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I. INTRODUCTION

An everyday human ability that remains challenging for
robots is our capacity to glance at an object to gauge its
general location and then rely solely on touch to grasp it
precisely. For example, after seeing where a plug is inserted
into a socket, we can unplug it using just our sense of touch.
In robotics, replicating this process typically involves two
phases: (1) an initial coarse phase where vision captures
global information essential for contact-rich tasks, and (2) a
subsequent fine phase where touch refines the grasping pose,
utilizing prior visual information about the object’s position
and geometry.

However, the current use of vision and touch in robotic
manipulation faces several limitations: (1) it is restricted
to scenarios where objects are already optimally positioned
for grasping at the start; (2) the policies are limited to
manipulating objects or contact features seen during training,
lacking generalization to novel objects; (3) the independent
use of vision and touch reduces their potential for synergy;
and (4) multimodal policies developed in simulation often
struggle to transfer effectively to real-world environments.
This paper addresses these challenges by introducing a novel
multimodal policy learning framework designed to overcome
these limitations.

In this work, we introduce NeuralTouch, a tactile
reinforcement learning (RL) policy framework augmented
with neural descriptor fields (NDFs) [1]. The primary aim is
to enhance the grasping accuracy of NDF-based methods by
incorporating touch, while preserving broad generalizability
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across diverse object categories. Additionally, this framework
removes the limitations of predefined contact geometries,
enabling NDF-based tactile servoing to operate flexibly across
various contact scenarios.

As shown in Fig. 2] we separate the robotic grasping
task into two phases: the coarse phase and the fine phase.
Note that while we structure this task similarly to [2]], we
do not rely on any specific methods from their proposed
approach. In the coarse phase, we leverage the descriptor
generated from NDFs to calculate the coarse target grasping
pose. Then, in the fine phase, we apply a tactile RL policy
[3], [4] to accurately grasp an object with a desired contact
configuration represented by the NDF descriptor.
Specifically, we focus on learning a tactile RL policy that
can be generalized to different target contact configurations
for different objects or tasks with the help of implicit neural
descriptors from NDFs. Specifically, the tactile RL policy
should not only consider the local contact to achieve safe,
gentle contact but also have a sense of its desired contact
configuration with respect to the global shape of an object.
Our method consists of three modules:

1) A PointNet Encoder [5] and Neural Pose Descriptor
Fields [1] that learn implicit descriptors for various object
shapes. These implicit representations are geometric-relevant,
describing the relationships between a pose (local frame) and
the corresponding local shape of an object.

2) Initial coarse grasping pose generation with pose regression
using NDFs [[1].

3) NeuralTouch RL, which learns a general tactile robotic
policy that is conditioned on the implicit neural descriptors
to achieve desired contact configuration (fine grasping pose)

(a) Demonstration in simulation  (b) Testing in real world: Reaching fine grasping pose for unseen objects with NeuralTouch and executing downstream tasks requiring high accuracy
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Figure 1. With just a few demonstrations of a manipulation task in simulation, our method NeuralTouch effectively generalizes to achieve accurate grasping

poses for unseen objects in real-world settings, utilizing both vision and touch.
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Figure 2. Overview of the NeuralTouch: In simulation, we first pre-train an occupancy network which is the core component of the Neural Pose Descriptor
Fields. Secondly, we collect human demonstrations along with object point clouds and robot target grasping pose descriptors depending on the manipulation
tasks. Thirdly, we train an RL policy with tactile and proprioceptive feedback, to achieve fine grasping poses implicitly specified by these collected descriptors.
After obtaining the NPDF and a well-trained policy, our system is directly deployed in the real world with a real-to-sim tactile transfer to accurately grasp
unseen objects, executing manipulation tasks such as unplugging a bolt-like USB and inserting it into a socket.

while maintaining safe, gentle physical interaction between a
tactile robot and a manipulated object, given the tactile and
proprioceptive feedback.

In general, we focus on achieving precise grasping with a

tactile gripper, a task that involves two distinct phases. In the
coarse phase, we leverage NDFs to generate an initial pre-
grasping pose. The fine phase then employs in-hand tactile
servoing across the gripper fingers, crucial for practical ap-
plications such as repositioning and reorienting the gripper to
secure a specific grasp. This process is particularly challeng-
ing, as it requires an understanding of the object’s underlying
geometry and precise 6-DoF robotic control.
Preliminary experimental results show that NeuralTouch can
serve as a powerful complement to the state-of-the-art vision-
based grasping method (NDF), achieving the desired grasping
pose with greater accuracy. Furthermore, extensive testing with
zero-shot sim-to-real policy transfer and few-shot demonstra-
tions underscores the adaptability of our approach in solving
diverse downstream tasks for various real-world objects.
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