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ABSTRACT

The ability to identify and acquire missing information is a critical component of
effective decision making and problem solving. With the rise of conversational
artificial intelligence (AI) systems, strategically formulating information-seeking
questions becomes crucial and demands efficient methods to guide the search pro-
cess. We introduce a novel approach to adaptive question-asking through a combi-
nation of Large Language Models (LLM) for generating questions that maximize
information gain, Monte Carlo Tree Search (MCTS) for building and using a deci-
sion tree across multiple samples, and a hierarchical feedback mechanism to learn
from past interactions. We present two key innovations: (1) an adaptive MCTS al-
gorithm that balances exploration and exploitation for efficient search over poten-
tial questions; and (2) a clustering-based feedback algorithm that leverages prior
experience to guide future interactions. Each incoming sample is assigned to a
cluster based on its semantic similarity with previously observed samples. Our
UCT (Upper Confidence bound for Trees) formulation selects optimal questions
by combining expected rewards, a function of information gain, with a cluster-
specific bonus that decays with depth, to emphasize the importance of early-stage
questions that have proven effective for narrowing the solution space in similar
samples. Experiments in medical diagnosis and troubleshooting domains demon-
strate that our method leads to an average of 12% improvement in success rates
and a 10x reduction in the average number of LLM calls made per conversation
for the search process, in comparison to the state of the art.1

1 INTRODUCTION

The field of conversational AI has witnessed significant advancements in recent years, enabling sys-
tems to engage in complex, goal-directed dialogues. A fundamental requirement in these systems
is the ability to identify and seek out missing information which is required to find a solution. In
domains that involve complex reasoning and problem-solving, the system must interact over mul-
tiple rounds of question-answering and gather information that is not immediately available. This
requires strategically formulating questions in a sequence that progressively reduces uncertainty. As
Large Language Models (LLMs) continue to push the boundaries of natural language understanding
and generation, they provide the foundation for developing approaches to enhance this information-
seeking capability of conversational systems.

LLMs have emerged as powerful tools for planning using trees Zhao et al. (2024); Putta et al. (2024);
Hu et al. (2024). Notably, the Tree of Thoughts (ToT) Yao et al. (2023) approach has demonstrated
the potential of leveraging hierarchical structures to improve problem-solving and reasoning in lan-
guage models. However, expanding the full tree can be computationally inefficient and expensive,
especially in domains with large search spaces. One of the fundamental problems lies in designing
systems capable of dynamically adapting their interaction strategy to converge on a specific solution

1Code: https://github.com/harshita-chopra/misq-hf
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Figure 1: Overview of MISQ-HF. The system combines Monte Carlo Tree Search with hierarchical
feedback for efficient information seeking. Green nodes ( ) and red nodes ( ) represent vA and
vN respectively, corresponding to possibilities after affirmative and negative answers to a question.
The purple arrows indicate the information-seeking question loop (steps 4-8). Towards the end of
decision-making, targeted questions are generated, denoted by the loop of dashed arrows (steps 9-
6-7-8). Finally, when the user response at (step 7) confirms the target detection, the conversation
is terminated (step 10) and the feedback mechanism updates the reward bonus along the successful
questioning trajectory in the decision tree, enabling the system to adapt its question selection strategy
for similar future cases.

efficiently. To address these challenges, Monte Carlo Tree Search (MCTS) has emerged as a promis-
ing technique for balancing exploration and exploitation in decision-making processes. MCTS has
been successfully applied in various domains, from game-playing AI Silver et al. (2016; 2018) to
robotics Dam et al. (2022), and is now being leveraged in natural language processing tasks.

Building upon this foundation, our work introduces a novel framework that combines MCTS with a
hierarchical feedback mechanism to achieve adaptive and efficient information-seeking. Inspired by
prior work on uncertainty-aware planning, our approach presents three key contributions:

1. MCTS on Decision Tree for Question Generation: Traditional tree-based approaches can
struggle with the vast search spaces. By employing MCTS, our system efficiently con-
structs and explores promising branches of the decision tree without exhaustive expansion.
We propose a variant of MCTS that optimizes question selection by considering both im-
mediate and long-term information gain. We use the standard Upper Confidence Bound for
Trees (UCT) and propose a modified variant that assigns higher weights to questions that
have effectively narrowed the solution space in past interactions.

2. Cluster-Based Feedback Mechanism: We leverage similarity-based clustering using text
embeddings of the initial problem description provided by the user. The system learns from
historical successes by propagating cluster-specific bonus rewards through the decision
tree after a successful interaction. This bonus reward decays with depth, emphasizing
the importance of early-stage questions in narrowing the solution space by targeting high-
level information that eliminates large subsets of possibilities. These questions are broadly
applicable across multiple cases, making them valuable for generalizing strategies, whereas
later-stage questions tend to focus on finer details unique to each interaction.

3. Efficiency through reduced LLM calls: Our method minimizes computational overhead by
strategically limiting LLM interactions during tree construction and simulation. We main-
tain a single decision tree for a given dataset which expands as more data points stream in.
We also employ lightweight rollout policies limited by predefined depth during the simula-
tion step of MCTS. The exploration-exploitation balance avoids exhaustive tree expansion
and significantly reduces the number of LLM calls without compromising performance.

These innovations collectively enable our system to dynamically adapt its questioning strategy based
on historical patterns, achieving greater efficiency and relevance. For instance, the integration of
feedback mechanisms ensures that successful strategies for specific clusters are reinforced over time,
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while depth-aware MCTS ensures computational resources are focused on the most promising paths.
An overview of our framework, MISQ-HF (Monte Carlo Tree Search for Information Seeking
Questions with Hierarchical Feedback), is illustrated in Figure 1.

We evaluate our approach across diverse conversational tasks. Results demonstrate that our system
outperforms existing baselines in both task success and efficiency in scenarios requiring complex
reasoning and hierarchical decision-making. We also highlight the individual contributions of depth-
aware MCTS and cluster-based feedback in enhancing the system’s performance.

2 RELATED WORK

The integration of LLMs with tree search algorithms has proven effective for enhancing multi-step
reasoning and decision-making. Guez et al. (2018) introduced MCTSnets, combining tree search
with neural networks for tasks like Sokoban. While it focuses on discrete planning, our approach
extends MCTS to hierarchical conversations, optimizing question selection with depth-aware strate-
gies and semantic embeddings. Yu et al. (2023) applied MCTS for dialogue planning with LLM-
based simulations, but their method differs by using open-loop search without feedback mechanisms
and focusing solely on persuasion tasks. Hui & Tu (2024) proposed the Reflection on Search Trees
(RoT) framework for generating state-specific guidelines to improve search performance. Unlike
RoT, which prioritizes reasoning efficiency, our approach maintains a single decision tree while in-
corporating cluster-specific rewards to guide question selection. Zhu et al. (2021) framed retrieval
and answering as a partially observed Markov decision process to adaptively gather evidence but
does not address learning from feedback in conversational settings. In the clinical domain, Li et al.
(2024) introduced MEDIQ, an adaptive framework leveraging LLMs to identify missing informa-
tion and ask follow-up questions. While MEDIQ focuses on reliability in high-stakes contexts, our
method generalizes by prioritizing early-stage questions to narrow the solution space effectively.

Our work draws inspiration from the Uncertainty of Thoughts (UoT) algorithm by Hu et al.
(2024), which enhances LLMs’ ability to seek information through effective questioning. UoT
uses uncertainty-based rewards driven by information gain and a reward propagation scheme to op-
timize question selection, improving performance across various domains and baselines like Chain
of Thoughts Wei et al. (2022) and Tree of Thoughts Yao et al. (2023). Extending these principles,
we integrate a depth-aware MCTS algorithm for question selection in hierarchical conversations and
a cluster-based feedback system that leverages historical successes. The depth-aware bonus reward
prioritizes early-stage questions, balancing efficiency and adaptability.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

The task is modeled as a sequential interaction between a Questioner (an LLM) and an Answerer
(a human; here, simulated by an LLM). Let Ω be the space of possible target items, with an un-
known target ω ∈ Ω. The interaction proceeds over turns t = 1, . . . , T , where T is the maximum
allowed turns. At each turn, the system asks a question qt and receives an answer at, which is either
binary (yes/no) or open-ended. The history ht = {q1, a1, . . . , qt−1, at−1} represents all previous
interactions. At each step i, the current possibility set Ωi is updated based on prior interactions. The
updated set Ωi contains all elements consistent with the history ht. Questions in the first δ ∗T turns,
where δ ∈ (0, 1), are selected strategically by traversing the decision tree of potential questions, and
the remaining turns are reserved for making informed decisions about what the outcome is, based on
hi and Ωi. Here δ denotes the proportion of turns reserved for asking information-seeking questions.
The process ends when the Questioner identifies ω or reaches the maximum number of turns T .

Upon reaching terminal states in the decision tree (where |Ωt| ≤ 2), the Questioner LLM transitions
from asking information-seeking questions to making targeted questions about specific outcomes.
In the Closed Set scenario, where the target is one of the items within a predefined set Ω, the tree
construction is well-defined. However, this space is often unknown in real-world situations, leading
to an Open Set scenario, where the models operate without prior knowledge of the outcomes. To
address this, we follow the approach used in Hu et al. (2024), where we directly prompt the Question
Generator to first define the initial possibility space Ω based on the problem description and then
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update it progressively based on the history of interactions ht. In practice, it is important to declare
the set of all possible items Ω in the initial prompt for the Questioner LLM to avoid longer dialogues
and failures due to wild guesses in the Closed Set scenario. Hence, we ensure that the Questioner
LLM is explicitly informed about Ω once at the beginning of each interaction. This helps constrain
the items guessed in the targeting questions. To justify this modification, we report results with and
without the Ω-aware prompt.

3.2 DECISION TREE OF QUESTIONS

The question generation process employs a hierarchical approach that combines LLMs with Monte
Carlo Tree Search (MCTS) to efficiently construct a tree of potential questions represented by nodes.
In the information-seeking phase, at each turn t, the system either traverses or expands the tree to
find the most optimal questions to ask, with the goal of maximizing information gain. This tree is
cached and re-used across all data-points belonging to a given dataset.

The LLM-based question generator takes two inputs: the current possibility set Ωt and the ancestral
contextAΩt which consists of the sequence of question-answer pairs corresponding to all the ances-
tor nodes of the current node that led to the formation of Ωt. This context prevents the generation
of redundant or previously asked questions, thereby providing a clearer path of deduction. Let v
represent a node in the decision tree at turn t. With slight abuse of notation, we define Ωv as the
possibility set corresponding to node v. For each non-terminal node v, where |Ωv| > 2, the LLM
generates m candidate questions which form its immediate child nodes:

Qv = {q(1)v , q(2)v , ..., q(m)
v } = LLMgen(Ωv,AΩv) (1)

For each generated question, LLMgen performs a binary partitioning of the possibility set Ωv into
two disjoint subsets ΩA

v and ΩN
v , corresponding to affirmative and negative responses respectively,

such that Ωv = ΩA
v ∪ ΩN

v . The LLM is prompted to generate questions that maximize information
gain by creating balanced partitions where: |ΩA

v | − |ΩN
v | → 0.

Each question spawns two child nodes vA and vN corresponding to affirmative and negative
responses, storing ΩA

v and ΩN
v respectively. For example, if the possibility set is Ωv =

{flu, pneumonia, enteritis, asthma}, the question “Do you have difficulty breathing?” might parti-
tion the set as: ΩA

v = {pneumonia, asthma}, ΩN
v = {flu, enteritis}.

3.3 INFORMATION GAIN

To quantify the effectiveness of each question in reducing uncertainty, entropy-based metrics are em-
ployed Hu et al. (2024). Following the formulation of reward structure in UoT, let pAv = |ΩA

v |/|Ωv|
and pNv = 1− pAv . The expected information gain at v is:

IGv(X) = −pAv log pAv − pNv log pNv (2)

The reward function, given by RIG(v), achieves its maximum value when the subsets ΩA
v and ΩN

v
have equal probabilities, signifying the greatest reduction in uncertainty. It attains its minimum
value when one of the subsets has a probability of zero, indicating no reduction in uncertainty. To
normalize and sharpen rewards, a scaling parameter λ > 0 is employed. Formally,

RIG(v) =
−pAv log pAv − pNv log pNv

1 + λ−1|pAv − pNv |
. (3)

The expected reward of asking a question, Re(v), is obtained by recursively adding the immediate
reward RIG(v) (information gain at the current node) and the expected rewards of its child nodes.
The total information gained until node v of an interaction trajectory is denoted by the accumulated
reward, Ra(v), which is obtained by starting at the root and propagating down to the node v.

Re(v) :=

{
Ra(v), v is a leaf,
pAv Re(v

A) + pNv Re(v
N ) otherwise.

(4)

Ra(v) := RIG(v) +

{
0 v is root,
Ra(parent(v)) otherwise.

(5)
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where vA and vN are the child nodes of v corresponding to affirmative and negative responses
respectively. For each non-terminal response-specific node vα, α ∈ {A,N}, the expected reward
Re(v

α) is the average expected reward of its child nodes, denoted as children(vα). Formally,

Re(v
α) =

1

|children(vα)|
∑

v′∈ children(vα)

Re(v
′) (6)

3.4 MONTE CARLO TREE SEARCH

The decision tree of questions is constructed iteratively when MCTS is executed over K iterations
at each decision-making step across samples. Each iteration includes four phases:

1. Selection: Considering the current node as the root, a child node is selected based on the widely
used UCT formulation that balances exploration and exploitation:

UCT (v) =
Rtotal(v)

Nv
+ C

√
lnNp

Nv
(7)

where Ra(v) is the accumulated reward, Nv is the visit count of node v, Np is its parent node’s visit
count, and C is the exploration constant.

2. Expansion: The expansion step aims to create child nodes by generating potential questions that
split the possibility set, thereby narrowing down the search space of the tree. When the selected
node is non-terminal (|Ωv| > 2) and does not have child nodes, candidate questions are formulated
according to Equation 1. If child nodes already exist, we skip this step and proceed to simulation.

3. Simulation: A rollout policy is used to estimate the expected reward of the selected node by
simulating a random interaction up to a predefined depth ds or a terminal state, whichever occurs
first. In the rollout phase, we traverse ds levels down from the selected node, choosing one of its
child nodes at random, following a single level of expansion if child nodes did not exist. This step
provides an estimate of the long-term utility of selecting a particular question.

4. Backpropagation: After reaching a leaf node u at the end of the simulation, the expected reward
Re(u) is backpropagated up the tree to update the ancestor nodes along the path to the selected
(simulated) node. During backpropagation, the cumulative reward, Rtotal(u) of every ancestor node
of u is updated, and their visit counts are incremented by 1. Formally, for each node v in the path
from u to the root:

Rtotal(v)← Rtotal(v) +Re(u) (8)
This backpropagation process ensures that nodes closer to successful outcomes, i.e., nodes leading
to higher rewards, are more likely to be selected in subsequent iterations.

Finally, after completing K iterations of MCTS, the system asks the question having the highest
expected information gain. This corresponds to finding v∗, the child node of the current root having
the maximum expected reward:

v∗ = arg max
v′∈C(root)

Re(v
′) (9)

3.5 FEEDBACK MECHANISM AND CLUSTER-BASED REWARD ADJUSTMENT

Learning from experience is a critical component of decision-making systems. We introduce a
clustering-based approach for dynamic reward adjustments by propagating feedback through the
tree after a successful conversation. When the system successfully identifies the target, it triggers a
series of updates to the bonus rewards of nodes that led to the target.

3.5.1 CLUSTER CREATION AND ASSIGNMENT

When a new sample arrives, its text embedding is computed and compared with existing cluster
medoids to determine its assignment. A similarity threshold τ is used to decide whether to assign
the embedding to an existing cluster or create a new one. Let e represent the embedding of the
current data point and mk denote the medoid of cluster k. The similarity condition is given by:

Similarity(e,mk) =
e ·mk

∥e∥2∥mk∥2
≥ τ (10)
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where · represents the dot product, and ∥ · ∥2 represents the L2 norm. If no existing cluster satisfies
this condition, a new cluster is created with e as its initial medoid. If assigned to an existing cluster,
e is added to that cluster’s set of embeddings Ck, and the medoid mk is recomputed as:

mk = argmax
x∈Ck

∑
y∈Ck

x · y
∥x∥2∥y∥2

(11)

3.5.2 BONUS REWARDS FOR FEEDBACK PROPAGATION

For each node v, we maintain a dictionary Bk(v) which maps each cluster k to the bonus reward
(initialized as zero) earned on reaching the target successfully. Once a target is correctly identified,
Bk(v) is updated for each node along the path from the current node back to the root. Bk(v) is a
proportion of the node’s cumulative reward and depends on the absolute depth of the node, given by
dv controlled by an exponential decay as we move upward in the tree. The bonus reward for node v
corresponding to cluster k is updated after every success:

Bk(v)← Bk(v) + β ·Rtotal(v) · γdv (12)

where β is a task-specific scaling factor (denoting proportion of total reward), and γ ∈ (0, 1) is
a decay factor that controls the influence of the bonus, keeping it higher for early-stage questions
which have proven effective to narrow down the large possibility set, and lower for questions near
the terminal nodes which are often more specific to each case.

To incorporate these bonus rewards into decision-making, we modify the UCT formula used in the
selection step to handle similar cases while maintaining exploration capabilities. We introduce a
cluster-specific bonus term to bias selection toward nodes associated with successful outcomes for
similar data points. The modified UCT formula becomes:

UCTfeedback(v, k) =
Rtotal(v)

Nv
+ C

√
lnNp

Nv
+Bk(v) (13)

This modification prioritizes nodes from clusters associated with successful outcomes when process-
ing samples similar to their medoids. Algorithm 1 shows the pseudocode of the proposed framework.

4 EXPERIMENTS

4.1 DATASETS

We demonstrate the effectiveness of our approach by focusing on three diverse domains: Medical
Diagnosis, Troubleshooting, and 20 Questions. We use the following datasets pre-processed by Hu
et al. (2024). In Medical Diagnosis, a patient initially reports a brief description of their symptoms,
based on which the doctor asks questions to diagnose the disease. The maximum number of turns
T was limited to 6 in the experiments. Two datasets were used. The DX dataset by Xu et al. (2019)
contains 104 doctor-patient dialogues and five diseases in its test set. The MedDG dataset, which
originally included over 17,000 conversations across 15 disease types, was refined by removing
inconsistent samples. We used 454 high-quality samples for evaluation. Open-ended responses are
allowed in MedDG to test the system’s generalization capabilities in less constrained scenarios. Both
datasets limit interactions to 6 turns. In the Troubleshooting domain, customer support technicians
interact with users to identify faults in systems such as cars or electronic devices. We use the FloDial
dataset by Raghu et al. (2021), containing 153 dialogues across 153 unique fault types. Maximum
number of turns T was limited to 20. In the 20 Questions domain, the task involves identifying
a target item by asking up to 20 yes-or-no questions. The Common dataset includes 111 items
spanning categories such as animals, places, food, and objects, and the Things dataset Hebart et al.
(2019), was filtered to include 200 items.

4.2 BASELINES

The proposed system is compared with two primary baselines: Direct Prompting (DP) and the
Uncertainty of Thoughts (UoT) framework Hu et al. (2024). DP directly queries the LLM to gen-
erate the next question without any structured planning, serving as a minimal-effort benchmark to
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Algorithm 1 MISQ-HF
Require: Dataset S, question ratio δ, Embedding model, cluster-embeddings hashmap C, similarity threshold

τ , maximum turns T , MCTS iterations K, LLM
1: Initialize Bk(v) = 0, ∀k ∈ {1, 2, ..., |C|} for each node v
2: for sample s ∈ S do
3: es ← Embedding[description(s)]
4: Ck ← AssignCluster(es, C, τ) ▷ Use Eq. 10-11
5: Initialize Ωv = Ω at current root node v
6: Initialize conversation history h = ∅ and t = 0
7: while t < T and target(s) undetected do
8: if t < δ ∗ T and |Ωv ≥ 2| then
9: v∗ ← MCTS(v,K, Ck) ▷ Use Eq. 3-8, 13

10: qt ← question(v∗) ▷ Use Eq. 9
11: at ← UserResponse(qt, h)
12: v ← child(v∗|at)
13: else
14: qt ← TargetingPrompt(Ωv)
15: at ← UserResponse(qt, h)
16: end if
17: h← h ∪ {qt, at}
18: t← t+ 1
19: end while
20: if target(s) detected then ▷ Successful conversation
21: v′ ← v ▷ Feedback Propagation
22: while parent(v′) ̸= ∅ do
23: Update Bk(v

′) ▷ Use Eq. 12
24: v′ ← parent(v′)
25: end while
26: end if
27: end for

highlight improvements achieved by strategic decision-making. UoT uses tree-based planning with
exhaustive expansion of all question paths to maximize information gain. While effective in reduc-
ing uncertainty, its full tree exploration leads to significant computational overhead, especially in
large possibility spaces. This baseline assesses the efficiency improvement of the proposed MISQ-
HF approach, which selectively expands promising branches. Comparisons with Chain-of-Thought
(CoT) Wei et al. (2022) and Tree-of-Thoughts (ToT) Yao et al. (2023) are omitted, as prior work Hu
et al. (2024) shows UoT consistently outperforms these methods.

4.3 EVALUATION

We use three key metrics to evaluate the question-asking system’s effectiveness and efficiency. First,
Success Rate (SR) measures the percentage of cases where the system correctly identifies the target
item within the maximum allowed turns. Second, tracks the average number of turns needed to
reach the correct answer in successful interactions. Finally, we introduce a novel metric to track
Question Generation Calls (QGC), defined as the number of LLM prompting calls required for
question generation. Lower values indicate better computational efficiency. Together, these metrics
provide a comprehensive view of the system’s performance, balancing success rate, conversation
efficiency, and computational overhead.

The frequency of QGC for exhaustive tree search and MCTS differs significantly. An LLM call
creates m questions, each splitting Ω into affirmative and negative response sets, thereby giving rise
to 2m nodes. For UoT, the first simulation requires 1+ 2m+ (2m)2 + · · ·+ (2m)ds = (2m)ds+1−1

2m−1

calls, and (2m)ds calls for subsequent turns if paths are expanded till ds − 1, where ds is the depth-
limit for simulation. For MCTS, the first expansion requires 1 call, and simulation for selecting a
question at each turn requires K · davg , where K is the number of iterations and 0 ≤ davg ≤ ds
because traversing requires 0 LLM calls when the nodes are already expanded. Exhaustive search
scales exponentially with ds, while MCTS scales linearly, highlighting its efficiency for deeper
searches in the simulation phase.
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Table 1: Results on Medical Diagnosis and Troubleshooting Domain in a Closed Set scenario. Ω-
aware denotes whether the Questioner Model was informed about the possibility space Ω once at
the beginning of the conversation.

Model Method Ω-aware DX MedDG FloDial

SR↑ MSC↓ QGC↓ SR↑ MSC↓ QGC↓ SR↑ MSC↓ QGC↓

Llama 3.3
70B Instruct

UoT × 72.11 1.54 0.36 79.51 2.09 4.95 34.64 6.84 43.76
MISQ × 75.00 2.17 0.05 86.56 3.39 0.40 35.29 9.09 3.99
MISQ-HF × 80.76 1.94 0.21 86.78 3.29 0.78 39.86 9.09 4.07

DP ✓ 88.46 3.15 - 84.14 3.93 - 21.56 13.72 -
UoT ✓ 79.80 1.65 0.77 89.86 2.16 4.84 60.78 8.47 44.61
MISQ ✓ 92.30 1.28 0.48 92.29 3.44 3.59 62.74 9.73 5.16
MISQ-HF ✓ 98.07 1.84 0.04 93.39 3.35 0.54 67.97 9.81 3.97

Mixtral
8*7B Instruct

DP ✓ 50.00 3.50 - 76.43 3.91 - 16.99 14.23 -
UoT ✓ 76.92 1.43 0.45 83.70 2.19 5.70 39.21 7.01 45.11
MISQ ✓ 63.46 2.63 0.08 76.55 3.33 0.17 47.71 10.45 1.66
MISQ-HF ✓ 76.92 2.40 0.06 84.58 3.08 0.33 49.01 9.62 1.46

GPT-4o

DP ✓ 73.07 3.48 - 81.27 3.98 - 43.79 14.86 -
UoT ✓ 82.69 1.18 0.17 88.79 2.03 1.81 59.47 8.14 41.86
MISQ ✓ 87.50 1.97 0.03 89.20 3.46 0.60 74.50 10.15 4.10
MISQ-HF ✓ 99.03 2.19 0.05 90.30 3.42 0.41 72.54 10.36 2.94

4.4 EXPERIMENTAL SETUP

Models. We employed three different LLMs of varying sizes as the Questioner. Llama 3.3 70B
Instruct Grattafiori et al. (2024) and Mixtral 8*7B Instruct Jiang et al. (2024) were accessed via the
AWS Bedrock API (2023). GPT-4o was accessed via API provided by OpenAI et al. (2024). The
user (Answerer) was simulated by Llama 3.3 70B Instruct in all tasks. We prompted the model
with ground truth details (e.g., the patient’s disease or fault description) and maintained a separate
conversation history. The temperature was set to 0. The ratio of turns was defined by δ = 0.6.

MCTS implementation. We set the number of iterations K = 10 and exploration constant C = 0.2.
The maximum simulation depth ds was set to 3 to balance computational efficiency with search
effectiveness. For each Ωv , the question generator creates m = 3 potential questions to maintain
diversity. For the reward calculation in RIG(v), the scaling parameter λ was set to 0.4.

Feedback mechanism. We used a decay factor γ = 0.9 for the bonus rewards. The cluster similarity
threshold τ was set to 0.9 in terms of cosine similarity, and the bonus scaling factor β was set to
0.2 for all tasks. Problem descriptions were embedded using DistilBERT Sanh et al. (2019) for the
troubleshooting domain, and Clinical-BERT Wang et al. (2023) for medical diagnosis. To optimize
computational efficiency, we cache the decision tree, allowing reuse across all samples within each
dataset. The system tracks Mean QGC through a thread-safe counter.

5 RESULTS AND DISCUSSION

Table 1 shows our results in the Closed Set scenario. Our approach requires fewer QGC while
maintaining higher SR compared to baseline methods, indicating both improved effectiveness and
computational efficiency. Notably, the Ω-aware Questioner consistently performs better as com-
pared to when unaware. To demonstrate the importance of the feedback mechanism, we also report
results using MISQ, our framework without the hierarchical feedback component, to rationalize the
design choice and support an ablation study.

In the Medical Diagnosis domain, MISQ-HF achieves superior performance across both datasets,
with an average reduction of 6.77 times in Mean QGC across all three LLMs. Using Llama 3.3 70B
as a Questioner, MISQ-HF required only 0.04 Mean QGC compared to UoT’s 0.77 on DX, showing
a 19.25 times reduction. Similarly, a reduction of 8.97 times is observed on MedDG. This efficiency
stems from selective tree expansion rather than exhaustive exploration. In the medical domain, the
cost of misdiagnosis far outweighs the overhead of a few additional clarifying questions. While
MSC is marginally higher for MISQ-HF compared to UoT, this trade-off can be overseen by the
higher success rate of diagnosis, which directly impacts patient outcomes.
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Table 2: Results on 20 Questions Datasets in the Closed Set scenario

Method Ω-
aware

Common Thing

SR↑ MSC↓ QGC↓ SR↑ MSC↓ QGC↓
Llama 3.3 70B Instruct

UoT × 39.63 8.27 4.08 19.00 9.78 4.48
MISQ × 41.44 8.43 5.05 23.5 9.57 1.57

DP ✓ 45.94 13.70 - 32.50 13.27 -
UoT ✓ 61.26 9.94 7.92 35.50 11.43 3.40
MISQ ✓ 74.77 9.90 4.74 59.50 10.68 3.31

Mixtral 8*7B Instruct

DP ✓ 8.10 14.33 - 7.50 13.46 -
UoT ✓ 28.82 11.56 4.34 12.50 13.52 5.91
MISQ ✓ 37.83 11.38 2.39 20.00 11.50 0.06

GPT-4o

DP ✓ 63.06 14.72 - 40.50 14.16 -
UoT ✓ 74.77 8.59 5.88 47.00 9.13 2.75
MISQ ✓ 85.58 8.51 4.86 55.50 9.54 2.19

In the Troubleshooting domain using the FloDial dataset, MISQ-HF continues to excel with higher
SR, surpassing UoT by 20.68% improvement on average across the three LLMs. Our framework
also achieves notable computational efficiency as compared to UoT, with an average of 18.63 times
reduction in Mean QGC. While troubleshooting conversations typically require more turns due to
fault complexity, MISQ-HF maintains a similar MSC (a difference of less than 3 turns on average)
while delivering improved performance. With GPT-4o, MISQ-HF achieved an SR of 72.54% with
27 clusters, the largest consisting of 31 samples.

Table 2 shows performance on the 20 Questions domain, evaluated using the Common and Things
datasets. Due to a lack of problem description or initial hints about the target, we do not evaluate
MISQ-HF here. For both datasets, MISQ consistently outperforms UoT and DP in all three metrics.
These results demonstrate the scalability of the proposed approach to larger possibility spaces.

Results in the Open Set scenario are provided in Table 3 of Appendix. Our experiments show that
the MISQ-HF outperforms other baselines on datasets with different sizes of possibility spaces. Its
hierarchical feedback mechanism enables the system to learn from successful questioning trajecto-
ries in past conversations, especially in domains like troubleshooting and medical diagnosis, where
similar cases often recur. Compared to exhaustive methods like UoT, MISQ-HF achieves ∼10x
reduction in Mean QGC while delivering ∼12% improvement in SR across these domains. Per-
formance without hierarchical feedback (MISQ) further emphasizes the benefits of this approach.
Example conversations and prompts are provided in the Appendix.

Limitations. The system currently does not incorporate a mechanism to learn from mistakes in
failure cases, which could potentially refine its decision-making process. Penalizing suboptimal or
redundant questions also requires careful design of reward function and remains an open challenge.
Incorporating confidence metrics to better quantify uncertainty in risk-sensitive domains is another
potential improvement. Addressing these limitations is a promising direction for future work.

6 CONCLUSION

In this paper, we introduced Monte Carlo Tree Search for Information Seeking Questions with
Hierarchical Feedback (MISQ-HF), a novel framework for adaptive question-asking with a goal to
optimize conversational efficiency and accuracy. By leveraging selective tree expansion and cluster-
based feedback, our approach reduces computational overhead while maintaining high success rates
across diverse domains such as medical diagnosis, troubleshooting, and general information-seeking
tasks. We demonstrate the potential of combining structured and efficient planning with histori-
cal learning to dynamically adapt question-asking strategies. Our contributions aim to refine the
decision-making process, enabling conversational AI systems to handle increasingly complex and
open-ended scenarios with better planning.

9



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation (NSF) award IIS-2336769. The authors
thank Hafsah Usman, student of the University of Washington, Seattle, for her valuable assistance
in running a part of the experiments.

REFERENCES

AWS Bedrock API. Build Generative AI Applications with Foundation Models - Amazon Bedrock
- AWS, 2023. URL https://aws.amazon.com/bedrock/.

Tuan Dam, Georgia Chalvatzaki, Jan Peters, and Joni Pajarinen. Monte-Carlo Robot Path Planning.
IEEE Robotics and Automation Letters, 7(4):11213–11220, October 2022. ISSN 2377-3766.
doi: 10.1109/LRA.2022.3199674. URL https://ieeexplore.ieee.org/document/
9860036.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, and Austen Gregerson et al. The Llama 3 Herd of Models, November
2024. URL http://arxiv.org/abs/2407.21783. arXiv:2407.21783.

Arthur Guez, Theophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan Wier-
stra, Remi Munos, and David Silver. Learning to search with MCTSnets. In Proceedings of the
35th International Conference on Machine Learning, pp. 1822–1831. PMLR, July 2018. URL
https://proceedings.mlr.press/v80/guez18a.html.

Martin N. Hebart, Adam H. Dickter, Alexis Kidder, Wan Y. Kwok, Anna Corriveau, Caitlin Van
Wicklin, and Chris I. Baker. THINGS: A database of 1,854 object concepts and more than 26,000
naturalistic object images. PLOS ONE, 14(10):e0223792, October 2019. ISSN 1932-6203.
doi: 10.1371/journal.pone.0223792. URL https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0223792.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao, See-Kiong Ng, Anh Tuan Luu, Junxian He,
Pang Wei Koh, and Bryan Hooi. Uncertainty of Thoughts: Uncertainty-Aware Planning En-
hances Information Seeking in LLMs. In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, November 2024. URL https://openreview.net/forum?
id=CVpuVe1N22&noteId=aTI8PGpO47.

Wenyang Hui and Kewei Tu. RoT: Enhancing Large Language Models with Reflection on Search
Trees, July 2024. URL http://arxiv.org/abs/2404.05449. arXiv:2404.05449 [cs].

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
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Appendix

A OPEN SET RESULTS

The results in the Open Set scenario are demonstrated on two datasets where the range of possible
outcomes is often unpredictable and varies in size. Problem descriptions were used to initialize Ω to
a set of 5 possibilities, and it was progressively updated based on conversation history. We used Flo-
Dial for troubleshooting, which has a larger possibility space, and DX for medical diagnosis, which
has a smaller possibility space. Table 3 shows consistently lower Mean QGC while maintaining
similar SR in both domains.

Table 3: Results in the Open Set scenario. Possibility set Ω is unknown to the Questioner LLM.

Method FloDial DX

SR↑ MSC↓ QGC↓ SR↑ MSC↓ QGC↓
DP 16.99 14.80 - 29.80 3.22 -
UoT 28.10 7.56 11.42 35.57 2.35 10.22
MISQ 28.10 8.02 5.33 36.53 2.73 6.52
MISQ-HF 28.75 6.95 5.10 37.50 2.35 6.32

B CONVERSATION PROMPTS FOR 20 QUESTIONS

B.1 QUESTIONER PROLOGUE

Let us play the game of 20 questions. I am impersonating the thing, X. {inform set} You will
ask me up to 20 questions which start with ‘Is X’ and can only be answered by yes or no, and I will
answer each one truthfully based on being X. Let us begin. Ask me the first question.

{inform set} “X is possibly one of the following: Ω ”
This is given only once at the beginning of the conversation.

B.2 ANSWERER/USER SIMULATOR PROLOGUE

Let us play the game of 20 questions. You are the answerer and I am questioner. X is
‘{target item}’. I will ask you up to 20 questions and you should answer each one truthfully
based on being X, by saying Yes or No.
Note that you must never reveal X, until I guess it correctly.
If I guess X correctly in my question, directly respond “You guessed it. X is ‘{target item}’.”
instead of saying yes. Let us begin. Here is my first question.

{target item} the ground truth target item based on which user responds
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B.3 TARGETING PROMPT

Note that you should guess and ask what X exactly is from now on. X is possibly one of the
following: {item set terminal}, or other from the initial set of possibilities. Use the past
conversation for context to avoid redundant questions. The question must start with ‘Is X ...’

{item set terminal} Ωv (the set of items remaining at leaf node v)

Target Question: Is X ‘{item}’?

B.4 QUESTION GENERATION PROMPT

Here are all the X: {item set}
Design a question about X that can only be answered by Yes or No. Then classify the possible X
above based on this question. If the answer is ’YES’, put this X into ’YES: ...’, otherwise to ’NO:
...’. Finally calculate how many X in YES and NO. Notably, this question should fulfill that the
count of YES and NO are almost the same with a permissible discrepancy of no more than one!

{ancestral context}
Based on this information, create most relevant {m} questions to classify the above X correctly. Your
response should strictly follow the template:

Question 1: Is X ...?
YES: comma-separated, list of things, ...
Count of YES: ...
NO: comma-separated, list of things, ...
Count of NO: ...

{item set} Ωv (the set of items remaining at node v)

{ancestral context} “For context, following questions were already asked to build
the above set of possibilities: Question? No; Question? Yes;
Question? Yes...” if ancestral question nodes exist, else blank
string.

{m} number of potential questions to generate (actions)

C CONVERSATION PROMPTS FOR MEDICAL DIAGNOSIS

C.1 QUESTIONER PROLOGUE

You are a doctor, and your patient self-reports that: {problem description}. {inform set}
You should ask your patient questions in English about symptoms which can only be answered by
Yes or No, in order to find what disease this patient suffers from. Use the ongoing conversation for
context to avoid redundant questions. Let us begin. Ask me the first question.

C.2 ANSWERER/USER PROLOGUE

You are the patient suffering from ‘{target item}’, and I am the doctor. I will ask you up to 6
questions, and you should answer each one truthfully based on your disease, by saying Yes or No.
Note that you must never reveal the disease until I tell it correctly. If I tell the disease correctly in my
question, directly respond: “You are right. I am experiencing ‘{target item}’.” Let us begin.
Here is my first question.

C.3 QUESTION GENERATION PROMPT

You are a doctor. Here are all the possible diseases that the patient may suffer from: {item set}

13
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Design a question to ask your patient regarding symptoms of their illness that can only be answered
by Yes or No. Then classify the possible diseases above based on this question. If the answer is
’YES’, put this disease into ’YES: ...’, otherwise to ’NO: ...’. Finally calculate how many diseases
are in YES and NO. Notably, this question should fulfill that the count of YES and NO are almost
the same with a permissible discrepancy of no more than one!
{ancestral context}
Based on this information, create most relevant {n} questions to ask (and classify the above dis-
eases). Your response should strictly follow the template:
Question 1: ...?
YES: comma-separated, list of disease names, ...
Count of YES: ...
NO: comma-separated, list of disease names, ...
Count of NO: ...

C.4 TARGETING PROMPT

Note that you should point out and ask what disease the patient suffers from now.
The patient is probably suffering from one of the diseases below: {item set terminal}, or
other from the initial set of possibilities.
Refer to the past conversation regarding the patient’s symptoms. Never repeat previously asked
questions. Respond with 1 new question only, following the format: “Are you experiencing [disease
name]?” Ensure that [disease name] was not asked before.

Target Question: Are you experiencing ‘{item}’?

C.5 CLASSIFY PROMPT

Here are all diseases that the patient may suffer from: {item set}
{problem description} For each disease under this report, if the patient is possibly affected,
put this disease into ‘YES: ...’, otherwise to ‘NO: ...’. Your answer should strictly follow the tem-
plate:
YES: comma-separated, list of disease names, ...
NO: comma-separated, list of disease names, ...

C.6 OPEN SET PROMPTS

Initial Prompt:
You are a doctor, and your patient self-reports that: {problem description}. Please propose
{size} diseases that you think your patient may suffer from. Your response should only be a list
like: [“disease1”, “disease2”, ...]

Renewal Prompt:
Based on the conversation history, please propose {size} diseases that your patient may suffer
from. The list of {size} diseases should contain {existing items}. Your response should
only be a list like: [“disease1”, “disease2”, ...]

D CONVERSATION PROMPTS FOR TROUBLESHOOTING

D.1 QUESTIONER PROLOGUE

You are a technician, and your client self-reports that: {problem description}.
{inform set} You should ask your client questions with specific situations which can only be
answered by Yes or No, in order to find which issue this client is facing. Use the ongoing conversa-
tion for context to avoid redundant questions. Let us begin. Ask me the first question.
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D.2 ANSWERER/USER PROLOGUE

You are the client with a device that has ‘{target item}’ and I am the technician. I will ask you
up to 20 questions, and you should answer each one truthfully based on the issue of your device, by
saying Yes or No. Note that you must never reveal the issue name until I tell it correctly. If I tell
your issue correctly in my question, directly respond: “You are right. My device has issues with
‘{target item}’.” Let us begin. Here is my first question.

D.3 QUESTION GENERATION PROMPT

You are a technician. Here are all the issues that the client may face: {items set}
Design a question to ask your client with a specific situation that can only be answered by YES
or NO. Then classify the possible issues above based on this question. If the answer is ’YES’, put
this issue into ‘YES: ...’, otherwise to ‘NO: ...’. Finally calculate how many issues are in YES and
NO. Notably, this question should fulfill that the count of YES and NO are almost the same with a
permissible discrepancy of no more than one!
{ancestral context}
Based on this information, create the most relevant {n} questions to classify the above issues cor-
rectly. Your response should strictly follow the template:
Question 1: ...?
YES: comma-separated, list of issue names, ...
Count of YES: ...
NO: comma-separated, list of issue names, ...
Count of NO: ...

D.4 TARGETING PROMPT

Note that you should now point out and ask what issue the client is facing. Refer to the past conver-
sation for context and never ask redundant questions. Respond with 1 new question only, following
the format: “Are you experiencing [issue name]?” Ensure that [issue name] was not asked before.

Target Question: Are you experiencing ‘{item}’?

D.5 CLASSIFY PROMPT

Here are all the issues that the client may face: {item set}
{problem description} For each issue under this report, if the client is possibly facing it, put
this issue into ’YES: ...’, otherwise to ’NO: ...’. Your answer should strictly follow the template:
YES: comma-separated, list of issue names, ...
NO: comma-separated, list of issue names, ...

D.6 OPEN SET PROMPTS

Initial Prompt:
You are a technician, and your client self-reports that: {problem description}. Please pro-
pose {size} issues that you think your client may face with. Your response should only be a list
like: [“issue1”, “issue2”, ...]

Renewal Prompt:
Based on the conversation history, please propose {size} issues that your client may face with.
The list of {size} issues should contain {existing items}. Your response should only be a
list like: [“issue1”, “issue2”, ...]

E EXAMPLES

Two sequences of history are maintained respectively for Questioner LLM and User (Answerer
LLM). Each stores the questions asked and answers given so far. At the beginning of the conversa-
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tion, the Question LLM is given the Questioner Prologue as the first prompt, and the Answerer LLM
is given the Answerer Prologue as the first prompt. The rest of the conversation history remains the
same, except for the switching between the “system” role and the “user” role for each LLM. Table 5,
4, 6 show example conversations from three domains.

S.No. System User
Problem Description:
My car continues to overheat. The hood is so hot that I think I could melt cheese on the hood! Please
help.

1 Is the issue related to the vehicle’s braking system? No.
2 Is the issue related to a power or electrical problem? No.
3 Is the issue related to overheating or temperature con-

trol?
Yes.

4 Is the issue related to a mechanical part? Yes.
5 Is there any visible fluid leaking from the vehicle? Yes.
6 Are you experiencing a radiator leak? You are right. It’s a Radiator leak.

Table 4: An example conversation from FloDial dataset using MISQ-HF with GPT-4o.

S.No. System User
Problem Description:
Hello doctor, I have been in this situation for several years. Every summer, I often have diarrhea, but
it has gotten worse in the past year or two. There is no regular pattern, sometimes it happens every
two to three days when it’s mild, and two to three times a day when it’s severe. . . . I went to a major
hospital for examination before, and they found no parasite eggs or fungi, just a slight imbalance in
the bacterial colonies, but the medication didn’t work. I don’t know what my condition is, I wonder
if any doctor can provide some answers. Thank you. (Male, 28 years old).

1 Do you experience
any symptoms related
to the respiratory sys-
tem, such as coughing
or difficulty breath-
ing?

No, I don’t experience any symptoms related to the respiratory sys-
tem, such as coughing or difficulty breathing. My main issue is
with my stomach and bowel movements. I have been experiencing
diarrhea, stomach aches, and urgent bowel movements, especially
during the summer. The stool is often loose, sticky, and not well-
formed, and it’s difficult to flush. I’ve been having this issue for
several years, and it’s been getting worse over the past year or two.

2 Do you experience
any abdominal pain
or discomfort?

Yes, I do experience abdominal pain and discomfort. It usually starts
with my stomach aching more and more, and then I have to go to the
bathroom. The pain can be quite severe, especially when the symp-
toms are bad. Sometimes, the stool is not very loose, but it’s accom-
panied by mucus and is not well-formed, which makes it difficult to
flush. The abdominal pain and discomfort are quite frequent, and
it’s been a persistent issue for me.

3 Do you experience
any symptoms related
to digestion, such as
nausea or vomiting?

I don’t usually experience nausea or vomiting, but I do have diar-
rhea, which can be quite loose and sticky at times. The stool is
often not well-formed and can be difficult to flush. The frequency
of the diarrhea can vary, sometimes it’s every two to three days when
it’s mild, and sometimes it’s two to three times a day when it’s se-
vere. The symptoms can be quite unpredictable and irregular, which
makes it challenging to manage.

4 Are you experiencing
symptoms of irritable
bowel syndrome?

You are right. I have Irritable bowel syndrome.

Table 5: An example conversation from MedDG dataset using MISQ-HF with GPT-4o.
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S.No. System User
1 Is X a living organism? Yes.
2 Is X an animal that primarily lives in water? No.
3 Is X a type of food? No.
4 Is X a mammal? No.
5 Is X capable of flight? No.
6 Is X a reptile? Yes.
7 Is X capable of changing its skin color for camouflage? Yes.
8 Is X a ’Chameleon’? You guessed it. X is Chameleon.

Table 6: An example conversation from Common dataset using MISQ with GPT-4o.
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