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NeuralTouch: Leveraging Implicit Neural Descriptor
for Precise Sim-to-Real Tactile Robot Control

Yijiong Lin, Bowen Deng, Chenghua Lu, Max Yang, John Lloyd, Efi Psomopoulou, Nathan F. Lepora

I. INTRODUCTION
Current applications of vision and touch for robotic ma-

nipulation tend to be constrained by several factors. First, in
common scenarios objects are already optimally positioned in
the hand for grasping by the robot [1], [2]. Second, policies
can be restricted to manipulating objects or contact features
that were trained already, and so lack the ability to generalize
to novel objects [3], [4].Third, the independent use of vision
and touch modalities can reduce their synergistic potential
[5], [6]. Fourth, multimodal policies developed in simulation
struggle to transition seamlessly to real-world environments.
This paper seeks to address these challenges by proposing
a novel multimodal policy learning framework capable of
overcoming these limitations.

In this work, we present NeuralTouch, a tactile RL policy
learning framework with neural descriptor fields (NDF) [7].
Our goal is to improve the grasping accuracy of NDF-based
methods with touch while maintaining sufficient generaliz-
ability to different inter-category objects. Furthermore, this
framework does not restrict the NDF-based tactile servoing
to limited, predefined contact geometries.

Experimentally, we focus on precise grasping with a tactile
gripper through the aforementioned visual (coarse) and tactile
(fine) phases. Specifically, in the coarse phase, we use an
NDF to generate a pre-grasping pose, then the fine phase
focuses on in-hand tactile servoing of the gripper fingers that
repositions and reorients the gripper to achieve a specific
grasp. This process is challenging due to the need to interpret
the underlying object geometry in combination with precise
control of a 6-DoF robot arm and parallel jaw gripper.

The main contributions of this work are as follows:
1) We propose a deep-RL-based framework with neural de-
scriptor fields to train a general tactile policy which does not
need any explicit assumption about prior contact geometry.
2) We demonstrate that our NeuralTouch strongly comple-
ments state-of-the-art vision-based grasping to achieve the
desired grasping pose with improved accuracy.
3) We validate this experimentally with zero-shot sim-to-real
policy transfer and few-shot demonstration to showcase that
our method solves a variety of downstream manipulation tasks
over a variety of objects.

II. METHODS

We separate the robotic grasping task into two phases: a
coarse vision-guided phase and a fine tactile-guided phase. In
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Figure 1. Overview of the NeuralTouch: In simulation, we first pre-train
an occupancy network which is the core component of the Neural Pose
Descriptor Fields. Secondly, we collect human demonstrations along with
object point clouds and robot target grasping pose descriptors depending
on the manipulation tasks. Thirdly, we train an RL policy with tactile and
proprioceptive feedback, to achieve fine grasping poses implicitly specified
by these collected descriptors. After obtaining the NPDF and a well-trained
policy, our system is directly deployed in the real world with a real-to-sim
tactile transfer to accurately grasp unseen objects, executing manipulation
tasks such as unplugging a bolt-like USB and inserting it into a socket.

the coarse phase, we leverage the descriptor generated from
NDF to calculate the coarse target grasping pose. Then, in the
fine phase, we apply a tactile RL policy to accurately grasp
an object with a desired contact pose represented by the NDF
descriptor.

Specifically, we focus on learning a tactile RL policy that
can be generalized to different target contact poses for different
objects or tasks with the help of implicit neural descriptors
from NDF. The tactile RL policy should not only consider the
local contact to achieve safe, gentle contact but also have a
sense of its desired contact pose with respect to the global
shape of an object. Our method consists of three modules:
1) A PointNet Encoder [8] with Neural Pose Descriptor Fields
[7] that learns implicit descriptors for various object shapes.
These implicit representations describe the geometric relation-
ships between poses (local frames) and the corresponding local
shapes of inter-category objects.
2) A module to generate an initial coarse grasping pose using
regression over the NDF [7].
3) A NeuralTouch RL module that learns a general tactile
robotic policy conditioned on the implicit neural descriptors
to achieve the desired fine grasping pose while maintaining
safe, gentle physical interaction between the tactile robot and a
manipulated object, given tactile and proprioceptive feedback.
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Figure 2. The snapshots of the robot performing four different tasks in
simulation with three methods: (a) NeuralTouch, (b) NDF (first two rows) and
NDF+RL-Touch (last two rows). From top to bottom row: object-pick-and-
place (mug rim, mug horizontal handle, and bottle lid) and bolt-out/in-hole.

III. EXPERIMENTS AND RESULTS

A. Tasks Setup

First, we design an ablation study and compare our method
to two baselines: NDF [7] and NDF+RL-Touch. Specifically,
we analyze grasping accuracy by measuring position errors
and orientation errors for various target features of differ-
ent objects in simulation. To further evaluate our proposed
method, we consider two tasks both in simulation and in
reality, with three phases: a) a coarse phase where the robot
uses vision to locate and approach the unknown target feature
pose of an object, b) a fine phase where the robot uses
in-hand tactile servoing of the gripper fingers to achieve a
precise grasping pose, and c) a replay phase where the robot
executes a predefined skill to complete the task. The fine
phase is particularly challenging due to the need for 7-DoF
robot control and an understanding of the object’s geometry
to reposition and reorient the robot.

B. Simulation Tasks Results

We evaluated the performance of the above methods in
several fine manipulation tasks within simulation. Specifically,
these are object pick-and-place and bolt-out/in-hole tasks, with
60 trials for each target feature. Our NeuralTouch method
consistently outperforms the others in both tasks, because of
its high accuracy.

C. Real-world Tasks Results

In the bottle-lid-opening task, our NeuralTouch method
achieves 90% success rate for the bottles of apple juice and the
ketchup, and achieves 85% for the syrup bottle. In comparison,
the vanilla NDF only achieved success rates of 30–45%. Thus,
without tactile feedback, the NDF method frequently fails to
open the bottle lid, as the rotation action must be executed
precisely around the central axis of the cylinder-shaped lid to
be successful. Also, when the gripper approached the lid with
a large positional offset (where one finger was much closer
to the lid), the lid would oscillate forwards then back rather
than continuously turn. These behaviours are shown in the
supplementary video.

In the peg-out/in-hole task, our NeuralTouch method
achieved success rates of 55%, 25% and 15% for the bolt, plug
and USB objects, respectively, consistent with the clearances
of these objects progressively decreasing. Note that even
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Figure 3. (a) Robot arm equipped with a tactile gripper performing two
real-world manipulation tasks requiring high accuracy. Top 3 rows: bottle-
lid opening. 4th row: peg-in/out-hole insertion. Bottom 2 rows: to increase
the difficulty of the insertion task, we also experimented with a USB-head
bolt and a plug where the clearances were approximately 0.5mm and 1mm,
respectively. (b) End-effector trajectories recorded during the second phase.
The red diamond represents the initial position determined by the NDF, while
the green star indicates the final position achieved after tactile servoing.

though the success rates of NeuralTouch with the plug and
the USB are not high, it does succeed sometimes, and this is
a task in which the actions can be repeated until it succeeds.
Therefore, another way to interpret the results is that they take
a longer times to complete. Also, even when the task fails
on the insertion, it only has about 1 mm error, compared to
clearances of 1 mm and 0.5 mm respectively.

IV. CONCLUSION

We presented NeuralTouch, a new method to achieve ac-
curate robotic grasping that integrates vision and touch to
enable precise manipulation with various objects and target
features of those objects. Our approach consists of two main
phases: a coarse phase, where the NDF is used to generate
an initial grasping pose; and a fine phase, where the robot
engages in tactile servoing using a neural descriptor-based RL
tactile policy upon approaching the initial pose. Additionally,
we demonstrate applications of our method by introducing
a third replay phase, where the robot performs downstream
tasks requiring high precision, such as peg-out/in-hole. Our
ablation study shows that NeuralTouch significantly outper-
forms baseline methods in grasping accuracy and generaliz-
ability. Furthermore, our method is sim-to-real transferable,
which makes it easy to deploy in real-world scenarios. In the
future, exploring using tactile skin for large area contact with
NeuralTouch will be an interesting direction [9].

REFERENCES

[1] Roberto Calandra, Andrew Owens, Dinesh Jayaraman, Justin Lin, Wen-
zhen Yuan, Jitendra Malik, Edward H. Adelson, and Sergey Levine. More
than a feeling: Learning to grasp and regrasp using vision and touch. IEEE
Robotics and Automation Letters, 3(4):3300–3307, 2018.



3

[2] Shan Luo, Nathan F Lepora, Wenzhen Yuan, Kaspar Althoefer, Gordon
Cheng, and Ravinder Dahiya. Tactile robotics: An outlook. IEEE
Transactions on Robotics, 2025.

[3] Maria Bauza, Antonia Bronars, Yifan Hou, Ian Taylor, Nikhil Chavan-
Dafle, and Alberto Rodriguez. Simple, a visuotactile method learned in
simulation to precisely pick, localize, regrasp, and place objects. Science
Robotics, 9(91):eadi8808, 2024.

[4] Can Zhao, Lingzi Xie, Bidan Huang, Shuai Wang, and Daolin Ma.
Tactile-driven dexterous in-hand writing via extrinsic contact sensing.
IEEE Robotics and Automation Letters, 10(9):8914–8921, 2025.

[5] Martin Matak and Tucker Hermans. Planning visual-tactile precision
grasps via complementary use of vision and touch. IEEE Robotics and
Automation Letters, 8(2):768–775, 2023.

[6] Hao-Shu Fang, Minghao Gou, Chenxi Wang, and Cewu Lu. Robust
grasping across diverse sensor qualities: The graspnet-1billion dataset.
The International Journal of Robotics Research, 42(12):1094–1103, 2023.

[7] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B Tenenbaum,
Alberto Rodriguez, Pulkit Agrawal, and Vincent Sitzmann. Neural de-
scriptor fields: Se (3)-equivariant object representations for manipulation.
In 2022 International Conference on Robotics and Automation (ICRA),
pages 6394–6400. IEEE, 2022.

[8] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric space.
Advances in neural information processing systems, 30, 2017.

[9] Youcan Yan, Zhe Hu, Zhengbao Yang, Wenzhen Yuan, Chaoyang Song,
Jia Pan, and Yajing Shen. Soft magnetic skin for super-resolution tactile
sensing with force self-decoupling. Science Robotics, 6(51):eabc8801,
2021.


	INTRODUCTION
	Methods
	Experiments and Results
	Tasks Setup
	Simulation Tasks Results
	Real-world Tasks Results

	Conclusion
	References

