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ABSTRACT

Given large data sets and sufficient compute, is it beneficial to design neural archi-
tectures for the structure and symmetries of each problem? Or is it more efficient to
learn them from data? We study empirically how equivariant and non-equivariant
networks scale with compute and training samples. Focusing on a benchmark prob-
lem of rigid-body interactions and on general-purpose transformer architectures, we
perform a series of experiments, varying the model size, training steps, and dataset
size. We find evidence for three conclusions. First, equivariance improves data
efficiency, but training non-equivariant models with data augmentation can close
this gap given sufficient epochs. Second, scaling with compute follows a power
law, with equivariant models outperforming non-equivariant ones at each tested
compute budget. Finally, the optimal allocation of a compute budget onto model
size and training duration differs between equivariant and non-equivariant models.

1 INTRODUCTION

In a time of big data and abundant compute, how important are strong inductive biases? Consider
problems governed by known symmetries: should one take these into account by designing and using
equivariant neural network architectures (Bronstein et al., 2021), or is it better to learn them implicitly
from data?
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Figure 1: Scaling with compute. The dots show the
training compute budget and test loss in our experi-
ments, the lines indicate the compute-optimal perfor-
mance according to the scaling laws we find. The test
losses of both non-equivariant ( ) and equivariant
( ) transformers scale as a power law with com-
pute, and the equivariant model outperforms the non-
equivariant model by a similar factor at all tested com-
pute budgets.
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Figure 2: Scaling with training data. We show the
performance of the non-equivariant transformer ( ),
non-equivariant transformer trained with data aug-
mentation ( ), and equivariant transformer ( )
as a function of the number of unique tokens in the
training dataset. All experiments use the same train-
ing compute budget. Equivariance improves data effi-
ciency compared to the baseline, but data augmenta-
tion closes this gap.
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A common intuition is that strong inductive biases bring the biggest benefits when little training
data is available, and that symmetry properties can just as well be learned from data given sufficient
samples and compute. Recently, high-profile models of protein folding (Abramson et al., 2024) and
conformer generation (Wang et al., 2023) have received considerable attention for their choice of
non-equivariant architectures for geometric problems.

At the same time, there is reason to expect that equivariance is still beneficial in the large-data limit.
Learning means successively narrowing down a hypothesis class based on evidence. From this
perspective one can explain (Bahri et al., 2021) the empirical observation that test losses often scale
as a power law with the training compute (Kaplan et al., 2020; Hoffmann et al., 2022). Whereas non-
equivariant methods start from the space of virtually all functions, equivariant models start from the
subspace of all functions that abide by the symmetries of the problem. The learning process may
benefit from that by focusing solely on further refining this smaller hypothesis class, narrowing down
to the correct solution with fewer training steps.

Until the theory of scaling laws is fully understood, the effects of equivariance on scaling is an
empirical question, and in this work we study it empirically. We focus on a benchmark problem of
modelling the physical interactions between rigid three-dimensional objects described by meshes.
This task is known to be challenging (Allen et al., 2022). It is manifestly equivariant under E(3),
the symmetry group of rotations, translations, and reflections. We compare a standard transformer
architecture (Vaswani et al., 2017) to an E(3)-equivariant transformer (Brehmer et al., 2023).

In this setup we ask three questions:

1. How do equivariant and non-equivariant models scale as a function of the available data?
Does data augmentation affect this?

2. How do equivariant and non-equivariant models scale as a function of training compute?
Does this scaling follow power laws? Are their coefficients affected by equivariance?

3. Given a compute budget, how should one allocate it to the model size and the number of
training iterations? Is this trade-off different for equivariant and non-equivariant models?

In our attempt to answer these questions, we train equivariant and non-equivariant models for different
training compute budgets, trade-offs between model size and training steps, and dataset sizes. We
then analyze these results both qualitatively as well as quantitatively by fitting empirical scaling laws.

Our experiments provide evidence for three conclusions. As expected, equivariance improves data
efficiency. However, data augmentation largely closes this gap. Second, equivariant transformers are
also more compute-efficient, and this advantage persists across all compute budgets studied. Both
model classes exhibit power-law scaling behaviour. Finally, the optimal allocation of a training
compute budget to model size and training steps differs between equivariant and non-equivariant
models. Overall, our findings hint that strong inductive biases may not only yield benefits in the
low-data regime, but can also be beneficial with large datasets and large compute budgets.

2 BACKGROUND AND RELATED WORK

Neural scaling laws The scaling of neural network performance as a function of model size
or training steps has been studied extensively (Ahmad & Tesauro, 1988; Hestness et al., 2017;
Rosenfeld et al., 2019; Henighan et al., 2020). Kaplan et al. (2020) first observed that the test loss of
autoregressive language models follows a power law over many orders of magnitude. Hoffmann et al.
(2022) improved the methodology further and found the “Chinchilla” scaling laws, which still serve
as a reference point for many language models. In our quantitative analysis of compute scaling, we
largely follow their approach.

Several works have extended scaling laws from model size and training steps to other dimensions:
Muennighoff et al. (2023) studied the effect of the training dataset size, which we also discuss,
Alabdulmohsin et al. (2023) analyzed scaling of different architecture hyperparameters separately,
and Jones (2021) investigated the scaling with problem complexity.

Scaling laws and inductive biases There has been comparatively little research into the relation be-
tween inductive biases and scaling behaviour, perhaps because the transformer architecture (Vaswani
et al., 2017) is so established in language modelling. Tay et al. (2022) compared the scaling behaviour
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of different architectures. Recently, Qiu et al. (2024) investigated how structured linear transforma-
tions in transformers affect scaling laws. The authors conclude that imposing structure in them can
improve the scaling behaviour. Our work differs from both of these studies through its focus on sym-
metric problems and equivariant architectures.

Geometric deep learning Geometric deep learning (Bronstein et al., 2021) is a paradigm for
machine learning in which network architectures are designed to reflect geometric properties of the
problem. One of its core ideas is that of equivariance to symmetry groups (Amari, 1978; Wood &
Shawe-Taylor, 1996; Makadia et al., 2007; Cohen & Welling, 2016): roughly, a network f is said to
be equivariant to a symmetry group G if f(g · x) = g · f(x) for all elements g ∈ G and all inputs
x, where · is the group action. This means that when you transform the inputs into an equivariant
network, its outputs transform consistently. An equivariant network thus does not have to learn the
symmetry structure from data, like a non-equivariant network does.

Equivariance has been found to improve performance, data efficiency, and robustness to out-of-
domain generalization in fields as diverse as quantum mechanics and quantum field theory (Pfau et al.,
2020; Hermann et al., 2020; Boyda et al., 2021; Gerdes et al., 2023), molecular force fields (Batatia
et al., 2022; Batzner et al., 2022; Liao & Smidt, 2022; Musaelian et al., 2023; Batatia et al., 2023),
generative models of molecules (Zeni et al., 2023; Igashov et al., 2024), particle physics (Bogatskiy
et al., 2022; Gong et al., 2022; Spinner et al., 2024), biological and medical imaging (Veeling
et al., 2018; Bekkers et al., 2018; Winkels & Cohen, 2018; Winkens et al., 2018; Mohamed et al.,
2020; de Ruijter & Cesa, 2024; Suk et al., 2024), wireless communication (Hehn et al., 2024), and
robotics (Wang et al., 2022a;b;c; Brehmer et al., 2024). The potential of equivariance to improve
generalization has also been shown theoretically (Sokolic et al., 2017; Lyle et al., 2020; Elesedy &
Zaidi, 2021; Sannai et al., 2021; Behboodi et al., 2022; Petrache & Trivedi, 2024).

At the same time, equivariant architectures are often more complex than non-equivariant architectures.
Some researchers believe that equivariant architectures are more difficult to scale up, but to the best
of our knowledge there has been little systematic study into this. However, recent impactful works
on protein folding (Abramson et al., 2024) and conformer generation (Wang et al., 2023) found that
equivariant architectures did not offer any benefits and opted for non-equivariant models and data
augmentation instead.

E(3) equivariance One symmetry that is important in many scientific and industrial applications is
the group E(3) of isometries of Euclidean space. It consists of translations, rotations, and reflections.
This group is the focus of our investigation.

As an E(3)-equivariant architecture, we use the Geometric Algebra Transformer (GATr) (Brehmer
et al., 2023). It has two defining features. First, GATr uses multivectors from projective geometric
algebra as representations, in addition to the usual unstructured representations. These multivectors
are 16-dimensional objects that can represent various geometric primitives, including absolute
positions in space, directions, as well as translations and rotations. Geometric algebra representations
power a number of recent architectures (Brandstetter et al., 2022; Ruhe et al., 2023b;a; Brehmer et al.,
2023; de Haan et al., 2024; Spinner et al., 2024; Zhdanov et al., 2024; Liu et al., 2024a;b). Second,
GATr is a transformer. It processes inputs in the form of a set of tokens. Pairwise interactions are
not computed through local message passing, as in many other equivariant architectures, but through
an equivariant dot-product attention mechanism that is compatible with efficient implementations
like FlashAttention (Dao et al., 2022). We choose GATr as the equivariant model for our scaling
investigation because of this similarity to the standard transformer.

3 PROBLEM SETUP

3.1 BENCHMARK PROBLEM

Desiderata A benchmark task for this empirical scaling study should be characterized by a low
floor and a high ceiling: a small model trained on few samples should perform poorly, while a large
model trained on many samples should score orders of magnitude better. To study data scaling, we
need a large number of training samples. To study equivariance, we look for a geometric problem in
which the symmetries and representations are known and exact.
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Rigid-body modelling problem We choose a rigid-body modelling problem as our benchmark.
Three-dimensional meshes are initialized at some position, orientation, and velocity; they then interact
with each other under gravity and collision forces. Concretely, the inputs to the network consist of
a set of triangular meshes for two time points t = t0, t0 + ∆t, and the task is to predict all mesh
vertices at time t = t0 + 2∆t. As a loss function and evaluation metric, we use the mean squared
error of the predicted mesh vertex positions.

This problem satisfies all desiderata for our study. Rigid-body interactions are known to be challenging
to model: collisions are difficult to detect, since they do not usually occur at or near vertices; the
forces acting during a collision are nearly discontinuous (Bauza & Rodriguez, 2017; Pfrommer et al.,
2021; Allen et al., 2022). Synthetic data can be generated cheaply with physics simulators. Finally,
the physics of the process is clearly equivariant under E(3), provided that the direction of gravity is
treated as a feature and rotated along with the scene.

Dataset We construct a dataset of rigid-body interactions following a proposal by Allen et al.
(2022). We use the Kubric simulator (Greff et al., 2022), which is based on the PyBullet physics
engine (Coumans & Bai, 2016–2024). We recreate the MOVi-B dataset used by Allen et al. (2022) as
best as we can, using parameters from their paper and private communication; see Appendix A for
details. Our dataset consists of 4 · 105 trajectories, each consisting of 96 time steps. Each trajectory
includes between 3 and 10 objects, each consisting of between 98 and 2160 mesh faces. The average
number of total mesh faces in a scene is 5470.

3.2 MODELS

In selecting architectures, our main objective is not to achieve state-of-the-art results on the particular
rigid-body benchmark problem we chose. That would lead us to highly problem-specific architec-
tures (Allen et al., 2022; Rubanova et al., 2024). Instead, we aim for general-purpose architectures
that are applicable to broad classes of problems.

Baseline architecture The transformer architecture (Vaswani et al., 2017) has become the de-facto
standard across a wide range of machine learning tasks. It is versatile with respect to the input data,
propagates gradients effectively, and scales well to large model sizes and input tokens. Most scaling
studies have focused on transformers as well. We therefore use a standard pre-LN (Baevski & Auli,
2018) transformer with multi-query attention (Shazeer, 2019) as our non-equivariant architecture.

We represent each mesh face as a token and the positions and velocities of vertices with random
Fourier features (Tancik et al., 2020), which improved performance in initial tests.

Even this baseline architecture is hardly “free from inductive biases”. Because the tokens form
not a sequence, but an unordered set, we do not use positional encoding. Therefore, the model is
equivariant with respect to one of the symmetries of our problem: that of permutations of the input
tokens. In this respect, there is no difference between the two architectures, and we do not compare
to any models that are not permutation-equivariant.

Equivariant architecture For the E(3)-equivariant architecture, we again look for broad applicabil-
ity (at least within the class of E(3)-symmetric problems). In addition, we would like the architecture
to be as structurally similar to the transformer, to isolate the effects of equivariance on scaling as well
as possible. We therefore opt for the (to the best of our knowledge) only E(3)-equivariant architecture
that is based on dot-product attention with unlimited receptive fields, and which also otherwise follows
the transformer blueprint closely: the Geometric Algebra Transformer (GATr) (Brehmer et al., 2023).

Again, we represent each mesh face as a token. GATr uses geometric algebra representations in
addition to the usual scalar channels, and we can represent the geometric properties of a mesh face in
these geometric representations. We describe this embedding in more detail in Appendix B.

Hierarchical attention While we focus on general-purpose architectures, we find that both models
benefit from two minor modifications to the transformer blueprint. First, we use a novel hierarchical
attention mechanism, in which multiple attention heads use different attention masks: half of the
heads are restricted to attend only to mesh faces in the same object, while the other half attends to all
tokens (mesh faces). This allows us to embed awareness of the mesh structure into the transformer
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architecture, while preserving the efficiency of dot-product attention.

Enforcing object rigidity Second, we enforce object coherence and rigidity when computing the
outputs. Either transformer model first outputs a translation vector and a rotation quaternion for
each mesh face. These are averaged over each object, resulting in a translation vector and a rotation
for each rigid object. These E(3) operations are then applied to the input meshes. In this way, the
networks by design translate and rotate rigid objects consistently. We describe this procedure in more
detail in Appendix B. In preliminary experiments, enforcing object rigidity in this way improved
performance substantially compared to directly predicting the positions or velocities of mesh vertices.
We also experimented with outputting and exponentiating elements of the Lie algebra for each object,
but found that that worked marginally worse.

Hyperparameter Baseline Equiv.

Attention blocks 2n 2n
Scalar channels 64n 4n
MV channels – n
Attention heads 2n 2n
Scalars per key, query, value 64 8
MV per key, query, value – 2
Hidden scalar channels in MLP 128n 8n
Hidden MV channels in MLP – 2n

Table 1: Architecture hyperparameters as a function of a
model size parameter n. The equivariant architecture is less
wide, but part of their channels are 16-dimensional multivec-
tor (MV) channels, which can express a variety of geomet-
ric primitives (Brandstetter et al., 2022; Ruhe et al., 2023b;
Brehmer et al., 2023; Ruhe et al., 2023a; de Haan et al., 2024).

Hyperparameters We tune the hyperpa-
rameters of both models manually. For
both the baseline and equivariant trans-
former, we define a one-parameter family
of hyperparameters, fixing the relation be-
tween the number of layers, attention heads,
and channels to be linear. Our architectures
are shown in Tbl. 1. Notably, we find that
the equivariant transformer benefits from
a more narrow architecture, which may be
evidence of the expressivity of its multivec-
tor channels.

Optimization We train all models with
the Adam optimizer (Kingma, 2014), an-
nealing the learning rate over the course of
training from an initial value of 5 · 10−4 on a cosine schedule. For experiments with small FLOP bud-
gets of less than 1018 nominal FLOPs, we find that this learning rate can be too small. This is in line
with other works that find larger learning rates beneficial for smaller compute budgets (e. g. Dubey
et al., 2024). We therefore repeat these experiments with a higher learning rate of 10−3 or 2 · 10−3,
depending on the compute budget, and report the better result. For simplicity, we use the same batch
size of 64 samples (or on average 3.5 · 105 tokens) for all experiments, even though this does not
maximize GPU utilization and thus FLOP throughput. Early stopping is used in all experiments.

3.3 SCALING-LAW ANALYSIS

Experiments We perform two series of experiments. First, we study the scaling with compute,
in the (practically) infinite-data setting. We vary a training compute budget over three orders of
magnitude, between 1016 and 1019 FLOPs. For each FLOP budget, for both the baseline and the
equivariant transformer, we perform multiple experiments: each with a different trade-off between
model size N and training length D. This requires understanding the relation between N , D, and the
total training FLOPs; we discuss that later in this section.

Second, we study the scaling with training data, fixing the training compute budget, the model size,
and the number of training tokens. For both models we choose settings that performed compute-
optimally in the first series of experiments for a compute budget of 1018 nominal FLOPs. The number
of unique samples in the dataset is varied over five orders of magnitude, from 2 ·106 tokens to 2 ·1011.
The lower end of this scan corresponds to training for 6 · 105 epochs, while every sample is seen
only once on the upper end of this scan. For each of these settings, we train a baseline transformer,
an equivariant transformer, and a baseline transformer trained with data augmentation, in which
symmetry transformations are applied to the samples, independently for each epoch.

Counting FLOPs Setting up our experiments (see above) and analyzing the scaling with compute
both require knowing the relation of the total number of training FLOPs C(N,D) and the model size
N as well as training tokens D. This relation is different for the baseline and equivariant transformer.

Following Kaplan et al. (2020) and Hoffmann et al. (2022), we perform this FLOP counting in the
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limit where the number of model parameters is much larger than the sequence length, which in turn is
much larger than 1. The training compute is then dominated by the linear layers. For both of our
models, we find

C(N,D) ≈ ξND , (1)
where ξ is an architecture-dependent constant.

For the baseline transformer, famously ξ = 6 (Kaplan et al., 2020). For the equivariant transformer,
the value of ξ depends on the ratio of scalar and multivector channels: a model with only scalar
channels would also have ξ = 6, while a pure-multivector model would have more weight sharing
and thus a higher FLOPs-per-parameter ratio ξ = 6 · 162/9 ≈ 171. For the hyperparameters we use
during our scaling study, we find ξ ≈ 61.2.

Note that these nominal FLOPs do not necessarily correspond to the actual compute required to train
the model. For one, the assumed hierarchy between the model parameters and the sequence length is
not always satisfied. Second, our implementations of the models may not be able to fully utilize the
GPUs. We observe this in particular for small models and for the implementation of the equivariant
transformer, which involves many smaller operations and faces CPU bottlenecks. Additional overhead
comes from inter-GPU communication, data loading, logging, checkpoint saving, validating, and so
on. In our experiments, two models with the same nominal FLOP count would differ by as much as
an order of magnitude in real training duration.

So why do we still analyze models in terms of the nominal FLOPs? While they are an imperfect
measure, they do not depend on the implementation and hardware environment, and we believe they
are still the best predictor of the theoretically achievable compute cost after sufficient optimization
and at scale.

Scaling-law ansatz We model the scaling with compute quantitatively by fitting a scaling law to all
of our experiments. Following Kaplan et al. (2020), we model the test loss L as a power law in the
model parameters N and the training duration D, measured in tokens:

L̂(N,D) =
A

Nα
+

B

Dβ
+ E . (2)

Here A,B,E, α, β are fit parameters.

The parameter E represents the irreducible loss that even a perfect model cannot eliminate. Unlike in
language or image modelling tasks, there is no clear reason to expect such an irreducible error of
practically relevant size for the deterministic physics task we use as a benchmark. We treat the choice
of whether to include E as a fit parameter or fix it to zero as a hyperparameter and choose it through
cross validation, as we will describe below.

For the scaling with the size of the training data set, we do not find a scaling law that convincingly
describes our experiments. Our attempts at fitting Muennighoff et al.’s data-constrained scaling law
(2023) to our data did not result in a good agreement. We therefore refrain from discussing the
functional form for this direction of scaling, and will focus on scaling with compute for the remainder
of this section.

Scaling-law fit Following Hoffmann et al. (2022), we fit the scaling-law parameters (A,B,E, α, β)
separately for each architecture by minimizing the Huber loss (Huber, 1992) between the predicted
and observed log loss values, ∑

experiments i

Huberδ

(
log L̂(Ni, Di)− logLi

)
. (3)

Here δ is a hyperparameter, we choose it based on cross-validation, as we describe in a bit. We
minimize this loss with the L-BFGS optimizer (Liu & Nocedal, 1989), starting multiple fits from a
grid of initializations to avoid getting stuck in local minima.

Scaling-law hyperparameters The scaling-law fit depends on two hyperparameters: whether
we include the offset E as a fit parameter and the value of δ. We determine both through leave-
one-out cross-validation, performing scaling-law fits on all but one experiment and evaluating the
error |log L̂(Ni, Di)− logLi| on the left-out experiment. In this way, we choose fixing E = 0 and
δ = 0.001, though the qualitative fit results are not sensitive to these choices.
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Compute-optimal performance From a scaling law as in Eq. (2) and a FLOP function as in Eq. (1),
we can derive the compute-optimal model size N∗(C) and the compute-optimal training duration
D∗(C) as a function of the FLOP budget C as

N∗(C) =
G

ξa
Ca and D∗(C) =

1

Gξb
Cb , (4)

where G = (αAβB )1/(α+β), a = β/(α+ β), and b = α/(α+ β) (Hoffmann et al., 2022).

The optimal loss achievable for a given FLOP budget is then

L∗(C) = L̂(N∗(C), D∗(C)) = E +
F

Cγ
(5)

with F = AG−αξγ +BGβξγ and γ = αβ
α+β .

Uncertainties No realistic scaling study directly measures the optimal model performance as a
function of some parameters. Reasons for sub-optimality include the choice of hyperparameters,
stochasticity in initialization and training, choosing a scaling-law ansatz that does not include the
true functional form, and finite sampling of the space of model capacities and training tokens. We
estimate the effect of the latter with a nonparametric bootstrap, similar to Hoffmann et al. (2022).
From 104 bootstraps, we construct 95 % confidence intervals on the scaling law coefficients as well
as on any derived predictions, using the empirical (or basic) bootstrap method.

4 RESULTS

4.1 SCALING WITH COMPUTE

We first focus on the limit of (essentially) infinite training data and study the model performance as a
function of model size N and training tokens D.

Scaling laws We fit the scaling law of Eq. (2) with E = 0 to these experiments. For the baseline
transformer, we find coefficients

L̂baseline(N,D) =
1.27

N0.909
+

0.202

D0.379
. (6)

The equivariant model yields

L̂equivariant(N,D) =
2.82 · 10−4

N0.348
+

469

D0.734
. (7)

Confidence intervals are provided in Tbl. 2.

These two models scale quite differently with model size and training length, which has implications
for the optimal allocation of a compute budget. We will discuss this later.

Scaling law Param. Baseline Equivariant

Central Lower Upper Central Lower Upper

Eq. (2): L̂(N,D) = A/Nα +B/Dβ A 1.27 0.484 5.07 0.000282 0.000162 0.000607
B 0.202 0.0108 0.361 469 159 592
α 0.909 0.832 1.03 0.348 0.293 0.417
β 0.379 0.256 0.404 0.734 0.689 0.747

Eq. (4): N∗(C) ∝ Ca a 0.294 0.215 0.307 0.678 0.619 0.711
b 0.706 0.693 0.785 0.322 0.289 0.381

Eq. (5): L∗(C) = F/Cγ F 1.03 0.124 1.89 0.14 0.0524 0.517
γ 0.268 0.213 0.284 0.236 0.212 0.267

Table 2: Scaling-law coefficients. In addition to the central values, we show the 95% confidence intervals from a
nonparametric bootstrap.
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Figure 3: Test loss (dotted circles) and scaling-law predictions (background colour) as a function of model
size and training tokens. Left: non-equivariant transformer. Right: equivariant transformer. In both cases, we
observe good agreement of model performance and scaling-law fit.
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Figure 4: Model performance at different training compute budgets (panels) as a function of the model size.
We show our experiments (dots) and the predictions of our scaling-law fit (lines). The scaling-law fit describes
the measurements well.

Fit quality First, we show how well these fitted scaling laws agree with the data in Figs. 3 and 4.
Comparing the observed values of the test loss to the predictions from the scaling laws, we overall
find good agreement. There are no glaring deviations, although the power law underestimates the loss
for the largest equivariant models and for one baseline outlier. Most measurements fall within the
uncertainty bands, but less than the 95% one would expect if the bootstrap would cover all relevant
sources of error. This is evidence that the ansatz of Eq. (2) does not describe the data perfectly.

Scaling with compute Next, we analyze the model performance and its scaling with compute.
From the training laws in Eqs. (6) and (7), we compute best achievable test loss L∗ as a function of
the training compute budget C, as given by Eq. (5). We find

L∗
baseline(C) =

1.03

C0.268
and L∗

equivariant(C) =
0.14

C0.236
, (8)

and the exponents are compatible with each other within the confidence intervals shown in Tbl. 2. We
visualize the empirical compute-loss measurements and the derived optimal compute-loss relationship
in Fig. 1.

For any given compute budget, the equivariant transformer significantly outperforms the baseline.
Over the range of compute budgets we tested, the equivariant model achieves a loss that is lower by
approximately a factor of 2.

Optimal allocation of compute From the scaling laws we can also derive the optimal allocation of
a given computational budget to the parameter count and training duration, see Eq. (4). We show our
results for both models in Fig. 5.
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Figure 5: Optimal parameter allocation. We show the
compute-optimal model size as a function of the training
compute budget for the equivariant transformer ( )
and the non-equivariant transformer ( ). The equiv-
ariant architecture requires smaller models to achieve a
compute-optimal performance, but this gap closes for
bigger compute budgets.

We find that a compute-optimal equivariant
transformer has less parameters than a compute-
optimal baseline transformer. This is expected
because the equivariant transformer performs
more compute per parameter.

Perhaps more surprising is that the optimal trade-
off depends on the compute in a different way
for the two models. We find that for a regu-
lar transformer, one should scale training to-
kens more steeply than model size. For the
equivariant model, we find the opposite trend:
one should put additional compute more in
the model size than the training tokens. The
compute-optimal model sizes thus become more
similar for larger compute budgets.

4.2 SCALING WITH DATA

Next, we turn to the scaling with training data
for a fixed training compute budget. In Fig. 2 we
show the test loss as a function of the number
of unnique training tokens. We compare base-
line and equivariant transformers, each using a
compute-optimal model size and training tokens
for a training compute budget of 1018 nominal
FLOPs.

The right end of these curves corresponds to the infinite-data, single-epoch limit considered in the
previous section. Here we again see that the equivariant transformer outperforms the baseline model
when compared at the same training compute budget. Moving to smaller training sets, this gap widens
substantially, confirming the expectation that equivariance improves data efficiency.

In Fig. 2 we also show results for a baseline transformer model trained with data augmentation. As
expected, data augmentation does not make a difference when training for a single epoch. However,
it drastically improves the performance in the small-data regime: when training for thousands of
epochs, data augmentation makes a baseline transformer as data-efficient as an equivariant model.

5 DISCUSSION

Our empirical results provide evidence for the following three conclusions.

1. Equivariant transformers are more data-efficient, but data augmentation largely closes
this gap. The first (and expected) benefit for the equivariant architecture is that it performs better
than a non-equivariant architecture when only little training data is available, as we show in Fig. 2.
However, we find a non-equivariant model trained with data augmentation performs just as well as the
equivariant architecture, at least when the number of epochs (i. e. repeated uses of the same training
sample) is sufficiently large.

2. The scaling with compute follows power laws, and equivariant models outperform non-
equivariant ones at each tested compute budget. Both for non-equivariant and equivariant models,
the test loss is well described by the power-law ansatz of Eq. (1), with parameters given in Tbl. 2.
The best achievable model performance for a given training compute budget therefore also scales as a
power law, as given in Eq. (8). We find consistent exponents for the two models, but a substantially
smaller prefactor for the equivariant architecture.

This shows a second (and perhaps less expected) benefit for the equivariant architecture: for any fixed
compute budget, even in the infinite-data limit, it clearly outperforms the baseline method. As we
show in Fig. 1, this benefit is approximately constant over the range of compute budgets we study.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Under the assumption that the implementations of equivariant and baseline architectures are similarly
efficient and one can achieve the same FLOP throughput, this implies that equivariant models can
outperform the non-equivariant counterparts even in the large-data, large-compute regime. In practice,
non-equivariant architectures may be easier to optimize for high FLOP throughput, in which case it
remains to be seen which architecture is more efficient.

3. Equivariant and non-equivariant models require different trade-offs between model size and
training duration. Our power laws indicate that the optimal allocation of a given compute budget
onto the model size and training steps is different for equivariant and non-equivariant transformers, as
shown in Fig. 5. For small compute budget, a compute-optimal equivariant transformer is significantly
smaller than a compute-optimal baseline transformer. This gap becomes smaller for larger compute
budgets.

We hypothesize three possible explanations for this observation. First, the baseline transformer, the
more mature architecture, may have a better initialization scheme and thus require less training steps
to reach a good performance. Second, the different trade-offs may be related due to the different
choice of width and depth between the architectures. A third possible explanation is linked to the
internals of the equivariant transformer architecture, which can express certain primitives particularly
efficiently: the free movement and gravitational acceleration of rigid bodies can be represented with
few multivector channels, thanks to the geometric product operation integrated into the architecture.
This explains why the architecture can achieve a good performance with very few parameters.
However, lowering the loss further requires precise collision detection and modelling. These need
substantially more computational operations and a substantial amount of scalar channels, similar
to the non-equivariant transformer. This offers a possible explanation for why at a larger compute
budget, a model size closer to that of the baseline transformer is compute-optimal.

Limitations and open questions As much as we would like to, we cannot conclusively settle the
question raised in the title of this paper. Our work is limited in several ways. First, we only analyzed
a single benchmark problem and two model families. We chose a task with a common symmetry
group and general-purpose architectures that are frequently applied to a wide range of problems. We
believe it is important to study to what extent our findings generalize to other problems or to other
architectures, for instance those based on message-passing over graphs. Moreover, on the problem
we studied, we did not set a new state of the art: we deliberately focused on general-purpose models,
which do not achieve the same level of performance as highly problem-specific architectures (Allen
et al., 2022).

Another limitation of our work is that our analysis measures compute with an idealized FLOP counting
procedure, as is common practice (Hoffmann et al., 2022). As we discussed in Sec. 3.3, this does not
map one-to-one to real-world run time, at least not before further optimization of the implementation.
In Appendix C we show the relation between wall time and nominal FLOPs in our experiments.

Finally, we are only able to study training compute budgets of up to 1019 FLOPs per model—this
does not come close to the approximately 1025 FLOPs that the currently largest language models
are trained for (Dubey et al., 2024). We did not see power-law scaling break down in the range we
studied, but we cannot make claims about the extrapolation beyond it.

Keeping these limitations in mind, we believe that our findings provide some evidence that symmetry-
aware modelling can be a sensible choice even for large compute and data budgets. The benefits and
disadvantages of strong inductive biases at scale are important for problems spanning several fields
of science and engineering. We hope that our study can encourage further investigations into this
question.
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Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S Albergo,
Kyle Cranmer, Daniel C Hackett, and Phiala E Shanahan. Sampling using su (n) gauge equivariant
flows. Physical Review D, 103(7):074504, 2021. (Cited on page 3)

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric
and physical quantities improve E(3) equivariant message passing. In International Conference on
Learning Representations, 2022. (Cited on pages 3 and 5)

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Johann Brehmer, Pim de Haan, Sönke Behrends, and Taco Cohen. Geometric Algebra Transformer.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 37, 2023. (Cited on pages 2, 3, 4, 5, 16, and 17)

Johann Brehmer, Joey Bose, Pim De Haan, and Taco S Cohen. Edgi: Equivariant diffusion for
planning with embodied agents. Advances in Neural Information Processing Systems, 36, 2024.
(Cited on page 3)

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
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A DATASET

We generate a benchmark dataset of rigid-body interactions with the Kubric simulator (Greff et al.,
2022), which is based on the PyBullet physics engine (Coumans & Bai, 2016–2024). We follow
the MOVi-B configuration as used by Allen et al. (2022): we generate trajectories trajectories of 96
frames at 48 frames per seconds. Our training set consists of 4 · 105 such trajectories, while we use
1000 trajectories each for the validation and test set.

Our data can be generated with the openly available repository at https://github.
com/google-research/kubric. That requires modifying the code to save object
meshes, positions, and orientations for each time step, rather than the vision data that
kubric stores by default, and running python3 challenges/movi/movi ab worker.py
--objects set=kubasic --frame rate=48.

B MODELS

Input representations For both the baseline and equivariant transformer, we tokenize the problem
by assigning one token to each mesh face. In addition to the vertex positions, we compute the central
position of each mesh face, the relative vector from the center to each vertex, the surface normal on
the mesh face, and the linearly interpolated velocity between t0 and t1 for each vertex and the center
of each mesh face. Together these form the input features.

For the baseline transformer, these features are embedded using random Fourier features (Tancik
et al., 2020) with 128 frequencies sampled from a Gaussian with standard deviation 0.1.

For the equivariant transformer, these features are embedded in the projective geometric algebra
(PGA) described in Dorst (2020); Ruhe et al. (2023b); Brehmer et al. (2023). Specifically, vertex
and center positions are represented as PGA trivectors, the relative vector from the center to each
vertex as PGA vectors, the mesh face surfaces with the associated normals as PGA vectors, and all
velocities as PGA bivectors.

Enforcing object rigidity The transformer networks output eight features h for each token (mesh
face) that represent transformations like translations and rotations. The final predictions for future
vertex positions x̂(t2) are then computed by applying these transformations to the current vertex
positions x(t1).
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Figure 6: Throughput of nominal FLOPs per training wall time. The FLOPs we count do not directly
correspond to training wall time: larger models and non-equivariant transformers lead to a better GPU utilization,
increasing the FLOP throughput.
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This is most easily expressed in projective geometric algebra, the representation naturally used by
our equivariant transformer models. Here h are the even-grade components of the output PGA
multivectors. The predictions are computed as

hagg = meanobjectsh ,

x̂(t2) = haggx(t1)h̃agg . (9)

In the first line, the mesh-face-level predictions are averaged within each rigid object. In the second
line, the previous position x(t1) is translated and rotated with the E(3) element represented by the
network outputs; h̃ is the PGA reverse and hxh̃ (for properly normalized h) the sandwich product
used to apply transformations to objects (Dorst, 2020; Ruhe et al., 2023b; Brehmer et al., 2023).

We also experimented with predicting all vertex positions directly, without enforcing object rigidiy, as
well as with parametrizing elements of the Lie algebra of E(3), which would then be exponentiated
to construct transformations h. Both approaches performed worse in initial tests.

C SCALING-LAW ANALYSIS

In Sec. 3.3 we argue that the nominal FLOPs we count are not fully indicative of real-world run
time. We illustrate this in Fig. 6, where we show relation between these FLOPs and wall time in our
experiments. The throughput of nominal FLOPs varies by two orders of magnitude. Larger models
as well as non-equivariant transformers lead to a better GPU utilization and thus increase the FLOP
throughput. We expect that the FLOP throughput could be improved by optimizing the batch size or
(especially in the case of the equivariant transformer) the model implementation.
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