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Apply simulation
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“A stack of colorful 

wooden blocks 

arranged vertically, 

featuring red, blue, 

yellow, green, 

orange, and purple 

pieces, balanced on 

a flat surface.”

“A vintage wooden radio with a small cow 

figurine on top sits on a stack of two 

hardcover books, next to a wooden cup 

holding colorful pencils.”

“Four woven baskets arranged in a row, each 

containing different fruit: pears, bananas, 

oranges, and apples, alongside two stacks of jam 

jars.”

Supported ApplicationsPhysically Implausible Scenes

Figure 1: PAT3D is the first text-to-3D scene generation framework that produces simulation-ready
and intersection-free results. The left column shows results from direct depth-based arrangements,
which suffer from object interpenetrations (top) and collapse under simulation due to inconsistent
layouts (bottom). The middle column presents PAT3D results, where physically valid layouts re-
main stable under simulation. These high-quality scenes are immediately usable for downstream
applications, including scene editing and robotic manipulation (right).

ABSTRACT

We introduce PAT3D, the first physics-augmented text-to-3D scene generation
framework that integrates vision–language models with physics-based simula-
tion to produce physically plausible, simulation-ready, and intersection-free 3D
scenes. Given a text prompt, PAT3D generates 3D objects, infers their spatial re-
lations, and organizes them into a hierarchical scene tree, which is then converted
into initial simulation conditions. A differentiable rigid-body simulator ensures
realistic object interactions under gravity, driving the scene toward static equilib-
rium without interpenetrations. To further enhance scene quality, we introduce
a simulation-in-the-loop optimization procedure that guarantees physical stabil-
ity and non-intersection, while improving semantic consistency with the input
prompt. Experiments demonstrate that PAT3D substantially outperforms prior ap-
proaches in physical plausibility, semantic consistency, and visual quality. Beyond
high-quality generation, PAT3D uniquely enables simulation-ready 3D scenes for
downstream tasks such as scene editing and robotic manipulation. Code and data
will be released upon acceptance.

1 INTRODUCTION

The ability to generate realistic and editable 3D scenes from natural language has broad applications
across a variety of domain including virtual reality, robotics, digital twins, and content creation.
Recent advances in diffusion and autoregressive generative models have significantly pushed the
boundaries of text-to-3D scene generation, making it possible to synthesize high-quality object ge-
ometry and compelling visual content Lin et al. (2023); Metzer et al. (2023); Michel et al. (2022);
Poole et al. (2023); Chen et al. (2025b; 2024a); Huang et al. (2024); Gao et al. (2024). However,
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despite these advances, existing approaches struggle to ensure that generated scenes exhibit physical
plausibility – a critical requirement for downstream applications that demand interaction, simulation,
or building a real-world correspondence.

In particular, current 3D scene generation pipelines Huang et al. (2024); Gao et al. (2024) often treat
layout composition as a purely geometric problem, omitting physical reasoning entirely or using
simple heuristics to prevent unfavored physical interaction such as object intersection. Due to the
lack of explicit constraints from physics, this leads to common issues such as floating, unstable
stacking, and incorrect support relations, ultimately limiting scene realism and usability. Earlier
efforts have incorporated physical constraints to enhance single-object stability Guo et al. (2024);
Chen et al. (2024c), or used video diffusion priors for plausible dynamics Zhang et al. (2024), but
none of these methods address the complex spatial dependencies and contact interactions required
for stable and semantically coherent multi-object scenes.

One promising direction is to integrate physics-based simulation into the scene generation process
to enhance physical realism. However, this approach introduces several challenges. First, objects
must be represented as individually segmented 3D meshes to enable simulation of interactions under
gravity and contact forces. Applying simulation to scenes represented by a single connected mesh
is ineffective, as it fails to capture interactions between objects. Second, physics-based simulation
requires a well-posed initial configuration, typically free of intersections, to avoid numerical insta-
bility and unrealistic behavior Li et al. (2020). Yet, identifying such an intersection-free starting
state is nontrivial. Finally, even if the simulated scene is physically plausible, it may diverge from
the intended semantics described in the input text, due to the multiplicity of valid static equilibria.

To address these challenges, we propose PAT3D, a physics-augmented text-to-3D scene generation
framework that integrates differentiable rigid-body contact simulation into the generation pipeline.
Given a text prompt, we first synthesize a reference image to reflect the spatial relations among
objects. Individual objects are then generated and coarsely positioned using vision foundation mod-
els Bochkovskii et al. (2025); Kirillov et al. (2023b); Hunyuan3D (2025). Next, a vision-language
model (VLM) Hurst et al. (2024) extracts the physical dependencies between objects from the ref-
erence image, which are then organized into a scene tree. PAT3D then produces an intersection-free
initial configuration from the coarsely positioned 3D scene and scene tree through physics-guided
refinement. This initialization deliberately introduces small gaps along the gravity direction for ob-
jects with parent–child relations in the scene hierarchy, simplifying intersection avoidance while
preserving inferred spatial relations. These gaps are later resolved through simulation, allowing ob-
jects to settle naturally under gravity and contact forces while making slight, physically plausible
adjustments to their spatial relations. Finally, differentiable simulation is applied to further optimize
the layout, improving semantic consistency in the resulting scene.

We validate our method on diverse, contact-rich scenes and demonstrate its effectiveness against
existing state-of-the-art 3D scene generation approaches through both qualitative and quantitative
evaluations under visual quality and physical plausibility metrics. We further demonstrate that our
generated scenes are readily editable and interactable through simulation, enabling physically plausi-
ble scene editing and direct construction of simulation environments for policy evaluation in robotic
manipulation tasks. Our source code will be publicly released upon acceptance.

In summary, our main contributions include:

• We introduce PAT3D, the first physics-augmented text-to-3D scene generation framework
that integrates vision–language models with physics-based simulation, achieving state-of-
the-art physical plausibility, semantic consistency, and visual quality.

• We propose a physics-aware scene initialization module to prepare scenes for simulation.
This module infers physical dependencies among objects, organizes them into a hierar-
chical scene tree, and converts the scene tree into intersection-free initial conditions for
simulation.

• We develop a layout optimization strategy based on artificially time-stepped differentiable
simulation, enabling efficient evaluation and differentiation of static equilibrium w.r.t initial
layout.
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2 RELATED WORK

Single Object Generation. Building on the success of text-to-image generation models Rombach
et al. (2022); Ramesh et al. (2022); Kang et al. (2023); Yu et al. (2022), there has been rapid progress
in 3D generative models conditioned on text or images. A prominent class of methods leverages 2D
diffusion priors for 3D generation Poole et al. (2023); Wang et al. (2023); Lin et al. (2023); Chen
et al. (2023); Metzer et al. (2023); Wang et al. (2024); Sun et al. (2024); Long et al. (2024); Michel
et al. (2022), with DreamFusion Poole et al. (2023) introducing Score Distillation Sampling (SDS)
to optimize 3D representations using gradients from 2D diffusion models. Subsequent works have
extended SDS with multi-view diffusion models, improving both 3D generation quality and single-
view reconstruction Liu et al. (2023a); Wang & Shi (2023); Shi et al. (2024); Liu et al. (2024b);
Zhou & Tulsiani (2023); Liu et al. (2024a); Long et al. (2024); Shi et al. (2023); Liu et al. (2024d).
Another research direction trains large-scale transformers to generate 3D shapes in a feed-forward
manner Hong et al. (2024); Li et al. (2024); Xu et al. (2024b); Tochilkin et al. (2024), relying on
curated, large-scale 3D asset datasets. While these models can generate visually compelling shapes,
they often ignore the physical properties, such as stability, of the object, which are essential for
real-world applications. To address this, recent efforts have incorporated physics-based simulation
into the generation pipeline to produce self-supporting 3D objects by optimizing physical attributes
such as mass distribution Guo et al. (2024); Chen et al. (2024c); Yan et al. (2024); Cai et al. (2024).
Additionally, PhysDreamer Zhang et al. (2024), optimizes physical properties like Young’s modulus
and initial velocity to generate dynamic motions that are both visually plausible and physically
grounded, guided by video diffusion priors.

Scene Generation. While single-object generation methods produce visually appealing assets,
they often lack scale awareness and spatial grounding, making scene composition challenging. The
primary bottlenecks in 3D scene generation include decomposing scenes into individual assets, esti-
mating their relative scale and pose, and ensuring physical feasibility (e.g., contact, stability). Sev-
eral works address these challenges through multi-stage pipelines. Early methods such as Vilesov
et al. (2023); Chen et al. (2024b); Han et al. (2024) adopt object-centric reconstruction followed
by layout and geometry optimization using physical constraints or differentiable rendering. Shri-
ram et al. (2024) lifts the scene image to 3D point clouds as a whole, inpaints occluded regions,
and refines appearance using 2D diffusion priors. Recently, Large Language Models (LLMs) and
VLMs are increasingly leveraged to infer spatial relations and scene structure. Gao et al. (2024)
constructs a scene graph with objects as nodes and their relations as edges. Zhou et al. (2024) uses a
VLM to generate a coarse layout, which is subsequently refined with rendering losses and physical
constraints. Yao et al. (2025) combines GPT-based reasoning with physics-aware constraints to con-
struct a relation graph and a constraint graph from an input image and segmented object instances.
Scene-level optimization under SDS loss is commonly used for joint geometry-text alignment Zhou
et al. (2025), while Huang et al. (2024) and Xu et al. (2024a) explore multi-instance and 4D com-
positional generation guided by spatial and trajectory priors. Other approaches incorporate physical
property estimation into 3D representations, either from visual cues Zhao et al. (2024) or explicit
user input Chen et al. (2025a), to support dynamic simulation or interaction Liu et al. (2024c). Re-
cent systems such as Blender-MCP and Li et al. (2025) integrate LLM reasoning and generative
priors into graphics tools like Blender, enabling fine-grained control and interactive refinement. Sun
et al. (2025) propose LayoutVLM, which uses a VLMs to generate differentiable spatial relations
and jointly optimize 3D layouts in indoor scenes. However, most existing scene generation methods
focus primarily on layout composition. They either omit physical reasoning altogether or incorpo-
rate only simple physics priors to prevent object interpenetration, without modeling accurate contact
interactions or ensuring physically stable scene layouts. We thus address this gap by novelly aug-
menting text-to-3D scene generation with differentiable rigid body contact simulation.

3 METHOD

Our framework comprises three stages: 3D object and spatial relation extraction (subsection 3.1),
where 3D assets are generated from text and its spatial relation are organized into a scene tree;
layout initialization (subsection 3.2), which first arranges generated assets using monocular depth
priors obtained from refernece image and uses scene tree to refine them into an intersection-free
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Reference Scene Image 

3D Assets

Scene Tree

… …

(b) Layout Initialization (c) Layout Optimization

User Prompt

“There is a white cylindrical holder 

containing several stationery items, 

including a pair of black-handled 

scissors, a white ruler, a blue pen, 

and a mechanical pencil. On the left 

side, there is a stack of three books 

with hardcover bindings in earthy 

tones (orange, beige, and blue).”

Gravity

Preliminary Layout Adjusted Initial Layout

(a) 3D Objects and Spatial Relation Extraction

Simulated Scene

Depth Point Cloud

2D Gen. 

VLM

3D 
Gen.

Seg.

Depth Point Cloud Scene Tree

+

+

+

Optimized Scene

Forward Simulation Differentiable Simulation Optimization

Ground

Cup Book

Book

Book

ScissorsRulerPencilPen

Figure 2: Overview of our text-to-3D scene generation pipeline. (a) Given an input text, a ref-
erence image is first generated to capture spatial relations among objects, from which 3D assets are
generated using vision foundation models, and a scene tree is extracted using a VLM. (b) Assets are
arranged into an initial layout using 3D priors from monocular depth estimation (left), then refined
with the scene tree to produce an intersection-free configuration for simulation (right). (c) For-
ward simulation ensures physical plausibility but may distort semantics (left). We address this with
simulation-in-the-loop optimization, enforcing semantic consistency and physical validity (right).

configuration; and layout optimization (subsection 3.3), where a simulation-in-the-loop optimization
procedure is applied to ensure physical plausibility and improve semantic consistency of 3D scene.

3.1 3D OBJECT AND SPATIAL RELATION EXTRACTION

Since directly producing both 3D objects and layouts with text-to-3D models and LLMs often fails to
capture complex spatial relations, we instead employ a text-to-image model to generate a reference
image that guides object generation and scene tree construction. See Figure 2(a).

3.1.1 3D OBJECTS GENERATION

To generate individual objects for the scene specified by the text prompt, a VLM is queried with the
reference image to obtain object class labels, and the image is segmented with Grounded-SAM Kir-
illov et al. (2023a); Ren et al. (2024); Liu et al. (2023b) accordingly. Based on the segmented object
regions, we further prompt the VLM to generate detailed text descriptions encompassing object se-
mantics, material, color, and orientation. These descriptions are fed into a text-to-3D pipeline Hun-
yuan3D (2025) to synthesize high-quality, textured 3D assets that are both semantically consistent
and visually realistic.

3.1.2 SPATIAL RELATION EXTRACTION

We then extract the relative spatial relations among objects in the scene from the reference image and
analyze their physical dependencies. This information provides essential guidance for intersection-
free layout initialization (subsection 3.2) and subsequent optimization (subsection 3.3). Specifically,
for each pair of segmented objects that appear with similar horizontal positions and adjacent vertical
positions in the reference image, we prompt a VLM to infer their dependency along the gravity
axis, identifying relations such as on, contain, and support. The resulting pairwise relations are then
organized into a hierarchical scene tree that encodes how objects support one another under gravity.
Starting with the ground as the root node, we traverse the scene and iteratively add objects as nodes
in the tree. For each unvisited object that has a direct physical dependency with an existing node, we
insert it as a child of that node. This recursive process continues until all objects have been included.
Additional details are provided in Algorithm 1, and an example is shown in Figure 2(a).

3.2 LAYOUT INITIALIZATION

To obtain an intersection-free and semantically consistent initial layout for the subsequent
simulation-in-the-loop optimization, we first compute the translational and scaling transformations
to build a preliminary layout consistent with the reference image, and then refine it using the ex-
tracted scene tree to ensure no object intersection and stronger physical constraints. See Figure 2(b).

4
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3.2.1 PRELIMINARY LAYOUT

Our straightforward approach to arranging the objects generated in subsubsection 3.1.1 into a layout
consistent with the reference image is to back-project the 2D reference image with depth estima-
tion to obtain each object’s 3D point cloud. Scaling and translational transformations can then be
computed by aligning the object’s center with the centroid of its point cloud. In practice, however,
heavy occlusions in the 2D image make scaling unreliable when derived directly from partial point
clouds. To address this, we first query the VLM to identify the least occluded object in the scene
and use it as an anchor to compute a global scaling transformation for the entire scene. We then
compute relative scaling for the other objects by prompting the VLM to inpaint occluded regions
of the 2D image and estimating scaling factors from the bounding boxes of the inpainted objects.
Each object’s final transformation is obtained by combining the global and relative scaling factors,
followed by alignment with the projected 3D point cloud. This procedure produces the preliminary
layout shown in Figure 2(b).

3.2.2 REFINED INITIAL LAYOUT

To refine the layout under physical dependency constraints and ensure non-intersection, we traverse
the scene tree in a breadth-first manner and apply horizontal and vertical refinements at each node.

Horizontal refinement. We enforce two rules: (1) Parent–child: the projection of the child must lie
entirely within that of the parent (e.g., fruits inside a basket); (2) Sibling: objects sharing the same
parent must have non-overlapping projections (e.g., a vase, plate, and fork on a table).

Vertical refinement. Each child is lifted above the bounding box of its parent along the gravity axis,
preventing intersections.

This simple strategy, compared with more complex optimization methods, efficiently resolves inter-
sections while preserving semantic constraints, providing favorable initial conditions for simulation.
The refined results are shown in Figure 2(b).

3.3 LAYOUT OPTIMIZATION

After simulation, gravity causes child objects to fall onto or into their respective parents, and sibling
objects naturally adopt physically plausible poses. However, due to complex inter-object interac-
tions, simulation alone may cause the scene to deviate from its intended semantics. To address this,
we introduce a simulation-in-the-loop optimization to improve semantic consistency in the simu-
lated scene. See Figure 2(c).

Specifically, we refine our intersection-free initialization q0 so that the final equilibrium state qn+1

better aligns with the scene tree:

min
q0

L(qn+1(q0)) s.t. f(qn+1) = 0, (1)

where L measures semantic inconsistency and f denotes the net force on all objects..

For each object i with container t, we define its projected bounding box on the horizontal plane as
BBoxi = {pi

min,p
i
max}. The local loss penalizes deviations of the corners of i from BBoxt:

li = d(pi
min,BBoxt)2 + d(pi

max,BBoxt)2, (2)

where d(p,BBox) = 0 if p ∈ BBox, otherwise, d is the Euclidean distance from p to the box
boundary. The total loss is defined as

L(qn+1(q0)) =

N∑
i=1

li, (3)

where N is the total number of objects in the scene.

Direct gradients of qn+1 with respect to q0 cannot be obtained by differentiating the static equi-
librium constraint f(qn+1) = 0, since q0 serves only as the initial guess and is not part of the
constraint. Differentiating through the nonlinear solver is also prohibitively expensive. Instead, we
adopt an artificial time-stepping formulation Fang et al. (2021), in which the quasi-static system

5
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Clip Score ↑ VQA Score ↑ Displacement ↓ Pene. Ratio ↓
GraphDreamer 27.53 0.46 0.03 258.02
Blender-MCP 28.93 0.56 0.54 8.56

MIDI 29.68 0.63 0.28 201.98
Raw layout 29.88 0.64 0.31 82.10

Ours 31.79 0.68 0 0

Table 1: Quantitative Evaluation. Our method achieves the highest semantic consistency with
input text prompts among all baselines, and is the only method that achieves perfect physical stability
and non-intersection. We also ablates results without layout initialization and optimization, shown
as raw layout.

gradually evolves toward equilibrium across intermediate states. This enables efficient backpropa-
gation from qn+1 to q0 via implicit differentiation at each step. See Appendix B for more details on
our forward simulation method and the derivation of differentiation.

4 EXPERIMENTAL RESULTS

On a table, there is a 

vase with a bouquet of 

flowers. Beside it, there is 

a plate of cake.

In a basket of fruit, there 

are 5 fruits.

Four stacked cups and four 

stacked plates.

A white ceramic cup holds 

two blue and green 

toothbrushes, a blue and 

white toothpaste tube, 

and a blue-handled razor, 

while a white soap dish 

beside it contains two bars 

of soap—one white and 

one beige.

A vintage wooden radio 

with a small cow figurine 

on top sits on a stack of 

three hardcover books, 

next to a wooden cup 

holding colorful pencils.

OOM

Text prompts (a) GraphDreamer (b) Blender-MCP (c) MIDI (d) Ours

Figure 3: Comparison to baseline methods. The scenes are generated from our text prompts.
OOM indicates out of memory.

4.1 COMPARISON

4.1.1 BASELINES

We compare our method against three baselines: GraphDreamer Gao et al. (2024), MIDI Huang
et al. (2024), and Blender-MCP or ahujasid (2025). Both GraphDreamer and Blender-MCP take
text prompts as input, while MIDI uses a reference image as input. To ensure a fair comparison, we
provide MIDI with our scene reference image as their input.
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4.1.2 DATASET

Since there is no standard benchmark for general scene generation, we construct our own test dataset
consisting of 18 text prompts. Among them, 3 prompts are taken from MIDI, and 2 prompts are from
GraphDreamer. Additionally, we use an LLM to generate 13 new text prompts spanning diverse
scenes. These prompts describe physical interactions between objects, including a stack of books
and a basket of fruits. Additional 3D results generated by our method, in comparison with the base-
lines, along with corresponding text prompts and reference images, can be found on visualization
website1. Beyond these comparisons, we also present 12 more examples produced by our method
in Appendix E.

4.1.3 EVALUATION METRICS

We evaluate the generated scenes using four metrics: CLIP Score Radford et al. (2021), VQA
Score Lin et al. (2024), Simulated Scene Displacement (D), and the Ratio of Penetrating Trian-
gle Pairs (R). These metrics assess the semantic consistency, physical stability, and interpenetration
of the generated scenes. Details of each metric are provided in Appendix F.

4.1.4 PERFORMANCE AND DISCUSSIONS

In Figure 3, we compare PAT3D with baseline methods on five general scenes involving complex
object interactions. Additional comparisons with four scenes highlighted in the MIDI and Graph-
Dreamer are provided in Appendix E. Importantly, in PAT3D, reference image serves only to extract
the complex spatial relations implied in the text prompt; the final scene does not need to remain vi-
sually consistent with the reference image.

GraphDreamer struggles to scale to larger scenes because it jointly optimizes both object geometry
and scene layout through Score Distillation Sampling (SDS) Poole et al. (2023), which is highly
resource-intensive. Moreover, GraphDreamer exhibits weak understanding of spatial relations in
text prompts. As shown in the second, fourth, and fifth scenes of Figure 3, it often ignores spatial
constraints, leading to chaotic object arrangements. Blender-MCP generates layouts with little phys-
ical realism. In the first and second scenes of Figure 3, the razor and toothbrush float above the cup,
and the plate is suspended in mid-air. It also produces objects with unrealistic scales: in the fourth
scene, the cake and vase appear disproportionately small compared to the table. MIDI encounters
difficulties when handling scenes with complex object contact, as seen in the first, second, and fifth
scenes of Figure 3, objects often appear in irregular yet tightly packed configurations. Although
interpenetration is avoided, the resulting layouts are cluttered potentially because MIDI generates
the entire scene in a single step, the quality of individual objects is compromised.

By contrast, our method decomposes the scene generation process, iteratively creating objects to
ensure high-quality results. Leveraging VLM-based guidance together with physics simulations,
PAT3D produces 3D scenes that are both physically realistic and semantically consistent, even in
scenarios with complex object interactions. Quantitative comparisons are shown in Table 1. Com-
pared to baseline methods, which frequently suffer from object intersection and floating artifacts
that undermine physical plausibility, our approach consistently produces stable, penetration-free ar-
rangements. Our method also achieves the highest semantic consistency with the input text prompts.

4.2 APPLICATION

Our generated simulation-ready scenes can be directly imported into a simulator for downstream
applications. We demonstrate two such applications: scene editing and robotic manipulation.

4.2.1 SCENE EDITING

We demonstrate a scene editing application enabled by our framework, which supports interactive
manipulation while preserving the physical plausibility of the entire scene, including object addition
and deletion. By leveraging our physics-based simulation backend, the edited scene converges to
a force-equilibrium state without mesh intersections. Figure 4 highlights an example showcasing
object addition and deletion, and animation results are provided in the supplementary material.

1https://3dsim-baseline-visualization.netlify.app/
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(a) (b) (c) (d)

Figure 4: Scene editing. We demonstrate the equilibrium state after addition and deletion opera-
tions: (a) initial scene, (b) deleting a book at the bottom, (c) deleting the pen holder, (d) adding a
book on top.

4.2.2 ROBOTIC MANIPULATION

Our generated scenes can be directly imported into a simulator to validate robotic manipulation
policies. In Figure 5, we present two illustrative examples, a failed grasp and a successful grasp,
with video sequences provided in the supplementary material. Robotic manipulation applications
impose unique requirements on scene generation: objects must be consistently positioned and free
of interpenetrations. Our framework satisfies these requirements, ensuring that the generated scenes
are well-suited for reliable policy evaluation.

4.3 ABLATION STUDY

(a) Depth prediction (b) Scene tree

Figure 6: Layout initialization w/o and w/
scene tree. Layouts obtained from depth pre-
diction (a) without and (b) with adjustment
based on the scene tree. (Text prompt: “...a
neatly stacked pile of three books...”. See Ap-
pendix D for the complete prompt.)

(a) Before (b) After

Figure 7: Layout optimization. Simulated
layouts from initial layout (a) without and (b)
with further optimization using differentiable
simulation. (Text prompt: “a stack of colorful
wooden blocks...”. See Appendix D for the
complete prompt.)

Successful grasp Failed grasp

Figure 5: Policy evaluation for robotic ma-
nipulation. Example of a successful and a
failed grasp where the attempted action causes
objects to topple.

We first qualitatively illustrate the impact of our
layout initialization module and simulation-in-the-
loop optimization module. As shown in Fig-
ure 6(a), while the spatial relations between ob-
jects extracted directly from the depth map are gen-
erally reasonable, the scene still suffers from sig-
nificant interpenetration: books intersecting with
one another and the pen protruding its holder.
By contrast, after applying our proposed layout
initialization based on the scene tree, we obtain
an intersection-free layout shown in Figure 6(b),
where projections of each object along gravity di-
rection typically lies in the projections of their con-
tainers or supporters, thereby satisfying physical
dependency constraints along the gravity direction.
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Nevertheless, simply enforcing physical dependencies before simulation does not ensure that the
resulting simulated scene would still satisfy the intended semantics. In Figure 7(a), a stack of irreg-
ular blocks collapses after simulation due to an unbalanced center of mass. In contrast, Figure 7(b)
demonstrates that, by further optimizing the initial layout through our simulation-in-the-loop op-
timization, the simulated scene converges to a stable configuration of stacked blocks that better
reflects the semantics.

We further evaluate the effectiveness of our method by computing semantic and physical metrics
on both the depth-aligned layout without layout initialization and optimization (denoted as raw
layout) and compare it with our final output in Table 1. Our layout initialization and optimization
consistently improves all metrics. The gains in semantic consistency metrics are relatively smaller,
as they primarily depend on visual appearance factors such as geometry and texture.

5 CONCLUSION

Figure 8: Failure case.
The input text prompt is
“A swing hanging from a
tree”.

We presented PAT3D, a physics-augmented framework for text-to-3D
scene generation that integrates vision-language reasoning with differ-
entiable rigid body simulation. By decomposing the generation process
into interpretable stages – object and relation extraction, layout initial-
ization, and physics-guided layout optimization – our method produces
3D scenes that are not only semantically meaningful but also physically
plausible and simulation-ready. Through extensive experiments on di-
verse, contact-rich scenes, we demonstrated that PAT3D achieves su-
perior physical realism compared to existing approaches. We believe
PAT3D represents a step forward in bridging high-level scene under-
standing with low-level physical reasoning. We hope this work inspires
further research in physically grounded, controllable, and editable 3D
scene generation.

Limitations and Future Work We illustrate a representative failure
case in Figure 8. While PAT3D is able to handle most common physical
dependencies, certain subtle and challenging relations remain beyond its
capability. In Figure 8, the prompt “A swing hanging from a tree” is
not well captured as the notion of “hanging” is misinterpreted. A physically accurate configuration
would require the swing to be suspended from specific branches at two attachment points. In future
work, we plan to incorporate a more comprehensive set of spatial relations to improve the robustness
of our framework across more diverse scenes.
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A PSEUDO-CODE OF BUILDING SCENE TREE

Algorithm 1 Build Scene Tree
Require:

Scene objects O
Root node G (ground)

Ensure:
Hierarchical scene tree T ;

1: Initialize tree T with root node G ;
2: Mark all objects in O as unvisited;
3: Procedure BuildSceneTree(n):
4: for o ∈ O where o is unvisited do
5: if o is in contact with n and o has an physical dependency relation with n then
6: Add o as a child of n in T ;
7: Mark o as visited;
8: Call BuildSceneTree(o);
9: end if

10: end for
11: Call BuildSceneTree(G );

B DIFFERENTIABLE SIMULATION DETAILS

B.1 FORWARD SIMULATION

We model each object in the scene as a stiff affine body Lan et al. (2022), where any point on
the object with an initial position x̄init undergoes an affine transformation to its current position
x = Ax̄init +p, where A ∈ R3×3 is a transformation matrix and p is a translation vector. Together,
they define the degrees of freedom (DOFs) of the object as q ≡ [p,A] ∈ R3×4.

To simulate the motion and contact of the objects, we employ a custom GPU-optimized affine body
dynamics (ABD) simulator based on Huang et al. (2025). The simulator solves for the configuration
qn+1 ∈ R12N at time step n+1, formed by flattening and stacking the DOFs of all N objects, from
the configuration qn at the previous time step via:

M(qn+1 − q̃n) + ∆t2 (∇Ψ(qn+1) +∇B(qn+1) +∇D(qn+1, qn)) = 0. (4)

Here, M is the mass matrix, and q̃n = qn + ∆t2g is the predictive state used in artificial time
stepping, which omits velocity. ∆t denotes the simulation time step, and g is the gravitational
acceleration. The potential Ψ models stiff elasticity to preserve object shape, B is a barrier potential
enforcing non-penetration constraints, and D is a semi-implicit friction potential following Li et al.
(2020).

B.2 BACKPROPAGATION

To optimize the initial layout q0, we compute the gradient of the loss function L w.r.t q0 using the
chain rule:

dL

dq0
=

(
∂q1
∂q0

)⊤ (
∂q2
∂q1

)⊤

· · ·
(

∂qn
∂qn−1

)⊤ (
∂qn+1

∂qn

)⊤
dL

dqn+1
. (5)

Here, dL
dqn+1

can be directly computed at the target step n + 1 or automatically obtained via Py-

Torch Paszke (2019). The key step lies in computing ∂qn+1

∂qn
, which we derive using implicit differ-

entiation. Rewriting Equation 4 yields:

qn+1 = qn +∆t2M−1 [f(qn+1) +Mg] , (6)

where f(qn+1) = −∇Ψ(qn+1) − ∇B(qn+1) − ∇qn+1
D(qn+1, qn). Differentiating both sides of

Equation 6 with respect to qn and isolating the derivative yields:

∂qn+1

∂qn
=

[
I −∆t2M−1 ∂f(qn+1)

∂qn+1

]−1 [
I −∆t2M−1 ∂

2D(qn+1, qn)

∂qn+1∂qn

]−1

. (7)
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Substituting Equation 7 into the chain rule expression in Equation 5 allows us to compute the full
gradient dL

dq0
, which we use to update the initial layout. Both forward simulation and backpropaga-

tion are fully GPU-accelerated for computational efficiency.

C IMPLEMENTATION DETAILS

We implement our proposed algorithm in Python on Ubuntu 20.04. In the layout optimization, we
leverage Libupic Huang et al. (2025) as a simulation platform. The optimization is performed using
ADAM Kingma (2014). Scenes that are already semantically consistent after the first simulation are
not optimized. Our algorithm is deployed and run on a single NVIDIA RTX 4090 GPU. All our
baselines were tested on the NVIDIA A6000 GPU.

D TEXT PROMPT USED IN ABLATION STUDY

The complete text prompt used in our ablation study are as follows.

• Figure 7: “a stack of colorful wooden blocks arranged vertically, featuring red, blue, yel-
low, green, orange, and purple pieces, balanced on a flat surface.”.

• Figure 6: “On the left side, there is a metallic cylindrical pen holder containing two black
pens, a wooden ruler, and a pair of gray-handled scissors. On the right side, there is a
neatly stacked pile of three books with red covers and visible pages. The items are placed
on a light wooden surface, and the background is plain white, creating a bright and simple
composition.”

E MORE EXAMPLES

A Wizard standing in front 

of a Wooden Desk, gazing 

into a Crystal Ball perched 

atop the Wooden Desk, 

with a Stack of Ancient 

Spell Books perched atop 

the Wooden Desk.

A baby bunny is sitting on 

top of a stack of pancakes.

A warm setup with a bed, 

bedside tables, plant, a few 

books, and a small 

decorative lamp.

A cozy cartoon setup with 

a bed, bedside table, lamp, 

bookshelf, and a small dog 

on the bed.
OOM

Text prompts (a) GraphDreamer (b) Blender-MCP (c) MIDI (d) Ours

Figure 9: Comparison of generated scenes from text prompts used in GraphDreamer Gao et al.
(2024).

In addition to the 18 text prompts used for comparison with the baseline, we further tested our algo-
rithm on 12 additional examples, as shown in Figure 11. All of these prompts yielded semantically
accurate and physically stable results.

F METIRCS

Clip score and VQAScore These two metrics measure the semantic similarity between the ren-
dered scene images and the corresponding input text prompt. Specifically, we render the scene from
18 viewpoints by sampling three depression angles (0°, 20°, and 45°) and six evenly distributed
horizontal angles. These rendered images are then used to compute the Clip score and VQAScore.

Simulated Scene Displacement (D) This metric computes the normalized average displacement
of object vertices in the scene before and after applying a simulation. Specifically, it computes the
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A Wizard standing in front 

of a Wooden Desk, gazing 

into a Crystal Ball perched 

atop the Wooden Desk, 

with a Stack of Ancient 

Spell Books perched atop 

the Wooden Desk.

A baby bunny is sitting on 

top of a stack of pancakes.

A warm setup with a bed, 

bedside tables, plant, a few 

books, and a small 

decorative lamp.

A cozy cartoon setup with 

a bed, bedside table, lamp, 

bookshelf, and a small dog 

on the bed.
OOM

Text prompts (a) GraphDreamer (b) Blender-MCP (c) MIDI (d) Ours

Figure 10: Comparison of generated scenes from text prompts used in MIDI Huang et al.
(2024).

average per-vertex displacement for each object, normalized by the object’s size and further averaged

across all objects: D =
∑N

i=1

∑Vi
j=1 dij

ViliN
, where N is the number of objects in the scene, Vi is the

number of vertices in object i, dij is the displacement of vertex j in object i, and li is the diagonal
length of the bounding box of object i. It serves as an indicator of the scene’s physical stability, with
smaller total displacement values indicating greater stability.

Ratio of Penetrating Triangle Pairs (R) This metric quantifies the extent of penetration between
objects in the scene, serving as an indicator of the scene’s geometric correctness. The metric is
defined as: R =

(Tp−
∑N

i=1 Tp,i)le
l , where Tp is the total number of penetrating triangle pairs in the

scene, Tp,i is the number of self-penetrating triangle pairs in object i, le is the average edge length
of all object meshes, and l is the diagonal length of the scene’s bounding box.

G MORE COMPARISON

We qualitatively compare our method with the baselines on the text prompts previously presented in
MIDI and GraphDreamer, as shown in Figure 10 and Figure 9, respectively. For the comparison with
MIDI, since it requires an image as input, we first generate images from the provided text prompts in
their paper and use these as MIDI’s inputs. For the other baselines, we directly use the text prompts.
For our method, we use the same text prompts while ensuring that the reference image is consistent
with the input image used for MIDI.

H DISCLOSURE

We made use of LLMs to polish writing. We made sure that our input text to LLMs will not be used
for training purposes.
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Under review as a conference paper at ICLR 2026

“A round white plate holds a simple 
arrangement of food: two brown sausages 
placed side by side, several pieces of bright 
yellow corn on the cob cut into chunks, and 
three green broccoli florets.”

“Four woven baskets arranged in a row, each 
containing different fruit: pears, bananas, 
oranges, and apples, alongside two stacks of 
jam jars.”

“A silver laptop with its screen turned off is 
placed on a small round wooden stool with 
three legs."

“A small inflatable blue-and-white kiddie pool 
is filled with eight colorful beach balls with 
red, yellow, and white panels float on the 
surface. .”

“A small chocolate cake topped with a swirl of 
white whipped cream and decorated with two 
fresh red strawberries, served on a round 
white plate placed on a wooden table.”

“A transparent glass mug supports a stack of 
two beige bowls and two beige plates, with a 
silver fork standing upright on the topmost 
plate.”

“There is a white cylindrical holder containing 
several stationery items, including a pair of 
black-handled scissors, a white ruler, a blue 
pen, and a mechanical pencil. To its left lies a 
neatly stacked pile of three hardcover books in 
earthy tones of orange, beige, and blue.”

“A toy car on four books.”

“A table with a basket of eggs on it.”

“An inflatable swimming pool with toy ducks, 
a boat, and a starfish toy.”

“On the desk, a black desk lamp sits on the left, 
accompanied by a white mug filled with pencils. 
The right side is dominated by a tall stack of 
hardcover books, with an open book on top, while 
a small potted plant adds a touch of greenery on 
the far right. A black leather office chair is 
centered behind the desk.”

“A fruit basket containing one banana and two 
apple.”

Figure 11: More results of our method.
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