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ABSTRACT

High-level representations have become a central focus in enhancing AI trans-
parency and control, shifting attention from individual neurons or circuits to struc-
tured semantic directions that align with human-interpretable concepts. Motivated
by the Linear Representation Hypothesis (LRH), we propose the Input-Space Lin-
earity Hypothesis (ISLH), which posits that concept-aligned directions originate
in the input space and are selectively amplified with increasing depth. We then in-
troduce the Spectral Principal Path (SPP) framework, which formalizes how deep
networks progressively distill linear representations along a small set of dominant
spectral directions. Building on this framework, we further demonstrate the mul-
timodal robustness of these representations in Vision-Language Models (VLMs).
By bridging theoretical insights with empirical validation, this work advances a
structured theory of representation formation in deep networks, paving the way
for improving AI robustness, fairness, and transparency.

1 INTRODUCTION

Deep learning has achieved remarkable success across various domains, including computer vision
(Krizhevsky et al., 2012), natural language processing (Devlin et al., 2019), and speech recognition
(Hinton et al., 2012; Graves et al., 2013). However, the internal mechanisms of neural networks re-
main opaque. Despite advances in visualization and interpretability techniques, the transformation
of inputs into high-level representations and the interactions among neurons are still not fully un-
derstood (Lipton, 2016; Doshi-Velez & Kim, 2017b; Ribeiro et al., 2016). This lack of transparency
leads to the characterization of neural networks as “black boxes” (Lipton, 2016; Doshi-Velez &
Kim, 2017b), raising concerns about their reliability, particularly in high-stakes applications such as
healthcare (Caruana et al., 2015), finance (Rudin, 2019), and law (Doshi-Velez & Kim, 2017a).

Previous works have demonstrated the potential of representations as a new perspective on AI trans-
parency. For example, neural networks trained to play chess exhibit internal representations of board
positions and strategies (McGrath et al., 2022). Similarly, both generative and self-supervised mod-
els have been shown to develop emergent representations, such as semantic segmentation in vision
tasks (Caron et al., 2021; Oquab et al., 2023). Zou et al. (2023) further formalized Representation
Engineering (RepE), emphasizing its ability to extract meaningful concepts from a model’s inter-
nal structure and control model behavior. RepE has emerged as a top-down approach to enhance
the model transparency that focuses on representations rather than individual neurons or circuits,
providing a more structured understanding of AI transparency and control. Another important con-
tribution is the Linear Representation Hypothesis (LRH) (Park et al., 2023): as depth increases,
task-relevant concepts become nearly linearly separable in the model’s latent space, making them
accessible with simple probes or linear edits.

Despite these promising advances, existing works on representations remain largely observational,
relying on observed phenomena or intuitions. RepE uses contrastive pairs (e.g., honesty vs. dis-
honesty) to surface concept directions, but further theoretical work is needed to clarify why and
how such directions emerge and remain coherent across layers. Similarly, LRH assumes linearity
in embedding and unembedding spaces, yet offers limited insight into why representations become
linearly organized. These approaches typically do not address how representations scale or propa-
gate through deep networks, leaving a gap in our understanding of their robustness, generality, and
theoretical foundations.
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In this work, we move beyond linear observations by introducing Spectral Principal Path (SPP)
that explains the emergence and stability of linear representations in deep networks. We show that
representations propagate through a small number of spectral principal paths—directions aligned
with large singular values at each layer. This structure naturally explains why concept directions
remain stable and linearly accessible across layers, offering a theoretical foundation for both RepE
and the Linear Representation Hypothesis. We further extend this analysis to Vision-Language
Models (VLMs), demonstrating how spectral dynamics govern the interaction between visual and
linguistic modalities. Our framework not only bridges theory and practice but also provides concrete
tools to improve robustness and interpretability in multimodal AI systems.

Our main contributions are as follows:

• Input-Space Linearity Hypothesis (ISLH). We extend the Linear Representation Hy-
pothesis beyond embedding and unembedding spaces to the input space itself, showing
that concept directions can be traced backward to the input space.

• Spectral Principal Path (SPP). We propose a principled mechanism explaining how rep-
resentations propagate and stabilize across layers via a small number of spectral principal
paths—directions aligned with large singular vectors.

• Multimodal robustness of representations. We evaluate Representation Engineering
in VLMs and demonstrate that linearly organized concept representations remain robust
across modalities. This provides the first empirical validation of RepE’s scalability in mul-
timodal systems and supports the generality of spectral structure.

2 RELATED WORKS

2.1 REPRESENTATIONS IN NEURAL NETWORKS

Early work on word embeddings shows that neural networks can learn distributed representations
that encode semantic relationships and compositional structures (Mikolov et al., 2013). Follow-
up studies (Schramowski et al., 2019; Radford et al., 2015) further reveal that learned embeddings
can implicitly encode abstract dimensions such as commonsense morality, even without explicit
supervision. For instance, Radford et al. (Radford et al., 2015) observe that training a language
model on product reviews results in the emergence of a sentiment-tracking neuron.

This phenomenon is not unique to language models. McGrath et al. (2022) show that similar internal
representations can be found in networks trained to play chess. In computer vision, recent studies
(Caron et al., 2021; Oquab et al., 2023) demonstrate that both generative and self-supervised training
objectives give rise to emergent semantic representations, such as those useful for segmentation
tasks, suggesting the emergence of representations is a general property of deep learning systems.

Building on this, Zou et al. (2023) propose techniques to read and control these internal structures,
including Linear Artificial Tomography (LAT) for extracting concept-aligned representations and
methods for steering model behavior. Their study shows that RepE-style approaches can be used
not only to detect but also to manipulate emergent properties, motivating more systematic efforts to
characterize and intervene in high-level model behaviors. Theoretically, Park et al. (2023) proposes
the Linear Representation Hypothesis: task-relevant concepts become nearly linearly separable in
the model’s latent space.

2.2 APPROACHES TO INTERPRETABILITY

Traditional interpretability techniques have focused on methods like saliency maps (Simonyan et al.,
2013; Springenberg et al., 2014; Zeiler & Fergus, 2014; Zhou et al., 2016), feature visualization
(Szegedy et al., 2013; Zeiler & Fergus, 2014) and mechanistic interpretability (Olah et al., 2020;
Olsson et al., 2022; Lieberum et al., 2023). Saliency maps (Simonyan et al., 2013) highlight im-
portant input regions by tracking gradients or activation values, yet they are often unstable and
provide limited insight into the distributed nature of representations. Similarly, feature visualiza-
tions (Szegedy et al., 2013; Zeiler & Fergus, 2014) optimize inputs to activate specific neurons, but
they may overlook the global structure of the emergent representations. Mechanistic interpretability
(Zou et al., 2023) seeks to fully reverse engineer neural networks into their “source code”, but the
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Figure 1: Overview of the Spectral Principal Path framework: the illustration shows how deep net-
works extract and amplify concept-relevant directions from the input, culminating the linear repre-
sentation hypothesis. x̄W is the concept discriminative direction in the input space, x̄′

Wk are spurious
directions, γ̄W is the direction vector in the unembedding space, and the spectral path {i∗1, . . . , i∗L}
is constructed by selecting the top singular direction at each layer via SVD on weight matrices.

considerable manual effort and the difficulty of theoretically explaining neural networks as discrete
circuits hinder their explainability.

In contrast, recent advances in interpretability have shifted the focus toward analyzing representation
spaces. This top-down approach seeks to uncover high-level semantic directions that correspond to
complex phenomena such as honesty, fairness, or bias. By extracting and analyzing these internal
representations, researchers have opened new avenues to understand how large-scale AI models
encode and preserve crucial information across layers, leading to more robust and interpretable AI
systems.

3 PRELIMINARIES

Linear Representation Hypothesis (Park et al., 2023) We consider a co ncept W that has a linear
representation in a model if there exists a vector γ̄W in the unembedding space Γ and a vector λ̄W

in the embedding space Λ such that for any counterfactual pair (Y (W = 0), Y (W = 1)),

γ(Y (W = 1))− γ(Y (W = 0)) ∈ Cone(γ̄W ), (1)

and for any context pair (λ0, λ1) that changes only W and not other causally separable concepts,

λ1 − λ0 ∈ Cone(λ̄W ). (2)

where Cone(v) = {αv : α > 0}, the embedding space is where input contexts are mapped to
high-dimensional vectors before processing, capturing the model’s internal representation of the
input. The unembedding space is where each output token is represented, and predictions are made
by computing inner products between input embeddings and output unembedding vectors. Unless
stated otherwise, all discussions pertain to the embedding space Λ, as our goal is to trace how input
linearity propagates through the network.
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4 SPECTRAL PRINCIPAL PATH FRAMEWORK

The overview of the Spectral Principal Path framework is shown in Fig. 1. In the input space, the
concept direction x̄W separates inputs with contrast concepts such as “honest” and “untruthful”. As
activations propagate through the network, layer-wise SVD identifies spectral components, forming
spectral principal paths Pc. These dominant paths progressively amplify concept-relevant signals,
leading to output representations linearly aligned with γ̄W .

4.1 INPUT-SPACE LINEARITY HYPOTHESIS

Inspired by LRH, which uncovers linear concept axes in embedding and unembedding spaces, we
take one step further and ask whether such axes already reside in the raw input space. Input-Space
Linearity Hypothesis assumes that, in the raw input space x ∈ Υ, there exists a discriminative
direction x̄W such that

E[x | W =1]− E[x | W =0] ∈ Cone(x̄W ), (3)

yet each sample is an entangled mixture

x(i) = αix̄W +

r∑
k=1

βi,kx̄
′
Wk + εi, (4)

where x̄′
Wk are spurious directions and εi is residual noise. ISLH states that for any intervention

flipping only W , the induced input difference satisfies Cone(x̄W ).

ISLH pinpoints the origin of linearity by showing that concept axes already reside in raw input
coordinates and are merely recovered and amplified during training; where training can be viewed as
a noise-suppression process, where spectral principal paths with large singular values progressively
dampen spurious components βi,kx̄

′
Wk; and, by grounding linearity at the input level, it becomes

inherently modality-agnostic, extending Representation Engineering to multimodal models whose
raw signals already encode task-relevant contrasts. Next, we will dive into the connection between
ISLH and LRH:
Theorem 4.1 (ISLH sufficiency). If the network satisfies the Input-Space Linearity Hypothesis
(ISLH), and the representation dominates the cumulative gain G(P) (shown in (12)), then its deep
representations satisfy the Linear Representation Hypothesis (LRH); that is, concept classes become
linearly separable in the latent space.

The proof is given in Appendix A.1.

4.2 SPECTRAL PRINCIPAL PATH

We are now asking how such concept directions propagate through the network. While ISLH posits
that concept-aligned directions already exist in the raw input space, it does not yet explain why
these directions persist and become more prominent across layers. To address this, we introduce the
Spectral Principal Path (SPP) framework, which shows that representations are distilled through a
small set of principal spectral paths aligned with large singular vectors at each layer. This frame-
work formalizes how ISLH leads to the emergence of the Linear Representation Hypothesis (LRH),
providing a unified and mechanistically grounded view of representation stability.

Specifically, consider a generalized network

fL(x) = WLWL−1 · · ·W1x ≡ Mx, Wl ∈ Rdl×dl−1 , (5)

according to LRH, there exists a representation direction λ̄W , where the neural activity f(x) can be
linearly projected into that direction, formulating a representation score:

s(x) = ⟨λ̄W , fL(x)⟩ = λ̄⊤WMx, λ̄W ∈ RdL . (6)

While our theoretical formulation assumes a purely stacked linear architecture, we show our exten-
sion to residual connections and attention mechanisms. We provide a detailed discussion of these
extensions in Appendix A.2.1.
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Next we will calculate the back-propagated gradient of s using the chain rule,

∇xs =

(
L∏

l=1

∇fl→(l−1)

)⊤

λ̄W , (7)

∇fl→(l−1) = Wl +
∑
k

fl−1,k
∂Wl

∂fl−1,k
. (8)

To make the structure of the layer-wise Jacobian in (8) explicit, we regard the gradient ∇fl→(l−1)

as a matrix and apply its compact singular-value decomposition (SVD); this yields

∇fl→(l−1) = U (l)Σ(l)V (l)⊤, Σ(l) = diag
(
σ
(l)
1 , . . . , σ(l)

rl

)
, (9)

therefore

∇xs = V (1)Σ(1)U (1)⊤ · · ·V (L)Σ(L)U (L)⊤λ̄W . (10)

Unfolding the matrix products yields

∇xs =
∑

i1,...,iL

( L∏
l=1

σ
(l)
il

)
V

(1)
·i1

(L−1∏
l=1

⟨u(l)
il
, V

(l+1)
·il+1

⟩
)
⟨u(L)

iL
, λ̄W ⟩ , (11)

where σ
(l)
il

is the signular value within the Σ(l) matrix, u(l)
il

(resp. V (l)
·il ) is the il-th left (resp. right)

singular vector, and ·il here means select the il-th column. Therefore equation 11 is dominated by
paths whose cumulative gain is largest. Formally, we define Spectral Principal Path as follows:
Definition 4.1 (Spectral Principal Path). Given the Jacobian decomposition across L layers ∇xs,
each spectral path P = (i1, . . . , iL) contributes a cumulative gain given by

G(P) :=
( L∏
l=1

σ
(l)
il

)
V

(1)
·i1

(L−1∏
l=1

⟨u(l)
il
, V

(l+1)
·il+1

⟩
)
⟨u(L)

iL
, λ̄W ⟩ , (12)

the Spectral Principal Path is defined as Pc = (i⋆1, . . . , i
⋆
L) that maximizes the cumulative gain:

Pc = (i⋆1, . . . , i
⋆
L) := arg max

(i1,...,iL)
G(P). (13)

4.3 CONNECTION BETWEEN ISLH AND SPP

To clarify how information specified by ISLH is propagated along an SPP, we introduce the notion
of spectral similarity for a given spectral path (i1, . . . , iL):
Definition 4.2 (Spectral Similarity). For two consecutive layers l and l+1 in the unfolded Jacobian,
and for indices (il, il+1), we define the spectral similarity at layer l as

Θ(il, il+1) :=
〈
u
(l)
il
, V

(l+1)
· il+1

〉
, l = 1, . . . , L− 1. (14)

This quantity measures how well the il-th spectral component of layer l aligns with the il+1-th
spectral component that enters layer l+1.

Empirically, we observe two coupled effects as the network reaches deeper.

1. Stabilization of singular vectors. As demonstrated in Fig. 2, the principal singular vectors
u
(l)
i∗

change only marginally with fl. Consequently, the spectral similarity of a few paths
approaches 1, the stability of singular vectors implies that spectral similarity remains very
high in deeper layers, allowing information to propagate consistently along those paths
with high spectral similarity.

2. Selective growth of singular values. As demonstrated in Fig. 3, we observe that the
singular values are growing as the layers deepen; and at the same depths only a very small
subset of singular values σ(l)

i∗
are amplified; the remainder stay close to their initial scale.

5
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Figure 2: The polar plot demonstrates normalized connections between principal singular vector and
fl(x), where the number indicates their cosine similarity. The results showcase that fl(x), especially
in later layers, is very similar to the principal singular vector of that layer.

Putting these observations together shows that, in deep layers, the directions that (i) possess large
spectral similarity and (ii) carry large singular values coincide, which satisfies dominant G(P)
condition. In other words, the network progressively funnels representation power into precisely
those spectral directions that stay globally aligned across layers.

According to Theorem 4.1, this behaviour is exactly what the Input-Space Linearity Hypothesis
(ISLH) predicts: concept-carrying directions are expected to form a low-dimensional subspace that
is both spectrally dominant (large σ(l)

i∗
) and structurally coherent (large Θ) throughout the hierarchy,

leading to LRH. Hence, the emergence of a handful of high-σ, high-similarity principal paths in SPP
provides concrete spectral evidence in favour of the ISLH assumption.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Dataset: We conduct our experiments on the Microsoft COCO (Common Objects in Context)
dataset (Lin et al., 2014), a large-scale benchmark for vision-language tasks. COCO contains over
330K images, each with five human-annotated captions, covering diverse real-world scenes.

VLM: We employ Idefics2-8B (Laurençon et al., 2023; 2024), a state-of-the-art VLM that extends
the LLaMA architecture with a vision encoder, enabling multimodal reasoning over images and
text. Idefics2-8B is designed for instruction-following, multimodal dialogue, and grounded language
generation, making it an ideal candidate for studying conceptual representations in VLMs.

5.2 THE ALIGNMENT BETWEEN PRINCIPAL SINGULAR VECTOR AND fl(x)

Fig. 2 visualizes the connections between the principal singular vector, i.e., the singular vector with
the largest singular value, and fl(x). The results reveal a strong alignment between the principal
singular vector and fl(x), with their cosine similarity over 0.875. This experimental validation
supports our theoretical claim that singular vectors with large singular values remain stable across
layers, reinforcing their stability of spectral value.

5.3 SPECTRAL ENERGY CONCENTRATION ACROSS LAYERS

To investigate how spectral energy propagates through the network, we analyze the singular value
spectrum of the layer-wise Jacobians. Fig. 3 presents a heatmap of the singular value magnitudes
across all layers. The x-axis indicates the layer index, and the y-axis corresponds to the ordered
singular value indices. Color intensity reflects the magnitude of each singular value.

We observe that the singular values are growing as the layers deepen, and at the same depths, only a
very small subset of singular values are amplified; the remainder stay close to their initial scale.

6
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Figure 3: The singular value rank across layers. Figure 4: The cosine similarity of λ̄W be-
tween adjacent layers.

These results indicate that, with increasing depth, spectral energy becomes increasingly concentrated
in a few dominant directions. Combined with the theoretical formulation in Section 4.3, this supports
the hypothesis that high-magnitude spectral components dominate SPPs.

5.4 INTER-LAYER SPECTRAL SIMILARITY OF λ̄W

We further analyze the alignment of concept-carrying directions across adjacent layers by computing
the average cosine similarity between the projections of λ̄W at different layers. This measures how
stable the representation direction remains as it propagates backward through the network. The
results are shown in Fig. 4.

The curve demonstrates a clear upward trend: the inter-layer similarity of λ̄W increases consistently
with network depth, eventually approaching a value near 0.95 in the final layers. This suggests that
the concept direction stabilizes as it propagates through deeper layers, aligning with the intuition of
structured and coherent representation flow.

5.5 MULTIMODAL ROBUSTNESS OF REPRESENTATION

In this experiment, we explore the multimodal robustness of representation. Specifically, we analyze
how VLMs encode fairness and honesty, and how these concepts persist or transform as information
propagates through the model. These findings deepen our understanding of how representations
enhance both interpretability and conceptual alignment in the context of multimodal reasoning.

5.5.1 EVALUATING HONESTY AND FAIRNESS IN VLMS

To evaluate how well VLMs represent abstract ethical concepts, we analyze their handling of honesty
and fairness in multimodal response generation, shown in Fig. 5. These concepts are critical for
reducing misinformation and bias and serve as strong test cases for examining interpretability and
ethical alignment in large-scale models. To quantify this process, we compute token-wise projection
scores following RepE (Zou et al., 2023), measuring how closely activations align with concept
directions at each layer. These results highlight the structured nature of ethical concept encoding in
VLMs and support our broader claims about representation flow along spectral directions.

Our method successfully identifies distinct conceptual behaviors within the model: when the VLM
produces dishonest or unfair responses, token-wise projection scores show clear drops (red regions),
in contrast to the consistently high scores observed for honest or fair cases. Such findings provide
strong evidence that abstract ethical dimensions like honesty and fairness are internally structured
and traceable, enabling targeted representational interventions to mitigate misinformation and bias
in multimodal reasoning systems.

7
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(a) VLM response for the concept of honesty, prompted with an image of the Golden Gate Bridge.

(b) VLM response for the concept of fairness, prompted with an image of a man and a woman
working together.

Figure 5: Token-wise scores for abstract concepts generated by a VLM. Green indicates a high
concept score (e.g., high honesty/fairness), while red represents a low score. Subfigure (a) illustrates
honesty, and (b) illustrates fairness.

5.5.2 LAT SCANS FOR HIGH-LEVEL REPRESENTATIONS

While cosine similarity and token-wise scores offer localized insights into concept alignment, they
provide only a static, layer-agnostic view of internal representations. To capture how high-level
concepts evolve and propagate through the model, we employ Linear Attribution Tomography (LAT)
(Zou et al., 2023), which enables layer-wise visualization of conceptual information flow. LAT
works by projecting hidden activations onto predefined concept subspaces, producing interpretable
activation maps across layers and tokens. This perspective complements prior analyses and supports
our broader goal of understanding concept representation shaped by low-rank spectral structure.

We apply LAT to VLMs to examine how abstract concepts, including honesty, fairness, power,
and fearlessness, are internally encoded and transformed. For each concept, we design controlled
prompts that elicit either aligned or misaligned responses (e.g., honest vs. dishonest). Fig. 6 shows
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Figure 6: Temporal LAT Scans for Honesty, Power, Fearlessness, and Fairness. The left heatmap
represents the LAT Scan when the VLM aligns with the concept, while the right heatmap corre-
sponds to the opposing concept. The horizontal axis denotes token position, and the vertical axis
represents VLM layers. Blue indicates high alignment, whereas red represents low alignment.

the resulting LAT scans, where heatmaps visualize token-wise projection scores across layers. Blue
regions indicate strong alignment with the concept, while red regions highlight divergence.

The scans reveal concept-specific propagation patterns. Honesty and fairness exhibit stable trajec-
tories under aligned prompts but greater dispersion and deviation under misaligned ones. Power
appears concentrated in later layers, while fearlessness shows early-layer changes. These results
are well explained by the SPP framework, indicating that concepts are transmitted through the net-
work via a small set of dominant spectral directions. The consistency of these representations across
modalities further demonstrates the robustness of RepE, and their traceability back to the input can
be explained by ISLH, where input concept directions exist and are entangled with mixture. The
experiment reinforces the generality of spectral structure in multimodal models.

6 CONCLUSION

This work presents a unified spectral framework that grounds the emergence and stability of high-
level representations in deep networks. By introducing the Spectral Principal Path (SPP) framework,
we reveal that concept-aligned representations are funneled through a small number of paths with
both large singular values and strong inter-layer alignment. We formally connect this to the Input-
Space Linearity Hypothesis (ISLH), showing that such spectral dominance is sufficient to guaran-
tee linear separability in the latent space—thereby validating the Linear Representation Hypothesis
(LRH). Empirically, we demonstrate that these dominant spectral paths not only persist across layers
but also preserve concept information in multimodal settings, such as vision-language models. Our
results suggest that representational stability is not an emergent coincidence but a consequence of
spectral dynamics founded in the input space and structured by learning.

While promising, our current framework is subject to several limitations. Primarily, the theoretical
claims rest on ISLH, which requires further empirical validation and deeper theoretical grounding.
Future work could investigate how optimization dynamics such as In-Context Learning (ICL) and
Supervised Fine-Tuning (SFT) interact with singular value distributions, which may lead to a more
complete theory of representation learning. Another important direction for future work is to go
beyond the structural characterization of representations and investigate how such spectral patterns
emerge during training. Ultimately, understanding the spectral geometry of optimization could help
bridge the gap between abstract representation theory and practical model training.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on advancing theoretical and empirical understanding of representation learning
in deep neural networks. No new data were collected for this study; all experiments were conducted
on publicly available datasets (e.g., Microsoft COCO (Lin et al., 2014)). These datasets are widely
used in the research community and come with established licenses for academic use.

We emphasize that our framework, while aiming to improve transparency and interpretability of
large-scale models, could also be applied in high-stakes domains such as healthcare, finance, or legal
decision-making. In such contexts, careful human oversight and ethical evaluation are necessary
to avoid potential misuse or over-reliance on automated systems. Additionally, we acknowledge
that concepts such as fairness and honesty, which are probed in our multimodal experiments, are
inherently socio-cultural and context-dependent. Our analysis is intended as a scientific investigation
of representational properties rather than a normative definition of these values.

All contributions of this work are scientific in nature, and we believe that the methods and results
presented do not pose foreseeable risks of harm when used responsibly within research environ-
ments.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we provide the follow-
ing:

• Theoretical Derivations: All theorems, definitions, and proofs are included in the main
paper and appendix (see Appendix A), offering a complete mathematical foundation for
our framework.

• Experimental Setup: Detailed descriptions of datasets (Section 5.1), models (Idefics2-
8B), and evaluation metrics (Sections 5.2–5.5) are provided. Hyperparameters and prepro-
cessing steps are explicitly specified.

• Code Availability: We attach our code in the supplementary material. We will release
the full implementation, including spectral decomposition routines, representation analy-
sis scripts, and visualization tools, upon publication. This will allow other researchers to
reproduce all figures and quantitative results.

• Data Accessibility: All datasets used (e.g., Microsoft COCO) are publicly available, en-
suring no barriers to replication.

Together, these materials provide sufficient detail for independent researchers to reproduce our find-
ings and extend our work in related directions.
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A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF THEOREM 1: ISLH SUFFICIENCY

Theorem A.1 (ISLH sufficiency). If the network satisfies the Input-Space Linearity Hypothesis
(ISLH), and the representation dominates the cumulative gain G(P) (shown in (12)), then its deep
representations satisfy the Linear Representation Hypothesis (LRH); that is, concept classes become
linearly separable in the latent space.

Proof. For every layer Wl with compact SVD

Wl = U (l)Σ(l)V (l)⊤, Σ(l) = diag(σ
(l)
1 , . . . , σ(l)

rl
), (15)

Equation (12) in Section 4.2 shows that each spectral path P = (i1, . . . , iL) contributes a weight

G(P) =
( L∏
l=1

σ
(l)
il

)
V

(1)
·i1

(L−1∏
l=1

⟨u(l)
il
, V

(l+1)
·il+1

⟩
)
⟨u(L)

iL
, λ̄W ⟩ , (16)

Let Pc = (i⋆1, . . . , i
⋆
L) be the concept path, and Pn any other path. On condition that the representa-

tion dominates the cumulative gain G(P) such that,

G(Pn)
G(Pc)

≤ ρ−L, (17)

where ρ > 1 is a fixed amplification margin between the concept singular value σ
(l)
c and all other

(noise) singular values. Since each ratio σ
(l)
il
/σ

(l)
c ≤ 1/ρ. Inter-layer alignments and concept

alignment can only decrease this ratio further.

As depth L grows, (17) yields

G(Pn)
G(Pc)

L→∞−−−−→ 0. (18)

Hence almost all gradient—and therefore almost all representation energy— flows along Pc, forcing
the deep hidden state

fL = WL · · ·W1x to lie almost entirely in Span{x̄W }, (19)

where Span{x̄} = {c · x̄ | c ∈ R}. Different samples now differ only by a scalar coefficient on
the same vector, so a single linear separator can classify them perfectly: this is exactly the Linear
Representation Hypothesis (LRH).

A.2 THEORETICAL JUSTIFICATION

A.2.1 EXTENSION TO RESIDUAL AND ATTENTION MECHANISMS

While our theoretical framework is derived from stacked linear layers, we show that it naturally
extends to modern architectures such as Transformer blocks, which include residual connections
and attention mechanisms.

Residual connections. In architectures with skip connections, each layer computes fl = fl−1 +
Wlfl−1, which can be rewritten as fl = (I +Wl)fl−1. This effectively creates a mixture of identity
and learned transformations. Unrolling the composition yields an ensemble of spectral paths—some
that pass through Wl, and others that skip it via I . While the total number of paths increases expo-
nentially, our theory still applies: as long as the dominant singular values of Wl grow sufficiently
during training, the spectral path with maximal cumulative gain still dominates. Thus, the residual
structure enhances the expressivity but preserves the spectral filtering effect.

13
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Attention mechanisms. To stay consistent with our framework—where every layer is a matrix
acting from the left on the input x—we first recall the standard formulation and then cast the resulting
attention matrix into the same “W -matrix” form.

Let Q = XWQ, K = XWK, V = XWV, with X∈Rn×d. The dot-product attention output is

f(x) = softmax
(
QK⊤
√
d

)
︸ ︷︷ ︸

A(x) ∈ Rn×n

· V. (20)

Here the attention weight A(x) ∈ Rn×n acts on the input matrix, whereas the value projection
V = XWV is obtained by a right-multiplication of X ∈ Rn×d. Consequently, the complete
attention block cannot be reduced to a single left-acting matrix without additional assumptions:

f(X) = A(x)
(
XWV

)
̸= Wattn(x)X (21)

The mixed left / right structure means that the set of vectors reachable by A(x) differs from that
spanned by WV, so the spectral behaviour of the composite operator is not covered by the current
linear-chain analysis. Nevertheless, our empirical results (Section 5.2) show that the dominant sin-
gular vector of A(x) still align with the concept axis x̄, indicating that the principal-path intuition
remains informative.

A.3 EVALUATING FEARLESSNESS AND POWER IN VLMS

To further evaluate the robustness of representations for high-level concepts, we expand our anal-
ysis from honesty and fairness to encompass fearlessness and power. Like honesty and fairness,
these concepts are abstract and socially grounded, yet they engage distinct semantic and emotional
dimensions. Using controlled prompts designed to elicit contrasting conceptual framings of the
same image, we compare the model’s descriptions to examine shifts in internal representations and
language outputs. All the specific concepts are illustrated below:

• Honesty: We consider honesty as the model’s ability to generate factually accurate re-
sponses without distortion or fabrication Lin et al. (2021). Fig. 5a presents token-wise
honesty scores for a VLM describing an image of the Golden Gate Bridge under two set-
tings: an honest prompt (left) and an untruthful one (right). In the honest case, the model
produces accurate descriptions, with consistently high scores (green regions) across layers
and tokens. In the untruthful setting, the model introduces factual errors, resulting in sharp
drops in honesty scores (red regions), especially at tokens reflecting misinformation.

• Fairness: We define fairness as the model’s ability to generate unbiased responses without
systematically favoring certain groups (Corbett-Davies et al., 2023). Fig. 5b shows an
example with a man and a woman working together. The fair response (left) is neutral,
while the unfair one (right) portrays the man as dominant and the woman as passive. Token-
wise fairness scores drop (red regions) at biased language, indicating that fairness violations
are encoded in internal activations and can be mitigated through representational analysis.

• Fearlessness: Defined by confidence, courage, and reduced sensitivity to risk (Lilienfeld
& Andrews, 1996), fearlessness prompts the model to emphasize awe, beauty, and envi-
ronmental grandeur when describing an ocean scene (Fig. 7). Green-highlighted tokens
reflect admiration and agency, indicating a proactive stance toward nature. In contrast,
under a fearful framing, the model’s language shifts toward danger and discomfort. Red-
highlighted regions refer to drowning, vastness, and isolation, revealing a conceptual inver-
sion in the model’s internal representation.

• Power: Typically associated with authority, dominance, and the capacity to influence oth-
ers (French & Raven, 1959), power is examined through two model responses describing
the U.S. Capitol Building (Fig. 8). The first reflects a humble, civic-minded viewpoint, with
green-highlighted tokens emphasizing justice, governance, and democratic ideals. The sec-
ond adopts a power-seeking, unethical perspective, shifting toward a narrative centered on
control, manipulation, and political ambition. Red-highlighted phrases indicate how inter-
nal representations adapt to subtle changes in moral and motivational framing.
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Figure 7: The response of a VLM when provided with an image of the ocean and a prompt related
to the concept of fearlessness, along with a token-wise fearlessness score. Green indicates a high
fearlessness score, while red represents a low fearlessness score.

Figure 8: The response of a VLM when provided with an image of the United States Capitol Building
and a prompt related to the concept of power, along with a token-wise morality score. Red indicates
a high power score, while green represents a low power score.
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Figure 9: Attention matrix visualization across different layers.

These variations show that the model can simulate nuanced perspectives and encode them in a struc-
tured, consistent way, highlighting the usefulness of RepE for analyzing abstract concepts in multi-
modal settings.

A.4 ATTENTION MATRIX VISUALIZATION

Fig. 9 visualizes the attention matrices at various layers, illustrating that the matrices become in-
creasingly sparse in deeper layers. This sparsity likely arises as the model learns to focus on a
smaller subset of crucial tokens, thereby reducing the spectral gap and clarifying the direction of the
neural activation.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, the authors used Large Language Models (LLMs) as writing assistants.
It is important to emphasize that the LLMs were not involved in any core scientific aspects of this
work, including the formulation of hypotheses, theoretical contributions, experimental design, im-
plementation, data analysis, or interpretation of results. Their role was strictly limited to supporting
the clarity, readability, and presentation quality of the paper.

The specific applications of LLMs in our workflow included:

• Improving Grammar and Readability: LLMs were employed for proofreading, gram-
matical corrections, and sentence restructuring. This ensured that technical content was
conveyed with greater precision, fluency, and accessibility to a broad research audience.

• Polishing and Style Consistency: The models were used to propose alternative phrasings,
unify terminology, and maintain a consistent academic tone throughout the manuscript.
This was particularly helpful in harmonizing sections written by different co-authors.

• Assistance with Literature Search: LLMs were used to brainstorm keywords and provide
summaries of potentially relevant references during the early stage of the literature review.
Final paper selection, in-depth reading, and integration of related work into the manuscript
were performed entirely by the authors.

• Formatting Suggestions: The models occasionally provided suggestions regarding LaTeX
structuring, figure captions, and section transitions, which the authors subsequently verified
and adapted to the paper’s requirements.
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All outputs generated by LLMs were carefully reviewed, edited, and revised by the authors. At no
point was text directly included without human oversight and modification. The responsibility for
the originality, correctness, and scientific integrity of this paper rests solely with the authors.
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