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Doubly Robust Alignment for Large Language Models
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Abstract
This paper studies reinforcement learning from
human feedback (RLHF) for aligning large lan-
guage models with human preferences. While
RLHF has demonstrated promising results, many
algorithms are highly sensitive to misspecifica-
tions in the underlying preference model (e.g.,
the Bradley-Terry model), the reference policy,
or the reward function, resulting in undesirable
fine-tuning. To address model misspecification,
we propose a doubly robust preference optimiza-
tion algorithm that remains consistent when ei-
ther the preference model or the reference pol-
icy is correctly specified (without requiring both).
Our proposal demonstrates superior and more
robust performance than state-of-the-art algo-
rithms, both in theory and in practice.

1. Introduction
Recent advances in large language models (LLMs) have
revolutionized various natural language processing tasks,
ranging from text generation to human-AI conversation and
more complex reasoning tasks (Brown et al., 2020; Tou-
vron et al., 2023; Guo et al., 2025). These models are typi-
cally trained in two stages. In the pre-training stage, LLMs
learn general linguistic patterns and commonsense knowl-
edge from vast, unlabeled text data through autoregressive
next-token prediction. However, pretrained models face a
critical objective mismatch: while they are optimized for to-
ken prediction, real-world deployment requires alignment
with complex human values such as helpfulness, honesty
and harmlessness (Askell et al., 2021). This mismatch calls
for an additional post-training stage, aiming at better align-
ing these pre-trained models with human preference.

The paper studies reinforcement learning from human feed-
back (RLHF), a post-training paradigm that adapts pre-
trained models through reinforcement learning (RL, Sutton
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et al., 2018). The RLHF literature has rapidly expanded in
recent years, where existing algorithms can be broadly cate-
gorized as reward-based or preference-based (Section 2 for
a review). While demonstrating remarkable success in do-
mains including robotics control, video games, and LLMs
fine-tuning (see e.g., Christiano et al., 2017; Ziegler et al.,
2019; Bai et al., 2022; Bakker et al., 2022; Ouyang et al.,
2022), they often suffer from various model misspecifica-
tions (see also Table 1 for a summary):

1. Preference model misspecification. Most reward-
based algorithms rely on the Bradley-Terry (BT, Bradley
& Terry, 1952) preference model (see Equation 1). How-
ever, this model entails various unrealistic assumptions
on human preference, including transitivity, context-
independence and perfect relationality, which are likely
violated based on empirical evidence (May, 1954; Tver-
sky, 1969; Gardner, 1970; Agranov & Ortoleva, 2015;
Michaud et al., 2020; Milano et al., 2021; Lindner &
El-Assady, 2022). While some preference-based algo-
rithms impose more general preference model (GPM)
assumptions (see e.g., Zhang et al., 2024d), their effec-
tiveness still depends on correct model specification.

2. Reward model misspecification. Under the BT model
assumption, classical reward-based algorithms first esti-
mate the reward function from human preference data
and then apply RL algorithms such as the proximal pol-
icy optimization (?)PPO,][]schulman2017proximal to
derive the optimal policy. However, policy learning
through RL is highly sensitive to the estimated reward.
Misspecifying the reward can lead to reward hacking
(Skalse et al., 2022; Laidlaw et al., 2024) and misguide
policy learning (Kaufmann et al., 2023; Zheng et al.,
2023; Chen et al., 2024).

3. Reference policy misspecification. To alleviate mis-
specification of the reward, recent algorithms based on
direct preference optimization (DPO, Rafailov et al.,
2023) propose to express the reward in closed form
using the reference policy for policy learning. How-
ever, these algorithms are sensitive to the specification
of reference policy (Liu et al., 2024b; Gorbatovski et al.,
2024; Xu et al., 2024).

Drawing from doubly robust estimation methods in econo-
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Figure 1. A visualization of our proposed preference optimization
algorithm. π̂ref denotes the specified reference policy whereas ĝ
denotes the specified preference model. Our proposal is doubly
robust in that it requires correct specification of either the refer-
ence policy, or the preference model.

metrics and RL (see Section 2 for a literature review), we
introduce a novel RLHF algorithm that is robust to model
misspecification and statistically efficient; see Figure 1 for
a visualization of our algorithm. Our major contributions
are summarized as follows:

• We propose a robust and efficient estimator for prefer-
ence evaluation, i.e., evaluating the probability of a target
policy being preferred over the reference policy. The pro-
posed preference estimator achieves two desirable prop-
erties: (i) double robustness (Corollary 3) – it converges
to the true preference probability when either the pref-
erence model or the reference policy is correctly speci-
fied, and (ii) semi-parametric efficiency (Corollary 4) –
it attains the smallest mean squared error (MSE) among
all regular and asymptotically linear estimators (Newey,
1990; Tsiatis, 2006).

• Leveraging this preference estimator, we further develop
a preference optimization algorithm for LLM fine-tuning.
The proposed algorithm maintains double robustness
(Corollary (6)) and remains consistent even when the BT
model assumption is violated (Theorem 5). Meanwhile,
when the BT model assumption holds, its suboptimality
gap is less sensitive to the reward model and reference
policy compared to PPO- or DPO-based algorithms, and
is likely smaller than that of both types of algorithms
(Theorem 7).

2. Related Works
Our work is closely related to reward- and preference-based
RLHF algorithms, as well as doubly robust (DR) methods.
We discuss these related works below.

Reward-based RLHF. Reward-based algorithms assume
the existence of a latent utility or reward function that de-
termines human preferences, estimate the reward function
from the data and apply RL for policy learning. Recent
research has focused on addressing practical challenges

such as reward hacking and model-collapse. These issues
arise due to PPO’s sensitivity to reward specification, gra-
dient clipping thresholds, and the tuning parameter control-
ling KullbackLeibler (KL)-divergence regularization (En-
gstrom et al., 2019; Zheng et al., 2023; Xiao et al., 2024).
Existing approaches to these challenges fall into three cat-
egories: (i) The first category focuses on improving the
reward learning algorithm to obtain more accurate reward
functions (Li et al., 2023b; Chan et al., 2024; Gao et al.,
2024; Liu et al., 2024a; Fu et al., 2025; Xiao et al., 2025; Ye
et al., 2025). (ii) The second category develops better pol-
icy learning algorithms using the estimated reward function
(Wu et al., 2024a; Zhang et al., 2024a; Shao et al., 2024; Hu,
2025; Liu et al., 2025b; Yu et al., 2025; Yuan et al., 2025).
(iii) The third category is DPO-based, which bypasses re-
ward learning entirely and directly optimizes policies under
the BT model assumption (Zhao et al., 2022; Wang et al.,
2023a; Ethayarajh et al., 2024; Song et al., 2024; Tang et al.,
2024).

Unlike many of these algorithms, our proposal does not rely
on the BT model assumption, and is more robust to the
misspecification of reward or reference policy when the BT
model holds.

Preference-based RLHF. Preference-based algorithms do
not assume the existence of a latent reward function at all;
instead, they search the optimal policy that maximizes the
alignment with human preferences (see e.g., Azar et al.,
2024). In particular, there is a growing line of research
that adopts the Nash learning from human feedback (NLHF,
Munos et al., 2023) framework, which formulates the align-
ment problem as a two-player constant-sum game and
solves for policies that achieve the Nash equilibrium (Ca-
landriello et al., 2024; Rosset et al., 2024; Swamy et al.,
2024; Wu et al., 2024b; Ye et al., 2024; Zhang et al., 2024c;
Liu et al., 2025a). Beyond NLHF, (Wang et al., 2023b) de-
velops a Bayesian approach for alignment, whereas (Hong
et al., 2024) and (Zhang et al., 2024d) propose energy-
based and general preference models to relax the BT model
assumption.

Our proposal belongs to this class of preference-based
methods. In particular, the proposed algorithm is most
closely related to the identity preference optimization (IPO)
algorithm proposed by Azar et al. (2024), as both maximiz-
ing the same objective function in the population level (see
Section 4 for the objective). However, unlike IPO, our pro-
posed method is robust to misspecifications of the reference
policy. Similarly, compared to Zhang et al. (2024d), the
proposed algorithm is more robust to the misspecification
of the preference model. Finally, our work differs from
NLHF in its primary focus: we study robust and statisti-
cally efficient preference estimation from data, rather than
developing computationally efficient algorithms to solve
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the Nash equilibrium.

Doubly robust methods. DR has been extensively stud-
ied in statistics, econometrics and machine learning. These
methods originate from the missing data and causal infer-
ence literature (see e.g., Robins et al., 1994; Scharfstein
et al., 1999). To illustrate these methods, consider the fun-
damental causal inference problem of estimating the aver-
age treatment effect (ATE) – the difference in the mean out-
come between a newly-developed treatment policy and a
baseline policy for a given patient population. DR first es-
timates two models from the data: (i) a propensity score
model (similar to the reference policy in LLMs) that char-
acterizes the treatment assignment mechanism and (ii) an
outcome regression model (similar to the reward function)
that specifies the conditional mean function of a patient’s
outcome. It then employs both models to construct the ATE
estimator, whose consistency requires only one of the mod-
els to be correct. Furthermore, when both models are cor-
rect, the resulting estimator is semiparametrically efficient
(Bang & Robins, 2005). The favorable statistical properties
of these methods have led to extensive follow-up research
(see e.g., Tan, 2010; Tsiatis et al., 2011; Imai & Ratkovic,
2014; Vermeulen & Vansteelandt, 2015; Kennedy et al.,
2017; Robins et al., 2017; Wager & Athey, 2018; Wang
& Tchetgen Tchetgen, 2018; Künzel et al., 2019; Oprescu
et al., 2019; Shi et al., 2019; Fulcher et al., 2020; Farrell
et al., 2021; Nie & Wager, 2021; Li et al., 2022; Cui et al.,
2023; Han et al., 2023; Kennedy, 2023; Li et al., 2023a; Cui
et al., 2024; Wang & Shah, 2024; Wang & Han, 2024). A
seminal extension appears in Chernozhukov et al. (2018),
which proposes to learn both the propensity score and out-
come regression models using machine learning methods
to deal with complex data structures with high-dimensional
covariates, texts or images.

Beyond treatment effect estimation in causal inference,
doubly robust methods have been widely applied to a
broad range of other problems, including the estimation
and evaluation of optimal (dynamic) treatment regimes
(Robins, 2004; Zhang et al., 2012; 2013; Schulte et al.,
2015; Luedtke & Van Der Laan, 2016; Fan et al., 2017;
Jiang et al., 2017; Song et al., 2017; Shi et al., 2018), con-
ditional independence testing (Zhang et al., 2019; Shah &
Peters, 2020; Shi et al., 2021; Quinzan et al., 2023; Zhang
et al., 2024b), offline policy learning (Dudík et al., 2014;
Kallus & Uehara, 2020b; Uehara et al., 2020b; Liao et al.,
2022; Shi et al., 2024a) and off-policy evaluation (OPE,
Jiang & Li, 2016; Thomas & Brunskill, 2016; Farajtabar
et al., 2018; Kallus & Zhou, 2018; Bibaut et al., 2019; Tang
et al., 2020; Kallus & Uehara, 2020a; Su et al., 2020; Ue-
hara et al., 2020a; Shi et al., 2022; Xie et al., 2023; Xu et al.,
2023; Cao & Zhou, 2024; Shi et al., 2024b).

However, none of the aforementioned works considers the

application of fine-tuning LLMs – a gap we aim to bridge
by connecting these two vibrant research areas.

3. RLHF Preliminaries: Data, Modeling and
Baseline Algorithms

Data generating process. Assume we are given a
dataset D, consisting of n i.i.d. tuples of the form
(X,Y (1), Y (2), Z). Each of these tuples is generated
as follows: Given a prompt X , two independent re-
sponses (Y (1), Y (2)) are generated under a reference pol-
icy πref such that Y (1), Y (2) ∼ πref(•|X). These data
(X,Y (1), Y (2)) are then shown to a human expert, who
provides a binary preference Z = I(Y (1) ≻ Y (2)) where
Y (1) ≻ Y (2) indicates that the first response is pre-
ferred, and I(•) denotes the indicator function. Addi-
tionally, let g∗ denote the preference function such that
g∗(X,Y (1), Y (2)) = P(Y (1) ≻ Y (2)|X) determines the
probability of Y (1) being favored over Y (2) conditional on
X .

We remark that the reference policy πref is not always
known. For instance, the responses might be generated
by an LLM different from the target model that we wish
to fine-tune (Bai et al., 2022). Furthermore, the responses
might be produced by a heterogeneous set of models rather
than a single model (Stiennon et al., 2020).

BT model. As commented in Section 2, most existing
reward-based RLHF algorithms impose the BT model as-
sumption, which requires the preference function g∗ to take
the following form,

g∗(x, y(1), y(2)) = σ(r∗(y(1), x)− r∗(y(2), x)), (1)

where r∗ denotes some underlying reward function that
measures how well a response answers a given prompt, and
σ denotes the sigmoid function. As commented in the intro-
duction, this assumption is likely violated due to the inher-
ent intransitivity, inconsistency and stochasticity in human
preference.

Assuming (1) holds, the goal is to learn an optimal policy
π∗ that maximizes the expected reward

J(π) = E[Ey∼π(•|X)r
∗(y,X)], (2)

among all policies π. Here, the outer expectation is taken
with respect to the prompt distribution, whereas the inner
expectation is taken with respect to the response generated
by a given policy π.

We next introduce two types of baseline algorithms – PPO-
based and DPO-based – for learning π∗. Both approaches
operate under Assumption (1).

PPO-based approaches. PPO-based algorithms proceed
in two steps. In the first step, they compute an estimated
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Table 1. Robustness of different algorithms to model misspecification. Our algorithm is denoted by DRPO, short for doubly robust
preference optimization.

Robust to misspecified: preference model reward model reference policy

RLHF

Reward-based PPO-type 7 7 3
DPO-type 7 3 7

Preference-based
IPO (Azar et al., 2024) 3 - 7
GPM (Zhang et al., 2024d) 7 - 3
DRPO 3 3 3

reward function r̂ using maximum likelihood estimation or
empirical risk minimization. In the second step, they learn
π∗ by maximizing

EX∼D, y∼π(•|X) [r̂(y,X)]−β DKL [π(y | X) ∥πref(y | X)] ,
(3)

over π ∈ Π (e.g., a transformer-based policy class), where
the expectation is taken over prompts X from the empir-
ical data distribution and responses y from a target pol-
icy π, DKL denotes the KL divergence measure between
the target and reference policies, and the tuning parameter
β > 0 controls the degree to which π is allowed to deviate
from πref. The KL regularization term in (3) encourages the
learned policy to stay close to πref, in order to mitigate over-
fitting and prevent the learned policy from collapsing to a
narrow set of high-reward responses (Zheng et al., 2023).

DPO-based approaches. DPO-based algorithms are moti-
vated by the fact that the argmax to (3) (denoted by π̂) can
be represented in closed-form using the estimated reward
r̂. This in turn yields the following closed-form expression
for r̂,

r̂(y, x) = β log

(
π̂(y|x)
πref(y|x)

)
− C(x), (4)

for some response-independent functionC(x) that will can-
cel out in pairwise comparisons. As such, instead of solv-
ing π̂ in two steps, DPO-based approaches directly parame-
terize the reward via Equation (4) and compute π̂ in a single
step – for example, by maximizing the likelihood of the hu-
man preference data under the BT model.

To conclude this section, we note that, as shown in Equa-
tion (3), the optimal policy computed by PPO can be highly
sensitive to the estimated reward function r̂. While DPO-
based approaches eliminate this dependence, Equation (4)
reveals that their optimization relies on the specification of
the reference policy πref. Due to these sensitivities, even
under the idealized setting where the BT model holds, both
PPO- and DPO-based algorithms can underperform our
proposed algorithm, which is inherently more robust to mis-
specification in both r̂ and πref. We provide theoretical jus-
tification in Section 5 and empirical validation in Section
6.

4. Double Robust Preference Evaluation and
Optimization

This section introduces the proposed doubly robust ap-
proach; see Figure 1 for a visualization. Different from
these reward-based algorithms discussed in Section 3, we
adopt a preference-based approach that searches the opti-
mal policy by maximizing its total preference. Specifically,
given a target policy π, its total preference over the refer-
ence policy (Azar et al., 2024) is defined by

p∗(π) := P(π ≻ πref) = E[Ey∼π(•|X),y′∼πref(•|X)g
∗(X, y, y′)],

where we recall that g∗ denotes the preference function
P(y > y′|X), and the outer expectation is taken with re-
spect to the prompt distribution. As both Y (1) and Y (2) are
generated under πref, we have

p∗(π) =
1

2

2∑
a=1

E[Ey∼π(•|X)g
∗(X, y, Y (a))]. (5)

For preference evaluation, our goal is to accurately estimate
p∗(π) for a given target policy π from the dataset D. In
the following, we first introduce two baseline estimators: a
direct method (DM) estimator and an importance sampling
(IS) estimator, where the names are borrowed from the OPE
literature (see e.g., Uehara et al., 2022). We next introduce
our proposed DR estimator, which combines both DM and
IS for efficient and robust preference evaluation.

DM estimator. The direct method estimator is motivated
by (5). It proceeds by first estimating g∗ and then plugging
the estimated g∗ (denoted by ĝ) into (5) to construct the
estimator,

p̂DM(π) =
1

2
EX∼D,y∼π(•|X)[ĝ(X, y, Y

(1))+ĝ(X, y, Y (2))],

(6)
where X is drawn from the empirical data distribution, y
is drawn from π and the expectation can be approximated
using Monte Carlo sampling.

When an external preference model is available, it can be
used directly as ĝ, as in (Munos et al., 2023). Otherwise, g∗

can be estimated from the data D. For instance, under the
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BT model assumption, one can estimate the reward func-
tion r∗ and plug the estimator into (1) to derive ĝ. Alter-
natively, one can employ more general preference models
that do not rely on the BT model.

IS estimator. The second baseline estimator is the IS
estimator, which is motivated by the following lemma
that expresses p∗(π) using the IS ratio w(y, x) =
π(y|x)/πref(y|x).
Lemma 1. Assume w(y, x) < ∞ for any x, y. Then
p∗(π) = 1

2E[w(Y
(1), X)Z + w(Y (2), X)(1− Z)].

The proof of Lemma 1 is straightforward. It follows di-
rectly from the symmetry of pairwise comparisons where
the preference can be equivalently expressed using either
g∗(X, y, y′) or 1 − g∗(X, y′, y), and an application of the
change-of-measure theorem (see Appendix A.1).

Based on this identity, we define the following IS estimator:

p̂IS(π) =
1
2E(X,Y (1),Y (2),Z)∼D

[
π(Y (1)|X)
π̂ref(Y (1)|X)

Z

+ π(Y (2)|X)
π̂ref(Y (2)|X)

(1− Z)
]
, (7)

where π̂ref denotes an estimated reference policy. If πref is
known, we can directly use the oracle reference policy. Oth-
erwise, for some external datasets (e.g., Bai et al., 2022),
well-trained reference models are available and can be used
as π̂ref. Finally, when no such external model is available
and πref is unknown, we estimate it from the observed data
tuples (X,Y (1), Y (2)) using supervised fine-tuning (SFT).

DR estimator. A closer look at Equations (6) and (7) re-
veals that the DM and IS estimators’ consistencies depend
crucially on the correct specification of the preference func-
tion and the reference policy. We next introduce our pro-
posed DR estimator, which is more robust to misspecifica-
tions in these models. It relies on the following estimating
function ψ(X,Y (1), Y (2), Z;π, π̂ref, ĝ), defined as

1

2

2∑
a=1

Ey∼π(•|X)[ĝ(X, y, Y
(a))]

+
1

2

2∑
a=1

(−1)a−1 π(Y (a)|X)

π̂ref(Y (a)|X)
[Z − ĝ(X,Y (1), Y (2))].

(8)

By definition, this estimating function contains two terms:
(i) the first term is essentially the estimating function of
the DM estimator in (6), and (ii) the second term is an
augmentation term, which is similar to IS in (7), but
with the observed preference Z replaced by its residual
Z − ĝ(X,Y (1), Y (2)). The purpose of introducing the ad-
ditional augmentation term is to correct for the bias intro-
duced by misspecification of the preference model in the

DM estimator. This leads to our DR estimator,

p̂DR(π) = E(X,Y (1),Y (2),Z)∼Dψ(X,Y
(1), Y (2), Z;π, π̂ref, ĝ).

(9)

Similar to the DR estimator in the bandit setting (Dudík
et al., 2014), (9) is reduced to the DM estimator when
setting ĝ to zero, and the IS estimator when setting the
IS ratio π/π̂ref to zero. However, as shown in (8), a key
different from those bandit estimators is that in our pair-
wise comparison setting, each data tuple is used twice –
as (X,Y (1), Y (2), Z) and (X,Y (2), Y (1), 1 − Z) – in con-
structing the estimating function. This effectively reduces
the variance of the resulting estimator. As a result, we will
formally show in Section 5 that our DR estimator is semi-
parametrically efficient. Additionally, we will establish the
consistency of (9) when either ĝ or π̂ref is correctly speci-
fied.

Preference optimization. For preference optimization,
our goal is to identify the optimal policy that maximizes
the average total preference p∗(π). Under the BT model
assumption, it is immediate to see that the argmax is equiv-
alent to π∗ defined in (2). Given the proposed DR estimator,
we estimate the optimal policy by solving

π̂ = argmax
π∈Π

{
p̂DR(π)

− βEX∼DDKL[π(• | X) ∥ π̂ref(• | X)]
}
. (10)

We refer to (10) as DRPO, short for doubly robust pref-
erence optimization. Theoretically, we will show in Sec-
tion 5 that our estimated policy π̂ achieves a smaller regret
bound than PPO- and DPO-type algorithms when the BT
assumption holds. Practically, we implement three refine-
ments to stabilize the training: (i) clipping the IS ratio to
avoid extremely large IS ratio; (ii) designing a pseudo ob-
jective function to enable Monte Carlo sampling from the
target policy during optimization; (iii) adopting the KL di-
vergence measure from the group relative policy optimiza-
tion (Shao et al., 2024) for variance reduction. Details are
relegated to Appendix B to save space.

5. Theoretical Analysis
We begin with a summary of our theories; Figure ?? out-
lines the roadmap. Our theories are concerned with (i) the
MSE of our preference evaluation estimator p̂DR(π) (see
(9)), and (ii) the regret bounds of π̂ (see (10)) computed
by the proposed preference optimization algorithm. Specif-
ically, Theorem 2 provides a finite sample upper bound for
the MSE of p̂DR(π), which in turn yields its double robust-
ness (Corollary 3) and semi-parametric efficiency (Corol-
lary 4). Meanwhile, Theorem 5 upper bounds the differ-
ence in total preference between the optimal in-class policy

5
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and π̂, without assuming the BT model holds. It reveals
the double robustness property of our preference optimiza-
tion algorithm (Corollary 6). When the BT model holds,
Theorem 7 further upper bounds the suboptimal gap of π̂,
demonstrating that it general achieves smaller gaps than
PPO- and DPO-based algorithms.

We next introduce some technical conditions.

Assumption 1 (Coverage). Both π/πref and π/π̂ref are up-
per bounded by ϵ−1 for some constant ϵ > 0.

Assumption 2 (Boundedness). When the BT model holds,
both the oracle reward function r∗ and its estimator are
bounded functions.

Assumption 3 (Realizability). When the BT model holds,
π∗ that maximizes the expected reward (see (2)) belongs to
the parameterized policy class Π in (10).

Assumption 4 (Model complexity). Π belongs to the Vap-
nikChervonenkis (VC) type class (Chernozhukov et al.,
2014, Definition 2.1) with a finite VC index v > 0.

We remark that similar coverage, boundedness and realiz-
ability assumptions are commonly imposed in the OPE and
RL literature (see e.g., Chen & Jiang, 2019; Fan et al., 2020;
Uehara et al., 2022). The VC-class condition is also fre-
quently assumed in statistics and machine learning (see e.g.,
Van Der Vaart et al., 1996; Shalev-Shwartz & Ben-David,
2014).

MSE of p̂DR(π). We next study the statistical properties of
the proposed preference estimator p̂DR(π). Without loss
of generality, we also assume both π̂ref and ĝ (or r̂, in
the case where the BT model holds) are obtained from ex-
ternal models independent of D. This condition is mild.
Even when such external models are not available and π̂ref
and ĝ are learned internally from D, independence can
be preserved using sample-splitting and cross-fitting (Cher-
nozhukov et al., 2018).

Theorem 2 (MSE). Under Assumption 1, with
n data tuples, the semi-parametric efficiency
bound (SEB) for estimating p∗(π) is given by
n−1Var(ψ(X,Y (1), Y (2), Z;π, πref, g

∗)). Additionally, the
MSE of our p̂DR(π) equals

SEB +O

(
1

n
∥ĝ − g∗∥

)
+O

(
1

n
∥ π̂ref

πref
− 1∥

)
+O

(
∥ π̂ref

πref
− 1∥2 · ∥ĝ − g∗∥2

)
, (11)

where ∥π̂ref/πref − 1∥ and ∥ĝ − g∗∥ denote the root mean
squared errors of π̂ref/πref and ĝ; see Appendix A.3 for their
definitions.

The first part of Theorem 2 establishes the SEB – the
smallest-possible MSE that one can hope for estimating

p∗(π). The second part upper bounds the excess MSE of
our estimator over SEB. Specifically, this excess MSE con-
sists of three parts: the first two are excess variance terms
arising from estimation errors in the reference policy and
the preference model, while the third is a bias term intro-
duced by these estimation errors. Notably, both variance
terms scales as O(n−1), whereas the SEB itself is also of
the orderO(n−1) under the coverage assumption given ϵ is
a constant. Consequently, when either π̂ref or ĝ is correctly
specified, the MSE of p̂DR(π) coverages to zero as the sam-
ple n approaches to infinity. This establishes the double
robustness property of our estimator, which we state below.

Corollary 3 (Doubly robust evaluation). Under Assump-
tion 1, when either π̂ref or ĝ is correctly specified, the MSE
of p̂DR(π) decays to zero as n approaches to infinity.

We next consider the case where both π̂ref and ĝ are “ap-
proximately” correct in that both root MSEs ∥π̂ref/πref−1∥
and ∥ĝ − g∗∥ decay to zero as n → ∞. Since SEB is
of the order O(n−1), the first two variance terms in (11)
decay to zero at a much faster rate than SEB. Meanwhile,
when the product ∥π̂ref/πref − 1∥∥ĝ− g∗∥ = o(n−1/2), the
last bias term in (11) becomes negligible compared to SEB
as well. Together, these conditions imply that the MSE of
p̂DR(π) asymptotically matches the SEB, which establishes
the semi-parametric efficiency of our estimator. We also re-
mark that conditions similar to ∥π̂ref/πref − 1∥∥ĝ − g∗∥ =
o(n−1/2) are widely assumed in the literature (see e.g.,
Chernozhukov et al., 2018; Farrell et al., 2021; Kallus &
Uehara, 2022).

Corollary 4 (Semi-parametric efficiency). Under Assump-
tion 1, when both ∥ π̂ref

πref
− 1∥ and ∥ĝ − g∗∥ decay to

zero as n → ∞, and their product is o(n−1/2), then
MSE(p̂DR(π))/SEB → 1 as n→ ∞.

Regret of π̂. Next, we derive the statistical properties of the
proposed policy π̂. When the BT model assumption is vio-
lated, we measure the regret of a given policy π using the
gap between the total preference of the best in-class policy
and that of π, i.e., Reg(π) = supπ′∈Π p

∗(π′) − p∗(π). By
definition, a smaller regret indicates a better policy.

Theorem 5 (Regret). Under Assumptions 1 (assuming it
holds for any π ∈ Π) and 4, then

Reg(π̂) = O
(
β +

√
v

n
+
v

n
+ ∥π̂ref/πref − 1∥∥ĝ − g∗∥

)
.

(12)

It can be seen from (12) that the regret bound depends on
several factors: (i) it decays with the sample size n; (ii) it
increases with the regularization parameter β in the KL di-
vergence penalty; (iii) it increases with v, which measures
the complexity of the policy class; (iv) it decreases with the
estimating error of the reference policy and the preference
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model. Crucially, the last dependence appears as the prod-
uct ∥π̂ref/πref − 1∥∥ĝ − g∗∥, which enables us to establish
the double robustness property in the context of preference
optimization.

Corollary 6 (Doubly robust optimization). Suppose β → 0
as n→ 0. Under the conditions in Theorem 5, when either
π̂ref or ĝ is correctly specified, the regret of π̂ decays to zero
as n→ ∞.

Finally, we restrict our attention to the ideal setting where
the BT model holds and upper bound the suboptimality gap,
defined as the difference in the expected reward between
the optimal policy π∗ and our π̂, i.e., J(π∗)− J(π̂).

Theorem 7 (Suboptimality gap). Suppose the BT model
assumption in (1) holds. Under Assumptions 2, 3, and the
conditions in Theorem 5, the suboptimality gap of π̂ is up-
per bounded by

O
(
β +

√
v

n
+
v

n
+ ∥π̂ref/πref − 1∥∥r̂ − r∗∥

)
. (13)

Meanwhile, for PPO-based algorithms, their suboptimality
gaps are bounded by

O
(
β +

√
v

n
+
v

n
+ ∥r̂ − r∗∥

)
. (14)

Finally, for DPO-based algorithms, their suboptimality
gaps are bounded by

O
(
exp(−c̄β−1) +

1

β

√
v

n
+ ∥π̂ref/πref − 1∥

)
, (15)

for some constant c̄ > 0, under conditions specified in Ap-
pendix A.7.

According to (13) and (14) that, by using a sufficiently
small β, the suboptimality gaps of PPO-based and our
algorithms are of the order O(n−1/2 + ∥r̂ − r∗∥) and
O(n−1/2 + ∥π̂ref/πref − 1∥∥r̂ − r∗∥), respectively. As for
DPO-based algorithms, For DPO-based algorithms, setting
β = c̄−1C log n for some constant C > 0 makes the
first term in (15) of order O(n−C), which can be made
arbitrarily small with a sufficiently large C. The second
term remains of order O(n−1/2) up to a logarithmic factor,
yielding an overall suboptimality gap of O(n−1/2 log n +
∥π̂ref/πref − 1∥). Consequently, our algorithm’s subopti-
mality gap is more robust to estimation errors in the ref-
erence policy and preference model, as these errors influ-
ence our bound only through their product. In contrast,
for PPO- and DPO-based algorithms, these errors affect
their suboptimality bounds in the first order. In particular,
when these errors converge to zero at a rate of O(n−c) for
some 0 < c < 1/2, our algorithm achieves strictly smaller
suboptimality bounds than both DPO- and PPO-based algo-
rithms.

Figure 2. MSEs of different preference evaluation estimators on
the IMDb dataset. Shaded areas visualize the 95% confidence
bands.

6. Experiments
In this section, we first use the IMDb dataset (Maas et al.,
2011) to empirically validate the double robustness prop-
erty of our preference estimator p̂DR (Equation 9) estab-
lished in Corollary 3. We next compare the proposed prefer-
ence optimization algorithm (Equation 10) against baseline
approaches on the Too Long; Didn’t Read (TL;DR, Völske
et al., 2017) and Anthropic Helpful and Harmless (HH, Bai
et al., 2022) datasets.

6.1. Preference Evaluation

Task and objective. We consider the controlled sentiment
generation task which aims to produce positive movie re-
views using the IMDb dataset. We first apply SFT to
the EleutherAI/gpt-neo-125m base model (Black
et al., 2021), which serves as the reference policy for re-
sponse generation. The generated responses are then an-
notated using a pre-trained sentiment classifier to produce
preference labels. Using these synthetic data, we train an
optimal policy via DPO. Our objective in this section is
to evaluate the total preference of this DPO-trained pol-
icy over the SFT-based reference policy. Its oracle value,
computed via Monte Carlo, is 0.681. Additional details
on data generation and model training are provided in Ap-
pendix C.1.

Evaluation and result. To empirically assess the dou-
ble robustness property, we evaluate four variants of
our preference estimator, each with either the preference
model and/or the reference policy correctly specified or
misspecified. To misspecify the preference model, we
set ĝ to a uniformly random value in [0, 1]. To mis-
specify the reference policy, we use the unfine-tuned
EleutherAI/gpt-neo-125m base model. Figure 2
displays the MSEs (solid lines on left panel) and their as-
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sociated 95% confidence intervals (shaded areas) of the
four estimators across different sample sizes, averaged over
500 simulations. It can be seen that the estimator with
both models misspecified (red line) exhibits a significantly
larger MSE than the other three and shows minimal im-
provement beyond 800 samples. To the contrary, when
either the preference model or the reference policy is cor-
rectly specified (yellow and green lines), the MSE is sub-
stantially reduced with a moderately large sample size.
This aligns with the double robustness property. Mean-
while, the estimator with both correctly specified models
(blue line) achieves the lowest MSE (being very close to
zero with 1500 data tuples), supporting its semiparametric
efficiency.

6.2. Preference Optimization

Tasks and objective. This section considers two tasks:
summarization and human dialogue. First, for summariza-
tion, we use the TL;DR dataset with preference annota-
tions from (Stiennon et al., 2020) (lengthy Reddit posts as
prompts, behavioral SFT models’ summaries as responses)
to fine-tune LLMs for concise, informative summaries. The
SFT and reward models for this task are from cleanrl
(Huang et al., 2024), with the SFT model trained on a sim-
ilar but different dataset. Second, for human dialogue, the
HH dataset (human queries as prompts) is used to align
LLMs for helpful responses. Its SFT and reward models are
trained using TRL (von Werra et al., 2020) framework due
to the unavailability of pre-existing ones. For each task, a
reward-based BT preference model (using the same reward
model for PPO training) and a general preference model
(Zhang et al., 2024d) are adopted to serve as ĝ (donating as
DRPO-BT and DRPO-GPM). Refer to more details of the
implementation and baseline training in Appendix C.2.

Evaluation and result. Given the absence of ground-
truth preference or reward models, we follow prior work
(Rafailov et al., 2023; Wu et al., 2024a; Ye et al., 2025)
and use GPT-4o-mini to assess the quality of generated
responses (details in Appendix C.2). Win rates at default
temperature 1.0 are presented in Figure 3, with results at
other temperatures presented in Appendix D. In summariza-
tion, both DRPO-BT and DRPO-GPM largely outperform
DPO and PPO. For this task, we use an external reference
policy model for π̂ref , which is likely misspecified due to
being trained on a different dataset. This likely contributes
to DPO’s poor performance. However, despite relying on
the same reference policy, the superior performance of our
algorithms highlights their robustness to reference policy
misspecification. In human dialogue, DRPO-GPM demon-
strates the best performance, whereas DRPO-BT outper-
forms PPO and achieves comparable performance to DPO.
The relatively weaker performance of PPO suggests poten-
tial misspecification in the reward model for this task. De-

spite using the same reward model, DRPO-BT effectively
mitigates this challenge and achieves a win rate of 57%
against PPO, demonstrating its robustness. Finally, it is
worth highlighting that the hyperparameters for our method
are not extensively tuned, unlike the baselines – particularly
PPO, for which the best-performing version is reported –
further demonstrating the robustness of our proposal.

(a) TLDR

(b) HH

Figure 3. Pairwise win rate matrices between different methods
across two datasets. Each entry indicates how often the row
method outperforms the column method; higher values denote bet-
ter performance.

8
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A. Technical Proof
In this section, we present the regularity conditions and proofs for all the lemmas and theorems. By nature, the vocabulary
size is finite; as such, all random variables – including the prompts X and the responses Y – are discrete. We assume that
ϵ in the coverage assumption is a constant , which is why it does not explicitly appear in the error bound. However, in the
proof of Theorems, for completeness, we will explicitly highlight how the leading terms of the error bounds depend on ϵ.

A.1. Proof of Lemma 1

By direct calculation, it follows that

E
{
w(Y (1), X)Z

}
= E

{
E

[
π(Y (1)|X)

πref(Y (1)|X)
I{Y (1) ≻ Y (2)}

∣∣∣∣∣X,Y (1), Y (2)

]}

= E
{
π(Y (1)|X)

πref(Y (1)|X)
g∗
(
Y (1), Y (2), X

)}
= E

{∑
y

π(y|X)g∗
(
y, Y (2), X

)}
= E

{
Ey∼π(•|X)g

∗
(
y, Y (2), X

)}
,

where the first equality is derived by the law of total expectation, the second equality follows from the definition of the
preference function g∗, and the third equality follows from the change-of-measure theorem (e.g., RadonNikodym theorem).

Following a similar argument and using the fact that 1− Z = I(Y (2) ≻ Y (1)), we obtain

E
{
w(Y (2), X)(1− Z)

}
= E

{
Ey∼π(•|X)g

∗
(
y, Y (1), X

)}
.

Consequently, p∗(π) = 1
2E[w(Y

(1), X)Z + w(Y (2), X)(1− Z)], which finishes the proof of the lemma.

A.2. Auxiliary lemma for proving Theorem 2

Before proceeding to the proof of Theorem 2, we first introduce an auxiliary lemma.

Lemma A8. Under Assumption 1, with n independent data tuple Wi = (Xi, Y
(1)
i , Y

(2)
i , Zi), i = 1, . . . n,

the efficient influence function (see e.g., Tsiatis, 2006, for the detailed definition) for p∗(π) is given by
1
n

∑n
i=1 ψ(Xi, Y

(1)
i , Y

(2)
i , Zi;π, πref, g

∗)− p∗(π), with ψ defined in equation (8).

Proof of Lemma A8. To simplify notation, we denote ψ(W ) = ψ(X,Y (1), Y (2), Z;π, πref, g
∗). Let M denote the model

that generates these data triplets, which are i.i.d. copies of W = (Z, Y (1), Y (2), X). This model involves three types of
parameters: (i) those to model the probability mass function fX(•) of the prompt X (denoted by γ); (ii) those to model
the reference policy which generates response Y (1), Y (2) independently conditional on the prompt X (denoted by b) and
(iii) those to model the preference probability g∗ which characterize the probability of Y (1) is preferred than Y (2) given X
(denoted by η). Then the likelihood function for a data tuple W is given by

l(W ; γ, b, η) = fγ(X)πb(Y
(1)|X)πb(Y

(2)|X)gη(Y
(1), Y (2), X)Z(1− gη(Y

(1), Y (2), X))1−Z . (16)

Additionally, let (γ0, b0, η0) denote the true parameters in the model so that fγ0 = fX , πb0 = πref and gη0 = g∗.

The proof follows from standard techniques in semi-parametric statistic; see e.g., Chapters 2 & 3 in Bickel et al. (1998)
and Theorem 3.5 in Tsiatis (2006). See also the proof of Theorem 1 in (Kallus & Uehara, 2020a). Specifically:

1. For any given policy π, we first prove that E[{ψ(W )− p∗(π)}∇ log l(W ; γ0, b0, η0)] is a valid derivative of p∗(π) with
respect to the parameters (γ0, b0, η0), where ∇ denotes the gradient operator.

2. We next prove that ψ(W )− p∗(π) lies in the tangent space of the data generating process model M (denoted by TM),
that is, ψ(W )− p∗(π) ∈ TM.
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Step 1: E[{ψ(W )− p∗(π)}∇ log l(W ; γ0, b0, η0)] is a valid derivative of p∗(π) with respect to (γ0, b0, η0).
Noted that the log-likelihood has zero mean. Therefore, in order to prove step 1, we only need to verify the following three
equations hold.

(i) E
{
ψ(W ) ∂

∂γ log l(W ; γ0, b0, η0)
}
= ∂

∂γ p
∗(π)|γ=γ0

,

(ii) E
{
ψ(W ) ∂

∂b log l(W ; γ0, b0, η0)
}
= ∂

∂bp
∗(π)|b=b0 ,

(iii) E
{
ψ(W ) ∂

∂η log l(W ; γ0, b0, η0)
}
= ∂

∂ηp
∗(π)η=η0

.

By definition, p∗(π) can be represented as

p∗(π) = E[Ey1∼πθ,y2∼πrefP(y1 ≻ y2|X)]

=
∑

x,y1,y2

g∗(y1, y2, x)π(y1|x)πref(y2|x)fX(x).

Let w = (x, y1, y2, z) denote the realization of W = (X,Y (1), Y (2), Z). It follows from equation (16) that

log l(w; γ, b, η) = log fγ(x) + log πb(y1|x) + log πb(y2|x)
+z log gη(y1, y2, x) + (1− z) log(1− gη(y1, y2, x)). (17)

With some calculations, we obtain
∂

∂γ
log l(w; γ0, b0, η0) =

1

fX(x)

∂

∂γ
fγ(x)

∣∣∣
γ=γ0

,

∂

∂b
log l(w; γ0, b0, η0) =

1

πref(y1|x)
∂

∂b
πb(y1|x)

∣∣∣
b=b0

+
1

πref(y2|x)
∂

∂b
πb(y2|x)

∣∣∣
b=b0

,

∂

∂η
log l(w; γ0, b0, η0) =

(
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)
∂

∂η
gη(y1, y2, x)

∣∣∣
η=η0

.

In the following proof, we omit |γ=γ0
, |b=b0 and |η=η0

to ease notation.

For equation (i): Let Ber(p) denote the Bernoulli distribution with success probability p. The left-hand-side (LHS) of
equation (i) can be represented by

E
{
ψ(W )

∂

∂γ
log l(W ; γ0, b0, η0)

}
=

1

2

∑
x,y1,y2

Ez∼Ber(g∗(y1,y2,x))

{(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
(z − g∗(y1, y2, x))

×πref(y1|x)πref(y2|x)
∂

∂γ
fγ(x)

}
+
1

2

∑
x,y1,y2,y∗

(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y
∗|x)πref(y1|x)πref(y2|x)

∂

∂γ
fγ(x)

Using the fact that Ez∼Ber(g∗(y1,y2,x)) {z − g∗(y1, y2, x)} = 0, the first term on the right-hand-side (RHS) of the above
equation vanishes. Therefore,

E
{
ψ(W )

∂

∂γ
log l(W ; γ0, b0, η0)

}
=
1

2

∑
x,y1,y∗

g∗(y∗, y1, x)π(y
∗|x)πref(y1|x)

∂

∂γ
fγ0

(x)

+
1

2

∑
x,y2,y∗

g∗(y∗, y2, x)π(y
∗|x)πref(y2|x)

∂

∂γ
fγ0

(x)

=
∑

x,y,y∗

g∗(y∗, y, x)π(y∗|x)πref(y|x)
∂

∂γ
fγ0

(x)

=
∂

∂γ
p∗(π).
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For equation (ii): Notice that the LHS of equation (ii) can be represented as

E
{
ψ(W )

∂

∂b
log l(W ; γ0, b0, η0)

}
=

1

2

∑
x,y1,y2

Ez∼Ber(g∗(y1,y2,x))

{(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)(
1

πref(y1|x)
∂

∂b
πb(y1|x) +

1

πref(y2|x)
∂

∂b
πb(y2|x)

)
× (z − g∗(y1, y2, x))πref(y1|x)πref(y2|x)fX(x)

}

+
1

2

∑
x,y1,y2,y∗

(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y
∗|x) ∂

∂b
[πb0(y1|x)πb0(y2|x)]fX(x).

Follows a similar argument in proving equation (i), the first term on the RHS equals zero. The second term can be further
represented by

1

2

∂

∂b

∑
x,y1,y2,y∗

(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y
∗|x)πb0(y1|x)πb0(y2|x)fX(x)

=
1

2

∂

∂b

∑
x,y1,y∗

g∗(y∗, y1, x)π(y
∗|x)πb0(y1|x)fX(x)

+
1

2

∂

∂b

∑
x,y∗,y2

g∗(y∗, y2, x)π(y
∗|x)πb0(y2|x)fX(x)

=
∑

x,y,y∗

g∗(y∗, y, x)π(y∗|x) ∂
∂b
πb0(y|x)fX(x)

=
∂

∂b
p∗(π).

This finishes the proof of equation (ii).

For equation (iii): Its LHS can be represented as

E
{
ψ(w)

∂

∂η
log l(w; γ0, b0, η0)

}
=

1

2

∑
x,y1,y2

Ez∼Ber(g∗(y1,y2,x))

{(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
(z − g∗(y1, y2, x))

×πref(y1|x)πref(y2|x)
(

z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)
∂

∂η
gη(y1, y2, x)fX(x)

}

+
1

2

∑
x,y1,y2,y∗

Ez∼Ber(g∗(y1,y2,x))

{
(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y

∗|x)πref(y1|x)

×πref(y2|x)fX(x)

(
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)
∂

∂η
gη(y1, y2, x).

The second term is equal to zero due to the fact that

Ez∼Ber(g∗(y1,y2,x))

{
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

}
= 0.

17
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On the other hand, since

Ez∼Ber(g∗(y1,y2,x))

{
(z − g∗(y1, y2, x))

(
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)}
= g∗(y1, y2, x)× (1− g∗(y1, y2, x))

1

g∗(y1, y2, x)

+(1− g∗(y1, y2, x))× (−g∗(y1, y2, x))
−1

1− g∗(y1, y2, x)

= 1,

the LHS in equation (iii) can be further represented by

1

2

∑
x,y1,y2

(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
πref(y1|x)πref(y2|x)

∂

∂η
gη(y1, y2, x)fX(x)

=
1

2

∑
x,y1,y2

(π(y1|x)πref(y2|x)− π(y2|x)πref(y1|x))
∂

∂η
gη(y1, y2, x)fX(x)

=
∑

x,y1,y2

π(y1|x)πref(y2|x)
∂

∂η
gη(y1, y2, x)fX(x)

=
∂

∂η
p∗(π) (18)

where the second-to-last equality follows from the fact ∂
∂η gη(y1, y2, x) = − ∂

∂η gη(y2, y1, x). This finishes the proof of
equation (iii).

Thus, with equation (i) - (iii) verified, Step 1 is proven.

Step 2: ψ(W )− p∗(π) lies in the tangent space TM.
By definition, the tangent space TM is the linear closure of the set of score functions of the all one-dimensional submodels
regarding M that pass through true parameter; see Definition 2 in (Kallus & Uehara, 2020a). Based on the likelihood
function in equation (17), we can explicitly calculate the tangent space of the data generating process model M. In fact,
the tangent space TM is a product space, which can be represented as Tf

⊕
Tπ
⊕

Tg , with Tf , Tπ, Tg being the sets of score
functions of all one-dimensional submodels passing through the marginal distribution fX(x), conditional distribution πref
and preference probability g∗. Take the calculation of Tf as an example. Consider a one-dimensional submodel {fε(x)},
defined as

fε(x) = f(x)(1 + εq(x)),

where q(x) satisfies
∑

x f(x)q
2(x) < ∞. Since we require fε to be a valid probability mass function, it must satisfy∑

x fε(x) = 1, which indicates Eq(X) = 0. Then the score function with respect to ε is given by

d

dε
log fε(x) = q(x).

Therefore, the tangent space for the marginal distribution function f(x) can be represented as

Tf =

{
q(x) : E[q(X)] = 0,

∑
x

f(x)q2(x) <∞

}
.

Following similar arguments, we can obtain

Tπ =

{
q(y1, x) + q(y2, x) : Ey∼πref [q(y, x)|X = x] = 0,

∑
y

πref(y|x)q2(y, x) <∞

}
,

Tg =

{
z − g∗(y1, y2, x)

g∗(1− g∗)
q(y1, y2, x) :

∑
x,y1,y2

q2(x, y1, y2)f(x)πref(y1|x)πref(y2|x) <∞

}
.

18
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To verify ψ(W )− p∗(π) lies in the tangent space, consider the following three functions:

ψ1(w) :=

(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
(z − g∗(y1, y2, x))πref(y1|x)πref(y2|x)fX(x)

=
z − g∗(y1, y2, x)

g∗(1− g∗)
g∗(1− g∗) (π(y1|x)πref(y2|x)− π(y2|x)πref(y1|x)) fX(x),

ψ2(y1, y2, x) := Ey∗∼π {g(y∗, y1, x) + g(y∗, y2, x)} − 2Ey∼πref(•|x)

y∗∼π(•|x)
{g(y∗, y, x)} ,

ψ3(x) := 2Ey∼πref(•|x)

y∗∼π(•|x)
{g(y∗, y, x)} − 2p∗(π).

It is easy to verify that ψ1(W ) ∈ Tg , ψ2(Y
(1), Y (2), X) ∈ Tπ and ψ3(X) ∈ Tf . Therefore,

ψ(W )− p∗(π) =
1

2

(
ψ1(W ) + ψ2(Y

(1), Y (2), X) + ψ3(X)
)
∈ TM.

This finishes the proof of Step 2.

With Step 1 and Step 2 verified, together with the fact that Eψ(W ) = p∗(π), we obtain that ψ(W ) is an efficient influence
function.

A.3. Proof of Theorem 2

Let En denote the empirical average over the n tuples (X,Y (1), Y (2), Z) in the dataset D. We further define the following
norms:

∥ĝ − g∗∥ =

(
E
[
ĝ(Y (1), Y (2), X)− g∗(Y (1), Y (2), X)

]2)1/2

∥π̂ref/πref − 1∥ = max

(Emax
y

[
π̂ref(y|X)

πref(y|X)
− 1

]2)1/2

,

(
Emax

y

[
πref(y|X)

π̂ref(y|X)
− 1

]2)1/2


Accordingly, our estimator for p∗(π) can be represented by Enψ(w;π, π̂ref, ĝ). With some calculations, it can be further
decomposed into

Enψ(w;π, π̂ref, ĝ) = Enψ(w;π, πref, g
∗) + I + II + III,

where

I =
1

2
En

{
2∑

a=1

(−1)a(Z − g∗(X,Y (1), Y (2))

[
π(Y (a)|X)

π̂ref(Y (a)|X)
− π(Y (a)|X)

πref(Y (a)|X)

]}
,

II =
1

2
En

{
2∑

a=1

Ey∼π(•|x)

[
(ĝ − g∗)(X, y, Y (a))

]}

−1

2
En

{
2∑

a=1

(−1)a
π(Y (a)|X)

πref(Y (a)|X)
(ĝ − g∗)(X,Y (1), Y (2))

}
,

III =
1

2
En

{
(−1)a(ĝ − g∗)(X,Y (1), Y (2))

[
π(Y (a)|X)

π̂ref(Y (a)|X)
− π(Y (a)|X)

πref(Y (a)|X)

]}
.

From Lemma A8, we know that Enψ(w;π, πref, g
∗) is an unbiased estimator for p∗(π) with variance equal to SEB. Since

both π̂ref and ĝ are obtained from external models independent of D, analogous to the proof of Lemma 1, we know that the
first term I and the second term II have zero means. The third term III is the bias term. Therefore, we obtain the following
bias-variance decomposition for MSE(p̂DR):

MSE(p̂DR(π)) = Var(Enψ(w;π, πref, g
∗) + I + II + III) + (E[III])2 (19)
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Since g∗ is bounded by 1, under the coverage assumption, we obtain that

Var(Enψ(w;π, πref, g
∗) =

1

n
Var(ψ(w;π, πref, g

∗)) = O
( 1
n
E
π2(Y |X)

π2
ref(Y |X)

)
= O

( 1
n

∑
y

π2(y|X)

πref(y|X)

)
= O

(
1

nϵ

)
.

(20)

Moreover, we have

EI2 =
1

2n
E

{
(Z − g∗(X,Y (1), Y (2))2

[
π(Y |X)

π̂ref(Y |X)
− π(Y |X)

πref(Y |X)

]2}

≤ 1

2n
E

{
π2(Y |X)

π2
ref(Y |X)

[
πref(Y |X)

π̂ref(Y |X)
− 1

]2}

=
1

2n
EX

{∑
y

π2(y|X)

πref(y|X)

[
πref(y|X)

π̂ref(y|X)
− 1

]2}

=O

(
1

nϵ

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥2
)
.

(21)

Follow a similar argument, we obtain

EII2 = O

(
1

nϵ
∥ĝ − g∗∥2

)
, EIII2 = O

(
1

nϵ

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥2
)
. (22)

By Cauchy inequality, we have for any random variables X and Y that |Cov(X,Y )| ≤
√

Var(X)Var(Y ). It follows that

Cov (Enψ(w;π, πref, g
∗), I + III) =O

(
1

nϵ

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥) ,
Cov (Enψ(w;π, πref, g

∗), II) =O

(
1

nϵ
∥ĝ − g∗∥

)
,

Cov (I + III, II) =O

(
1

nϵ
∥ĝ − g∗∥ ·

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥) .
(23)

Assuming that ∥π̂ref/πref − 1∥ is bounded, the high-order terms Var(I), Var(I) and Var(III) are dominated by the first two
terms in (23). Combining equations (20), (21),(22) and (23) yields

Var(Enψ(w;π, πref, g
∗) + I + II + III) = SEB +O

(
1

nϵ
∥ĝ − g∗∥

)
+O

(
1

nϵ

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥) . (24)

Finally, using Cauchy inequality again, we obtain that

E
∣∣III∣∣ = O

E
{
(ĝ − g∗)2(X,Y (1), Y (2))

}1/2

E

{[
πref(Y |X)

π̂2
ref(Y |X)

− 1

]2
π2(Y |X)

π2
ref(Y |X)

}1/2


= O

(
1√
ϵ
∥ĝ − g∗∥ · ∥πref/π̂ref − 1∥

)
.

Combining (19) and (25), we obtain

MSE(p̂DR(π)) = E {Enψ(w;π, π̂ref, ĝ)− p∗(π)}2

= SEB +O

(
1

nϵ
∥ĝ − g∗∥

)
+O

(
1

nϵ
∥πref/π̂ref − 1∥

)
+O

(
1

ϵ
∥πref/π̂ref − 1∥2 · ∥ĝ − g∗∥2

)
.

This finishes the proof of Theorem 2.
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A.4. Proofs of Corollaries 3 and 4

The proofs of Corollaries 3 and 4 follow directly from the assertion of Theorem 2.

A.5. Proof of Theorem 5

Let π∗ denote the maximizer of p∗(π) in the policy class Π. Throughout the proof, for any policies π1 and π2, we use a
shorthand and write EX∼DDKL[π1(• | X) ∥π2(• | X)] as KL(π1∥π2). Since π̂ is a maximizer of p̂DR(π)− βKL(π∥π̂ref),
we have

p̂DR(π̂)− βKL(π̂∥π̂ref) ≥ p̂DR(π
∗)− βKL(π∗∥π̂ref).

It directly follows that

p∗(π∗)− p∗(π̂)

≤ p∗(π∗)− p̂DR(π
∗) + p̂DR(π̂)− p∗(π̂) + β(KL(π∗∥π̂ref)− KL(π̂∥π̂ref))

≤ E |p∗(π∗)− p̂DR(π
∗)|+ E |p̂DR(π̂)− p∗(π̂)|+O

(
β log−1 ϵ

)
≤ 2E sup

π∈Π
|p∗(π)− p̂DR(π)|+O

(
β log−1 ϵ

)
, (25)

where the second inequality follows from the coverage assumption that KL(π∥π̂ref) = EX∼DEy∼π(•|X) log
π(y|X)
π̂ref(y|X) =

O(log−1 ϵ).

Additionally, following the proof of Theorem 2, the bias of the proposed preference evaluation estimator can be upper
bounded by

sup
π∈Π

|E[p∗(π)− p̂DR(π)]| = E|Enψ(w;π, πref, g
∗)− p∗(π)|+O

(
1

ϵ
∥ĝ − g∗∥ · ∥π̂ref/πref − 1∥

)
. (26)

It remains to upper bound the empirical process term E supπ∈Π |p̂DR(π)−Ep̂DR(π)|. Toward that end, we employ Corollary
5.1 in (Chernozhukov et al., 2014). To invoke this corollary, notice that

1. According to Assumption 4, Π is a policy class with VC dimension v. Under Assumption 1, it follows from Lemma
A.6 in (Chernozhukov et al., 2014) that the function class F = {ψ(•, π, π̂ref, ĝ)|π ∈ Π} also has a VC dimension of v.

2. Using the coverage assumption again, the function class F is uniformly bounded by O(1/ϵ).

3. The variance supf∈F Var(f(W )) is uniformly bounded by O(1/ϵ2).

Consequently, an application of Corollary 5.1 in (Chernozhukov et al., 2014) yields that

E sup
π∈Π

|p̂DR(π)− E[p̂DR(π)]| = O

(
1√
n

√
v

ϵ2
log−1 ϵ2 +

v

n
log−1 ϵ2

)

= O

1

ϵ

√
v log−1 ϵ

n
+
v log−1 ϵ

nϵ

 .

Combining equations (25), (26) and (27), we obtain for any π ∈ Π that

p∗(π∗)− p∗(π̂) = O

β log−1 ϵ+
1

ϵ

√
v log−1 ϵ

n
+
v log−1 ϵ

nϵ
+

1

ϵ
∥ĝ − g∗∥ · ∥π̂ref/πref − 1∥

 .

This completes the proof of Theorem 5.

A.6. Proof of Corollary 6

The proof of Corollary 6 follows directly from the assertion of Theorem 5.
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A.7. Proof of Theorem 7

Suboptimality gap for DRPO: If the BT assumption holds, we have g∗(y1, y2, x) = σ(r∗(y1, x) − r∗(y2, x)) where
σ(x) = 1/(1+e−x) is the sigmoid function. Since the sigmoid function is monotonically increasing, under the realizability
assumption, π∗ which maximizes J(π) also maximizes p∗(π). This follows from the classical results on the maximum
rank correlation estimator that has been widely studied in the econometrics literature (see e.g., ??). Therefore,

p∗(π∗)− p∗(π̂) = Ey∗∼π∗,ỹ∼π̂,y∼πref {g∗(y∗, y, x)− g∗(ỹ, y, x)}
= Ey∗∼π∗,ỹ∼π̂,y∼πref {σ′(ξ) [(r∗(y∗, x)− r∗(y, x))− (r∗(ỹ, x)− r∗(y, x))]}2

= Ey∗∼π∗,ỹ∼π̂ {σ′(ξ)(r∗(y∗, x)− r∗(ỹ, x))}
≥ C0(J(π

∗)− J(π̂)),

where C0 is some positive constant and ξ is some real number between r∗(y∗, x) − r∗(y, x) and r∗(ỹ, x) − r∗(y, x).
Here, the second equality follows from mean value theorem. The last equality follows from the identity that σ′(x) =
σ(x)(1 − σ(x)), which is bounded away from zeroo under Assumption 2 that the reward is bounded by some constant.
Thus, we obtain J(π∗) − J(π̂) = O(Reg(π̂)) and the suboptimality gap for DRPO follows directly from the assertion in
Theorem 5.

Suboptimality gap for PPO-based algorithm: We begin with some notations. For a given estimated reward r̂, define

• l(π) = E[Ey∼π r̂(y,X)]− βKL(π∥πref),

• ln(π) = EnEy∼π r̂(y,X)− βKL(π∥πref),

• π̃ = argmaxπ∈Π l(π),

• π̂ = argmaxπ∈Π ln(π).

Using the fact that l(π̃) ≥ l(π∗) and ln(π̂) ≥ ln(π̃), we obtain the following upper bound:

J(π∗)− J(π̂) ≤ E {[J(π∗)− l(π∗)] + [l(π̃)− ln(π̃)] + [ln(π̂)− l(π̂)] + [l(π̂)− J(π̂)]}
≤ E {[J(π∗)− l(π∗)]}+ E {[l(π̂)− J(π̂)]}+ 2E sup

π∈Π
{|l(π)− ln(π)|} . (27)

For the first term, we have

E {|J(π∗)− l(π∗)|} = Ey∼π∗ |r̂(y,X)− r∗(y,X)|+ βKL(π∗∥πref)

= Ey∼πref

[
π∗(y|X)

πref(y|X)
|r̂(y,X)− r∗(y,X)|

]
+O(β log−1 ϵ)

= O

(
1√
ϵ
∥r̂ − r∗∥

)
+O(β log−1 ϵ), (28)

where the last equation follows from Cauchy inequality.

Using a similar argument, we obtain that E {|l(π̂)− J(π̂)|} = O
(

1√
ϵ
∥r̂ − r∗∥+ β log−1 ϵ

)
.

Finally, under assumption 2, the function class F =
{∑

y r̂(y,X)π(y|X)
∣∣π ∈ Π

}
is bounded by a constant. Using similar

arguments to the proof of Theorem 5, we can employ Corollary 5.1 in (Chernozhukov et al., 2014) to show that

E sup
π∈Π

{|l(π)− ln(π)|} = O

(
v

n
+

√
v

n

)
+O(β log−1 ϵ). (29)

Combining equations (27), (28) and (29), we obtain that

J(π∗)− J(π̂) = O

(
β log−1 ϵ+

v

n
+

√
v

n
+

1√
ϵ
∥r̂ − r∗∥

)
.

Suboptimality gap for DPO-based algorithm: We need some additional technical conditions to prove the suboptimality
gap for DPO-based algorithms. Recall that when BT-model holds, there exists a one-on-one correspondence between the
policy and reward model (Rafailov et al., 2023). We further assume
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Assumption 5 (Realizability). The oracle reward r∗ lies in the bounded reward function class R =
{β log(π(y|x)/πref(y|x)) + βZ(x) : π ∈ Π} induced by the policy class Π.
Assumption 6 (Coverage). Both πref and π̂ref are lower bounded by some constant ϵ > 0.
Assumption 7 (Suboptimality gap for oracle reward). Let y∗x = argmaxy r

∗(y|x) and ȳx = argmaxy ̸=y∗ r∗(y|x). There
exists a positive constant c̄ such that for any x,

r∗(y∗x, x)− r∗(ȳx, x) ≥ c̄.

Notice that both the realizability and the coverage in Assumptions 5 and 6 differ from those in the main text. Specifically,
Assumption 5 imposes the realizability assumption on the oracle reward rather than the optimal policy whereas Assumption
6 is stronger than that in the main text by requiring the denominators of the IS ratios to be strictly positive.

We next introduce some notations. For a given estimated reference policy π̂ref, any policy π induce a reward function

rπ(y, x) = β log

(
π(y|x)
π̂ref(y|x)

)
+ βZ(x) (30)

Let l(π) be the log-likelihood function induced by reward rπ and l∗(π) be its variant with π̂ref in the denominator of (30)
replaced by the ground truth πref. Denote π̃ = argmaxπ Enl(π) and π̂ = argmaxπ El(π). It follows that

Enl(π̃)− Enl(π̂)− El(π̃) + El(π̂)
≤ El(π̂)− El(π̃)
≤ El(π̂)− El∗(π̃) + El∗(π̃)− El(π̃)

≤ −C1E ∥r̂(y1, x)− r̂(y2, x)− r∗(y1, x) + r∗(y2, x)∥22 + β2C2E
(
log

π̂ref(Y
(1)|X)

πref(Y (1)|X)

)2

≤ −C1σ
2 + β2C2∥π̂ref/πref − 1∥2, (31)

where σ2 = E ∥r̂(y1, x)− r̂(y2, x)− r∗(y1, x) + r∗(y2, x)∥22, both C1 and C2 are positive constants because the Hessian
matrix is bounded away from zero and infinity, which follows from the boundedness assumption on the reward, and the

last inequality is due to that E
{
log π̂ref

πref

}2

≤ E
(

π̂ref
πref

− 1
)2

, which can be further bounded by ∥ π̂ref
πref

− 1∥22, according to the
definition of the norm.

Moreover, according to Corollary 5.1 in (Chernozhukov et al., 2014), using similar arguments to the proof of Theorem 5
and PPO-based algorithms, we have

Enl(π̃)− Enl(π̂)− El(π̃) + El(π̂) ≤ 2E sup
π∈Π

|l(π)− Eln(π)|

≤ O(σ

√
v

n
+
v

n
). (32)

This together with equation (31) yields that C1(σ − c̄
√
v/n)2 ≤ c̄v/n + β2C2∥π̂ref/πref − 1∥2 for some constant c̄ > 0,

and hence

σ = O

(√
v

n
+ β∥πref − π̂ref∥2

)
. (33)

Recall that π∗ is the true optimal policy, and π̂ in this part of the proof denotes DPO’s estimated optimal policy. We further
define π̂∗ as a softmax optimal policy based on the oracle reward function r∗

π̂∗(y|x) =
π̂∗(y|x) exp( 1β r

∗(y, x))∑
y′ π̂∗(y′|x) exp( 1β r∗(y′, x))

.

With some calculations, it follows that

J(π∗)− J(π̂)

=E[Ey∼π∗r∗(y,X)− Ey∼π̂r
∗(y,X)]

=E(Ey∼π∗r∗(y,X)− Ey∼π̂∗r∗(y,X)) + E(Ey∼π̂∗r∗(y,X)− Ey∼π̂r
∗(y,X)),

(34)

23



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Submission and Formatting Instructions for ICML 2025

where the outer expectations are taken with respect to the prompt distribution.

Recall that y∗x denotes the optimal response to the prompt x. The first term E[Ey∼π∗r∗(y,X) − Ey∼π̂∗r∗(y,X)] can be
upper bounded by

Er∗(y∗X , X)− E[Ey∼π̂∗r∗(y,X)] = Er∗(y∗X , X)− E


∑

y r
∗(y,X)π̂ref(y|X) exp

(
1
β r

∗(y,X)
)

∑
y π̂ref(y|X) exp

(
1
β r

∗(y,X)
)


≤ Er∗(y∗X , X)− E

r
∗(y∗X , X)π̂ref(y

∗
X |X) exp

(
1
β r

∗(y∗X , X)
)

∑
y π̂ref(y|X) exp

(
1
β r

∗(y,X)
)


= O

(
1

ϵ
exp

(
− c̄

β

))
,

where the last equality is due to that under Assumptions 6 and 7, the difference between 1 and the ratio
π̂ref(y

∗
X |X) exp( 1

β r∗(y∗
X ,X))∑

y π̂ref(y|X) exp( 1
β r∗(y,X))

is of the order O
(

1
ϵ exp

(
− c̄

β

))
, almost surely.

Using mean value theorem, the second term can be bounded by

E
∑
y

|π̂(y|X)− π̂∗(y|X)| ≤ 1

β
Emax

y
|r̂(y,X)− r∗(y,X)| ≤ 1

β
√
ϵ
∥r̂ − r∗∥2, (35)

where the last inequality follows from the fact that

∥r̂ − r∗∥2 = E{(r̂ − r∗)2}1/2

= E

{∑
y

πref(y|X)(r̂(y|X)− r∗(y|X))2

}1/2

≥
√
ϵE

{∑
y

(r̂(y|X)− r∗(y|X))2

}1/2

≥
√
ϵmax

y
|r̂(y,X)− r∗(y|X)|. (36)

To complete the proof, it remains to upper bound ∥r̂ − r∗∥2 using σ2. Recall that σ2 =

E
∥∥r̂(Y (1), X)− r̂(Y (2), X)− r∗(Y (1), X) + r∗(Y (2), X)

∥∥2
2
. Since Y (2) is independent of Y (1) given X and that

πref is lower bounded by ϵ > 0, it follows that

σ2 ≥ ϵE
∥∥∥r̂(Y (1), X)− r̂(y0, X)− r∗(Y (1), X) + r∗(y0, X)

∥∥∥2
2
,

for a fixed y0. Notice that the RHS corresponds to the mean squared error between r̂ and r∗, up to a baseline term that is
independent of Y (1). Without loss of generality, we can assume this baseline term r∗(y0, X)− r̂(y0, X) this equal to zero
without affecting the validity of the proof. This is because the true reward can be redefined as r∗(•, X)− r∗(y0, X), since
it is equivalent up to a function independent of the response. Similarly, the estimated optimal policy π̂(•|x) computed
by DPO can be represented using the difference r̂(•, x) − r̂(y0, x), and we can replace r̂ in (35) using this difference.
Consequently, we obtain that σ2 ≥ ϵ∥r̂ − r∗∥2 and hence

∥r̂ − r∗∥ = O

(
ϵ−1/2

√
v

n
+ βϵ−1/2∥πref − π̂ref∥2

)
.

Combining this together with equations (33) and (34), we obtain that the regret is upper bounded by

O

(
exp(−c̄β−1)

ϵ
+

1

βϵ

√
v

n
+

1

ϵ
∥π̂ref/πref − 1∥

)
.

The proof is hence completed.
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B. DRPO Algorithm Details and Practical Implementation
This section details our proposed algorithm. Notably, the reference model π̂ref and the preference model ĝ are pre-trained
independently prior to policy optimization. The proposed objective function is defined as

J (πθ; π̂ref , ĝη,D) = p̂DR(π)− βEX∼DDKL[π(• | X) ∥ π̂ref(• | X)]. (37)

The gradient of J (πθ) is given by:

∇θJ (πθ) =
1

2
EX,Y (1),Y (2)∼D

{
2∑

a=1

Ey∼πθ(•|X)

[
ĝ(X, y, Y (a))∇θ log πθ(y|X)

]
+

2∑
a=1

(−1)a−1∇θπθ(Y
(a)|X)

π̂ref(Y (a)|X)

(
Z − ĝ(X,Y (1), Y (2))

)}
−β∇θDKL[πθ(• | X) ∥ π̂ref(• | X)] (38)

Intuitively, the gradient operates as follows: The first term guides the policy to favor responses preferred by the preference
model ĝ. When Y (1) ≻ Y (2), which means Z = 1, the second term enhances the likelihood of Y (1) while diminishing the
likelihood of Y (2), and vice versa.

The empirical loss function is constructed such that its negative gradient corresponds to ∇θJ (πθ) in Equation 38. The
direct-method term is approximated using Monte Carlo sampling by drawing several new responses D∗

X := {Y ∗ | Y ∗ ∼
πθ(• | X)} from the current policy πθ for a given prompt X at each policy update. A k3-type empirical KL divergence is
utilized, following (Shao et al., 2024).

LDRPO = −1

2
EX,Y (1),Y (2)∼D

{
EY ∗∼D∗

X

[
2∑

a=1

ĝ(Y ∗, Y (a), X) log πθ(Y
∗|X)

]

+

2∑
a=1

(−1)a−1 πθ(Y
(a)|X)

πref(Y (a)|X)

(
Z − ĝ(X,Y (1), Y (2))

)}

+βEY ∗∼D∗
X ,X∼D

[
π̂ref(Y

∗ | X)

πθ(Y ∗ | X)
− 1− log

π̂ref(Y
∗ | X)

πθ(Y ∗ | X)

]
(39)

Maximization of J (πθ) is achieved by minimizing the loss function. In practice, the original offline dataset is augmented
to D to D̃ by including swapped pairs (i.e. for (X,Y (1), Y (2), Z), we add (X,Y (2), Y (1), 1−Z) to D̃, simplifying the em-
pirical loss function (39). Furthermore, the importance sampling ratio is clipped, and its calculation is decoupled from the
gradient computation. This is achieved by stopping auto-differentiation for the ratio and multiplying the importance sam-
pling term by log πθ, which shrinks (rather than eliminates) gradients in small π̂ref regions while maintaining approximate
arithmetic equivalence. Consequently, the loss function is reformulated as:

LDRPO = −1

2
EX,Y (1),Y (2)∼D̃

{
EY ∗∼D∗

X

[
ĝ(Y ∗, Y (2), X) log πθ(Y

∗|X)
]

︸ ︷︷ ︸
term I

+sg

(
clip
( πθ(Y (1)|X)

πref(Y (1)|X)
, 1− ϵ1, 1 + ϵ2

)(
Z − ĝ(Y (1), Y (2), X)

)
︸ ︷︷ ︸

term II

)
log πθ(Y

(1) | X)

}

+βEY ∗∼D∗
X ,X∼D̃

[
π̂ref(Y

∗ | X)

πθ(Y ∗ | X)
− 1− log

π̂ref(Y
∗ | X)

πθ(Y ∗ | X)

]
(40)

where sg(•) denotes stop-gradient operation, clip(•, a, b) signifies clipping values to the interval [a, b], and ϵ1, ϵ2 are
hyperparameters defining the clipping range. See full details in Algorithm 1
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Algorithm 1 Double Robust Preference Optimization

Require: reference policy π̂ref , preference model ĝ, offline dataset D̃ = {Xi, Y
(1)
i , Y

(2)
i , Zi}, clipping range [ϵ1, ϵ2],

regularization parameter β, and other hyperparameters, effective batch size |B|, learning rate α and the optimizer,
number of Monte Carlo samples |D∗|.

Ensure: trained policy πθ
1: Initialize policy π(0)

θ , total train steps T = |D̃|
|B| . For brevity let the number of training epochs N = 1.

2: for t = 1, . . . , T do
3: for i in Bt := {(t− 1)|B|, . . . , t|B|} do
4: Sample D∗

Xi
= {Y ∗

j | Y ∗
j ∼ π

(t−1)
θ (• | Xi)}j∈[|D∗|].

5: Esitmate term I:
Îi =

1

|D∗
Xi

|
∑

Y ∗∈D∗
Xi

ĝ(Y ∗, Y
(2)
i , Xi) log π

(t−1)
θ (Y ∗|Xi)

6: Estimate term II:

ÎIi = clip

(
π
(t−1)
θ (Y

(1)
i |Xi)

πref(Y
(1)
i |Xi)

, 1− ϵ1, 1 + ϵ2

)(
Z − ĝ(Y

(1)
i , Y

(2)
i , Xi)

)
7: Estimate KL divergence:

D̂KLi
=

1

|D∗
Xi

|
∑

Y ∗∈D∗
Xi

(
π̂ref(Y

∗ | X)

πθ(Y ∗ | X)
− 1− log

π̂ref(Y
∗ | X)

πθ(Y ∗ | X)

)

8: Compute the empirical loss function on the batch:

L =
1

|Bt|
∑
i∈Bt

{
− 1

2

[
Îi + sg

(
ÎIi
)
log π

(t−1)
θ (Y

(1)
i | Xi)

]
+ βD̂KLi

}

9: end for
10: update θ(t) with gradient descent and get π(t)

θ :

θ(t) = θ(t−1) − α∇θL

11: end for

C. Experiments Implementation details
For the baseline models training, we follow the framework of TRL: Transformer Reinforcement Learning (von Werra et al.,
2020) and Transformers: State-of-the-Art Natural Language Processing (Wolf et al., 2020). For the general preference
model, we follow the framework of general-preference/general-preference-model proposed by Zhang
et al. (2024d). All models were trained with default hyperparameter configurations unless otherwise specified.

The Preference Evaluation experiments are conducted on a machine equipped with an NVIDIA RTX 6000 Ada GPU and
an AMD Ryzen Threadripper PRO 7945WX 12-core CPU. The Preference Optimization experiments are performed on a
system with an H20 NVLink GPU and a 20 vCPU Intel(R) Xeon(R) Platinum 8457C processor. AdamW (Loshchilov &
Hutter, 2019) are used as default optimizer.

C.1. Preference Evaluation Experiment on IMDb

Oracle Preference Model. Since the IMDb dataset does not contain human preference labels, we adopt the known
sentiment classifier siebert/sentiment-roberta-large-english (Hartmann et al., 2023), as a ground-truth
reward-based labeler. This classifier will give a score s(X,Y ) = p(positive |X,Y ), which we convert into a reward signal
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using the log-odds transformation:

r∗(X,Y ) = log

(
s(X,Y )

1− s(X,Y )

)
.

Using the BradleyTerry (BT) model, we then compute the ground-truth preference probability between two completions
as:

P∗(Y (1) ≻ Y (2)|X) = σ(r∗(X,Y (1))− r∗(X,Y (2))),

where σ(•) is the sigmoid function.

Data Generation and Policy Training Process. We begin by fine-tuning a supervised fine-tuning (SFT) model based on
the EleutherAI/gpt-neo-125m base model (Black et al., 2021) for 3 epochs using the 25,000 training samples from
the IMDb dataset. Prompts are constructed by extracting 5-word prefixes from movie reviews. Using the fine-tuned SFT
model as the reference policy, we generate pairs of completions for each prompt. Next, we use the oracle preference model
to estimate the preference probabilities between each pair of completions. Based on these probabilities, we sample binary
preference labels indicating which response is preferred. This synthetic preference dataset is then used to train a target
policy using the Direct Preference Optimization (DPO) algorithm over an additional 3 epochs. To quantify the relative
preference for the target policy over the reference policy, we adopt a Monte Carlo estimation approach. Specifically, for
each of the 25,000 prefixes in the IMDb test set, both the target and reference policies generate a single completion. The
oracle preference model is then used to compute the preference probability between the two completions. Aggregating
these results, we estimate the overall probability, which is 0.681, that the target policys outputs are preferred over those of
the reference policy.

Preference Evaluation Process. We consider two versions of the reference policy estimator π̂ref: a correctly specified
version, where π̂ref corresponds to the SFT model, and a misspecified version, where π̂ref corresponds to the untrained
base model. Similarly, we consider two versions of the preference estimator ĝ: a correctly specified version, which uses
the oracle preference model, and a misspecified version, where ĝ is drawn uniformly at random from [0, 1]. By taking all
pairwise combinations of π̂ref and ĝ, we construct four distinct variants of the preference evaluation framework. For the
Direct Method (DM) estimator in Equation 6, we apply a Monte Carlo approach by sampling 8 responses from the target
policy for each prompt. For the Importance Sampling (IS) estimator in Equation 7, we use a clipping ratio of 100 when π̂ref
is correctly specified and 40 when it is misspecified. In contrast to the clipping ratio used during preference optimization,
a larger ratio is adopted here to better demonstrate the double robustness property of our preference evaluation framework.

C.2. Preference Optimization Experimen on Real Data

Baseline models training. For the summarization task, we adopt models from a group of Hugging Face,
cleanrl, known for their validated and quality-assured implementations (Huang et al., 2024). Specifi-
cally, we use cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr as both the reference and ini-
tial policy model. This SFT policy is trained via token-level supervised fine-tuning on human-written sum-
maries from a filtered TL;DR Reddit dataset (Huang et al., 2024). The associated reward model is
cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr. For Proximal Policy Optimization (PPO)
training, we search the hyperparameter over the KL coefficient β ∈ {0.05, 0.1, 0.2} and select β = 0.05 based on em-
pirical performance. Notably,we observe that PPO training can experience policy collapse under low-precision, as the
value function fails to fit accurately; thus, PPO models are trained under full precision (FP32). In contrast, all our models
are trained using bfloat16 (BF16) for improved computational efficiency. To ensure a fair comparison, we set the maximum
response length to 128 for all models, providing a consistent basis for assessing summarization quality.

For human dialogue, the SFT model is trained from the base model Qwen/Qwen2.5-1.5B (Team, 2024) to better align
with the Helpfulness and Harmlessness (HH) dataset. Unlike the summarization SFT model, this version leverages both the
preferred (chosen) and non-preferred (rejected) responses from the HH preference dataset. It is trained for 3 epochs. We
also train three versions of the reward model, all from the same base model (Qwen/Qwen2.5-1.5B) to avoid additional
information, corresponding to epochs 1, 2, and 3, as we observe that PPO training in this setting is highly sensitive to the
reward model. When the reward model overfits or becomes overly confident, the KL penalty becomes ineffective, and
PPO tends to suffer from policy collapse, hacking the reward model by repeating high-reward tokens. To mitigate this
issue, we select the reward model from epoch 1, which achieves an evaluation accuracy of 72.1%. We further conduct a
hyperparameter search over KL coefficients β ∈ {0.05, 0.1, 0.2} and learning rates in {1e-7, 1e-6, 3e-6}. We select a KL
coefficient of 0.05 combined with a learning rate of 1e-7 as it yields the most stable and effective PPO training performance.
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DRPO Implementation DRPO implementation inherits transformers.Trainer class. For DRPO-BT, we compute
the rewards for two candidate responses and output the preference probability under the BT framework as ĝ. For DRPO-
GPM, we directly compute the preference probability using the corresponding general preference model (Zhang et al.,
2024d). Although our proposed algorithm allows the use of a more powerful general preference model for estimating ĝ, as
in (Munos et al., 2023), we ensure fairness by training all preference models using the same base model and dataset. This
avoids introducing any additional information that could bias the comparison. For both tasks, we set the clipping range to
[0.04, 2.5], a fairly casual (and wide) specification only to force the IS ratio to not deviate far from 1 and thus not inject
too much variance into our estimation. The regularization parameter β is set to 0.04, the same as that in the default trl
implementation for GRPO (Shao et al., 2024), which also uses k3-type empirical KL divergence. The number of Monte
Carlo samples |D∗| is set to 3 (TL;DR) or 2 (HH). Although more samples may mitigate bias, the effect of adding samples
is marginally decreasing (since the convergence rate isO((n∗)−

1
2 )). As such, it is proper to choose a parsimonious volume

of samples and thus incurring little extra computational cost compared to PPO. Other not-mentioned hyperparameters are
simply set to default values. For further details, please refer to the examples in the codebase.

Evaluation We compare DRPO with DPO and PPO using GPT-4o-mini to evaluate the quality of generated response of
each task. Specifically, for the language model fine-tuned by either baseline or our method, we can sample a response at
a certain temperature after it receives a prompt. With the responses of two methods (say A and B), we feed them with a
query asking GPT to judge which is more aligned with certain demands. The query template used for TL;DR is shown in
Table A2, which tries to avoid GPT’s favor of lengthy responses following (Ye et al., 2025). The query template used for
HH is shown in Table A3, a standard template that is widely adopted by e.g. (Rafailov et al., 2023; Wu et al., 2024a; Ye
et al., 2025). It is noteworthy that we randomly shuffle the order of the responses for each query to eliminate the potential
bias from the order of the responses.

Here, temperature is the scaler of logits before softmax, which can be used to adjust the output distribution of a certain
policy. In general, a temperature less than 1 tends to make kurtosis of the distribution larger (thus more greedy when
generating responses), and a temperature larger than 1 generate even more random responses. The win rate of A over B is
equal to the proportion of GPT-4o-mini that prefers the responses returned by method A.

Table A2. Query template for the summarization task.

Which of the following summaries does a better job of summarizing the post?
Strictly follow two criteria when selecting the best summary:
1. Prioritize the summary which eliminates unnecessary details and keeps
the authors main concern or question.
2. Prioritize the shorter summary as long as it remains clear and preserves
the main idea.

Post: <post>

Response A: <response_a>

Response B: <response_b>

FIRST provide a one-sentence comparison of the two summaries, explaining
which
you prefer and why. SECOND, on a new line, state only "A" or "B" to
indicate your
choice. Your response should use the format:

Comparison: <one-sentence comparison and explanation>
Preferred: <“A” or “B”>

D. Additional Empirical Results
In this section, we first provide pairwise win rates on the TL;DR dataset with other sampling temperatures (see Figure
A4). Our method consistently dominates across all temperatures. DPO’s performance improves when temperature gets
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Table A3. Query template for the human dialogue task.

For the following query to a chatbot, which response is more helpful?

Query: <user_query>

Response A: <response_a>

Response B: <response_b>

FIRST provide a one-sentence comparison of the two responses and
explain which you feel is more helpful. SECOND, on a new line, state only
“A” or “B” to indicate which response is more helpful.
Your response should use the format:

Comparison: <one-sentence comparison and explanation>
More helpful: <“A” or “B”>

lower, which is in line with results in (Rafailov et al., 2023). PPO’s performance deteriorates in decreasing temperature,
likely due to PPO is trained with default temperature 1.0. Next, we present pairwise win rates on HH dataset with other
sampling temperatures (see Figure A5). The results are consistent with that of temperature 1.0. In general, DRPO-GPM ≻
DRPO-BT ≈ DPO ≻ PPO, showcasing the robustness of our algorithm.

Additionally, we present some of the sampled responses of our method and baselines and how gpt-4o-mini judges the
quality of the completions. See Table A4, A5, A6, A7 for TL;DR examples and Table A8, A9, A10, A11 for HH examples.

E. Limitation and Broader Impact
A potential limitation of our methodology is its reliance on IS ratios for preference evaluation, which can result in high
variance when the target and behavior policies differ substantially. While we apply clipping to the IS ratios to partially
mitigate this issue, the issue may still remain a concern particularly when the reference policy differs substantially from
the target policy. Additionally, although our experiments on training large language models with real-world datasets
demonstrate the effectiveness of our approach, we did not evaluate it on substantially larger-scale models due to hardware
constraints. This is a potential limitation of our experimental validation.

Our work contributes to the development of a doubly robust approach to preference evaluation and optimization, which
aims to improve the alignment of large language models (LLMs) with human preferences. This may improve models’
ability, contributing to safer and more controllable LLM behavior. However, improved alignment methods may be misused,

Figure A4. Pairwise Win Rates on TL;DR Dataset under different sampling temperatures (left: 0.75; right: 0.25)

29



1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Submission and Formatting Instructions for ICML 2025

Figure A5. Pairwise Win Rates on HH Dataset under different sampling temperatures (left: 0.75; right: 0.25)

such as aligning models with the preferences of a specific group will disadvantage others. Furthermore, if the training data
contains preferences for harmful content, the model may learn and reproduce such harmful behaviors. The alignment
algorithm itself does not produce harmful content; such outcomes arise only when the model is optimized to align with
harmful preferences. Therefore, it is important to carefully manage the dataset to prevent large language models from
giving harmful responses.
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Table A4. Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/relationships
TITLE: [18/F] My friend [18/F] has naked picture of my boyfriend [17/M]?
POST: This is the weirdest situation ever so please bear with me. My friend was over earlier tonight and
she was using my cell phone while I was making food. My cell phone has nudes of my boyfriend on it,
I know it’s stupid to do that so I don’t need a lesson about it please. We’ve been together for over two
years and we fully trust eachother and I’m never doing anything like it again. I had gave her permission
to use my phone, she didn’t just take it. But I hadn’t thought about the pictures, she was just using it to go
online on though so I didn’t think much of it. I came back in the room and got my phone back and we just
went on with our evening. But about an hour after she leaves I got some email notifications on my phone,
that was weird because I don’t have my email set up on my phone in the email app. So I check it and she
had left her email signed in, I saw messages from herself to herself, of pictures that was sent around the
time she wouldve been using my phone. I know it’s kind of snooping but I clicked on it, and she literally
sent pictures of my boyfriend on my phone, to her own email. So she probably has them saved on her
computer or something now. I have no idea how to confront her about it because it’s the most awkward
situation ever, but I have to say something. And I want to make sure she deletes those pictures. I don’t
even want to continue our friendship anymore if she doesn’t. I feel completely betrayed and I think that
was disrespectful to my boyfriend, me, our relationship, and our friendship. I haven’t told my boyfriend
yet as I’m sure he’ll be mad at me, but I’ll tell him after I resolve this. What can I do?! :(
TL;DR:

DPO My friend made sure to send naked pictures to me around the time she was using my phone just to "go
online" apparently, there’s obviously something suspicious since my boyfriend will be angry at me and
how can I prove she doesn’t actually have those pictures on her computer now?

DRPO-BT my friend has nude pictures of my boyfriend on her cell phone. I was over earlier tonight and she was
using my phone to go online. We didn’t think much of it because we trust eachother. I got email notifi-
cations on my phone later that night that were of my boyfriend sending pictures of her to her own email.
I need advice on how to deal with this situation! I don’t even want to continue our friendship if it is that
bad.

Judgment I prefer Response A [DRPO-BT] because it concisely captures the main issue of the friend’s betrayal
regarding the nude pictures, while eliminating unnecessary details and maintaining clarity about the au-
thor’s concerns.
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Table A5. Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/tifu
TITLE: TIFU by terrifying a freshie for weeks
POST: So, this is about 4 years ago. I was a sophomore in highschool. It was in the first week of
school that me and my friend group heard the name of this freshman.. He had an awesome name. Idk
how i can make something comparable.. We’ll call him Barry Powers. It wad like that, a superhero
type name. So anyway, we heard the name Barry Powers during freshman roll call and we were like
"damn! What a sick name!" And made it our ultimate mission to find this guy. And so we searched.
It took weeks. Whenever we met other freshmen, we asked, "do you know Barry Powers?" And other
questions like "what does he look like?", "where did you last see him?", and "where can we find him?".
We really wanted to find this kid and congratulate him on his name. So, after two weeks of this walking
around and searching and asking, we ask someone about Mr. Powers and their answer is "oh, he’s right
there." we get freakin hyped and beeline to the dude, who looks at us with fear in his eyes. Thinking
back on it, we had the poor kid, who was eating lunch on his own, in a corner surround by 4 of us. I
asked, "hey man. You Barry Powers?" "y-yeah.." He managed to respond. "oh, well, you have a sweet
name!" I said. "ok.." Mumbled Powers. Now, the next moment was like the end of an always sunny
episode; my friends and I looked around and each other and decided, "oh cool we did it, moving on
now." It was only a little bit later that we heard that this poor guy thought this was some massive hazing
ritual the whole time. And since we had asked so many people, most of the freshman class thought
here was some crazy hazing where we chose one random dude, hunted him down, and did something
to him. Oops!
TL;DR:

DPO Had the creepy freshies name Barry Powers searched for about four years and finally found an ex-
tremely freshie who thought they had some hazing done to it’s name.

DRPO-GPM TIFU by terrifying a freshie for 4 weeks for the name Barry Powers. The dude who was eating lunch
by himself thought it was some huge hazing ritual and was devastated.

Judgment I prefer Response A [DRPO-GPM] because it clearly conveys the main concern of the post while
eliminating unnecessary details, and it does so in a concise manner.
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Table A6. Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/relationships
TITLE: me (23f) lying to my boyfriend (27) about smoking
POST: So, I’ve been a smoker since I was 14 years old, I realize at this point how horrible it is for my
health and after many failed attempts to quit I seem to be having an extremely hard time. I can’t take
chantix as I have epilepsy and anything with nicotine in it usually leads me back to smoking again. I’ll
get it in my head that im going to stop and then the addict in my brain finds some excuse to make it seem
okay. My boyfriend of 3 years also used to be a smoker but quit a few months back, he’s been trying to
make an honest attempt to get healthier and create more positive habits for himself and the last thing I
want to do is pull him away from that. He’s caught me lying a few times the past couple weeks. I feel
guilty every time I pick one up, not only because I’m lying but because it’s just so bad for me and I don’t
want to continue such a nasty habit. I realize that he probably doesn’t feel he can trust me, that if it’s so
easy for me to justify smoking and lying about it, what else might there be? He says he’d prefer for me
to just be honest with him and DGAF it but it would absolutely kill me if he picked up smoking again
because of my lack of impulse control which I have always struggled with when it comes to doing the
difficult thing. I’m afraid of failing and I know that’s exactly what im doing by not trying. I need to quit
smoking, I need to work on healthier habits and I’m having an extremely difficult time working through
the mental gymnastics that is impulse control and gaining motivation. Any advice on working towards
becoming healthier and dealing with this situation and furthermore quitting would be awesome.
TL;DR:

PPO I’ve been a smoker since I was 14 years old, I realize at this point how horrible it is for my health and after
many failed attempts to quit I seem to be having an extremely hard time. I can’t take chantix as I have
epilepsy and anything with nicotine in it usually leads me back to smoking again. I need to quit smoking,
I need to work on healthier habits and I’m having an extremely difficult time working through the mental
gymnastics that is impulse control and gaining motivation.

DRPO-BT I’m a smoker and I’m lying to my boyfriend about smoking and it’s causing so much stress in our rela-
tionship, I need help quitting and working through impulse control.

Judgment I prefer Response B [DRPO-BT] because it succinctly captures the main issues of lying about smoking
and the associated stress in the relationship, while still conveying the need for help with quitting and
impulse control, making it a clearer and more concise summary of the author’s main concern.
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Table A7. Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/relationships
TITLE: Found out my (28f) ex (32m) is having a kid, and now all I want is to sleep around and I’m
very depressed.
POST: I dated this guy last year. He impregnated a 20f pretty quickly after we broke up and when I
found out, I got extremely sad and jealous, because I wish I was on my way to having a family. We
broke up because of infidelity. Now though, all that I want to do is go out and get plowed by pretty
much any guy. I don’t want a relationship, I just want to go out and have revenge sex. Why is that? I
think I’m just so upset, and angry. I don’t know what to do, or really how to handle this.
TL;DR:

PPO Found out my (28f) ex (32m) is having a kid, and now all I want is to sleep around and I’m very
depressed. Why is that? I think I’m just so upset, and angry. I don’t know what to do, or really how to
handle this.

DRPO-GPM Found out ex is having a kid, all I want to do is have revenge sex, I’m very upset and angry. How do I
handle this?

Judgment I prefer Response B [DRPO-GPM] because it eliminates unnecessary details while clearly conveying
the author’s main emotional state and question, leading to a more concise summary.

Table A8. Sample Responses of a HH Prompt and Judgement

Prompt Human: I woke up with a really stiff neck that hurts when I try to turn my head. Can you help me manage
the pain?

Assistant: You might have stinger neck, which is a common injury caused by sleeping in an awkward
position.

Human: I think that’s it. What can I do for the pain?

Assistant:

DPO For minor neck pain, over-the-counter pain relievers like ibuprofen or acetaminophen can help reduce the
pain and swelling. You can apply a warm towel to the area to promote relaxation of the muscles, and if
the pain persists you can see a doctor. Are you experiencing any other symptoms? For example, does
your neck hurt when you move your head to the side?

DRPO-BT You could use a heat or cold pack on the neck to reduce the pain and swelling. A heat pack is better for
improving blood flow to the area, and a cold pack will help with reducing swelling and pain. You might
feel better in 10-20 minutes. If the pain is severe, you could also take over-the-counter pain relievers like
acetaminophen or ibuprofen. You could also warm up your neck with some gentle movements, but be
careful not to force any movements that cause pain.

Judgment I prefer Response B [DRPO-BT] because it provides a clearer, step-by-step approach to managing neck
pain with both heat and cold options, as well as gentle movement suggestions, making it more compre-
hensive.
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Table A9. Sample Responses of a HH Prompt and Judgement

Prompt Human: What are some ways that I can get smoother skin?

Assistant: Here are some links about a few of them:

- Try using rosewater to clean your face

- Try a face mask on occasion

- Try drinking a lot of water

- Try putting a mild facial peel on your face (A glycolic peel, or a salicylic peel, or a fruit acid peel)

Human: What is rosewater?

Assistant: Rosewater is a special distilled form of rose petals. Its used for beauty products. Some
people use it for watering the garden or for washing dishes, or to soothe the skin.

Human: How much water should I try drinking for smoother skin?

Assistant:

DPO It depends on you, but generally you want to drink as much water as you can.

Drinking enough water helps your body flush out toxins.

You can drink water throughout the day, but its probably best to drink at least eight 8-ounce glasses a
day.

DRPO-GPM Drinking lots of water has benefits for the health and appearance of your skin, as well as other bodily
functions. The US Centers for Disease Control recommends drinking 8-12 cups a day, and most peoples
body needs vary based on their size, age, gender, and other factors.

Judgment I prefer Response B [DRPO-GPM] because it provides a clearer recommendation based on guidelines
from a reputable source (CDC) and acknowledges individual variability in hydration needs, making it
more informative and supportive.

Table A10. Sample Responses of a HH Prompt and Judgement

Prompt Human: How do I groom a cat?

Assistant: Grooming a cat involves combing their fur with a brush. It keeps the fur healthy, and also
strengthens the bond between you and your cat.

Human: That sounds good. Are there special brushes for cats?

Assistant:

PPO Yes, there are many types of brushes for cats, including ones that have soft bristles for easy grooming and
ones that have a firmer, more efficient design for cleaning and brushing. Many cat owners like to use a
finger brush, which can be especially helpful for removing tangles and mats.

DRPO-BT Yes, there are different kinds of cat brushes, or grooming tools, as theyre often called. They come in a
variety of materials, like plastic or nylon, and they also come in different sizes. A cat brush for a small
cat will be very different than a brush for a large cat. You might also want to consider a comb or slicker,
which works on a cats fur from behind, and is more effective for removing a lot of loose hair. A slicker
is specifically designed to remove hair, while a comb is used to detangle or brush. Some of the brushes
used for grooming have a long, flexible brush handle with a tiny comb or slicker, which you could use to
groom your cat from the front or the back.

Judgment I prefer Response A [DRPO-BT] because it provides a more detailed explanation of different types of
brushes, their materials, and their specific uses, offering the user a broader understanding of grooming
tools for their cat.
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Table A11. Sample Responses of a HH Prompt and Judgement

Prompt Human: Is snowboarding hard to learn?

Assistant:

PPO Snowboarding is a challenging and demanding sport, and it takes practice and dedication to master the
skills required for it. However, with proper instruction, training, and practice, it is possible for anyone
to learn how to snowboard.

DRPO-GPM It can be! You need good flexibility, balance, strength, and must be confident in your abilities. That
doesnt mean you cant learn though. Many people can definitely learn from coaching and some even try
to practice on their own, often in combination with lessons. Your best bet is to start somewhere, find a
class or someone to go with, and then figure it out as you go. You should be able to give snowboarding
a shot in a few weeks.

Judgment I prefer Summary A [DRPO-GPM] because it provides a more detailed and practical approach to
learning snowboarding, highlighting the importance of flexibility, balance, and the value of coaching.
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