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Abstract
Understanding the training dynamics of deep neural networks is challenging due to their high-
dimensional nature and intricate loss landscapes. Recent studies show that gradients approximately
align with a low-rank eigenspace of the training loss Hessian, referred to as the dominant subspace.
This paper investigates whether neural networks can be trained within this subspace. Our primary
finding is that projecting the SGD update onto the dominant subspace does not reduce the training
loss, suggesting the alignment between the gradient and dominant subspace is spurious. Surprisingly,
excluding the dominant subspace component proves as effective as the original update. Similar
observations are made for the large learning rate regime (also known as Edge of Stability) and
Sharpness-Aware Minimization. We discuss the main causes and implications of this spurious
alignment, shedding light on neural network training dynamics.
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Figure 1: The summary of our main results in Section 3 (training loss in log-scale). For neural network training,
Gur-Ari et al. [20] observe that gradients approximately align with the dominant subspace, spanned by the
dominant eigenvectors of the training loss Hessian. To see whether such phenomenon lets us train neural
networks within the dominant subspace, we implement Dom-SGD, where each SGD update is projected onto
the dominant subspace. Surprisingly, training stops after this modification, suggesting that the dominant
subspace is not where the learning happens. In contrast, Bulk-SGD, where we project each SGD updates
onto the bulk subspace orthogonal to the dominant subspace, is just as effective as the original update, despite
removing the majority of original updates. Experimental details are provided in Section E.

1. Introduction

Understanding the optimization of deep neural networks presents a complex challenge, given their
high-dimensional nature and the intricate characteristics of their training loss landscapes. Over the last
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Figure 2: Low-rank structure of the Hessian. The plot shows the top eigenvalues of the loss Hessian during SGD
training. The blue curves represent the top-k eigenvalues, which are significantly larger than the rest of
eigenvalues, shown in orange, where k is the number of classes for the classification task.
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Figure 3: Alignment of gradients with dominant subspaces. The plot illustrates χk(∇L(θt)) during SGD training
(see Theorem 2). The orange dashed lines represent the exponential moving average (EMA) of χk(∇L(θt)).
After a few early steps, χk(∇L(θt)) reaches and stays near 1, indicating the alignment between gradients and
dominant subspaces.

decade, an abundance of studies has investigated the landscape of training loss L : Rp → R [21, 36].
In this work, we are interested in the following noteworthy phenomena:
• Hessian is approximately low-rank. Extensive research [18, 40, 41, 44, 45] has revealed that for
k-class classification problems, the loss Hessian∇2L exhibits a low-rank structure, characterized
by k dominant eigenvalues significantly larger than the others. See Figure 2 for details.

• Gradients approximately align with the low-rank eigenspace. Gur-Ari et al. [20] demonstrated
that during SGD training, gradients tend to align closely with the low-dimensional subspace
spanned by the dominant eigenvectors of the loss Hessian. See Figure 3 for details.

Due to space limit, we provide a more extensive background on these phenomena in Section D. The
eigenspace of the top-k eigenvalues of ∇2L(θ), referred to as the dominant subspace at θ, is the
main focus of this work. Motivated by Gur-Ari et al. [20], we ask:

Q. Can deep neural networks be trained within the dominant subspace? (Q1)

This question carries significant practical implications, potentially leading to more efficient training
methods for neural networks. Furthermore, it offers insights into why deep learning optimization
may not suffer from the curse of dimensionality despite operating in high-dimensional spaces.
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2. Starting point: gradient aligns with the dominant subspace

In this section, we set the stage for our main results by reviewing the main observation of Gur-Ari
et al. [20]. To that end, we first introduce some notations to ease our discussion.

Notations. Let [n] denote the set {1, 2, . . . , n}. For the Hessian to be well-defined, let L :
Rp → R be a twice-differentiable training loss. For θ ∈ Rp, let λ1(θ), λ2(θ), . . . , λp(θ) denote the
eigenvalues of the loss Hessian∇2L(θ) ∈ Rp×p in descending order, and let u1(θ), u2(θ), . . . , up(θ)
denote the corresponding eigenvectors. Given these notations, we begin with the most important
concept for our discussion, namely, the dominant subspace.

Definition 1 (Dominant subspace) The top-k dominant subspace at θ is denoted by

Sk(θ) := span{ui(θ) : i ∈ [k]} ,

and its orthogonal complement by S⊥k (θ), referred to as the bulk subspace. Unless specified
otherwise, the default choice for k is the number of classes for the classification task.

Definition 2 (Dominant subspace projection) The projection matrix onto the dominant subspace
Sk(θ) is denoted by

Pk(θ) :=
k∑

i=1

ui(θ)ui(θ)
⊤ ∈ Rp×p ,

and the projection matrix onto S⊥k (θ) by P⊥
k (θ) := I − Pk(θ). For a given vector v ∈ Rp, we can

decompose the vector into v = Pk(θ)v + P⊥
k (θ)v. We say Pk(θ)v is the dominant component of v,

and P⊥
k (θ)v is the bulk component of v. We denote the fraction of v in the dominant subspace by

χk(v; θ) := ∥Pk(θ)v∥2/∥v∥2 ,

with χk(v; θ) = 0 if ∥v∥2 = 0. A vector v ∈ Rp is said to (approximately) align with the dominant
subspace Sk(θ) if χk(v; θ) is close to 1, and align with S⊥k (θ) if χk(v; θ) is close to 0.

When clear from context, we use shorthand notation such as λi := λi(θ), ui := ui(θ), ∇L :=
∇L(θ), Sk := Sk(θ), S⊥k := S⊥k (θ), Pk := Pk(θ), P⊥

k := P⊥
k (θ), and χk(v) := χk(v; θ).

Using our notations, the striking observation of Gur-Ari et al. [20] can be formalized as follows.

Phenomenon 1 Gradient approximately aligns with the dominant subspace along SGD trajec-
tories. Consider the SGD trajectory {θt} with a constant learning rate. After a few initial steps,
χk(∇L(θt)) quickly reaches and remains near 1.

In Figure 3, we confirm the main results of Gur-Ari et al. [20] for various settings. Notice that
χk(∇L(θt)) reaches 1 after a few early steps, indicating that the gradient ∇L(θt) approximately
aligns with the dominant subspace Sk(θt). Given this alignment, it seems that the training can be
done within the dominant subspace, which leads to the previously introduced question (Q1). In the
next section, we conduct a set of experiments to investigate (Q1).

3. Neural networks cannot be trained within the dominant subspace

In this section, we present the first main observation of this paper regarding question (Q1). We start
with a preliminary analysis using the local quadratic approximation of the neural network landscape.
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3.1. What do we expect based on quadratic Taylor approximation?

To analyze the convergence of gradient-based optimization algorithms, a common approach is to use
the local quadratic Taylor approximation (see, e.g., [17]). The “descent lemma” characterizes the
one-step progress of the optimizer L(θt+1)− L(θt) using this approximation, assuming the training
loss L is smooth. Based on the local quadratic Taylor approximation, we have:

L(θt+1)− L(θt) ≈ ⟨∇L(θt), θt+1 − θt⟩︸ ︷︷ ︸
=:gradient correlation

+
1

2
(θt+1 − θt)

⊤∇2L(θt)(θt+1 − θt) . (1)

Let us denote the first term on the RHS by the gradient correlation term and the second term by
the second-order error term. Since the SGD updates are defined as

θt+1 ← θt − ηgt

for the stochastic gradient gt at θt, the gradient correlation term is negative in expectation:

E[gradient correlation] = E[⟨∇L(θt),−ηgt⟩] = −η ∥∇L(θt)∥2 < 0 . (2)

For the experiments in Figure 1, we use small learning rates to ensure SGD iterates decrease the
training loss nearly monotonically, suggesting that the negative gradient correlation dominates the
second-order error term in these cases.

Hence, if the quadratic Taylor approximation was accurate enough, based on the above analysis
and Phenomenon 1, it is expected that one can decrease the training loss based on updates lying in
the dominant subspace, as hypothesized in the question (Q1).

To directly test this hypothesis, we design the following critical experiment.

Our critical experiment: In the same settings as before, whenever Phenomenon 1 occurs, consider
the following updates where each update of SGD is projected onto the dominant subspace:

θt+1 ← θt − ηPk(θt)gt . (Dom-SGD)

By Phenomenon 1, Dom-SGD has an approximately same gradient correlation as SGD as (2):

E[gradient correlation] = E[⟨∇L(θt),−ηPk(θt)gt⟩] ≈ −η ∥∇L(θt)∥2 .

Therefore, based on the local quadratic Taylor approximation, Dom-SGD should be able to
successfully train neural networks whenever Phenomenon 1 occurs. Is it really the case?

3.2. The “spurious” alignment with the dominant subspace

In the same settings as before, we first train neural networks with SGD up until we observe Phe-
nomenon 1. Specifically, we track the exponential moving average (EMA) of χk(∇L(θt)) values
(EMA factor set to 0.9), and switch from SGD to Dom-SGD whenever the EMA value exceeds 0.95.
Note that we recompute the dominant subspace at every step when running Dom-SGD.

For various settings, we plot the training loss of Dom-SGD in Figure 1, comparing it with SGD
under the same initialization. We employ a constant learning rate and mean squared error (MSE)
loss for classification [8, 22]. Additional experiments, including those using cross-entropy loss and
training standard architectures, are provided in Section F.

Consistently, we observe that Dom-SGD fails to further decrease the training loss, in contrast
to SGD. This suggests that the dominant component of stochastic gradient gt is in fact not beneficial
for training, despite constituting the majority of gt.
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3.3. Bulk subspace is where the learning happens

To further strengthen our main observation, we conduct another set of experiments, wherein we
switch from SGD to the following update scheme:

θt+1 ← θt − ηP⊥
k (θt)gt . (Bulk-SGD)

Essentially, Bulk-SGD discards the majority of the stochastic gradient gt by removing its
dominant component. Consequently, it seems less likely that the remaining bulk component of
stochastic gradient would lead to successful training.

Surprisingly, as shown in Figure 1, Bulk-SGD is as effective as SGD in decreasing the training
loss. This further highlights that it is indeed a small fraction of gradient that aligns with the bulk
subspace that contributes to training loss decrease.

One can summarize our observation thus far as follows.

Phenomenon 2 Although the gradient approximately aligns with the dominant subspace at each
step, the training loss does not decrease within the dominant subspace, suggesting a “spurious”
alignment. Surprisingly, with Bulk-SGD, where each update is projected onto bulk subspaces, the
training remains as effective as the original update. This emphasizes the importance of a small
component of the update that aligns with the bulk subspace.

4. Summary of additional results

Due to space limit, we provide a summary of our additional results as below.
• In Section A, we identify that the spurious alignment between the gradient and the dominant

subspace is caused by the stochastic noise inherent to SGD, by showing that alignment disappears
when using full-batch GD (see Figure 4 and Figure 5). Additionally, we present a simple quadratic
model which also captures the observed phenomena, providing insights into the role of stochastic
noise in the spurious alignment (see Figure 6 and Figure 7).

• In Section B, we extend our observations to two other practical settings: (1) GD with large learning
rates, especially in the Edge of Stability reigme [8], and (2) Sharpness-Aware Minimization
(SAM) [14]. Our results hold for these two settings: each update approximately aligns with the
dominant subspace, yet the aligned component of each update does not contribute to the loss
decrement (see Figure 9 and Figure 10).

• In Section C, we demonstrate that momentum and adaptive optimizers, e.g. Adam, amplify the
bulk subspace component of each update, partially explaining their success in neural network
training (see Table 1 and Figure 11).

5. Conclusion

Motivated by the observation of Gur-Ari et al. [20] that the gradient aligns with a low-dimensional
dominant eigenspace of the training loss Hessian, this work investigates the possiblity of training
neural networks in the dominant subspace. Through several critical experiments, our main results
show that neural networks cannot be trained in the dominant subspace. Although each update mostly
aligns with the dominant subspace, we show that a small component of each update that aligns with
the bulk subspace is crucial for neural network training.
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Appendix A. What causes the spurious alignment with the dominant subspaces?
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Figure 4: χk(∇L(θt)) when switching
from SGD to GD at step
20000 while training MLP on
MNIST-5k.
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Figure 5: χk(∇L(θt)) when switching
from GD to SGD.

In this section, we aim to explain the spurious alignment dis-
cussed in Phenomenon 2. This phenomenon is closely tied
to the landscape of the training loss near SGD trajectories.
Importantly, SGD introduces inherent randomness into its tra-
jectories. We investigate how this stochastic noise affects the
phenomenon.

A.1. Stochastic noise of SGD is the main cause

We examine the role of stochastic noise by contrasting the
behavior of SGD with (full-batch) GD, isolating the effect of
stochastic noise.

First, we demonstrate the crucial role of stochastic noise
in the alignment by switching from SGD to GD when Phe-
nomenon 1 is observed. Strikingly, as shown in Figure 4, the
alignment disappears as soon as we switch to GD. More
specifically, χk(∇L(θt)) quickly becomes 0 as soon as the
switch occurs. This sharp transition indicates that the stochastic
noise must play a crucial role. See Section G.3 for more results.

In Section G.1, when training neural networks with GD
using small learning rates, we observe no alignment between
gradients and dominant subspaces, in contrast to SGD. In
this case, χk(∇L(θt)) quickly reaches and remains near 0, indi-
cating alignment of gradients with bulk subspaces. Remarkably,
despite despite differences in gradient alignment (GD: χk(∇L) ≈ 0, SGD: χk(∇L) ≈ 1), GD and
SGD trajectories are close to each other (see Section G.2). This suggests that the presence of small
stochastic noise results in a drastically different behavior in the alignment.

Remark 3 In this section, we consider the small learning rates, where the training loss monotoni-
cally decreases along the GD trajectory. The case of larger learning rates (especially in the Edge of
Stability regime [8]) will be discussed in Section B.1.

In Figure 5, we switch our optimizer from GD to SGD, complementary to the experiment in
Figure 4. This time we observe that the alignment sharply appears, i.e., χk(∇L(θt)) quickly becomes
1, as soon as the switch occurs. To sum up, one can summarize the findings of this subsection as
follows.

Phenomenon 3 (The spurious alignment is due to stochastic noise) The alignment between the
gradient and the dominant subspace quickly disappears when switching the optimizer from SGD
to GD. Moreover, the alignment quickly reappears when switching GD back to SGD. Hence, the
spurious alignment is mainly due to the stochastic noise of SGD.

Given this observation, one might question how the presence of small stochastic noise leads to a
drastically different alignment. We investigate this next using a simple model.

A.2. Understanding the role of stochastic noise via a toy quadratic model
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Figure 6: GD and SGD trajectories
when training a 2-dimensional
ill-conditioned toy quadratic
model.
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Figure 7: χ1(∇L(θt)) during GD and
SGD for Figure 6.

Towards understanding Phenomena 1–3, this section introduces
a simple example that recovers all the phenomena.

Given the typical ill-conditioned nature of neural network
training, we consider a 2-dimensional ill-conditioned quadratic
loss, L(x, y) = 1

2(1000x
2 + y2), where θ = (x, y) ∈ R2. We

define ℓ1(x, y) = L(x, y) + 100xy and ℓ2(x, y) = L(x, y) −
100xy, resulting in L(x, y) = 1

2(ℓ1(x, y) + ℓ2(x, y)).
We conduct GD with learning rate η as

θGD
t+1 ← θGD

t − η∇L(θGD
t ) ,

and SGD using random sampling with the same learning rate
η as

θSGD
t+1 ← θSGD

t − η∇ℓk(θSGD
t ) , where k ∼ Unif({1, 2}) .

In Figure 6, we visualize the optimization trajectories of
GD and SGD with an initialization θGD

0 = θSGD
0 = (1, 1)

and a learning rate η = 10−4. The Hessian of the quadratic
loss remains constant during training, with eigenvalues λ1 =
1000 and λ2 = 1, and corresponding eigenvectors e1 = (1, 0)
and e2 = (0, 1). We compute the fraction of gradient in the
dominant subspace as χ1(∇L(θ)) := |⟨∇L(θ),e1⟩|

∥∇L(θ)∥2
, as shown in

Figure 7.
Notably, this simple quadratic model recovers all the

observed phenomena (Phenomena 1–3). In both GD and
SGD trajectories, xt quickly converges to 0 due to the sharper
direction along e1 (λ1 ≫ λ2). Subsequently, both trajectories
remain close to the y-axis throughout the remaining of the training. However, in GD, χ1(∇L(θGD

t ))
quickly approaches and remains near 0 (Phenomenon 3), while in SGD, χ1(∇L(θSGD

t )) stays close
to 1 (Phenomenon 1). Notice that if we run Dom-SGD, the updates will be done only in the x
direction, hence training stops after switching to Dom-SGD (Phenomenon 2).

The discrepancy in alignment between GD and SGD arises from the ill-conditioned nature of the
loss landscape, where the small stochastic noise of SGD in the x direction induces a large gradient
component along the x direction, resulting in a larger χ1(∇L) value.

A.3. Revisiting our preliminary analysis (Section 3.1)

At this point, some readers might wonder how we reconcile the results with our preliminary analysis
(Section 3.1). Based on our investigations so far, we propose one plausible explanation that the
training loss landscape is locally “ill-conditioned-valley”-like. This landscape has two key features
causing the spurious alignment:
• The landscape is locally valley-shaped, where it is steep along the dominant subspace and flat

along the bulk subspace. In particular, the curvature along the dominant subspace is much larger
than that along the bulk subspace.

• The bottom of the valley is connected along the bulk subspace. Moreover, there is a direction
within the bulk subspace along which the bottom of the valley descends.
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Figure 8: Illustration demonstrating how spu-
rious alignment can occur with an ill-
conditioned-valley-like training loss.
Dom-SGD iterates (depicted with
dots) fail to progress along the bulk
subspace where the training loss de-
creases.

To aid readers’ understanding, we provide a simple
illustration of an ill-conditioned-valley-like landscape in
Figure 8. With these features, Phenomena 1–3 can oc-
cur without contradicting our preliminary analysis from
Section 3.1:
• Due to stochastic noise, the SGD iterates slightly de-

viate from the bottom of the valley. Subsequently, the
high curvature along the dominant subspace causes
gradients to align with this subspace, i.e., the iterates
exhibit Phenomenon 1.

• However, Dom-SGD fails to further decrease the train-
ing loss, as observed in Phenomenon 2, since it fails to
follow the true progress direction along the bulk subspace.

• Moreover, without stochastic noise, the iterates quickly
approach the bottom of the valley, where the alignment
disappears, as described in Phenomenon 3.
In Section G.4, we measure the distance of the weights from the step where we switch from SGD

to Dom-SGD and Bulk-SGD for the experiments in Figure 1. We observe that weights do not move
far from the switching step for Dom-SGD, in contrast to SGD and Bulk-SGD, which is consistent
with the proposed explanation based on an ill-conditioned-valley-like landscape.

Given our results for SGD thus far, one natural question is whether these phenomena are also
observed for other practical optimization algorithms.

Appendix B. Edge of Stability and Sharpness-Aware Minimization

In this section, we extend our investigations to two other practical settings: (1) GD with large learning
rates in the Edge of Stability (EoS) regime [8], and (2) Sharpness-Aware Minimization (SAM) [14].
We show that the same phenomena are observed for the two settings: the update direction aligns with
the dominant subspace, but the alignment is again spurious.

B.1. Edge of Stability

Recent empirical studies [8, 25] have observed that when training neural networks using full-batch
GD with large learning rates η, the sharpness λ1 increases until it reaches the stability threshold of
2/η, and saturates at the threshold (see Figure B.1). Cohen et al. [8] call this phenomenon as the
Edge of Stability (EoS).

In Figure B.1, we observe that gradients closely align with dominant subspaces in the EoS regime.
This phenomenon stands in contrast with GD with small learning rates (Phenomenon 3), where
χk(∇L(θt)) remains near 0 (see Section G.1 for details).

Given that the gradient approximately aligns with the dominant subspace, we run experiments
analogous to Section 3. Specifically, we train neural networks using GD with a large learning rate η
until it reaches the EoS regime. We then switch GD to the following update schemes:

θt+1 ← θt − ηPk(θt)∇L(θt) , (Dom-GD)

θt+1 ← θt − ηP⊥
k (θt)∇L(θt) . (Bulk-GD)
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Figure 9: Gradients approximately align with dominant subspaces in the EoS regime. Training MLP on MNIST-5k
with GD using a large learning rate η = 0.1. (a) The plot shows the top-10 eigenvalues in blue and the next
top-10 eigenvalues in orange. After a few steps, GD enters the EoS regime, where the sharpness stabilizes
near 2/η. (b) As the sharpness reaches 2/η, χ10(∇L(θt)) approaches and remains near 1. (c) We switch the
optimizer from GD to Dom-GD and Bulk-GD at step 2500. Dom-GD fails to further decrease the training
loss, in contrast to GD and Bulk-GD.
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Figure 10: SAM updates approximately lie in dominant subspaces. Training MLP on MNIST-5k with SAM using
a learning rate η = 0.01 and a perturbation radius ρ = 0.1. (a) The plot shows the top-10 eigenvalues in
blue and the next top-10 eigenvalues in orange. After a few steps, SAM operates in the EoS regime, where
the sharpness stabilizes near the SAM-edge. (b) As the sharpness reaches the SAM-edge, χ10(θt+1 − θt)
approaches and remains near 1. (c) We switch the optimizer from SAM to Dom-SAM and Bulk-SAM at
step 5000. Dom-SAM fails to further decrease the training loss, in contrast to SAM and Bulk-SAM.

As shown in Figure B.1, we observe that Dom-GD fails to further decrease the training loss,
unlike GD. Moreover, Bulk-GD is as effective as GD in decreasing the training loss, despite only
a small fraction of updates aligning with the bulk subspace.

B.2. Sharpness-Aware Minimization

Sharpness-Aware Minimization (SAM) [14] is a gradient-based optimization method designed to find
flat minima. SAM has gained significant attention for its success in practice, especially in improving
the generalization performance of deep learning models. For concreteness, we focus on the full-batch
version of SAM applied to GD as the base optimizer. This leads to the following update equation:

θt+1 ← θt − η∇L
(
θt + ρ

∇L(θt)
∥∇L(θt)∥2

)
,

where η is the learning rate and ρ represents the perturbation radius.
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Method Mean Dom-LR Mean Bulk-LR
GD(-m) 0.0100 (0.0000) 0.0100 (0.0000)

GD(+m) 0.0070 (0.0232) 0.0828 (0.0576)

Adam(-m) 0.0325 (0.0054) 0.4672 (0.3555)

Adam(+m) 0.0004 (0.0101) 2.6639 (1.2480)

Table 1: Mean effective learning rates over the first 1000 steps (numbers in parentheses show standard deviation).
Training Transformer on SST2-1k using GD and Adam with (+m) and without (-m) momentum. GD uses a
learning rate of 0.01, and Adam uses a learning rate of 0.001. Momentum is set to β = 0.9.

A recent study [38] highlights that SAM also operates in its own Edge of Stability regime,
wherein the sharpness λ1(θt) saturates near SAM’s stability threshold (see Figure B.2). This
threshold, denoted as the SAM-edge, is defined as:

∥∇L(θt)∥2
2ρ

(√
1 +

8

η ∥∇L(θt)∥2
− 1

)
. (SAM-edge)

Note that GD’s stability threshold 2/η remains constant during training, while SAM-edge is a
decreasing function of the norm of the gradient, so it tends to decrease during training.

As shown in Figure B.2, we observe that update vectors of SAM approximately align with
dominant subspaces when sharpness saturates near the SAM-edge, similar to GD in the EoS regime.
Next, we conduct experiments akin to Section 3: we train neural networks using SAM until the
alignment occurs. Then, we switch SAM to the following schemes:

θt+1 ← θt − ηPk(θt)∇L
(
θt + ρ

∇L(θt)
∥∇L(θt)∥2

)
, (Dom-SAM)

θt+1 ← θt − ηP⊥
k (θt)∇L

(
θt + ρ

∇L(θt)
∥∇L(θt)∥2

)
. (Bulk-SAM)

We observe that Dom-SAM fails to further decrease the training loss, unlike SAM and Bulk-
SAM, as depicted in Figure B.2. Our investigation with various practical algorithms suggests that
neural networks cannot be trained within the dominant subspace, and the bulk subspace plays an
important role in learning.

Appendix C. Momentum and adaptive methods amplify updates in bulk subspaces

In this section, we also extend our investigation to momentum optimizers, e.g., SGD-momentum, and
adaptive optimizers, e.g., Adam. Now with momentum and adaptive optimizers, the update direction
is no longer the same as the gradient direction, and Phenomenon 1 no longer holds for this case.
However, Phenomenon 2 still holds, i.e., the bulk subspace is still where the learning happens.

We build on our results so far and propose explanations for why momentum and adaptive methods
are effective for neural network training. At a high level, we claim that they speed up training by
amplifying the bulk component of each update step. Formally, we introduce the following notion.
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Figure 11: Training loss in log-scale for the experiments in Table 1.

Definition 4 (Effective learning rate) For a given optimization trajectory {θt}, we define the domi-
nant effective learning rate (Dom-LR) at step t as:

ηdomt :=
⟨θt+1 − θt, Pk(θt)∇L(θt)⟩
∥Pk(θt)∇L(θt)∥22

, (Dom-LR)

and the bulk effective learning rate (Bulk-LR) at step t as:

ηbulkt :=

〈
θt+1 − θt, P

⊥
k (θt)∇L(θt)

〉∥∥P⊥
k (θt)∇L(θt)

∥∥2
2

. (Bulk-LR)

To understand the above notion better, we first consider the case of GD:
• GD with learning rate η has effective learning rates ηdomt = ηbulkt = η for all steps t.
• Dom-GD with learning rate η has effective learning rates ηdomt = η and ηbulkt = 0 for all steps t.
• Bulk-GD with learning rate η has effective learning rates ηdomt = 0 and ηbulkt = η for all steps t.

Our primary claim in this section is as follows: since Dom-GD fails to decrease the training loss,
while Bulk-GD is as effective as GD in reducing the training loss, we claim that Bulk-LR serves as a
good indicator for training speed, unlike Dom-LR.

To support this claim, we measure the effective learning rates of various optimization methods,
including (full-batch) GD with and without momentum, and (full-batch) Adam with and without
momentum. Table 1 presents the effective learning rates when training Transformer on SST2-1k, and
Figure 11 depicts the corresponding training loss plot. Additional experiments on other architectures
and datasets or provided in Section H.

Across different settings, we consistently observe that Bulk-LR positively correlates with the
training speed. Moreover, momentum and adaptive methods seem to amplify Bulk-LR. This offers
new insights into the effectiveness of momentum and adaptive methods.

Appendix D. Related work

Gradient descent in tiny subspaces. This work is largely inspired by previous research demon-
strating low-rank structures of the training loss Hessian and the gradient in deep neural network
training [20, 44, 45]. In particular, Jastrzębski et al. [24] also observe that the SGD update di-
rection is highly aligned with the sharpest direction of the loss landscape. Recently, Schneider
et al. [46] observe that policy gradient algorithms in reinforcement learning also seem to operate in
low-dimensional subspaces.
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Motivated by such prevalent observations, several follow-up works investigate the possibility
of training neural networks in a low-dimensional subspace. If feasible, it has wide applications,
including few-shot learning [16] and differential privacy [48, 57].

Li et al. [35] and Gressmann et al. [19] train neural networks with a small fraction of parameters
using random projections, and Li et al. [37] train ResNet8 on CIFAR10 with a 15-dimensional
subspace without sacrificing test accuracy. Note that the results of these work do not contradict our
main observation since the low-dimensional subspaces they chose are not the dominant subspace. In
particular, Li et al. [37] take an adaptive approach to identify the 15-dimensional subspace based on
given optimization trajectories. Along this line, Cosson et al. [9] and Jadbabaie et al. [23] design
efficient optimization algorithms for the setting when the gradient aligns a the low-dimensional
subspace.

From a theoretical perspective, Arous et al. [6] rigorously prove that the SGD update aligns with
the dominant subspace in multi-class logistic regression and XOR classification with a two-layer
network. However, whether their results can be extended to more practical settings considered in this
work is not clear. Specifically, their results show that GD with small learning rates also aligns with
the dominant subspace, which is not the case in our settings (see Section G.1 for details).

Edge of Stability. Most analyses of GD have focused on settings where the learning rate is
sufficiently small to ensure that the training loss monotonically decreases. However, recent em-
pirical studies [24, 25] observe that GD with practically large learning rates decreases the loss
non-monotonically and finds flatter minima. Cohen et al. [8] call this the Edge of Stability (EoS) phe-
nomenon. Subsequent theoretical works have made progress towards understanding the mechanisms
of EoS [1, 13, 53]. Moreover, several recent works theoretically analyze precise training dynamics
under simplified models [2, 30, 50, 58].

Sharpness-Aware Minimization. Inspired by prior works [26, 27] showing that flat minima often
lead to better generalization, Foret et al. [14] propose an optimization method called Sharpness-Aware
Minimization (SAM), designed to find flat minima. SAM has shown great success in practice, and
subsequently, several works theoretically investigate the dynamics of SAM and its convergence
properties [5, 7, 12, 47, 52]. Recently, Long and Bartlett [38] empirically show that SAM also goes
through unstable dynamics, akin to EoS.

The role of momentum and Adam. Momentum [39, 43] and adaptive methods [29] are workhorses
for training deep neural network models. Adaptive methods, such as Adam, have gained renewed
interest due to their success in training language models [55]. However, the current understanding of
their effectiveness for neural network training remains incomplete.

The role of momentum is quite well understood for convex settings, through acceleration
mechanism [28, 39]. For nonconvex settings, the provable benefits of momentum are investigated
for variants of SGD, such as normalized SGD [11] and signSGD [10]. A recent work by Wang et al.
[51] shows that the benefit of momentum is marginal when the learning rate is small and gradient
noise is dominant. Moreover, Fu et al. [15] empirically demonstrate the benefits of momentum for
large learning rates from a sharpness perspective.

Adam has been observed to be particularly effective in training transformers [56], even for
simplified shallow linear transformers trained on linear regression tasks [3]. Its superiority over SGD
has been attributed to factors like heavy-tailed class imbalances in language tasks [33]. A recent line
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of work shows that full-batch Adam is a smoothed version of SignGD [32, 54]. Additionally, Ahn
et al. [4] study the benefits of Adam from an online learning perspective.

Appendix E. Experimental details

In this section, we provide the details of our experiments which are not covered in the main text.

E.1. Architectures

The main experiments are conducted on three types of architectures: MLP, CNN, and Transformer.
Additional experiments conducted on standard architectures are provided in Section F.2.

• MLP: We use a 3-layer MLP with a width of 200 and tanh activation functions, following the
architecture used in Cohen et al. [8].

• CNN: We use a 3-layer CNN with a width of 32 and ReLU activation functions, also based on
the architecture from Cohen et al. [8].

• Transformer: We use a 2-layer Transformer with a hidden dimension of 64 and 8 attention heads,
based on the architecture used in Damian et al. [13].

E.2. Data

The main experiments are conducted on three datasets: MNIST-5k, CIFAR10-5k, and SST2-1k.
The primary task is classification with categorical MSE loss, and additional experiments with
cross-entropy loss are provided in Section F.1.
• MNIST-5k: We use the first 5000 samples of MNIST dataset [34] for multi-class classification.

The number of classes is 10.
• CIFAR10-5k: We use the first 5000 samples of CIFAR10 dataset [31] for multi-class classification.

The number of classes is 10.
• SST2-1k: We use the first 1000 samples of SST2 dataset [49] for binary classification.

E.3. Experimental setup

Throughout this paper, all experiments are conducted using a constant learning rate. For experiments
using SGD, we use a batch size of 50 for all experiments. Below, we provide details on the choice of
learning rates for each experiment, which are not specified in the main text.
• Figure 1, Figure 2, and Figure 3: The training loss, eigenvalues of the loss Hessian, and
χk(∇L(θt)) are computed on the same run of SGD. The learning rates used are:
– MLP on MNIST-5k: 0.01,
– CNN on CIFAR10-5k: 0.001,
– Transformer on SST2-1k: 0.001.

• Figure 4 and Figure 5: We train MLP on MNIST-5k using GD or SGD with a learning rate of
0.01, under the same initialization.

• Figure 12, Figure 13, and Figure 14: The eigenvalues of the loss Hessian, χk(∇L(θt)), and the
training loss are computed on the same run of SGD. The learning rates used are:
– MLP on MNIST-5k: 0.1,
– CNN on CIFAR10-5k: 0.001,
– Transformer on SST2-1k: 0.001.
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• Figure 15, Figure 16, and Figure 17: The eigenvalues of the loss Hessian, χk(∇L(θt)), and the
training loss are computed on the same run of SGD. The learning rates used are:
– VGG11 on CIFAR10-5k: 0.01,
– ResNet8 on CIFAR10-5k: 0.01.
Our experiments were conducted using Pytorch [42], and we referred to the GitHub repository

at https://github.com/locuslab/edge-of-stability to replicate the experimental
setup described in Cohen et al. [8]. All experiments were performed on a single server equipped with
4 NVIDIA RTX 3090 GPUs.

Appendix F. Additional experiments for Section 3

In this section, we provide additional experimental results to support the observations made in
Section 3. These experiments demonstrate that our critical observation—that Dom-SGD fails to
further decrease the training loss—also holds when using cross-entropy loss and training with
standard architectures.

F.1. Cross-entropy loss

We use cross-entropy loss instead of MSE loss for classification tasks, and provide the results
analgous to Figure 1, Figure 2, and Figure 3.
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Figure 12: Low-rank structure of the Hessian. The plot shows the top eigenvalues of the loss Hessian during SGD
training. The blue curves represent the top-k eigenvalues, which are significantly larger than the next top-k
eigenvalues, shown in orange, where k is the number of classes for the classification task.
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Figure 13: Alignment of gradients with dominant subspaces. The plot illustrates χk(∇L(θt))
during SGD training. The orange dashed lines represent the exponential moving average
(EMA) of χk(∇L(θt)). After a few early steps, χk(∇L(θt)) reaches and stays near 1,
indicating the alignment between gradients and dominant subspaces.
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Figure 14: Dom-SGD fails to further decrease the training loss in contrast to SGD, despite the gradients aligning
approximately with the dominant subspace. We switch from SGD to Dom-SGD whenever the EMA value of
χk(∇L(θt)) exceeds 0.95. Training loss plots are shown in log-scale.

F.2. Standard architectures on CIFAR10-5k

To ensure the generality of our observations, we conducted experiments on standard architectures,
specifically VGG11 and ResNet8, using CIFAR10-5k dataset, using MSE loss.
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Figure 15: Low-rank structure of the Hessian. The plot shows the top eigenvalues of the loss Hessian during SGD
training. The blue curves represent the top-10 eigenvalues, which are significantly larger than the next
top-10 eigenvalues, shown in orange.
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Figure 16: Alignment of gradients with dominant subspaces. The plot illustrates χ10(∇L(θt)) during SGD training.
The orange dashed lines represent the exponential moving average (EMA) of χ10(∇L(θt)). After a few
early steps, χ10(∇L(θt)) reaches and stays near 1, indicating the alignment between gradients and dominant
subspaces.
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Figure 17: Dom-SGD fails to further decrease the training loss in contrast to SGD, despite the gradients aligning
approximately with the dominant subspace. We switch from SGD to Dom-SGD whenever the EMA value of
χk(∇L(θt)) exceeds 0.95. Training loss plots are shown in logarithmic scale.

In conclusion, these additional experiments support our primary observation that neural networks
cannot be effectively trained in the dominant subspace alone and that the bulk subspace plays a
crucial role, regardless of the loss function or architecture used.

Appendix G. Additional experiments for Section A

This section provides additional experimental results to support the observations made in Section A.

G.1. No alignment with dominant subspaces along GD trajectories

We run (full-batch) GD under the same settings as Figure 3, using the same (small) learning rates
and initializations. As shown in Figure 18, χk(∇L(θt)) quickly approaches and remains near 0,
indicating that gradients do not align with dominant subspaces, unlike in SGD.
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Figure 18: Gradients do not align with dominant subspaces on GD trajectories. The plot illustrates χk(∇L(θt))
during GD training. After a few early steps, χk(∇L(θt)) reaches and stays near 0, indicating alignment
with bulk subspaces. The same learning rates and initializations as Figure 3 are used.

G.2. SGD trajectories track gradient flow

Figure 3 and Figure 18 suggest that GD and SGD exhibit different alignments with dominant
subspaces, even when using the same learning rate and initialization. However, both should track
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their continuous dynamics, i.e., the gradient flow, if the learning rate is sufficiently small. In Figure 19,
we confirm that the trajectory of GD {θGD

t } and the trajectory of SGD {θSGD
t } are close to each other.

Specifically, we observe that
∥∥θGD

t − θSGD
t

∥∥≪ ∥∥θGD
t − θGD

0

∥∥ ≈ ∥∥θSGD
t − θSGD

0

∥∥, indicating the
trajectories are quite similar.
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Figure 19: Trajectories of GD and SGD are close to each other.

G.3. Switching between GD and SGD

Here, we provide additional plots for the experiments shown in Figure 4 and Figure 5. Figure 20
illustrates χk(∇L(θt)), training loss, and top eigenvalues of the loss Hessian when switching from
SGD to GD, corresponding to the experiment in Figure 4. Figure 21 illustrates χk(∇L(θt)), training
loss, and top eigenvalues of the loss Hessian when switching from GD to SGD, corresponding to the
experiment in Figure 5.
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Figure 20: The left plot shows χk(∇L(θt)) when training MLP on MNIST-5k. A sharp transition in gradient alignment
with the dominant subspace is observed when switching from SGD to GD (same plot as Figure 4). The plots
of the training loss and top eigenvalues of the loss Hessian change relatively smoothly when switching from
SGD to GD, in contrast to χ10(∇L(θt)). In the right plot, the blue curves represent the top-10 eigenvalues,
and the orange curves represent the next top-10 eigenvalues.
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Figure 21: The left plot shows χk(∇L(θt)) when training MLP on MNIST-5k. A sharp transition in gradient alignment
with the dominant subspace is observed when switching from GD to SGD (same plot as Figure 5). The plots
of the training loss and top eigenvalues of the loss Hessian change relatively smoothly when switching from
GD to SGD, in contrast to χ10(∇L(θt)). In the right plot, the blue curves represent the top-10 eigenvalues,
and the orange curves represent the next top-10 eigenvalues.

G.4. Distance from “switching” step

We measure the ℓ2 distance of the weights from the step where we switch from SGD to Dom-SGD
and Bulk-SGD for the experiments in Figure 1. As shown in Figure 22, the distance from the
switching step remains relatively small and tends to saturate for Dom-SGD. In contrast, for both
SGD and Bulk-SGD, the distance from the switching step increases much faster and in a similar
manner. This observation supports our illustration in Figure 8.
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Figure 22: The plots illustrate the ℓ2 distance of the weights from the step where we switch from SGD to Dom-SGD
and Bulk-SGD for the experiments in Figure 1. We observe that Dom-SGD fails to make further progress in
terms of distance, in contrast to SGD and Bulk-SGD, supporting our illustration in Figure 8.

Appendix H. Additional experiments for Section C

This section provides additional experimental results to support the observations made in Section C.
We measure the effective learning rates for (full-batch) GD with and without momentum, and (full-
batch) Adam with and without momentum on different architectures and datasets. Tables 2 and 3
present the effective learning rates when training an MLP on MNIST-5k and a CNN on CIFAR10-5k.
Figures 23 and 24 show the corresponding training loss plots. We consistently observe that (1) a
higher Bulk-LR positively correlates with increased training speed, and (2) momentum and adaptive
learning rates in Adam amplify Bulk-LR, resulting in a larger Bulk-LR compared to Dom-LR.
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Method Mean Dom-LR Mean Bulk-LR
GD(-m) 0.0100 (0.0000) 0.0100 (0.0000)

GD(+m) 0.0012 (0.0092) 0.1005 (0.0068)

Adam(-m) 0.3317 (0.0571) 0.4021 (0.0868)

Adam(+m) 0.0356 (0.0194) 0.7301 (0.4717)

Table 2: Mean effective learning rates over the first 1000 steps (numbers in parentheses show standard deviation).
Training MLP on MNIST-5k using GD and Adam with (+m) and without (-m) momentum. GD uses a learning
rate of 0.01, Adam uses a learning rate of 0.001. Momentum is set to β = 0.9.
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Figure 23: Training loss in log-scale for the experiments in Table 2.

Method Mean Dom-LR Mean Bulk-LR
GD(-m) 0.0010 (0.0000) 0.0010 (0.0000)

GD(+m) 0.0010 (0.0023) 0.0101 (0.0007)

Adam(-m) 0.0191 (0.0020) 0.0289 (0.0053)

Adam(+m) 0.0046 (0.0026) 0.0802 (0.0194)

Table 3: Mean effective learning rates over the first 1000 steps (numbers in parentheses show standard deviation).
Training CNN on CIFAR10-5k using GD and Adam with (+m) and without (-m) momentum. GD uses a
learning rate of 0.001, and Adam uses a learning rate of 10−4. Momentum is set to β = 0.9.
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Figure 24: Training loss in log-scale for the experiments in Table 3.
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