
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DOES EQUIVARIANCE MATTER AT SCALE?

Anonymous authors
Paper under double-blind review

ABSTRACT

Given large data sets and sufficient compute, is it beneficial to design neural archi-
tectures for the structure and symmetries of each problem? Or is it more efficient to
learn them from data? We study empirically how equivariant and non-equivariant
networks scale with compute and training samples. Focusing on a benchmark prob-
lem of rigid-body interactions and on general-purpose transformer architectures, we
perform a series of experiments, varying the model size, training steps, and dataset
size. We find evidence for three conclusions. First, equivariance improves data
efficiency, but training non-equivariant models with data augmentation can close
this gap given sufficient epochs. Second, scaling with compute follows a power
law, with equivariant models outperforming non-equivariant ones at each tested
compute budget. Finally, the optimal allocation of a compute budget onto model
size and training duration differs between equivariant and non-equivariant models.

1 INTRODUCTION

In a time of big data and abundant compute, how important are strong inductive biases? Consider
problems governed by known symmetries: should one take these into account by designing and using
equivariant neural network architectures (Bronstein et al., 2021), or is it better to learn them implicitly
from data?

1016 1017 1018 1019

Training compute [nominal FLOPs]

10 5

10 4

Lo
ss

Baseline
Equivariant

Figure 1: Scaling with compute. The dots show the
training compute budget and test loss in our experi-
ments, the lines indicate the compute-optimal perfor-
mance according to the scaling laws we find. The test
losses of both non-equivariant () and equivariant
() transformers scale as a power law with com-
pute, and the equivariant model outperforms the non-
equivariant model by a similar factor at all tested com-
pute budgets.

106 107 108 109 1010 1011

Training dataset size [tokens]

10 5

10 4

10 3

Lo
ss

Baseline
Data augmentation
Equivariant

Figure 2: Scaling with training data. We show the
performance of the non-equivariant transformer (),
non-equivariant transformer trained with data aug-
mentation (), and equivariant transformer ()
as a function of the number of unique tokens in the
training dataset. All experiments use the same train-
ing compute budget. Equivariance improves data effi-
ciency compared to the baseline, but data augmenta-
tion closes this gap.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

A common intuition is that strong inductive biases bring the biggest benefits when little training
data is available, and that symmetry properties can just as well be learned from data given sufficient
samples and compute. Recently, high-profile models of protein folding (Abramson et al., 2024) and
conformer generation (Wang et al., 2023) have received considerable attention for their choice of
non-equivariant architectures for geometric problems.

At the same time, there is reason to expect that equivariance is still beneficial in the large-data limit.
Learning means successively narrowing down a hypothesis class based on evidence. From this
perspective one can explain (Bahri et al., 2021) the empirical observation that test losses often scale
as a power law with the training compute (Kaplan et al., 2020; Hoffmann et al., 2022). Whereas non-
equivariant methods start from the space of virtually all functions, equivariant models start from the
subspace of all functions that abide by the symmetries of the problem. The learning process may
benefit from that by focusing solely on further refining this smaller hypothesis class, narrowing down
to the correct solution with fewer training steps.

Until the theory of scaling laws is fully understood, the effects of equivariance on scaling is an
empirical question, and in this work we study it empirically. We focus on a benchmark problem of
modelling the physical interactions between rigid three-dimensional objects described by meshes.
This task is known to be challenging (Allen et al., 2022). It is manifestly equivariant under E(3),
the symmetry group of rotations, translations, and reflections. We compare a standard transformer
architecture (Vaswani et al., 2017) to an E(3)-equivariant transformer (Brehmer et al., 2023).

In this setup we ask three questions:

1. How do equivariant and non-equivariant models scale as a function of the available data?
Does data augmentation affect this?

2. How do equivariant and non-equivariant models scale as a function of training compute?
Does this scaling follow power laws? Are their coefficients affected by equivariance?

3. Given a compute budget, how should one allocate it to the model size and the number of
training iterations? Is this trade-off different for equivariant and non-equivariant models?

In our attempt to answer these questions, we train equivariant and non-equivariant models for different
training compute budgets, trade-offs between model size and training steps, and dataset sizes. We
then analyze these results both qualitatively as well as quantitatively by fitting empirical scaling laws.

Our experiments provide evidence for three conclusions. As expected, equivariance improves data
efficiency. However, data augmentation largely closes this gap. Second, equivariant transformers are
also more compute-efficient, and this advantage persists across all compute budgets studied. Both
model classes exhibit power-law scaling behaviour. Finally, the optimal allocation of a training
compute budget to model size and training steps differs between equivariant and non-equivariant
models. Overall, our findings hint that strong inductive biases may not only yield benefits in the
low-data regime, but can also be beneficial with large datasets and large compute budgets.

2 BACKGROUND AND RELATED WORK

Neural scaling laws The scaling of neural network performance as a function of model size
or training steps has been studied extensively (Ahmad & Tesauro, 1988; Hestness et al., 2017;
Rosenfeld et al., 2019; Henighan et al., 2020). Kaplan et al. (2020) first observed that the test loss of
autoregressive language models follows a power law over many orders of magnitude. Hoffmann et al.
(2022) improved the methodology further and found the “Chinchilla” scaling laws, which still serve
as a reference point for many language models. In our quantitative analysis of compute scaling, we
largely follow their approach.

Several works have extended scaling laws from model size and training steps to other dimensions:
Muennighoff et al. (2023) studied the effect of the training dataset size, which we also discuss,
Alabdulmohsin et al. (2023) analyzed scaling of different architecture hyperparameters separately,
and Jones (2021) investigated the scaling with problem complexity.

Scaling laws and inductive biases There has been comparatively little research into the relation be-
tween inductive biases and scaling behaviour, perhaps because the transformer architecture (Vaswani
et al., 2017) is so established in language modelling. Tay et al. (2022) compared the scaling behaviour

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of different architectures. Recently, Qiu et al. (2024) investigated how structured linear transforma-
tions in transformers affect scaling laws. The authors conclude that imposing structure in them can
improve the scaling behaviour. Our work differs from both of these studies through its focus on sym-
metric problems and equivariant architectures.

Geometric deep learning Geometric deep learning (Bronstein et al., 2021) is a paradigm for
machine learning in which network architectures are designed to reflect geometric properties of the
problem. One of its core ideas is that of equivariance to symmetry groups (Amari, 1978; Wood &
Shawe-Taylor, 1996; Makadia et al., 2007; Cohen & Welling, 2016): roughly, a network f is said to
be equivariant to a symmetry group G if f(g · x) = g · f(x) for all elements g ∈ G and all inputs
x, where · is the group action. This means that when you transform the inputs into an equivariant
network, its outputs transform consistently. An equivariant network thus does not have to learn the
symmetry structure from data, like a non-equivariant network does.

Equivariance has been found to improve performance, data efficiency, and robustness to out-of-
domain generalization in fields as diverse as quantum mechanics and quantum field theory (Pfau et al.,
2020; Hermann et al., 2020; Boyda et al., 2021; Gerdes et al., 2023), molecular force fields (Batatia
et al., 2022; Batzner et al., 2022; Liao & Smidt, 2022; Musaelian et al., 2023; Batatia et al., 2023),
generative models of molecules (Zeni et al., 2023; Igashov et al., 2024), particle physics (Bogatskiy
et al., 2022; Gong et al., 2022; Spinner et al., 2024), biological and medical imaging (Veeling
et al., 2018; Bekkers et al., 2018; Winkels & Cohen, 2018; Winkens et al., 2018; Mohamed et al.,
2020; de Ruijter & Cesa, 2024; Suk et al., 2024), wireless communication (Hehn et al., 2024), and
robotics (Wang et al., 2022a;b;c; Brehmer et al., 2024). The potential of equivariance to improve
generalization has also been shown theoretically (Sokolic et al., 2017; Lyle et al., 2020; Elesedy &
Zaidi, 2021; Sannai et al., 2021; Behboodi et al., 2022; Petrache & Trivedi, 2024).

At the same time, equivariant architectures are often more complex than non-equivariant architectures.
Some researchers believe that equivariant architectures are more difficult to scale up, but to the best
of our knowledge there has been little systematic study into this. However, recent impactful works
on protein folding (Abramson et al., 2024) and conformer generation (Wang et al., 2023) found that
equivariant architectures did not offer any benefits and opted for non-equivariant models and data
augmentation instead.

E(3) equivariance One symmetry that is important in many scientific and industrial applications is
the group E(3) of isometries of Euclidean space. It consists of translations, rotations, and reflections.
This group is the focus of our investigation.

As an E(3)-equivariant architecture, we use the Geometric Algebra Transformer (GATr) (Brehmer
et al., 2023). It has two defining features. First, GATr uses multivectors from projective geometric
algebra as representations, in addition to the usual unstructured representations. These multivectors
are 16-dimensional objects that can represent various geometric primitives, including absolute
positions in space, directions, as well as translations and rotations. Geometric algebra representations
power a number of recent architectures (Brandstetter et al., 2022; Ruhe et al., 2023b;a; Brehmer et al.,
2023; de Haan et al., 2024; Spinner et al., 2024; Zhdanov et al., 2024; Liu et al., 2024a;b). Second,
GATr is a transformer. It processes inputs in the form of a set of tokens. Pairwise interactions are
not computed through local message passing, as in many other equivariant architectures, but through
an equivariant dot-product attention mechanism that is compatible with efficient implementations
like FlashAttention (Dao et al., 2022). We choose GATr as the equivariant model for our scaling
investigation because of this similarity to the standard transformer.

3 PROBLEM SETUP

3.1 BENCHMARK PROBLEM

Desiderata A benchmark task for this empirical scaling study should be characterized by a low
floor and a high ceiling: a small model trained on few samples should perform poorly, while a large
model trained on many samples should score orders of magnitude better. To study data scaling, we
need a large number of training samples. To study equivariance, we look for a geometric problem in
which the symmetries and representations are known and exact.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Rigid-body modelling problem We choose a rigid-body modelling problem as our benchmark.
Three-dimensional meshes are initialized at some position, orientation, and velocity; they then interact
with each other under gravity and collision forces. Concretely, the inputs to the network consist of
a set of triangular meshes for two time points t = t0, t0 + ∆t, and the task is to predict all mesh
vertices at time t = t0 + 2∆t. As a loss function and evaluation metric, we use the mean squared
error of the predicted mesh vertex positions.

This problem satisfies all desiderata for our study. Rigid-body interactions are known to be challenging
to model: collisions are difficult to detect, since they do not usually occur at or near vertices; the
forces acting during a collision are nearly discontinuous (Bauza & Rodriguez, 2017; Pfrommer et al.,
2021; Allen et al., 2022). Synthetic data can be generated cheaply with physics simulators. Finally,
the physics of the process is clearly equivariant under E(3), provided that the direction of gravity is
treated as a feature and rotated along with the scene.

Dataset We construct a dataset of rigid-body interactions following a proposal by Allen et al.
(2022). We use the Kubric simulator (Greff et al., 2022), which is based on the PyBullet physics
engine (Coumans & Bai, 2016–2024). We recreate the MOVi-B dataset used by Allen et al. (2022) as
best as we can, using parameters from their paper and private communication; see Appendix A for
details. Our dataset consists of 4 · 105 trajectories, each consisting of 96 time steps. Each trajectory
includes between 3 and 10 objects, each consisting of between 98 and 2160 mesh faces. The average
number of total mesh faces in a scene is 5470.

3.2 MODELS

In selecting architectures, our main objective is not to achieve state-of-the-art results on the particular
rigid-body benchmark problem we chose. That would lead us to highly problem-specific architec-
tures (Allen et al., 2022; Rubanova et al., 2024). Instead, we aim for general-purpose architectures
that are applicable to broad classes of problems.

Baseline architecture The transformer architecture (Vaswani et al., 2017) has become the de-facto
standard across a wide range of machine learning tasks. It is versatile with respect to the input data,
propagates gradients effectively, and scales well to large model sizes and input tokens. Most scaling
studies have focused on transformers as well. We therefore use a standard pre-LN (Baevski & Auli,
2018) transformer with multi-query attention (Shazeer, 2019) as our non-equivariant architecture.

We represent each mesh face as a token and the positions and velocities of vertices with random
Fourier features (Tancik et al., 2020), which improved performance in initial tests.

Even this baseline architecture is hardly “free from inductive biases”. Because the tokens form
not a sequence, but an unordered set, we do not use positional encoding. Therefore, the model is
equivariant with respect to one of the symmetries of our problem: that of permutations of the input
tokens. In this respect, there is no difference between the two architectures, and we do not compare
to any models that are not permutation-equivariant.

Equivariant architecture For the E(3)-equivariant architecture, we again look for broad applicabil-
ity (at least within the class of E(3)-symmetric problems). In addition, we would like the architecture
to be as structurally similar to the transformer, to isolate the effects of equivariance on scaling as well
as possible. We therefore opt for the (to the best of our knowledge) only E(3)-equivariant architecture
that is based on dot-product attention with unlimited receptive fields, and which also otherwise follows
the transformer blueprint closely: the Geometric Algebra Transformer (GATr) (Brehmer et al., 2023).

Again, we represent each mesh face as a token. GATr uses geometric algebra representations in
addition to the usual scalar channels, and we can represent the geometric properties of a mesh face in
these geometric representations. We describe this embedding in more detail in Appendix B.

Hierarchical attention While we focus on general-purpose architectures, we find that both models
benefit from two minor modifications to the transformer blueprint. First, we use a novel hierarchical
attention mechanism, in which multiple attention heads use different attention masks: half of the
heads are restricted to attend only to mesh faces in the same object, while the other half attends to all
tokens (mesh faces). This allows us to embed awareness of the mesh structure into the transformer

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

architecture, while preserving the efficiency of dot-product attention.

Enforcing object rigidity Second, we enforce object coherence and rigidity when computing the
outputs. Either transformer model first outputs a translation vector and a rotation quaternion for
each mesh face. These are averaged over each object, resulting in a translation vector and a rotation
for each rigid object. These E(3) operations are then applied to the input meshes. In this way, the
networks by design translate and rotate rigid objects consistently. We describe this procedure in more
detail in Appendix B. In preliminary experiments, enforcing object rigidity in this way improved
performance substantially compared to directly predicting the positions or velocities of mesh vertices.
We also experimented with outputting and exponentiating elements of the Lie algebra for each object,
but found that that worked marginally worse.

Hyperparameter Baseline Equiv.

Attention blocks 2n 2n
Scalar channels 64n 4n
MV channels – n
Attention heads 2n 2n
Scalars per key, query, value 64 8
MV per key, query, value – 2
Hidden scalar channels in MLP 128n 8n
Hidden MV channels in MLP – 2n

Table 1: Architecture hyperparameters as a function of a
model size parameter n. The equivariant architecture is less
wide, but part of their channels are 16-dimensional multivec-
tor (MV) channels, which can express a variety of geomet-
ric primitives (Brandstetter et al., 2022; Ruhe et al., 2023b;
Brehmer et al., 2023; Ruhe et al., 2023a; de Haan et al., 2024).

Hyperparameters We tune the hyperpa-
rameters of both models manually. For
both the baseline and equivariant trans-
former, we define a one-parameter family
of hyperparameters, fixing the relation be-
tween the number of layers, attention heads,
and channels to be linear. Our architectures
are shown in Tbl. 1. Notably, we find that
the equivariant transformer benefits from
a more narrow architecture, which may be
evidence of the expressivity of its multivec-
tor channels.

Optimization We train all models with
the Adam optimizer (Kingma, 2014), an-
nealing the learning rate over the course of
training from an initial value of 5 · 10−4 on a cosine schedule. For experiments with small FLOP bud-
gets of less than 1018 nominal FLOPs, we find that this learning rate can be too small. This is in line
with other works that find larger learning rates beneficial for smaller compute budgets (e. g. Dubey
et al., 2024). We therefore repeat these experiments with a higher learning rate of 10−3 or 2 · 10−3,
depending on the compute budget, and report the better result. For simplicity, we use the same batch
size of 64 samples (or on average 3.5 · 105 tokens) for all experiments, even though this does not
maximize GPU utilization and thus FLOP throughput. Early stopping is used in all experiments.

3.3 SCALING-LAW ANALYSIS

Experiments We perform two series of experiments. First, we study the scaling with compute,
in the (practically) infinite-data setting. We vary a training compute budget over three orders of
magnitude, between 1016 and 1019 FLOPs. For each FLOP budget, for both the baseline and the
equivariant transformer, we perform multiple experiments: each with a different trade-off between
model size N and training length D. This requires understanding the relation between N , D, and the
total training FLOPs; we discuss that later in this section.

Second, we study the scaling with training data, fixing the training compute budget, the model size,
and the number of training tokens. For both models we choose settings that performed compute-
optimally in the first series of experiments for a compute budget of 1018 nominal FLOPs. The number
of unique samples in the dataset is varied over five orders of magnitude, from 2 ·106 tokens to 2 ·1011.
The lower end of this scan corresponds to training for 6 · 105 epochs, while every sample is seen
only once on the upper end of this scan. For each of these settings, we train a baseline transformer,
an equivariant transformer, and a baseline transformer trained with data augmentation, in which
symmetry transformations are applied to the samples, independently for each epoch.

Counting FLOPs Setting up our experiments (see above) and analyzing the scaling with compute
both require knowing the relation of the total number of training FLOPs C(N,D) and the model size
N as well as training tokens D. This relation is different for the baseline and equivariant transformer.

Following Kaplan et al. (2020) and Hoffmann et al. (2022), we perform this FLOP counting in the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

limit where the number of model parameters is much larger than the sequence length, which in turn is
much larger than 1. The training compute is then dominated by the linear layers. For both of our
models, we find

C(N,D) ≈ ξND , (1)
where ξ is an architecture-dependent constant.

For the baseline transformer, famously ξ = 6 (Kaplan et al., 2020). For the equivariant transformer,
the value of ξ depends on the ratio of scalar and multivector channels: a model with only scalar
channels would also have ξ = 6, while a pure-multivector model would have more weight sharing
and thus a higher FLOPs-per-parameter ratio ξ = 6 · 162/9 ≈ 171. For the hyperparameters we use
during our scaling study, we find ξ ≈ 61.2.

Note that these nominal FLOPs do not necessarily correspond to the actual compute required to train
the model. For one, the assumed hierarchy between the model parameters and the sequence length is
not always satisfied. Second, our implementations of the models may not be able to fully utilize the
GPUs. We observe this in particular for small models and for the implementation of the equivariant
transformer, which involves many smaller operations and faces CPU bottlenecks. Additional overhead
comes from inter-GPU communication, data loading, logging, checkpoint saving, validating, and so
on. In our experiments, two models with the same nominal FLOP count would differ by as much as
an order of magnitude in real training duration.

So why do we still analyze models in terms of the nominal FLOPs? While they are an imperfect
measure, they do not depend on the implementation and hardware environment, and we believe they
are still the best predictor of the theoretically achievable compute cost after sufficient optimization
and at scale.

Scaling-law ansatz We model the scaling with compute quantitatively by fitting a scaling law to all
of our experiments. Following Kaplan et al. (2020), we model the test loss L as a power law in the
model parameters N and the training duration D, measured in tokens:

L̂(N,D) =
A

Nα
+

B

Dβ
+ E . (2)

Here A,B,E, α, β are fit parameters.

The parameter E represents the irreducible loss that even a perfect model cannot eliminate. Unlike in
language or image modelling tasks, there is no clear reason to expect such an irreducible error of
practically relevant size for the deterministic physics task we use as a benchmark. We treat the choice
of whether to include E as a fit parameter or fix it to zero as a hyperparameter and choose it through
cross validation, as we will describe below.

For the scaling with the size of the training data set, we do not find a scaling law that convincingly
describes our experiments. Our attempts at fitting Muennighoff et al.’s data-constrained scaling law
(2023) to our data did not result in a good agreement. We therefore refrain from discussing the
functional form for this direction of scaling, and will focus on scaling with compute for the remainder
of this section.

Scaling-law fit Following Hoffmann et al. (2022), we fit the scaling-law parameters (A,B,E, α, β)
separately for each architecture by minimizing the Huber loss (Huber, 1992) between the predicted
and observed log loss values, ∑

experiments i

Huberδ

(
log L̂(Ni, Di)− logLi

)
. (3)

Here δ is a hyperparameter, we choose it based on cross-validation, as we describe in a bit. We
minimize this loss with the L-BFGS optimizer (Liu & Nocedal, 1989), starting multiple fits from a
grid of initializations to avoid getting stuck in local minima.

Scaling-law hyperparameters The scaling-law fit depends on two hyperparameters: whether
we include the offset E as a fit parameter and the value of δ. We determine both through leave-
one-out cross-validation, performing scaling-law fits on all but one experiment and evaluating the
error |log L̂(Ni, Di)− logLi| on the left-out experiment. In this way, we choose fixing E = 0 and
δ = 0.001, though the qualitative fit results are not sensitive to these choices.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Compute-optimal performance From a scaling law as in Eq. (2) and a FLOP function as in Eq. (1),
we can derive the compute-optimal model size N∗(C) and the compute-optimal training duration
D∗(C) as a function of the FLOP budget C as

N∗(C) =
G

ξa
Ca and D∗(C) =

1

Gξb
Cb , (4)

where G = (αAβB)1/(α+β), a = β/(α+ β), and b = α/(α+ β) (Hoffmann et al., 2022).

The optimal loss achievable for a given FLOP budget is then

L∗(C) = L̂(N∗(C), D∗(C)) = E +
F

Cγ
(5)

with F = AG−αξγ +BGβξγ and γ = αβ
α+β .

Uncertainties No realistic scaling study directly measures the optimal model performance as a
function of some parameters. Reasons for sub-optimality include the choice of hyperparameters,
stochasticity in initialization and training, choosing a scaling-law ansatz that does not include the
true functional form, and finite sampling of the space of model capacities and training tokens. We
estimate the effect of the latter with a nonparametric bootstrap, similar to Hoffmann et al. (2022).
From 104 bootstraps, we construct 95 % confidence intervals on the scaling law coefficients as well
as on any derived predictions, using the empirical (or basic) bootstrap method.

4 RESULTS

4.1 SCALING WITH COMPUTE

We first focus on the limit of (essentially) infinite training data and study the model performance as a
function of model size N and training tokens D.

Scaling laws We fit the scaling law of Eq. (2) with E = 0 to these experiments. For the baseline
transformer, we find coefficients

L̂baseline(N,D) =
1.27

N0.909
+

0.202

D0.379
. (6)

The equivariant model yields

L̂equivariant(N,D) =
2.82 · 10−4

N0.348
+

469

D0.734
. (7)

Confidence intervals are provided in Tbl. 2.

These two models scale quite differently with model size and training length, which has implications
for the optimal allocation of a compute budget. We will discuss this later.

Scaling law Param. Baseline Equivariant

Central Lower Upper Central Lower Upper

Eq. (2): L̂(N,D) = A/Nα +B/Dβ A 1.27 0.484 5.07 0.000282 0.000162 0.000607
B 0.202 0.0108 0.361 469 159 592
α 0.909 0.832 1.03 0.348 0.293 0.417
β 0.379 0.256 0.404 0.734 0.689 0.747

Eq. (4): N∗(C) ∝ Ca a 0.294 0.215 0.307 0.678 0.619 0.711
b 0.706 0.693 0.785 0.322 0.289 0.381

Eq. (5): L∗(C) = F/Cγ F 1.03 0.124 1.89 0.14 0.0524 0.517
γ 0.268 0.213 0.284 0.236 0.212 0.267

Table 2: Scaling-law coefficients. In addition to the central values, we show the 95% confidence intervals from a
nonparametric bootstrap.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

109 1010 1011 1012
Training tokens

105

106

107
M

od
el

 p
ar

am
et

er
s

Baseline

10 5

10 4

Lo
ss

109 1010 1011 1012
Training tokens

104

105

106

M
od

el
 p

ar
am

et
er

s

Equivariant

10 5

10 4

Lo
ss

Figure 3: Test loss (dotted circles) and scaling-law predictions (background colour) as a function of model
size and training tokens. Left: non-equivariant transformer. Right: equivariant transformer. In both cases, we
observe good agreement of model performance and scaling-law fit.

104 105 106
Model parameters

10 5

10 4

Lo
ss

1016 nominal FLOPs

Baseline
Equivariant

104 105 106 107
Model parameters

1017 nominal FLOPs

104 105 106 107
Model parameters

1018 nominal FLOPs

105 106 107 108
Model parameters

1019 nominal FLOPs

Figure 4: Model performance at different training compute budgets (panels) as a function of the model size.
We show our experiments (dots) and the predictions of our scaling-law fit (lines). The scaling-law fit describes
the measurements well.

Fit quality First, we show how well these fitted scaling laws agree with the data in Figs. 3 and 4.
Comparing the observed values of the test loss to the predictions from the scaling laws, we overall
find good agreement. There are no glaring deviations, although the power law underestimates the loss
for the largest equivariant models and for one baseline outlier. Most measurements fall within the
uncertainty bands, but less than the 95% one would expect if the bootstrap would cover all relevant
sources of error. This is evidence that the ansatz of Eq. (2) does not describe the data perfectly.

Scaling with compute Next, we analyze the model performance and its scaling with compute.
From the training laws in Eqs. (6) and (7), we compute best achievable test loss L∗ as a function of
the training compute budget C, as given by Eq. (5). We find

L∗
baseline(C) =

1.03

C0.268
and L∗

equivariant(C) =
0.14

C0.236
, (8)

and the exponents are compatible with each other within the confidence intervals shown in Tbl. 2. We
visualize the empirical compute-loss measurements and the derived optimal compute-loss relationship
in Fig. 1.

For any given compute budget, the equivariant transformer significantly outperforms the baseline.
Over the range of compute budgets we tested, the equivariant model achieves a loss that is lower by
approximately a factor of 2.

Optimal allocation of compute From the scaling laws we can also derive the optimal allocation of
a given computational budget to the parameter count and training duration, see Eq. (4). We show our
results for both models in Fig. 5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1016 1017 1018 1019

Training compute [nominal FLOPs]

103

104

105

106

107

M
od

el
 p

ar
am

et
er

s

Baseline
Equivariant

Figure 5: Optimal parameter allocation. We show the
compute-optimal model size as a function of the training
compute budget for the equivariant transformer ()
and the non-equivariant transformer (). The equiv-
ariant architecture requires smaller models to achieve a
compute-optimal performance, but this gap closes for
bigger compute budgets.

We find that a compute-optimal equivariant
transformer has less parameters than a compute-
optimal baseline transformer. This is expected
because the equivariant transformer performs
more compute per parameter.

Perhaps more surprising is that the optimal trade-
off depends on the compute in a different way
for the two models. We find that for a regu-
lar transformer, one should scale training to-
kens more steeply than model size. For the
equivariant model, we find the opposite trend:
one should put additional compute more in
the model size than the training tokens. The
compute-optimal model sizes thus become more
similar for larger compute budgets.

4.2 SCALING WITH DATA

Next, we turn to the scaling with training data
for a fixed training compute budget. In Fig. 2 we
show the test loss as a function of the number
of unnique training tokens. We compare base-
line and equivariant transformers, each using a
compute-optimal model size and training tokens
for a training compute budget of 1018 nominal
FLOPs.

The right end of these curves corresponds to the infinite-data, single-epoch limit considered in the
previous section. Here we again see that the equivariant transformer outperforms the baseline model
when compared at the same training compute budget. Moving to smaller training sets, this gap widens
substantially, confirming the expectation that equivariance improves data efficiency.

In Fig. 2 we also show results for a baseline transformer model trained with data augmentation. As
expected, data augmentation does not make a difference when training for a single epoch. However,
it drastically improves the performance in the small-data regime: when training for thousands of
epochs, data augmentation makes a baseline transformer as data-efficient as an equivariant model.

5 DISCUSSION

Our empirical results provide evidence for the following three conclusions.

1. Equivariant transformers are more data-efficient, but data augmentation largely closes
this gap. The first (and expected) benefit for the equivariant architecture is that it performs better
than a non-equivariant architecture when only little training data is available, as we show in Fig. 2.
However, we find a non-equivariant model trained with data augmentation performs just as well as the
equivariant architecture, at least when the number of epochs (i. e. repeated uses of the same training
sample) is sufficiently large.

2. The scaling with compute follows power laws, and equivariant models outperform non-
equivariant ones at each tested compute budget. Both for non-equivariant and equivariant models,
the test loss is well described by the power-law ansatz of Eq. (1), with parameters given in Tbl. 2.
The best achievable model performance for a given training compute budget therefore also scales as a
power law, as given in Eq. (8). We find consistent exponents for the two models, but a substantially
smaller prefactor for the equivariant architecture.

This shows a second (and perhaps less expected) benefit for the equivariant architecture: for any fixed
compute budget, even in the infinite-data limit, it clearly outperforms the baseline method. As we
show in Fig. 1, this benefit is approximately constant over the range of compute budgets we study.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Under the assumption that the implementations of equivariant and baseline architectures are similarly
efficient and one can achieve the same FLOP throughput, this implies that equivariant models can
outperform the non-equivariant counterparts even in the large-data, large-compute regime. In practice,
non-equivariant architectures may be easier to optimize for high FLOP throughput, in which case it
remains to be seen which architecture is more efficient.

3. Equivariant and non-equivariant models require different trade-offs between model size and
training duration. Our power laws indicate that the optimal allocation of a given compute budget
onto the model size and training steps is different for equivariant and non-equivariant transformers, as
shown in Fig. 5. For small compute budget, a compute-optimal equivariant transformer is significantly
smaller than a compute-optimal baseline transformer. This gap becomes smaller for larger compute
budgets.

We hypothesize three possible explanations for this observation. First, the baseline transformer, the
more mature architecture, may have a better initialization scheme and thus require less training steps
to reach a good performance. Second, the different trade-offs may be related due to the different
choice of width and depth between the architectures. A third possible explanation is linked to the
internals of the equivariant transformer architecture, which can express certain primitives particularly
efficiently: the free movement and gravitational acceleration of rigid bodies can be represented with
few multivector channels, thanks to the geometric product operation integrated into the architecture.
This explains why the architecture can achieve a good performance with very few parameters.
However, lowering the loss further requires precise collision detection and modelling. These need
substantially more computational operations and a substantial amount of scalar channels, similar
to the non-equivariant transformer. This offers a possible explanation for why at a larger compute
budget, a model size closer to that of the baseline transformer is compute-optimal.

Limitations and open questions As much as we would like to, we cannot conclusively settle the
question raised in the title of this paper. Our work is limited in several ways. First, we only analyzed
a single benchmark problem and two model families. We chose a task with a common symmetry
group and general-purpose architectures that are frequently applied to a wide range of problems. We
believe it is important to study to what extent our findings generalize to other problems or to other
architectures, for instance those based on message-passing over graphs. Moreover, on the problem
we studied, we did not set a new state of the art: we deliberately focused on general-purpose models,
which do not achieve the same level of performance as highly problem-specific architectures (Allen
et al., 2022).

Another limitation of our work is that our analysis measures compute with an idealized FLOP counting
procedure, as is common practice (Hoffmann et al., 2022). As we discussed in Sec. 3.3, this does not
map one-to-one to real-world run time, at least not before further optimization of the implementation.
In Appendix C we show the relation between wall time and nominal FLOPs in our experiments.

Finally, we are only able to study training compute budgets of up to 1019 FLOPs per model—this
does not come close to the approximately 1025 FLOPs that the currently largest language models
are trained for (Dubey et al., 2024). We did not see power-law scaling break down in the range we
studied, but we cannot make claims about the extrapolation beyond it.

Keeping these limitations in mind, we believe that our findings provide some evidence that symmetry-
aware modelling can be a sensible choice even for large compute and data budgets. The benefits and
disadvantages of strong inductive biases at scale are important for problems spanning several fields
of science and engineering. We hope that our study can encourage further investigations into this
question.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024. (Cited on pages 2
and 3)

Subutai Ahmad and Gerald Tesauro. Scaling and generalization in neural networks: a case study.
Advances in neural information processing systems, 1, 1988. (Cited on page 2)

Ibrahim Alabdulmohsin, Xiaohua Zhai, Alexander Kolesnikov, and Lucas Beyer. Getting vit in shape:
Scaling laws for compute-optimal model design. arXiv preprint arXiv:2305.13035, 2023. (Cited on
page 2)

Kelsey R Allen, Yulia Rubanova, Tatiana Lopez-Guevara, William Whitney, Alvaro Sanchez-
Gonzalez, Peter Battaglia, and Tobias Pfaff. Learning rigid dynamics with face interaction graph
networks. arXiv preprint arXiv:2212.03574, 2022. (Cited on pages 2, 4, 10, and 16)

S-l Amari. Feature spaces which admit and detect invariant signal transformations. In Proc. 4th Int.
Joint Conf. Pattern Recognition, pp. 452–456, 1978. (Cited on page 3)

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
arXiv:1809.10853, 2018. (Cited on page 4)

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
scaling laws. arXiv preprint arXiv:2102.06701, 2021. (Cited on page 2)

Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. MACE: Higher
order equivariant message passing neural networks for fast and accurate force fields. Advances in
Neural Information Processing Systems, 35:11423–11436, 2022. (Cited on page 3)

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M Elena, Dávid P Kovács, Janosh Riebesell,
Xavier R Advincula, Mark Asta, William J Baldwin, Noam Bernstein, et al. A foundation model
for atomistic materials chemistry. arXiv preprint arXiv:2401.00096, 2023. (Cited on page 3)

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Kornbluth,
Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks for
data-efficient and accurate interatomic potentials. Nature communications, 13(1):2453, 2022.
(Cited on page 3)

Maria Bauza and Alberto Rodriguez. A probabilistic data-driven model for planar pushing. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 3008–3015. IEEE, 2017.
(Cited on page 4)

Arash Behboodi, Gabriele Cesa, and Taco S Cohen. A pac-bayesian generalization bound for
equivariant networks. Advances in Neural Information Processing Systems, 35:5654–5668, 2022.
(Cited on page 3)

Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim, and Remco
Duits. Roto-translation covariant convolutional networks for medical image analysis. In Medical
Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Confer-
ence, Granada, Spain, September 16-20, 2018, Proceedings, Part I, pp. 440–448. Springer, 2018.
(Cited on page 3)

Alexander Bogatskiy, Timothy Hoffman, David W Miller, and Jan T Offermann. Pelican: permutation
equivariant and lorentz invariant or covariant aggregator network for particle physics. arXiv
preprint arXiv:2211.00454, 2022. (Cited on page 3)

Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S Albergo,
Kyle Cranmer, Daniel C Hackett, and Phiala E Shanahan. Sampling using su (n) gauge equivariant
flows. Physical Review D, 103(7):074504, 2021. (Cited on page 3)

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric
and physical quantities improve E(3) equivariant message passing. In International Conference on
Learning Representations, 2022. (Cited on pages 3 and 5)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johann Brehmer, Pim de Haan, Sönke Behrends, and Taco Cohen. Geometric Algebra Transformer.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 37, 2023. (Cited on pages 2, 3, 4, 5, 16, and 17)

Johann Brehmer, Joey Bose, Pim De Haan, and Taco S Cohen. Edgi: Equivariant diffusion for
planning with embodied agents. Advances in Neural Information Processing Systems, 36, 2024.
(Cited on page 3)

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. 2021. (Cited on pages 1 and 3)

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference
on Machine Learning, pp. 2990–2999. PMLR, 2016. (Cited on page 3)

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2024. (Cited on pages 4 and 16)

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022. (Cited on page 3)

Pim de Haan, Taco Cohen, and Johann Brehmer. Euclidean, projective, conformal: Choosing a
geometric algebra for equivariant transformers. In Proceedings of the 27th International Conference
on Artificial Intelligence and Statistics, volume 27, 2024. URL https://arxiv.org/abs/
2311.04744. (Cited on pages 3 and 5)

Larissa de Ruijter and Gabriele Cesa. Equivariant amortized inference of poses for cryo-em. arXiv
preprint arXiv:2406.01630, 2024. (Cited on page 3)

Leo Dorst. A guided tour to the plane-based geometric algebra pga. 2020. URL https://
geometricalgebra.org/downloads/PGA4CS.pdf. (Cited on pages 16 and 17)

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024. (Cited on pages 5 and 10)

Bryn Elesedy and Sheheryar Zaidi. Provably strict generalisation benefit for equivariant models. In
International conference on machine learning, pp. 2959–2969. PMLR, 2021. (Cited on page 3)

Mathis Gerdes, Pim de Haan, Corrado Rainone, Roberto Bondesan, and Miranda CN Cheng. Learning
lattice quantum field theories with equivariant continuous flows. SciPost Physics, 15(6):238, 2023.
(Cited on page 3)

Shiqi Gong, Qi Meng, Jue Zhang, Huilin Qu, Congqiao Li, Sitian Qian, Weitao Du, Zhi-Ming Ma,
and Tie-Yan Liu. An efficient lorentz equivariant graph neural network for jet tagging. Journal of
High Energy Physics, 2022(7):1–22, 2022. (Cited on page 3)

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable
dataset generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3749–3761, 2022. (Cited on pages 4 and 16)

Thomas Hehn, Markus Peschl, Tribhuvanesh Orekondy, Arash Behboodi, and Johann Brehmer.
Probabilistic and differentiable wireless simulation with geometric transformers. arXiv preprint
arXiv:2406.14995, 2024. (Cited on page 3)

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020. (Cited on page 2)

Jan Hermann, Zeno Schätzle, and Frank Noé. Deep-neural-network solution of the electronic
schrödinger equation. Nature Chemistry, 12(10):891–897, 2020. (Cited on page 3)

12

http://pybullet.org
https://arxiv.org/abs/2311.04744
https://arxiv.org/abs/2311.04744
https://geometricalgebra.org/downloads/PGA4CS.pdf
https://geometricalgebra.org/downloads/PGA4CS.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017. (Cited on page 2)

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W Rae, Oriol Vinyals, and Laurent Sifre.
Training Compute-Optimal large language models. March 2022. (Cited on pages 2, 5, 6, 7, and 10)

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pp. 492–518. Springer, 1992. (Cited on page 6)

Ilia Igashov, Hannes Stärk, Clément Vignac, Arne Schneuing, Victor Garcia Satorras, Pascal Frossard,
Max Welling, Michael Bronstein, and Bruno Correia. Equivariant 3d-conditional diffusion model
for molecular linker design. Nature Machine Intelligence, pp. 1–11, 2024. (Cited on page 3)

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.
(Cited on page 2)

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
January 2020. (Cited on pages 2, 5, and 6)

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. (Cited on page 5)

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atomistic
graphs. arXiv preprint arXiv:2206.11990, 2022. (Cited on page 3)

Cong Liu, David Ruhe, Floor Eijkelboom, and Patrick Forré. Clifford group equivariant simplicial
message passing networks. arXiv preprint arXiv:2402.10011, 2024a. (Cited on page 3)

Cong Liu, David Ruhe, and Patrick Forré. Multivector neurons: Better and faster o (n)-equivariant
clifford graph neural networks. arXiv preprint arXiv:2406.04052, 2024b. (Cited on page 3)

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989. (Cited on page 6)

Clare Lyle, Mark van der Wilk, Marta Kwiatkowska, Yarin Gal, and Benjamin Bloem-Reddy. On the
benefits of invariance in neural networks. arXiv preprint arXiv:2005.00178, 2020. (Cited on page 3)

Ameesh Makadia, Christopher Geyer, and Kostas Daniilidis. Correspondence-free structure from
motion. International Journal of Computer Vision, 75(3):311–327, 2007. (Cited on page 3)

Mirgahney Mohamed, Gabriele Cesa, Taco S Cohen, and Max Welling. A data and compute efficient
design for limited-resources deep learning. arXiv preprint arXiv:2004.09691, 2020. (Cited on page 3)

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane
Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models.
arXiv preprint arXiv:2305.16264, 2023. (Cited on pages 2 and 6)

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics. Nature Communications, 14(1):579, 2023. (Cited on page 3)

Mircea Petrache and Shubhendu Trivedi. Approximation-generalization trade-offs under (approxi-
mate) group equivariance. Advances in Neural Information Processing Systems, 36, 2024. (Cited
on page 3)

David Pfau, James S Spencer, Alexander GDG Matthews, and W Matthew C Foulkes. Ab initio
solution of the many-electron schrödinger equation with deep neural networks. Physical review
research, 2(3):033429, 2020. (Cited on page 3)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Samuel Pfrommer, Mathew Halm, and Michael Posa. Contactnets: Learning discontinuous contact
dynamics with smooth, implicit representations. In Conference on Robot Learning, pp. 2279–2291.
PMLR, 2021. (Cited on page 4)

Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wil-
son. Compute better spent: Replacing dense layers with structured matrices. arXiv preprint
arXiv:2406.06248, 2024. (Cited on page 3)

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. arXiv preprint arXiv:1909.12673, 2019. (Cited on page 2)

Yulia Rubanova, Tatiana Lopez-Guevara, Kelsey R Allen, William F Whitney, Kimberly Stachenfeld,
and Tobias Pfaff. Learning rigid-body simulators over implicit shapes for large-scale scenes and
vision. arXiv preprint arXiv:2405.14045, 2024. (Cited on page 4)

David Ruhe, Johannes Brandstetter, and Patrick Forré. Clifford group equivariant neural networks.
In Advances in Neural Information Processing Systems, volume 37, 2023a. (Cited on pages 3 and 5)

David Ruhe, Jayesh K Gupta, Steven de Keninck, Max Welling, and Johannes Brandstetter. Geometric
clifford algebra networks. In International Conference on Machine Learning, 2023b. (Cited on
pages 3, 5, 16, and 17)

Akiyoshi Sannai, Masaaki Imaizumi, and Makoto Kawano. Improved generalization bounds of
group invariant/equivariant deep networks via quotient feature spaces. In Uncertainty in artificial
intelligence, pp. 771–780. PMLR, 2021. (Cited on page 3)

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019. (Cited on page 4)

Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel Rodrigues. Generalization error of invariant
classifiers. In Artificial Intelligence and Statistics, pp. 1094–1103. PMLR, 2017. (Cited on page 3)

Jonas Spinner, Victor Bresó, Pim de Haan, Tilman Plehn, Jesse Thaler, and Johann Brehmer. Lorentz-
equivariant geometric algebra transformers for high-energy physics. 2024. (Cited on page 3)

Julian Suk, Pim de Haan, Phillip Lippe, Christoph Brune, and Jelmer M Wolterink. Mesh neural
networks for se (3)-equivariant hemodynamics estimation on the artery wall. Computers in Biology
and Medicine, 173:108328, 2024. (Cited on page 3)

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low dimensional domains. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 7537–7547. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/55053683268957697aa39fba6f231c68-Paper.pdf. (Cited on pages 4 and 16)

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? July 2022. (Cited on page 2)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention Is All You Need. NeurIPS, 2017. (Cited on pages 2 and 4)

Bastiaan S Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation equivari-
ant CNNs for digital pathology. In Medical Image Computing and Computer Assisted Intervention–
MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceed-
ings, Part II 11, pp. 210–218. Springer, 2018. (Cited on page 3)

Dian Wang, Mingxi Jia, Xupeng Zhu, Robin Walters, and Robert Platt. On-robot learning with
equivariant models. arXiv preprint arXiv:2203.04923, 2022a. (Cited on page 3)

Dian Wang, Robin Walters, and Robert Platt. SO(2)-equivariant reinforcement learning. arXiv
preprint arXiv:2203.04439, 2022b. (Cited on page 3)

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning in spatial action
spaces. In Conference on Robot Learning, pp. 1713–1723. PMLR, 2022c. (Cited on page 3)

Yuyang Wang, Ahmed AA Elhag, Navdeep Jaitly, Joshua M Susskind, and Miguel Ángel Bautista.
Generating molecular conformer fields. arXiv preprint arXiv:2311.17932, 2023. (Cited on pages 2
and 3)

Marysia Winkels and Taco S Cohen. 3d G-CNNs for pulmonary nodule detection. arXiv preprint
arXiv:1804.04656, 2018. (Cited on page 3)

Jim Winkens, Jasper Linmans, Bastiaan S Veeling, Taco S Cohen, and Max Welling. Improved
semantic segmentation for histopathology using rotation equivariant convolutional networks. 2018.
(Cited on page 3)

Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. Discrete
applied mathematics, 69(1-2):33–60, 1996. (Cited on page 3)

Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha
Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
inorganic materials design. arXiv preprint arXiv:2312.03687, 2023. (Cited on page 3)

Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, and Patrick Forré.
Clifford-steerable convolutional neural networks. arXiv preprint arXiv:2402.14730, 2024. (Cited
on page 3)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DATASET

We generate a benchmark dataset of rigid-body interactions with the Kubric simulator (Greff et al.,
2022), which is based on the PyBullet physics engine (Coumans & Bai, 2016–2024). We follow
the MOVi-B configuration as used by Allen et al. (2022): we generate trajectories trajectories of 96
frames at 48 frames per seconds. Our training set consists of 4 · 105 such trajectories, while we use
1000 trajectories each for the validation and test set.

Our data can be generated with the openly available repository at https://github.
com/google-research/kubric. That requires modifying the code to save object
meshes, positions, and orientations for each time step, rather than the vision data that
kubric stores by default, and running python3 challenges/movi/movi ab worker.py
--objects set=kubasic --frame rate=48.

B MODELS

Input representations For both the baseline and equivariant transformer, we tokenize the problem
by assigning one token to each mesh face. In addition to the vertex positions, we compute the central
position of each mesh face, the relative vector from the center to each vertex, the surface normal on
the mesh face, and the linearly interpolated velocity between t0 and t1 for each vertex and the center
of each mesh face. Together these form the input features.

For the baseline transformer, these features are embedded using random Fourier features (Tancik
et al., 2020) with 128 frequencies sampled from a Gaussian with standard deviation 0.1.

For the equivariant transformer, these features are embedded in the projective geometric algebra
(PGA) described in Dorst (2020); Ruhe et al. (2023b); Brehmer et al. (2023). Specifically, vertex
and center positions are represented as PGA trivectors, the relative vector from the center to each
vertex as PGA vectors, the mesh face surfaces with the associated normals as PGA vectors, and all
velocities as PGA bivectors.

Enforcing object rigidity The transformer networks output eight features h for each token (mesh
face) that represent transformations like translations and rotations. The final predictions for future
vertex positions x̂(t2) are then computed by applying these transformations to the current vertex
positions x(t1).

104 105 106 107

Model size

1012

1013

No
m

in
al

 F
LO

Ps
 p

er
 se

co
nd

Baseline (single GPU)
Baseline (variable GPUs)
Equivariant (single GPU)
Equivariant (variable GPUs)

Figure 6: Throughput of nominal FLOPs per training wall time. The FLOPs we count do not directly
correspond to training wall time: larger models and non-equivariant transformers lead to a better GPU utilization,
increasing the FLOP throughput.

16

https://github.com/google-research/kubric
https://github.com/google-research/kubric

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This is most easily expressed in projective geometric algebra, the representation naturally used by
our equivariant transformer models. Here h are the even-grade components of the output PGA
multivectors. The predictions are computed as

hagg = meanobjectsh ,

x̂(t2) = haggx(t1)h̃agg . (9)

In the first line, the mesh-face-level predictions are averaged within each rigid object. In the second
line, the previous position x(t1) is translated and rotated with the E(3) element represented by the
network outputs; h̃ is the PGA reverse and hxh̃ (for properly normalized h) the sandwich product
used to apply transformations to objects (Dorst, 2020; Ruhe et al., 2023b; Brehmer et al., 2023).

We also experimented with predicting all vertex positions directly, without enforcing object rigidiy, as
well as with parametrizing elements of the Lie algebra of E(3), which would then be exponentiated
to construct transformations h. Both approaches performed worse in initial tests.

C SCALING-LAW ANALYSIS

In Sec. 3.3 we argue that the nominal FLOPs we count are not fully indicative of real-world run
time. We illustrate this in Fig. 6, where we show relation between these FLOPs and wall time in our
experiments. The throughput of nominal FLOPs varies by two orders of magnitude. Larger models
as well as non-equivariant transformers lead to a better GPU utilization and thus increase the FLOP
throughput. We expect that the FLOP throughput could be improved by optimizing the batch size or
(especially in the case of the equivariant transformer) the model implementation.

17

	Introduction
	Background and related work
	Problem setup
	Benchmark problem
	Models
	Scaling-law analysis

	Results
	Scaling with compute
	Scaling with data

	Discussion
	Dataset
	Models
	Scaling-law analysis

