SubtaskEval: Benchmarking LLMs on Competitive
Programming Subtasks

Samik Goyal
DAV Public School
Patiala, Punjab 147001, India
samikgoyal@gmail.com

Abstract

Existing code generation benchmarks such as HumanEval, MBPP, and Live-
CodeBench evaluate only full solutions, overlooking meaningful partial progress
on competitive programming tasks. We introduce SubtaskEval, a benchmark of
287 olympiad problems (2017-2025) that preserves official subtask structures,
metadata, and online-judge links. Evaluating six recent LLMs, including a tool-
augmented variant, we find that even the best model achieves only 18.47% accuracy
(pass@1) though tool use improves subtask performance. Models exhibit bottom-
heavy score distributions, in contrast to the more balanced distributions of human
contestants. Subtask-based evaluation thus provides a finer-grained view of model
problem-solving and highlight directions for advancing LLMs in code generation.

1 Introduction

Large language models (LLMs) have achieved near-saturation on standard code generation bench-
marks such as HumanEval (Chen et al.| 2021), MBPP (Austin et al.,[2021)), and LiveCodeBench (Jain
et al.,2024), with state-of-the-art models able to solve 80% of problems in entirety in a single run
(pass@1). In contrast, competitive programming (CP) problems from informatics olympiads are far
more challenging: in our benchmark the best pass@1 was only 18.47%. To probe deeper capabilities,
competitive programming (CP) tasks are attractive: they are subdivided into subtasks, constrained
variants of the main problem that award partial credit (e.g., solving N < 1000 cases in a problem
with IV < 10° may award 40% of the max total score). Subtasks also carry different weights (e.g., a
simpler case may yield 20% of points, while solving a subtask with a bigger scope may yield 80%).

Example. Consider a shortest-path problem where solving the full version requires O(N) algorithms,
but a subtask restricted to N < 500 is solvable with the Floyd—Warshall algorithm. A model that fails
on the full problem but succeeds on this subtask still shows meaningful competence. Subtask-level
evaluation thus reveals differences that case-by-case test scoring or pass@ 1 metrics obscure.

Recent benchmarks extend to competition-level problems, including CodeContests+ (Wang et al.,
2025b), USACO Benchmark (Shi et al., 2024), OIBench (Zhu et al.,2025), and OJBench (Wang et al.,
2025a). However, none preserve official subtasks. Alternatives like test-case fractions (Hendrycks
et al.| 2021) do not capture the structured partial credit used in contests.

Our Contributions. (1) We introduce SUBTASKEVAL, a benchmark of 287 olympiad problems
(2017-2025) with full subtask structure, metadata, and online-judge links. (2) We evaluate six modern
LLM:s, including tool-augmented variants, using new metrics such as the Normalized Subtask Score,
and examine differences between human and LLM performance distributions, the benefits of tool use,
and temporal performance trends.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Deep Learning for
Code in the Agentic Era.

2 Benchmark Curation

SUBTASKEVAL comprises 287 tasks curated from international informatics olympiads between 2017
and 2025. Each task includes the full problem statement, input/output specification, sample tests, and
a description of subtasks. All problems are designed to be solved in C++. An illustrative problem is
provided in Appendix [D] In addition to problem content, we provide metadata annotations capturing
each task’s Name, Year, Source, Number of subtasks, and Input type (standard I/O or interactive).

For reproducibility, each task is linked to the online judge https://qoj.ac/, which supports direct
submission and evaluation. We also release automation scripts for submission and result retrieval,
and provide the dataset in the supplementary material for now (see Appendix [A).

The benchmark draws tasks from five olympiads: the Japanese Olympiad in Informatics (JOI) (JOI
Committee, |2017-2025)), the European Girls’ Olympiad in Informatics (EGOI) (EGOI Committee,
2020-2023), the Central European Olympiad in Informatics (CEOI) (CEOI Committeel 2017-2025)),
the Asia-Pacific Informatics Olympiad (APIO) (APIO Committee, 2017-2025)), and the Baltic
Olympiad in Informatics (BOI) (BOI Committeel 2017-2025)). Attribution details for each source are

given in Appendix

3 Evaluation Methodology

3.1 Models

We evaluated the zero-shot performance of 6 LLMs: gpt-5-mini, gpt-4.1, o4-mini, gemini-2.5-flash,
gemini-2.5-pro, and deepseek-v3.1-non-thinking on the benchmark to provide a baseline. We also
evaluated gpr-5-mini with the Code Execution Tool. The prompts used can be found in Appendix [E]

3.2 Metrics

Each model is ran once per problem and the code is evaluated across all subtasks of the problem.
The verdict is defined as the sum of the weights of successfully solved subtasks, with a maximum of
100 per problem. In addition to numeric scores, two special verdicts are possible: Compile Error,
assigned when the generated code fails to compile, and No Output, assigned when a model refuses or
fails to produce code for a given task. Valid generations refer to problems where the model produced
code which compiled.

We report both standard metrics from prior code generation benchmarks and new metrics tailored to
the subtask setting.

Let the total number of problems be N, and let problem 7 contain S; subtasks. Denote by v; s the
score for subtask s of problem i. If the verdict for problem ¢ is a Compile Error or No Output, we set
Vi, s =0Vse {1,2,...,Si}.

Full-problem pass@1 (%) Introduced in|Chen et al.|(2021)), this metric reports the percentage of
problems solved in their entirety in a single run:

Si

N
1
pass@1 =100 ;n : lum' =100

Average score over valid generations (AVG) This is the average score per problem, computed
only over problems that did not result in Compile Error or No Output.

Normalised Subtask Score (NSS) This is the average percentage of subtasks solved per problem:

1L (1 &
NSS:100~N; E-;ﬂ{m,j>0}

https://qoj.ac/

Table 1: Comparison of model performance across error rates, accuracy, and scoring metrics. Columns
2-5 report percentage of cases with no output, compile errors, zero score, and pass@1. Columns
6-8 report average score over valid generations (see , normalized subtask score (NSS) over valid
generations (see , and NSS over all problems. Best values are in bold, second-best are underlined.

No Compile
Model Output % Error % 0% pass@l AVG NSS(val) NSS
deepseek-v3.1-nonthink 32.40 7.32 3240 6.27 15.54 19.01 12.85
gemini-2.5-flash 57.84 3.83 21.95 6.97 24.47 24.87 10.49
gemini-2.5-pro 70.03 1.05 12.20 7.32 33.49 37.24 11.16
gpt-4.1 0.00 2648 52.96 1.05 535 6.66 6.66
gpt-5-mini 0.00 16.03 38.33 14.63 25.40 26.37 2637
gpt-5-mini+tool 0.35 16.38 3240 1847 31.36 30.79 30.68
04-mini 3.14 1498 39.37 15.68 2533 26.14 2532

4 Results and Discussion

We present results evaluating multiple LLMs, comparing them to human performance, assessing
tool use, and analyzing temporal trends. Both Gemini models (gemini-2.5-flash and gemini-2.5-pro)
exhibited a high No Output rate: despite retries, they often used 20-30 thinking tokens but returned an
empty string. In contrast, the gpr models failed mainly with compile errors, particularly on interactive
tasks, where they produced full programs with a main function instead of the required function.

4.1 Performance of LLMs relative to human benchmark

We plotted violin distributions for all models and for the top 40 contestants from EGO]E] (Figure|1)).
Full dataset distributions are in Appendix[C| though human scores are unavailable. Model distributions
are bottom-heavy, with mass at low scores and some density near the maximum, while humans have
a balanced distribution centered around 20 points. This likely reflects strategy: humans secure partial
credit, whereas LLMs produce all-or-nothing solutions.

100

80 1

60 4

Score

404

204

& & & o
& & & & 2 & & R
A °0Q eb' \,’6 &\ -&\ a el oV
S S $ &7 &
K & o & o
QOQ . /&’J' B2 L7
Q%éy
N

Figure 1: Score distribution of models with human reference (EGOI). Width indicates score density.

4.2 Benefits of Tool Use

The Code Execution Tool enables the model to run Python code for verifying its solutions against
self-generated test cases. This additional feedback loop helps the model identify and correct errors

'The human group corresponds to the top 40 contestants from EGOL.

50

Model
=6~- deepseek-v3.1-nonthinking == gpt-5-mini
gemini-2.5-flash =e=gpt-5-mini+python
40 = gemini-2.5-pro o4-mini

~©- gpt4.1

Figure 2: Pass@1 by year of problem release.

before generating the final output. This could explain why we observe substantial gains in both N.SS
and average score, even though the frequency of compile errors remains largely unchanged.

4.3 Temporal Trends

Because many of the benchmark problems were released prior to the knowledge cut-off dates of the
evaluated models, we also studied the effect of problem release year on model accuracy. Figure[Z]
shows pass@1 across problems for each model grouped by year of release. Performance is higher on
problems from 2017-2020 but levels off from 2021-2025. Since all model cut-offs extend beyond
2021, the decline is unlikely due to memorisation and instead reflects increased problem difficulty.
Moreover, modern CP-oriented LLMs rely on reinforcement learning from outcome signals rather
than direct data memorisation, reinforcing difficulty as the main factor.

5 Conclusions and Future Work

We present SubtaskEval, a benchmark that evaluates LLMs on competitive programming problems
with subtasks. Our experiments show that while current models achieve partial progress, they still
lag behind human performance, with distinct error patterns and bottom-heavy score distributions. In
future, we plan to expand coverage to more models and agentic settings, evaluate multiple runs to
better capture stochastic variability, perform deeper per-model analysis, and explore ways to mitigate
potential data contamination.

Limitations

This work has three main limitations: (i) we could not rewrite problems to mitigate temporal effects,
as preserving the correctness and difficulty of Olympiad tasks makes such rewriting infeasible; (ii)
our evaluation covers only six models and one tool-augmented variant, evaluated with a single run
per problem, due to budget limitations, leaving broader families and agentic setups unexplored; and
(iii) because all problems were publicly released after their contests, data leakage into model training
corpora is possible, and contamination or fine-tuning remain future concerns.

Acknowledgments and Disclosure of Funding

We thank Dr. Srujana Merugu for insightful discussions and for reviewing the final version of this
work.

The author declares no funding and no competing interests.

References

APIO Committee. Asia-pacific informatics olympiad (apio), 2017-2025. URL https://apio2025.org/.
International olympiad held across Asia-Pacific countries.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,
Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large language models,
2021. URL https://arxiv.org/abs/2108.07732,

BOI Committee. Baltic olympiad in informatics (boi), 2017-2025. URL https://b0i2025.ut.ee/. Regional
olympiad for Baltic countries.

CEOI Committee. Central european olympiad in informatics (ceoi), 2017-2025. URL https://ceoi.inf,
elte.hu/. Regional olympiad for Central European countries.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such,
Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

EGOI Committee. European girls’ olympiad in informatics (egoi), 2020-2025. URL https://egoi.org/.
International olympiad for female and non-binary participants.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir
Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge competence with apps,
2021. URL https://arxiv.org/abs/2105.09938|

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language
models for code, 2024. URL https://arxiv.org/abs/2403.07974,

JOI Committee. Japanese olympiad in informatics (joi), 2017-2025. URL https://www.ioi-jp.org/|
National Olympiad of Japan used for IOl selection.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve olympiad
programming?, 2024. URL https://arxiv.org/abs/2404.10952,

Zhexu Wang, Yiping Liu, Yejie Wang, Wenyang He, Bofei Gao, Muxi Diao, Yanxu Chen, Kelin Fu, Flood Sung,
Zhilin Yang, Tianyu Liu, and Weiran Xu. Ojbench: A competition level code benchmark for large language
models, 2025a. URL https://arxiv.org/abs/2506.16395.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test case generation
for competitive programming, 2025b. URL https://arxiv.org/abs/2506.05817.

Yaoming Zhu, Junxin Wang, Yiyang Li, Lin Qiu, ZongYu Wang, Jun Xu, Xuezhi Cao, Yuhuai Wei, Mingshi
Wang, Xunliang Cai, and Rong Ma. Oibench: Benchmarking strong reasoning models with olympiad in
informatics, 2025. URL https://arxiv.org/abs/2506.10481l

A Code release

We release the complete dataset as a supplementary material to this paper with the CC-BY-SA licence.
We also release the code used to submit the problems to the goj.ac website under the MIT licence.
Both are available at https://doi.org/10.5281/zenodo.17370525,

https://apio2025.org/
https://arxiv.org/abs/2108.07732
https://boi2025.ut.ee/
https://ceoi.inf.elte.hu/
https://ceoi.inf.elte.hu/
https://arxiv.org/abs/2107.03374
https://egoi.org/
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2403.07974
https://www.ioi-jp.org/
https://arxiv.org/abs/2404.10952
https://arxiv.org/abs/2506.16395
https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2506.10481
https://doi.org/10.5281/zenodo.17370525

B Dataset Sources and Attributions

We gratefully acknowledge the contest organizers who created and released the problems used in the
dataset. All tasks were sourced from publicly available contest archives. Below we attribute each
olympiad to its official organizers:

JOI (Japanese Olympiad in Informatics). Organized by the Japanese Olympiad in Informatics
Committee. Problems and solutions are released on the official JOI archive (https://www.ioi-jp.
org/).

EGOI (European Girls’ Olympiad in Informatics). Organized by the EGOI International Com-
mittee with hosting rotating among participating countries. Problems are released on the official
EGOl site (https://egoi.org/).

CEOI (Central European Olympiad in Informatics). Organized annually by a rotating Central
European host under the coordination of the CEOI committee. Problems are available on the official
CEOI archive (https://ceoi.inf.elte.hu/).

APIO (Asia-Pacific Informatics Olympiad). Organized by the APIO Scientific Committee with
hosting rotating across Asia—Pacific countries. Problems are published on the official APIO sites of
each year. The website for the last edition is athttps://apio2025.uz/.

BOI (Baltic Olympiad in Informatics). Organized by the Baltic Olympiad in Informatics Com-

mittee, with hosting rotating among Baltic countries. Problems are released on the official BOI sites
of each year. The website for the last edition is at https://b0i2025.mat .umk.pl/,

C Score distribution of models on the full dataset

Figure [3 has the score distributions of the models over the complete dataset.

100 4

80

60

Score

40

20 A

Figure 3: Score distributions of the models on the full dataset. Width indicates density of scores.

D Illustrative problem

The pdf version of one of the problems in the data set can be found at https://www2.i01-
jp-org/j01/2024/2025-ho/2025-ho-t5-en.pdf.

https://www.ioi-jp.org/
https://www.ioi-jp.org/
https://egoi.org/
https://ceoi.inf.elte.hu/
https://apio2025.uz/
https://boi2025.mat.umk.pl/
https://www2.ioi-jp.org/joi/2024/2025-ho/2025-ho-t5-en.pdf
https://www2.ioi-jp.org/joi/2024/2025-ho/2025-ho-t5-en.pdf

E Zero-shot prompts

The prompt we used for the non-tool models was:

Please reply with a C++14 solution to the below problem. Make sure to wrap
— your code in "~ “cpp and "~ Markdown delimiters, and include exactly
— one block of code with the entire solution.

Reason through the problem and think step by step.
No outside libraries are allowed.

Test out your solution on the provided samples, and ensure it works
— correctly.

If you are unable to solve the full problem, try to solve the subtasks and
— merge them into one solution with strict case checking.

Your goal is to maximize your score which is the sum of points for all
— subtasks.

[BEGIN PROBLEM]
{problem_block}

[END PROBLEM]
The prompt that we used for the tool variant was:

Solve the problem below and produce a **single** final answer: one C++17
< program.

Think step-by-step:
1) Restate the problem in your own words.
2) Design the approach in plain English; consider constraints and edge
< cases.
3) Draft pseudocode.
4) Use the python tool to **verify** the approach by stress testing (no
< logs in the final output):
- In Python, generate random test cases within the problem’s
— constraints.
- Implement a small-input brute-force oracle.
- Implement a correct efficient solver (Python is fine for the test
< harness).
- Compare brute vs efficient over many random cases (use a fixed RNG
— seed).
- If any mismatch occurs, investigate and fix before proceeding.
- Optionally check invariants (monotonicity, bounds, graph properties,
- etc.).

Final deliverable (the ONLY thing you print):

- Output exactly one fenced code block containing valid C++17 that solves
< the **full** problem if possible.

- If only subtasks are solvable, write the best mixed strategy and

< *¥merge** them into one file using clear condition checks.

- Start the code block with ~~“cpp and end it with ~~°.

Your goal is to maximize your score which is the sum of points for all
— subtasks.

OQutput policy:

- Do **not** print any analysis, pseudocode, stress-test logs, or
— explanations outside the final code block.

- The final code block must be the **only** content in your reply.

[BEGIN PROBLEM]
{problem_block}
[END PROBLEM]

	Introduction
	Benchmark Curation
	Evaluation Methodology
	Models
	Metrics

	Results and Discussion
	Performance of LLMs relative to human benchmark
	Benefits of Tool Use
	Temporal Trends

	Conclusions and Future Work
	Code release
	Dataset Sources and Attributions
	Score distribution of models on the full dataset
	Illustrative problem
	Zero-shot prompts

