct common effect of X and Y .

Proof. If ∀Z ⊆ V \{X,Y }, KCIT(X,Y | Z) fails to reject the null hypothesis, and if there is no rare dependence between
P(X,Y ), then X and Y are not adjacent in G according to the faithfulness assumption. Furthermore, if we consider C as
a conditional set, i.e., C ⊆ Z, and KCIT(X,Y | Z) rejects the null hypothesis, then C must be the common effect of X
and Y , as the V-structure is activated. Additionally, if RKCITβ(C)(X,Y | Z) rejects the null hypothesis for all Z, this
implies that there exists rare dependence in P(X,Y ), and thus X and Y must be adjacent in G (otherwise, ∃Z such that
RKCITβ(C)(X,Y | Z) fails to reject the null hypothesis by Proposition C.2).

Remark F.1. Proposition 4.2 tells us that if X → C ← Y forms a V -structure, Rule 1 can not correctly remove the edge
between X and Y when executing the PC algorithm to recover the causal skeleton. Consequently, the inferred graph tends
to be a superset of the true one.

To further distinguish the rare dependence pattern or when X and Y are not adjacent in G in Proposition 4.2, we present the
following Rule 2.
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Rule 2. For two variables X,Y ∈V that satisfy the condition in Proposition 4.2, if there exists Z ⊆V\{X,Y }, such that
RKCITβ(Cperm)(X,Y |Z) fail to reject the null hypothesis, then X and Y are not adjacent in G. Here Cperm denotes the
shuffled C in dataset D.

Proof. If two variables X,Y ∈V satisfy the condition in Proposition 4.2, it means that either i) they are adjacent with a
rare dependence, or ii) they are the direct causes of C (i.e. C is the direct common effect of X and Y ).

In case i), suppose Cperm is the randomly shuffled version of C, and cπ(i) is the i-th sample of Cperm. Firstly, suppose C is
continuous, then Ci ̸= Cj , i ̸= j a.s. Let β be the original reweighting function and β̃ be the reweighting function learned
for Cperm. If β̃(cπ(i)) = β(ci),∀i, then RKCITβ̃(Cperm)(X,Y |Z) can still enlarge the dependence measure and reject the
null hypothesis, which is the same as RKCITβ(C)(X,Y |Z). Since β̃ is a simple composition of β and the permutation π,
β̃ ∈ B and thus learnable. When C is discrete, we can add some small noise, e.g. Gaussian noise, to C for each sample and
treat it as a continuous variable.

In case ii), we note thatCperm, the randomly shuffled version ofC, satisfiesCperm ⊥⊥ X,Y, Z because the data points in the
dataset D are i.i.d., which means (xi, yi, zi, ci) ⊥⊥ cπ(i),∀i ̸= π(i). Due to the randomness, as n→∞, P(π(i) = i)→ 0.
This eliminates the spurious dependence between X and Y caused by selection bias. Therefore, RKCITβ(Cperm)(X,Y |Z)
fails to reject the null hypothesis, since X and Y are indeed independent when conditioned on Z in this case.

Based on Rule 1 and 2, we summarize the procedure of RD-PC in Algorithm 2. Theorem 4.3 proves its soundness.
Theorem 4.3. With Assumption 4.1, suppose the causal Markov condition, faithfulness assumption, and causal sufficiency
assumption hold. Then, Algorithm 2 correctly recovers the underlying causal graph structure up to its Markov equivalence
class.

Proof. Under Assumption 4.1, the conditional independence relations can be correctly identified using Rule 1 (Line 5 in
Algorithm 2). In Line 6, Rule 1 is applied to remove the edges between X and Y for X,Y ∈ V. As shown in the proof of
Proposition 4.2, there are two cases that need to be distinguished, since the equivalence class between the rare dependence
pattern and C may correspond to a collider structure. In Line 7, Rule 2 is used to differentiate these structures and ensure
that extraneous edges are removed. By the causal Markov assumption, faithfulness assumption, and causal sufficiency
assumption, the causal skeleton can be correctly identified (Spirtes et al., 2000). Moreover, in Line 8, Meek’s rule is used to
orient the directions, the correctness of which is guaranteed by (Meek, 1995). In summary, in line with the PC algorithm
(Spirtes et al., 2000), the causal structure can be identified up to a Markov equivalence class.

F.2. Relation with ReScore (Zhang et al., 2023).

ReScore (Zhang et al., 2023) aims to optimize the structure recovery of score-based causal discovery methods with
fewer spurious edges and more robustness to heterogeneous data. They propose an effective model-agnostic framework
of reweighting samples to boost differentiable score-based causal discovery methods. The core idea of ReScore is to
identify and upweight less-fitted samples, as these samples provide additional insight into uncovering the true causal
edges—compared to those easily fitted through spurious associations. Although RD-PC, which employs our proposed
RHSIC and RKCIT with correction rules, is also a sample reweighting-based method for causal discovery, its objective is
fundamentally different from that of ReScore. ReScore is designed to mitigate the influence of spurious edges by focusing
on less-fitted samples, whereas RD-PC aims to recover true causal edges that are easily overlooked or erroneously removed
due to rare dependence. Exploring the connection between rare dependence and less-fitted samples may offer an interesting
direction for future research.

G. Supplementary Experimental Details and Results
Implementation Details. Here we provide the implementation details of the methods. In all experiments, we use Gaussian
kernels in all kernel-based methods. The significance level is set to 0.05. The results are obtained after averaging the values
in the 100 tests.

In our method, we use the constrained optimization library provided by scipy to minimize our objective function, and set the
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maximum number of iterations to 50. We set the number of permutations to 2000 to approximate the null distribution. The
hyperparameters in our objective functions (9) are set to λ1 = λ2 =1e-3 for RHSIC and λ1 =1e-6, λ2 =1e-1 for RKCIT.
And the ϵ for kernel ridge regression is set to 1e-3. For the conditional independence test, we use calibration for our RKCIT
when we change the dimension of Z (the empirical threshold is set to 0.0375). We observe that some baseline methods
naturally maintain a Type I error rate close to 0.05. Other baseline methods have higher Type I errors and lower power,
which means that, however calibrated, their performance is worse than ours. Therefore, for these baseline methods, we
report their original results.

G.1. Synthetic Data

More details about the synthetic datasets are explained in this section, including the implementation details, more experiments
under different settings and more baseline models, and the results analysis of F1 and SHD for causal discovery.

G.1.1. SYNTHETIC EXPERIMENTS FOR UI

Data Generation I: we slightly modify Example 1.1 with different variance σ2 for ϵ ∼ N (0, σ2) to evaluate the power. To
test the Type I error, we set Y = ϵ with fixed σ = 0.5.

Data Generation II: we use a variant of the synthetic experiment in (Strobl et al., 2019). To evaluate the Type I error,
we generate the data that follows X = f1(εx), Y = f2(εy), where εx, εy are drawn independently from N (0, 1) and
f1 and f2 are smooth functions chosen uniformly from a set {x3, cos(x), 1 + sin(3x)2, 20 sin(4πx2),Gsign(x)}, where
Gsign(x) = |ε|Πd

i=1sgn(Xi), where d is the dimension of variable X and ε ∼ N (0, 1). To compare the power, we generate
X = f1(εx) + εb, and then we generate Y = f2(εy) + εb if X < τ where τ is a threshold, and Y = f2(εy) otherwise.

Data Generation III: The data generation III is similar to the procedure of DG II except that we use a third variable
Q ∼ U(0, 1) to compare with the threshold τ and decide the generation process accordingly.

Results: See Fig. 6 for the experiment results for Data Generation III. Other experiment results are in the main paper.
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Figure 6. Type I error rate and Power of Data Generation III with Gaussian and Laplacian noise.

Baselines for UI. All the baselines follow their default settings unless stated otherwise. HSIC (Gretton et al., 2007): the
original HSIC test using gamma approximation for p-value. Code from python library causal-learn (Zheng et al., 2024);
LFHSIC (Ren et al., 2024): HSIC test with adaptively learned bandwidth. Code from https://github.com/renyixin666/HSIC-
LK; RDC (Lopez-Paz et al., 2013): use canonical correlation between a finite set of random Fourier features. We
permute the samples 500 times to compute the empirical p-value. Code from https://github.com/garydoranjr/rdc; FHSIC
(Zhang et al., 2018): HSIC using finite-dimensional random Fourier feature mappings to approximate kernels. Code from
https://github.com/oxcsml/kerpy.

G.1.2. SYNTHETIC EXPERIMENTS FOR CI

Data Generation I (DG I): We follow the synthetic experiment proposed in (Scetbon et al., 2022) with a slight variation.
To compare the Type I error, we generate simulated data by:

X = f1
(
Z̄ + εx

)
, Y = f2

(
Z̄ + εy

)
(60)
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Above, Z̄ is the average of Z = (Z1, · · · , Zdz
), εx and εy are sampled independently from N (0, 1), and f1 and f2 are

smooth functions chosen from the same set as in DG II. The following generating function is for evaluating power:{
X = f1(Z̄ + εx) + εb, Y = f2(Z̄ + εy) + εb, if Q < τ,

X = f1(Z̄ + εx) + εb, Y = f2(Z̄ + εy), if Q ≥ τ.

where Q ∼ U(0, 1), εb ∼ N (0, 1), τ ∈ [0, 1] is a threshold.

Data Generation II (DG II): The data generation II is similar to the procedure of DG I except that we use the τ percentile
of the count of X as the threshold.

Baselines for CI. We compare with the following CI methods. KCIT (Zhang et al., 2012): the original KCI test based on
the partial association framework. Code from python library causal-learn (Zheng et al., 2024); CCIT (Sen et al., 2017):
a classifier-based test leveraging nearest neighbor sampling to approximate conditional distribution; RCIT (Strobl et al.,
2019): KCI using random Fourier features to approximate the kernel function. Code from python library causal-learn
(Zheng et al., 2024); GCIT (Bellot & van der Schaar, 2019): a test employing generative adversarial network to approximate
null distribution; GCM (Shah & Peters, 2020): a test based on the generalized covariance measure; NNLSCIT (Li et al.,
2024b): a classifier-based conditional mutual information estimator.

Results. See the Fig. 7, Fig. 8 and Fig. 9, we compare our methods with the CI testing.
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Figure 7. Type I error rates and Test powers for CI tests with Data Generation I while Changing the dimension of Z. Here the number of
samples is fixed n = 1000 and the level of rare dependence is τ = 0.1.
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Figure 8. Type I error rates and Test powers with Data Generation I for more CI baselines. Again here we change the Z dimensions.

G.2. Causal Discovery

Data Generation: We first randomly generate DAGs with 6 nodes and 10 directed edges from the graphical model Erdös-
Rényi (ER) (Erdos & Renyi, 1959). We generate 30 graphs, and for each DAG, we randomly select one node from the graph
as the reference variable C. We construct the rare dependence between C and its children by adding dependence only when
C is in its lower 3% percentile. The synthetic data is generated according to the following nonlinear structural equation:

Xi = fi (pa (Xi) + ϵi) , i = 1, . . . , n,

where the causal mechanism fi is randomly selected from functions such as linear, sin, cos, tanh, sigmoid, and their
combinations and pa(Xi) is the parents set of variable Xi. The noise term ϵi is sampled from Gaussian distribution.
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Figure 9. Type I error rates and Powers of Data Generation I (DG I) with different sizes of the conditional variable..
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Figure 10. SHD and F1 Score of the causal discover experiment. We follow the data generation and change the number of samples
n ∈ [300, 400, 500, 600, 700].

Result. We use PC algorithm with KCIT as our baseline. The result can be found in Fig. 10. Our RD-PC consistently
performs well here.

G.3. Real-world Data

The the flow-cytometry data published by (Sachs et al., 2005) is a popular real-world data set for causal discovery methods,
which gives expression levels of 11 proteins under various experimental conditions. We take the popular learned causal
structures as the ground-truth causal graph for this dataset, as shown in Fig. 11.

Figure 11. Figure 5 in (Mooij & Heskes, 2013). Left: Consensus network, according to (Sachs et al., 2005); Middle: Reconstruction of
the signaling network by (Sachs et al., 2005), in comparison with the consensus network; Right: The best acyclic reconstruction found by
(Mooij & Heskes, 2013). Black edges: expected. Blue edges: unexpected, novel findings. Red dashed edges: missing.

H. Discussions
H.1. Why not Use Mutual Information?

In principle, we can also detect rare dependence by maximizing the mutual information between X and Y on the reweighted
sample. However, maximizing the mutual information with the importance reweighted data involves estimation of the data
densities, which is a difficult problem. Instead, we maximize a specific kernel-based dependence measure on the data w.r.t.
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the importance reweighting ratio β(C).

H.2. Kernel Choice

The performance of RHSIC/RKCIT depends on the choice of the kernel. Our theoretical claims require a characteristic
kernel. In our experiments (including Examples 1.1 and 3.1), we use the Gaussian kernel with median heuristic bandwidth.

We conducted additional experiments comparing kernels and found Gaussian consistently performs best. The poor
performance of the polynomial kernel is expected, as it is not characteristic. Laplace is characteristic but has heavier tails
than Gaussian; its performance drop suggests lighter-tailed kernels may be preferable.
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Figure 12. Type I error and test power comparisons of RHSIC and HSIC with different choices of kernels. Used the DG III in Appendix
with τ = 0.1.

H.3. Selection of Reference Variable C

When do UI/CI tests where only X and Y are observed, we consider C = X or C = Y . Once more information is available,
e.g. more observed variables as in causal discovery, C can be a third variable to leverage such information.

Take the DG III τ = 0.1 as an example, in the causal graph X ← ϵb → Y ← Q, we observe X,Y,Q and want to test
X ⊥ Y . Proposition C.2 shows that C = X,Y , or Q are all valid here (i.e., do not introduce spurious dependence). RHSIC
with C = Q performs the best since Q directly controls the dependence between X and Y , while C = Y , a child of Q,
brings some power loss though still acceptable. RHSIC with C = X is ineffective since X ⊥ Q.

Method Type I Error ↓ Test Power ↑
RHSIC(C = Q) 0.05 0.8
RHSIC(C = Y ) 0.1 0.57
RHSIC(C = X) 0.01 0.06
HSIC 0.04 0.17

Table 2. Comparison of Type I error and Power across different choices of the reference variable C for RHSIC.

In practice, if only X,Y are available, we recommend testing with both C = X and C = Y and selecting the lower p-value.

H.4. Train-Test Splitting Ratio

Different train-test splitting may lead to different performance. However, RHSIC significantly outperforms baselines when
rare dependence exists, suggesting the splitting loss is limited and outweighed by the gain in detecting rare dependencies.
To examine the effect of splitting on performance, we list different split ratios on DG III τ = 0.1. A 0.5 ratio generally
performs well, consistent with prior work (Jitkrittum et al., 2016; 2017).
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Table 3. On performance under different ratios of test-train splitting

DG III (τ = 0.1) DG I (σ = 0.4)
Train : Test Type I Error ↓ Test Power ↑ Type I Error ↓ Test Power ↑

90% : 10% 0.05 0.41 0.05 0.28
80% : 20% 0.07 0.61 0.08 0.47
70% : 30% 0.07 0.68 0.04 0.59
60% : 40% 0.05 0.76 0.05 0.63
50% : 50% 0.05 0.80 0.05 0.69
40% : 60% 0.04 0.78 0.05 0.69
30% : 70% 0.01 0.74 0.06 0.71
20% : 80% 0.01 0.70 0.03 0.57
10% : 90% 0.04 0.68 0.05 0.47
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