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ABSTRACT

Multi-modal Large Language Models (MLLMs) have shown remarkable generative
capabilities across multi-modal tasks, yet remain plagued by hallucinations where
generated textual contents are semantically inconsistent with the input images. This
work reveals that existing multi-modal preference optimization methods exhibit
shortcomings at the preference data decoding stage. Specifically, different response
tokens exhibit varying degrees of association with visual content, and consequently,
their contributions to reducing hallucinations and generating high-quality responses
differ. Nevertheless, most existing methods do not distinguish in their treatment,
often handling them uniformly. To address this challenge, we propose a novel
preference alignment method: Cross-modal Adaptive Token-rewarded Preference
Optimization (Cat-PO). Building upon direct preference optimization, Cat-PO
calculates hierarchical visual relevance rewards for each response token at global,
local, and semantic levels. It then organically integrates these three rewards to con-
struct a smooth reward mechanism and designs an innovative KL-based customized
loss for rewarded tokens, thereby enabling fine-grained correction of hallucinatory
outputs. Extensive experiments on various base models and evaluation benchmarks
demonstrate that our Cat-PO can significantly reduce hallucinations and align with
human preferences to enhance the truthfulness of MLLMs.

1 INTRODUCTION

The success of Multimodal Large Language Models (MLLMs) marks a significant advancement
in artificial intelligence research [Liu et al.|(2024b); |Amirloo et al.|(2024). By integrating visual
information with Large Language Models (LLMs), MLLMs have demonstrated unprecedented
capabilities in multimodal understanding, reasoning, and interaction Xiao et al.| (2024); [Pi et al.
(2024); Zhang et al.| (2024)). However, MLLMs exhibit a notable hallucination problem, where
the generated textual descriptions are inconsistent with the input visual content. This phenomenon
includes describing non-existent objects, incorrect object attributes, or relationships [Bai et al.| (2024);
Gunjal et al.|(2024)). The hallucination issue causes a disconnect between outputs and visual facts,
severely degrading user experience and undermining the reliability of downstream applications,
thereby limiting their deployment in real-world scenarios |Liu et al.[(2024a); |Liang et al.| (2024).

To alleviate this issue, strategies incorporating preference learning, such as Reinforcement Learning
from Human Feedback (RLHF) [Christiano et al.|(2017), have been widely investigated as a form of
fine-tuning. The core idea is to leverage preference feedback to align model outputs with desired
expectations. Recently, Direct Preference Optimization (DPO) |Rafailov et al.| (2023)) has gained
prominence for achieving excellent results without a separate reward model by simplifying complex
reinforcement learning steps. Existing work demonstrates that DPO, by efficiently incorporating
preference data, mitigates hallucinations in MLLMs, and improves the alignment with humans |Li
et al. (2023b)); Zhu et al.| (2024)); (Chen et al.|(2024). However, in current human preference alignment
processes, different response tokens processed by the model have varying degrees of relevance to
the visual content, and their contributions to reducing hallucinations and generating high-quality
answers also differ. As shown in Fig. E] (a), When MLLMs process different tokens, the cross-modal
attention they allocate to the image varies, and the token—image similarity also differs, indicating
that different tokens exhibit distinct degrees of association with the visual content. Nevertheless,
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Figure 1: The motivation of our framework. (a) A visual question answering example where the
model identifies "a laptop and a cup” on a table, with cross-model attention heatmaps and cross-model
similarity scores indicating the model’s visual focus and word importance in the response. (b) A
performance comparison of token-rewarded DPO, showing AMBER F1 (1) improving and MM-Hal
Hallucination Rate () declining as the percentage of rewarded tokens increases. (c) A comparison of
standard DPO versus our Cross-modal Adaptive Token-rewarded Preference Optimization (Cat-PO).
The former uses a flat gradient distribution for maximal likelihood optimization. And the latter
employs a targeted gradient distribution, suggesting potentially superior performance for the latter in
refining a pre-trained MLLM.

most existing works suffer from two primary limitations: (1) They overlook the varying degrees of
association between different tokens in the response and the visual content, as well as their differing
contributions to high-quality outputs, treating all tokens uniformly and thus lacking fine-grained
correction, as depicted in the upper part of Fig.[T](c). (2) They rely on external visual detection
models, additional noise injection techniques, expensive closed-source LLM API, or even external
tools, thereby neglecting the intrinsic capabilities of MLLMs and leading to a waste of existing
resources and increased costs.

Therefore, how to deeply exploit token-level fine-grained alignment signals, construct a more refined
DPO feedback mechanism, and fully leverage the inherent multimodal capabilities of MLLMs to
reduce additional costs and overhead remains a critical issue. Motivated by this, we conducted a
series of explorations. As shown by the statistical experiment in Fig.[T](b), when we applied DPO
only to the top 50% rewarded tokens in chosen responses, we observed significant improvements
in hallucination metrics AMBER-F1 and MM-Hal compared to the original DPO. Furthermore,
applying DPO with all rewarded tokens yielded even more outstanding results.

Building upon these explorations, we propose a Cross-modal Adaptive Token-rewarded Preference
Optimization (Cat-PO). This framework fully leverages the multimodal capabilities and advantages
of MLLMs to deeply mine token-level fine-grained alignment signals between text and images, using
token-rewards for Cat-PO, with the aim of more effectively mitigating hallucinations. A simplified
pipeline is shown in the lower part of Fig.[I|(c). Specifically, within the MLLMs, before the image
features (projected by CLIP |Radford et al| (2021) and ViT) are fed into the LLM’s transformer
layers, we first calculate the cross-modal semantic similarity between response tokens and the image,
representing the semantic relevance of tokens to visual content. Subsequently, within the transformer
layers, based on the cross-modal attention of response tokens to the image, we compute the global
and local relevance of each token to the visual content. Furthermore, we normalize and aggregate the
three hierarchical relevance scores, map the result through an activation function, and compute the
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final reward for each token. Finally, we design a novel Cat-PO loss based on token-level rewards
and KL divergence for further optimization. Experiments on open-source datasets and benchmarks
demonstrate that our Cat-PO achieves excellent performance, significantly reducing hallucinations
and improving response accuracy, thereby enhancing model truthfulness. Concurrently, this work
offers a new perspective on mitigating hallucinations by fully exploiting the inherent multimodal
capabilities of MLLMs without introducing external technologies or tools.

Our main contributions are summarized as follows:

1. We propose a Cross-modal Adaptive Token-rewards for Preference Optimization (Cat-PO) in
MLLMs. By assigning token-rewards to highlight visually critical tokens and incorporating
a fine-grained KL regularization, Cat-PO effectively reduces multimodal hallucinations.

2. We introduce a hierarchical token-rewards calculation method that relies solely on the
model’s inherent multimodal capabilities, without introducing any external tools or tech-
nologies. Specifically, it first computes global relevance based on cross-modal attention
between text and image, then calculates local relevance based on patch entropy, and finally
uses cross-modal semantic similarity for further refinement.

3. We conducted extensive experiments across multiple datasets and benchmarks to evaluate
the effectiveness of Cat-PO. Notably, on the AMBER-Generation and MM-Hal benchmarks,
our proposed Cat-PO outperforms existing state-of-the-art methods by 7% — 15% metrics.

2 RELATED WORKS

2.1 MLLMS HALLUCINATION

MLLMs hallucination refers to outputs that are factually inconsistent with the input image, such
as identifying non-existent objects, misdescribing attributes, or misinterpreting relationships. For
example, mentioning a “dog” in a landscape image that contains no animals Bai et al.| (2024).

To address hallucinations in MLLMs, researchers have proposed a variety of strategies, which broadly
classified as training-free or training-based Xiao et al.| (2025). Training-free methods, including
decoding strategies like Opera [Huang et al.| (2024) and VCD [Leng et al.| (2024)). Training-based
approaches reduce hallucinations through further training. Among these, preference learning such as
RLHF |Christiano et al.[(2017)) are prominent for their efficiency and effectiveness.

2.2 PREFERENCE LEARNING FOR HALLUCINATION

Preference learning was initially applied to LLM alignment via methods such as RLHF with PPO.
These approaches typically necessitate an explicit reward model and involve complex reinforcement
learning. Recently, DPO has gained widespread adoption as a simpler and more stable alternative to
traditional alignment techniques. HA-DPO |[Zhao et al.| (2023) constructs high-quality sample pairs
for preference learning. POVID Zhou et al|(20244a) creates a fine-grained DPO dataset by injecting
hallucinated text and adding noise to images. MDPO Wang et al.|(2024) addresses “unconditional
preference,” where the model may ignore image. CSR [Zhou et al.| (2024b) iteratively constructs a
preference dataset by self-generating responses, integrating visual constraints into reward modeling.

3 METHODOLOGY

The overview of our proposed Cat-PO is illustrated in Fig. 2] We first introduce traditional DPO
in Sec. 3] Then, we introduce the Hierarchical Visual Relevance of Tokens in Sec. [3.2] and
Token-rewards in Sec. [3.3] Lastly, we describe our novel Cat-PO Loss in Sec. [3.3]

3.1 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATIN (DPO)

DPO directly optimizes the model through a contrastive learning objective, making it more inclined
to generate human-preferred responses while reducing the probability of generating dispreferred
responses. DPO learns from preference data (x,y ™,y ™) ~ D, where x is the input prompt, y™ is the
human-preferred /chosen response, y~ is the dispreferred /rejected response, and D is the dataset.
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Figure 2: Overview of our proposed Cat-PO framework: (1) The visual images are first projected
into the feature space via CLIP+ViT, and the textual question/response tokens are embedded by
LLM tokenizer. (2) Cross-modal attention and semantic similarity are extracted in the multi-modal
transformer to hierarchically form the global, local, and semantic relevance scores. (3) Token weights
are computed by normalizing these scores with positive/negative sample formulas. (4) The weights
are integrated into the standard DPO loss to enhance alignment and mitigate hallucinations.

The DPO objective function originates from Bradley-Terry model, which assume that the human
preference probability p*(y™ > y~ | x) can be modeled via a latent reward function r*(x,y):
p*(yt =y | ®) = o(r*(z,y") — r*(z,y~)). DPO further relates the reward function to the
model’s policy 7y and a reference policy mer: 7+ (2, y) = B(log(me(y | )) — log(mer(y | 2))).

where [ is a hyperparameter controlling the ratio between reward function and policy deviation.

DPO’s loss can directly optimize the model to maximize the probability of generating ¥y and

minimize generating y~. For a given preference pair (z, 3™,y ™), DPO loss function is defined as:
mo(y" | ) mo(y~ | )

Trer(y+ | ) 7rf(y—x))>

By minimizing this loss function, the model 7y is trained to increase the difference between the
log-probabilities of preferred and dispreferred responses, relative to the reference model 7, s. This
direct method makes DPO simpler and demonstrates comparable or superior performance to RLHF.

Lppo = —log o (ﬁ <1og — log (H

3.2 HIERARCHICAL VISUAL RELEVANCE OF TOKENS

Without any external tools or techniques, we leverage the intrinsic multimodal capabilities of MLLMs,
to hierarchically compute each token’s global, local, and semantic relevance to the visual input.

3.2.1 CROSS-MODAL ATTENTION BASED GLOBAL RELEVANCE

When MLLMs process DPO training data within the Transformer architectures, the feature representa-
tion of each token in a response interacts with visual features via a cross-modal attention mechanism.
The activation distribution of these attention scores intuitively reflects the focus of specific text tokens
on different image regions. Leveraging this, we define and compute a global relevance score for each
token concerning the visual content, thereby quantifying its overall association with the image.

Specifically, for a given image I and its corresponding preferred response y,, or rejected response
y; (collectively denoted ) from the dataset, the representation of the ¢-th token y; in y serves as
the query. The set of IV, visual token features, {v1,v2, ..., vn, }, derived from image I via a visual
encoder, acts as the keys and values. The sequence of cross-modal attention scores from token y; to
all N, visual tokens is denoted by {as 1, a¢2,...,a: N, }-
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The global relevance Sgiobai(y:) is defined as the sum of the attention scores for token y;:

Np
Stobal (Y1) = Z ay,j )
j=1

A higher Sgopal(y:) indicates that the model attends more intensively to the entire image when
g global (Y y g
processing token y,, implying a stronger global alignment between the token and the visual content.

3.2.2 PATCH ENTROPY BASED LOCAL RELEVANCE

Although the global relevance score Sglobal(yt) captures the overall association between response
tokens and visual content, it does not reveal whether attention is concentrated on key regions or
dispersed across the image. Typically, focused attention indicates a strong link to specific local
information, while dispersed attention suggests higher uncertainty or weaker visual grounding.

To accurately characterize the focusing pattern within this attention distribution, we leverage the con-
cept of information entropy to compute the patch entropy scores for each token y; based on its image
attention distribution. First, we extract the cross-modal attention vector a; = [a¢ 1, a2, - - ., G, Np]
for token y; with respect to all IV, image patches, where a; ; represents the attention strength of y;
towards the j-th image patch. Next, we normalize the attention strengths in a; to form a probability
distribution P; = [Py 1, Pr 2, ..., Py N, and Py j = a5 / Zivil ag, . We then compute the patch
entropy H (P;) of this probability distribution. To ensure numerical stability in the logarithm, a small
epsilon value € (e.g., 10~12) is introduced:
NI’
H(P,) =— Z P, jlog(Psj +€) (3)
j=1

This entropy value H (P;) measures the uncertainty or dispersion of the attention distribution. Sub-
sequently, for N,, > 1, we normalize the computed entropy H (P;), and the Patch Entropy Score,
Sentropy (¢ ), is then defined as 1 minus this normalized entropy:
H(P,

Slocal(yt) =1- 10g< ]\;1)) (for Np > 1) )
A higher Siocal (1) score indicates lower entropy in the attention distribution, implying that attention
is more sharply focused on a few image patches. This generally signifies a stronger degree of
association between the token ¥, and specific local regions of the image.

3.2.3 CROSS-MODAL SIMILARITY BASED SEMANTIC RELEVANCE
Beyond the global and local relevance, we exploit a prior semantic signal obtained from a pretrained
cross—modal encoder to quantify the semantic alignment between response tokens and visual content.

Given a sample (I, y), let the embedding of the ¢-th token be e(y;). The image I is divided into N,
patches, each encoded as a visual feature {v1, ..., vy, }. With the cross—modal attention weights

. . . N,
o ; (normalized over patches), we obtain a context—aware visual vector: v (y;) = > ity Qe Vv
The semantic relevance score is then defined as

; = cos v = M
Ssemantlc(yt) - (e(yt)’ C(yt)) ||e(yt)|| ”Vc(yt)”- ©

This score captures the semantic relevance between the token representation and the visual content of
its most attended region, complementing the attention-based global and local relevance.

3.3 TOKEN WEIGHTING SCHEME

Unified Visual Relevance Score: After obtaining hierarchical visual relevance scores for every
response token token y;, we fuse them into a unified visual relevance score.
S = a[05 * Sglobal,i + 0.5 * Slocal,i] + (1 - Ol) Ssemamic,i; a, U € [Oa ]-] (6)

Here, o balances the attention branch (global & local) against the semantic branch.
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Smooth Mapping to Token Weights: Directly injecting s; into the loss may yield unstable gradients.
We therefore apply a smooth non-linearity: T; = tanh(s;) € (0, 1), and introduce a base weight
Aref > 0 to maintain a controlled dynamic range:

)\ref + Ea Yi € y+a
Aref"‘(l_ﬂ)v yiEy_'

This design (i) rewards tokens in the preferred response that strongly align with the image (7; 1), and
(ii) penalises hallucinated or weakly aligned tokens in the dispreferred response ((1 — T;) 1).

N

3.4 WEIGHTED INTEGRATION AND KL-REGULARISED CAT-PO L0OSS

Incorporating token weights {w;", w; } and token-level KL into the DPO loss yields the Cat-PO loss.

Weighted DPO. For a preference pair (y+, ™), we weight the log-likelihood ratio of the policy g
and the reference 7, s. The weighted policy Wéw) is defined as w(g“’) =3, (v logmo(y; | b)) —
w; logmg(y; | hy')), and the weighted reference ’/T](f:} is defined as wgz}; =3 (w0 logmres(y; |

hi) —w; logmres(y; | by )). Thus, the weighted DPO loss is defined as:
Lupro = —log o[ B(my” — 72))] @®)

Token-weighted KL regulariser. To keep the policy close to the reference and to stabilise training,
with a regularisation strength A > 0, we add a token-level, weight-modulated KL penalty:

LxL = A <Z wi KUmo(- | hf) (| 7rer (- | )] + Y wy KLmo(- | b)) || wres (- | h;)]) , (9
t t
The final Cat-PO Loss objective is:
Lcapo = Lupro + LxL (10)

Minimising equation equation [I0] enables the policy model encode human preferences and fine-
grained token—vision alignments, suppressing hallucinations while preserving generation quality.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Training Data: Our experiments primarily employ the widely used RLHF-V dataset|Yu et al.|(2024).
It comprises 5,733 samples, each including an image, a question, a high-quality response, and a
relatively low-quality response. We use these data to compute token-weights and train our model.

Evaluation Benchmarks: To comprehensively evaluate the model’s performance in reducing hallu-
cinations and enhancing general capabilities, we employ several widely used benchmarks:

For hallucination evaluation, AMBER Wang et al.| (2023)) is a LLM-free benchmark which consists
of two main sub-tasks: (a) Discrimination: Determining whether a given statement about an image
is correct or not. (b) Generation: Generating a descriptive text based on the image and question.
MM-Hal Sun et al.|(2023)) evaluates response-level hallucination rate and informativeness. It requires
GPT-4 to compare model outputs with human responses and object labels for evaluation.

For general capability evaluation, LLaVA-Bench [Liu et al.|(2023b)) is a comprehensive benchmark
that uses GPT-4 scoring to evaluate model generalization. SEED-Bench [Li et al.|(2023a) is a
large-scale multimodal benchmark assessing visual understanding and text/image generation.

4.2 IMPLEMENTATION DETAILS

In our experiments, we leverage the widely adopted LLaVA-v1.5|Liu et al.| (2023a)) and Qwen2.5-
VL Bai et al.| (2025) series models to evaluate the scalability and effectiveness. The training of main
experiment was performed over 6 epochs with an effective batch size of 32, implemented through
gradient accumulation. And the DPO hyperparameter Sppo set to 0.1.
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Table 1: Performance comparison on the Discrimination and Generative of AMBER [Wang et al.
(2023)), MM-Hal [Sun et al.| (2023)), LLaVA-Bench Liu et al.| (2023b) and SEED [Li et al.| (2023al)
benchmarks. All methods are based on LLaVA-v1.5-7B and -13B [Liu et al.|(2023b) models with the
RLHF-V |Yu et al.|(2024) dataset, with the best results highlighted in bold.

Method AMBER-Disc AMBER-Gene MM-Hal LLaVA + SEED 1

Acct F11 CHAIR| Hal] Cog| Scoret Rate |

LLaVA-v1.5-7B 717 743 7.8 364 42 201 614 65.6 66.1
+ DPO|Rafailov et al. (2023) 77.5 82.1 5.7 273 26 214 583 69.1 66.4
+ CSR [Zhou et al.| (2024b) 732 76.1 5.4 255 26 205 604 68.9 65.9
+ POVID Zhou et al.[(2024a) 719  74.7 5.7 269 3.0 226 552 68.2 66.1
+ RLHF-V|Yu et al.| (2024) 74.8 785 55 263 25 202 604 68.0 66.1
+ V-DPOXie et al.[(2024) - 81.6 5.6 273 27 2.16  56.0 - -

+ TPO|Gu et al.| (2024) 79.3 850 - - 247 510 70.2 66.6

+ Cat-PO (Ours) 78.0 85.3 4.8 237 21 274 420 70.3 67.0
LLaVA-v1.5-13B 713 73.1 7.0 331 33 238 53.13 73.1 68.2

+ DPO (Rafailov et al.l[2023) 77.5  82.1 6.1 263 2.7 247 51.04 728 68.6
+ TPO (Gu et al.,[2024) 83.9 88.0 - - - 272 4583 72.8 68.7
+ Cat-PO (Ours) 829 88.00 4.3 220 1.6 285 420 74.3 69.2

4.3 MAIN RESULTS

We compare Cat-PO with advanced preference alignment methods, which include: DPO [Rafailov
et al.| (2023). CSR, |Zhou et al.[(2024b) A calibrated self-rewarding method. POVID, |Zhou et al.
(2024a) A GPT-4V based alignment method. RLHF-V,|Yu et al.[(2024) A method that segments
human preference collection. TPO, (Gu et al.| (2024) A DPO variant employing self-calibrated,
visually anchored rewards. V-DPO, [Xie et al.|(2024) A vision-guided DPO variant.

== Amber F1 Score 1

In table[I] we evaluate existing methods and Cat-PO across mul-
tiple benchmarks. On the AMBER-Generation and MM-Hal,
Cat-PO significantly improves response quality while effec-
tively reducing hallucinations. On the AMBER-Discrimination,
it achieves competitive performance, highlighting its ability to P
evaluate image-related statements. Furthermore, on general

benchmarks such as LLaVA-Bench and SEED-Bench, Cat-PO ‘
also remains outstanding. o e qun e -

To verify the cross-model generalization of Cat-PO, we also Figure 3: Performance comparison
conduct experiments on Qwen-2.5VL-3B [Bai et al.| (2023). As of different Qwen2.5-VL models
shown in Fig[3] Cat-PO achieves improvements over Qwen and  in terms of AMBER and MM-Hal
Qwen+DPO on MM-Hal and AMBER benchmarks, demon- Benchmarks.

strating its strong generalization ability.

4.4  ABLATION STUDY

Modules’ Contribution. To fur- Table 2: Performance of individual Cat-PO modules.
ther validate Cat-PO’s effectiveness,

we conducted a comprehensive abla-

tion study in Table 2] The results Modules MM-Hal AMBER-Gene
show that cross-modal attention rel- Score T Rate | CHAIR|] Hall
evance and semantic relevance play DPO-only 2.14 3583 5.7 27.3
critical roles: weighting either alone Attention-only 234 550 5.3 25.9
improves performance, but their com-  (pa\ N 236 530 51 269
bination yields even greater gains. Cat-PO (Ours) 274 420 4.8 237

Moreover, removing the KL-based
loss optimization causes a performance drop, confirming the necessity of the token-level KL term.

Impact of Weighted-Tokens Proportion. We further investigate how varying the proportion of
weighted tokens in the chosen responses affects Cat-PO performance. As shown in Figure {4 (a),
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Figure 4: The performance comparison of (a) different weighting proportions, (b)(c) important
hyper-parameters a / Ai 1, and (d) weighting positions in our proposed Cat-PO framework.

performance steadily improves with increasing weight proportion. However, applying weights to
only the top 50% of tokens yields a smaller gain than to the top 30%, indicating that weighting the
remaining 50% also provides a notable contribution to overall performance.

Hyperparameter Analysis. We examine two key hyperparameters in Cat-PO: (1) Balance Coeffi-
cient . Figure[d](b) shows that both excessively large and small values of « impair performance,
underscoring the need to balance cross-modal attention and semantic relevance; (2) KL-divergence
Coefficient \gj.. Figure@(c) demonstrates that gy, = 0.03 achieves the optimal trade-off between
maintaining model flexibility and constraining deviation from the reference distribution.

Chosen Tokens Scores Reject Tokens Scores

0.87 Attention Scores —— Lo Attention Scores |
—— Similarity Scores / 0.8/ | —— —— Similarity Scores |
0.6 Total Scores ’ = Total Scores

8| g
§ \,ﬁ;’ / § 0.61 \
$0.41 — 3
0.41
0.2
= 0.2
N . a cat lies on the floor a cat runs on the bed
Please describe the image. Chosen Tokens Reject Tokens

Figure 5: Token-level attention, similarity, and aggregated scores for a single example. The aggre-
gated calculation lifts truly visual tokens (blue) while down-weighting hallucination tokens.

4.5 ANALYSIS EXPERIMENTS

The Effectiveness of Token-Weights Calculation. To further validate the effectiveness of our
computed token weights, we applied weighting to either the top 30% or the bottom 30% of tokens. As
shown in Figure[d] (d), weighting the top 30% of tokens yields a significant improvement compared
to weighting the bottom 30%. This result confirms the accuracy of our weight computation, and
demonstrates that key tokens play a decisive role in enhancing the alignment capability.

The Analysis of Training logits. Training logs and visualizations further demonstrate its stability.
We track the evolution of the training loss and the reward margin throughout optimization. As shown
in Fig. |6 the loss curve decreases smoothly, while the reward margin increases steadily without
noticeable oscillations. The monitored gradient norms also remain stable. These observations indicate
that Cat-PO maintains good optimization stability under token-level reward modulation.

Training Metrics (EMA smoothing=0.5)

Loss vs. Training Step. Rewards/Margins vs. Training Step

Taining Step. Taining Step.

Figure 6: Token-level attention, similarity, and aggregated scores for a single example. The aggre-
gated calculation lifts truly visual tokens (blue) while down-weighting hallucination tokens.
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Table 3: CatPO performance on overall

and adversarial subsets of POPE [Li et al. Table 4: Comparison of Cat-PO (general)

and Cat-PO (with learnable fusion).

(2023c¢).

CatPO’s Score Acc. Precision F1 Model MM-Hal () Hal-Rate ({)
Average 85.6 952 84.0 CarbO (general) 2.76 49%
Adversarial (w/ learnable fusion)  2.55 50%

(most difficult) 84.0 (-2%) 91.3 (-4%) 82.5 (-2%)

Evaluation on Edge-Case Diagnostics We additionally include POPE benchmark Li et al.| (2023c)
(with Object, Relation, and Adversarial subset). The Adversarial subset is explicitly designed to elicit
visual hallucinations and is widely regarded as the hardest visual alignment benchmark.

Table[3|shows that Cat-PO’s scores on the adversarial subset are slightly lower than average, indicating
that our rewards remain relatively robust even under highly biased and adversarial edge-case settings.

Learnable Fusion Weights. We modified the fusion Eq.[6]to be learnable parameters as follows:
Si =7 * Sglobal,i +0 * Slocal,i + (1 -7 - 5) & Ssemantic,ia e 0 € [07 1] (11)

with « and § are the learnable parameters. Then, we jointly optimized them within training loss.
Table ] show that introducing learnable coefficients yields the performance below the original one.
Learnable fusion showed no benefit, possibly because (1) DPO does not directly supervise weight
allocation, causing learnable coefficients to overfit noise, and (2) Cat-PO mainly gains from the
complementary cross-modal signals, making the fixed uniform weighting a more stable design.

Robustness Analysis of Token-reward Calculation. To further assess robustness in edge scenarios,
we visualize rare cases where attention and similarity disagree (Fig.[7). For “horse”, misaligned
attention is corrected by high semantic similarity, while for “train”, an abnormally low similarity score
is compensated by sharply focused attention. These examples show that Cat-PO’s fused multi-signal
scoring mutually compensates single-branch failures instead of amplifying isolated alignment errors.

From a theoretical perspective, Cat-PO computes each token-level reward by fusing three complemen-
tary cross-modal signals: global attention, local patch entropy, and cross-modal semantic similarity.
A token receives a high reward only when it simultaneously exhibits strong attention strength, a stable
focus pattern, and high semantic consistency with visual content. This complementarity reduces
reliance on any single noisy branch and structurally limits the misalignment.

Training Overhead Analysis. (1) Only one-time pre-computation: Pre-computing token-level
rewards for all positive and negative samples takes 2h16m18s. This cost is incurred only once and
the results can be reused indefinitely. (2) We compared the training overhead of Cat-DPO with DPO.
Table [5]shows that Cat-PO matches DPO across all metrics, introducing only marginal overhead.

4.6 CASE STUDY

Attention-Similarity Fusion for To- 1,11
ken Scoring. Figure [3]illustrates at-
tention scores (global and local), sim-
ilarity scores, and their weighted sum

5: Training comparison of DPO vs. Cat-PO: average
processing time of per sample and the peak memory usage.

. L Model Avg. ti Peak M U GB
for a sample. Attention or similarity Df(’)oe Ve 2l;ne (5) Pea en;(())r: zosage GB)
alone can distinguish visually critical Cat-PO (Ours) 2.95 (+38%) 40,450 (+0.07%)

from fact-violating tokens, validating
each module’s utility. However, biases exist: in the chosen sample, “floor” has a low attention score,
while “on” shows low similarity. But fusing the two signals ranks critical tokens higher, enabling
precise token weighting in Cat-PO and further supporting our weighting strategy.

Token-Level Log-Probabilities on Chosen Responses: Cat-PO vs. DPO. To illustrate Cat-PO’s
advantage in boosting generation confidence, in Figure 8] we present a token-level log-prob case
studies. Cat-PO (blue curve) assigns higher log-probabilities to most tokens in chosen responses
compared to DPO (green curve), as shown by the consistently positive differences (yellow bars). It
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Data idx = 1520, RLHF-V Datset
73 A,%&;@' :

Ede Case o Aetion Misalignment,
but Similarity Corrects the Rewards
Token = "horse” —— Attention Map (E3)
Attention (global) = 0.08606535786179087 (E3)
Similarity (semantic) = 0.7594918817754842 (4)
Token—Rewards = 0.9820886664604802 (\.4)

Data idx = 2290, RLHF-V Datset

Edge Case of Similarity Misalignment,
but Attention Corrects the Rewards

Token = "train" —— Attention Map ((4)

Similarity (semantic) = 0.04862285485427614 (E3)
Attention (global) = 0.26805039819690357 ({.4)
Token-Rewards = 0.7167500575241625 (L4)

Figure 7: Robustness Analysis in Corner Cases of Token-Reward Computation. Blue highlights
indicate regions of concentrated attention. All the data are from RLHF-V Dataset|Yu et al| (2024).
Left Part: When visual attention for the token "horse" is misaligned (rarely distributed in horses),
the high semantic similarity effectively rectifies the final reward. Right Part: Conversely, when
the semantic similarity for "train" is anomalously low, the focused attention distribution (correctly
distributed in train) ensures a reasonable reward. This demonstrates that the fused metrics in Cat-PO
mutually compensate for single-metric misalignments, ensuring reliable preference optimization.

—e— DPO LogProb

—e— Cat-PO LogProb

Avg DPO LogProb (-20.56)

-- Avg Cat-PO LogProb (-13.47)
Difference ( Cat-PO-DPO )

What are the key AR e
features you observe
in the image ?

X & - 7
& & 26

Tokens

Figure 8: Log-Probability (log-prob) comparison between Cat-PO and DPO on chosen responses. The
blue (Cat-PO) and green curve (DPO) represent the log-prob. The yellow bars represent differences,
computed as Cat-PO minus DPO. This indicates that Cat-PO not only learns a stronger preference for
chosen responses but also generates them with greater confidence.

suggests that Cat-PO better identifies and reinforces key semantic tokens, producing answers that are
both accurate and confidently grounded. Additional cases are provided in Appendix [A.4]

Comparison of Cat-PO and DPO Generations. The comparison is presented in Appendix [A.5]

5 CONCLUSION

In this paper, we propose Cross-modal Adaptive Token-rewarded Preference Optimization (Cat-PO)
for mitigating hallucinations and improving MLLM truthfulness. Each token’s global, local, and
semantic relevance is computed from cross-modal attention and similarity, fused and incorporated
into the DPO loss for fine-grained optimization. Experiments on public benchmarks show that Cat-PO
effectively reduces hallucinations, improves response accuracy, enhances MLLMs truthfulness.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Elmira Amirloo, Jean-Philippe Fauconnier, Christoph Roesmann, Christian Kerl, Rinu Boney, Yusu
Qian, Zirui Wang, Afshin Dehghan, Yinfei Yang, Zhe Gan, et al. Understanding alignment in
multimodal llms: A comprehensive study. arXiv preprint arXiv:2407.02477, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
Hallucination of multimodal large language models: A survey. arXiv preprint arXiv:2404.18930,
2024.

Assaf Ben-Kish, Moran Yanuka, Morris Alper, Raja Giryes, and Hadar Averbuch-Elor. Mocha:
Multi-objective reinforcement mitigating caption hallucinations. arXiv preprint arXiv:2312.03631,
2,2023.

Yangyi Chen, Karan Sikka, Michael Cogswell, Heng Ji, and Ajay Divakaran. Dress: Instructing
large vision-language models to align and interact with humans via natural language feedback.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14239-14250, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Jinlan Fu, Shenzhen Huangfu, Hao Fei, Xiaoyu Shen, Bryan Hooi, Xipeng Qiu, and See-Kiong Ng.
Chip: Cross-modal hierarchical direct preference optimization for multimodal 1lms. arXiv preprint
arXiv:2501.16629, 2025.

Jihao Gu, Yingyao Wang, Meng Cao, Pi Bu, Jun Song, Yancheng He, Shilong Li, and Bo Zheng.
Token preference optimization with self-calibrated visual-anchored rewards for hallucination
mitigation. arXiv preprint arXiv:2412.14487, 2024.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entan-
gled language hallucination and visual illusion in large vision-language models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14375-14385, 2024.

Anisha Gunjal, Jihan Yin, and Erhan Bas. Detecting and preventing hallucinations in large vision
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
1813518143, 2024.

Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiagi Wang, Dahua Lin, Weiming
Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models
via over-trust penalty and retrospection-allocation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13418-13427, 2024.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
Mitigating object hallucinations in large vision-language models through visual contrastive decod-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13872-13882, 2024.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal 1lms with generative comprehension. arXiv preprint arXiv:2307.16125,
2023a.

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou
Wang, and Lingpeng Kong. Silkie: Preference distillation for large visual language models. arXiv
preprint arXiv:2312.10665, 2023b.

11



Under review as a conference paper at ICLR 2026

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023c.

Zijing Liang, Yanjie Xu, Yifan Hong, Penghui Shang, Qi Wang, Qiang Fu, and Ke Liu. A survey
of multimodel large language models. In Proceedings of the 3rd International Conference on
Computer, Artificial Intelligence and Control Engineering, pp. 405-409, 2024.

Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. arXiv
preprint arXiv:2402.00253, 2024a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892-34916, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 26296-26306, 2024b.

Renjie Pi, Tianyang Han, Wei Xiong, Jipeng Zhang, Runtao Liu, Rui Pan, and Tong Zhang. Strength-
ening multimodal large language model with bootstrapped preference optimization. In European
Conference on Computer Vision, pp. 382-398. Springer, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
factually augmented rlhf. arXiv preprint arXiv:2309.14525, 2023.

Fei Wang, Wenxuan Zhou, James Y Huang, Nan Xu, Sheng Zhang, Hoifung Poon, and Muhao Chen.
mdpo: Conditional preference optimization for multimodal large language models. arXiv preprint
arXiv:2406.11839, 2024.

Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang,
and Jitao Sang. An llm-free multi-dimensional benchmark for mllms hallucination evaluation.
arXiv preprint arXiv:2311.07397, 2023.

Wenyi Xiao, Ziwei Huang, Leilei Gan, Wanggui He, Haoyuan Li, Zhelun Yu, Fangxun Shu, Hao
Jiang, and Linchao Zhu. Detecting and mitigating hallucination in large vision language models
via fine-grained ai feedback. arXiv preprint arXiv:2404.14233, 2024.

Wenyi Xiao, Ziwei Huang, Leilei Gan, Wanggui He, Haoyuan Li, Zhelun Yu, Fangxun Shu, Hao
Jiang, and Linchao Zhu. Detecting and mitigating hallucination in large vision language models
via fine-grained ai feedback. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25543-25551, 2025.

Yuxi Xie, Guanzhen Li, Xiao Xu, and Min-Yen Kan. V-dpo: Mitigating hallucination in
large vision language models via vision-guided direct preference optimization. arXiv preprint
arXiv:2411.02712, 2024.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
from fine-grained correctional human feedback. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13807-13816, 2024.

12



Under review as a conference paper at ICLR 2026

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. arXiv preprint arXiv:2404.11999, 2024.

Kejia Zhang, Keda Tao, Zhiming Luo, Chang Liu, Jiasheng Tang, and Huan Wang. Tars: Minmax
token-adaptive preference strategy for hallucination reduction in mllms. arXiv e-prints, pp. arXiv—
2507, 2025.

Mengxi Zhang, Wenhao Wu, Yu Lu, Yuxin Song, Kang Rong, Huanjin Yao, Jianbo Zhao, Fanglong
Liu, Haocheng Feng, Jingdong Wang, et al. Automated multi-level preference for mllms. Advances
in Neural Information Processing Systems, 37:26171-26194, 2024.

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiagi Wang, and Conghui He. Beyond
hallucinations: Enhancing lvims through hallucination-aware direct preference optimization. arXiv
preprint arXiv:2311.16839, 2023.

Yiyang Zhou, Chenhang Cui, Rafael Rafailov, Chelsea Finn, and Huaxiu Yao. Aligning modalities in
vision large language models via preference fine-tuning. arXiv preprint arXiv:2402.11411, 2024a.

Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang, Zhaorun Chen, Chenhang Cui, Xiyao Wang,
Yun Li, Linjun Zhang, and Huaxiu Yao. Calibrated self-rewarding vision language models. arXiv
preprint arXiv:2405.14622, 2024b.

Ke Zhu, Liang Zhao, Zheng Ge, and Xiangyu Zhang. Self-supervised visual preference alignment.
In Proceedings of the 32nd ACM International Conference on Multimedia, pp. 291-300, 2024.

Mingkang Zhu, Xi Chen, Zhongdao Wang, Bei Yu, Hengshuang Zhao, and Jiaya Jia. Tgdpo:
Harnessing token-level reward guidance for enhancing direct preference optimization. arXiv
preprint arXiv:2506.14574, 2025.

A APPENDIX

A.1 USAGE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

To ensure the clarity, fluency, and grammatical accuracy of the manuscript, large language models
(LLMs) were employed during the preparation process, specifically for two core tasks: text polishing
and grammatical error correction. In terms of text polishing, LLMs were used to optimize the
expression of technical content (including experimental descriptions, result analyses, and discus-
sion sections) — this involved refining sentence structure to enhance logical coherence, adjusting
terminology consistency to align with academic conventions in the field of machine learning (e.g.,
standardizing the naming of "Cat-PO model" and "baseline DPO model" throughout the text), and
improving the readability of complex statistical interpretations . For grammatical error correction,
LLM:s assisted in identifying and rectifying potential issues in English expression (including subject-
verb agreement, tense consistency, and preposition usage) to eliminate language-related ambiguities
that might affect the understanding of research findings. It is important to note that all core research
content — including experimental design, data collection, model training processes, statistical analy-
ses, and key conclusions — remained independently completed by the authors, and LLMs were only
used as auxiliary tools for language optimization without altering any substantive research content.

A.2  LIMITATIONS AND FUTURE WORK.
Our approach relies solely on the intrinsic multi-modal capabilities of MLLMs, without external
tools or models. This work primarily validates effectiveness and provides qualitative analysis. Future

work will systematically measure resource consumption, expand evaluation metrics, and verify the
resource savings from our eliminating external dependencies.

A.3 ADDITIONAL RELATED WORKS.

In more fine-grained DPO explorations. CHiP [Fu et al.| (2025) introduces visual preference op-
timization together with hierarchical preference optimization at the response, segment, and token

13
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levels on the text side. The token-level component is primarily based on sequence-level KL diver-
gence derived from text probability distributions; it is not image-aware and functions only as an
auxiliary term in the text-side loss. TARS [Zhang et al.| (2025) reformulates DPO as a min—max game.
TARS introduces adaptive perturbations on vision-irrelevant tokens to induce controlled distribution
shifts and combines them with a frequency-domain regularization constraint, achieving substantial
improvements in visual grounding and robustness under very low data costs. AMP Zhang et al.| (2024)
leverages multi-level preferences to construct finer-grained preference orderings, effectively reducing
the quality gap between positive and negative samples. It focuses on response-level alignment by
incorporating multiple preference levels.

In pure-text LLMs. TGDPO [Zhu et al.| (2025) introduces a reward-guided DPO framework that
decomposes sequence-level PPO into token-level subproblems and theoretically proves the indepen-
dence of the partition function. This enables the integration of fine-grained token-level rewards into
the DPO objective, improving instruction-following performance and training stability. TDPO |Zeng
et al.| (2024) further decomposes sentence-level rewards into token-level rewards via the Bellman
equation and introduces a Sequential Forward KL constraint. Through token-level optimization,
TDPO enhances alignment performance in text-only generation.

Other related works. Hallucinations in MLLMs from several factors: training data deficiencies |Li
et al.| (2023c); module-specific issues within MLLMs’ separately trained components |Guan et al.
(2024); suboptimal training paradigms [Ben-Kish et al.|(2023)); and inference-stage defects

Recently, RLHF-V [Yu et al.| (2024) collects segment-level human preference data and performs
dense DPO training. TPO |Gu et al.|(2024) explores token-level information in DPO for LVLMs.
V-DPO Xie et al.| (2024) pairs response preferences with image-contrast preferences and employs
vision-guided DPO to reinforce visual context learning.

A.4 MORE CASE OF TOKEN-LEVEL LOG-PROBABILITIES ON CHOSEN RESPONSES.

In Figure[9] We have included an additional case study in this subsection. This example provides
further evidence regarding the distinct token-level log-probabilities on the chosen responses, demon-
strating our method’s robust confidence.

-/\  —
—— DPO LogProb

—e— Cat-PO LogProb
Avg DPO LogProb (-22.31)
Avg Cat-PO - DPO (-15.23)
Difference ( Cat-PO LogProb )
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Figure 9: Log-Probability (log-prob) comparison between Cat-PO and DPO on chosen responses. The
blue (Cat-PO) and green curve (DPO) represent the log-prob. The yellow bars represent differences,
computed as Cat-PO minus DPO. This indicates that Cat-PO not only learns a stronger preference for
chosen responses but also generates them with greater confidence.

A.5 COMPARISON OF GENERATION IN CAT-PO AND DPO.

Our comparative analysis (see Figure[10[in Appendix illustrates the performance differences
between Cat-PO and DPO across four distinct examples. The figure contains four sub-examples
demonstrating Cat-PO’s consistent advantage in generating more detailed and accurate descriptions,
particularly in identifying subject counts, positional relationships, and contextual details.
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The image captures a person, likely a woman, riding a horse on the beach.
The rider is wearin while enjoying the ride._
, adding a sense of motion and speed to the scene.

The beach setting with the ocean in the background creates a serene and
picturesque backdrop for this equestrian activity.

DPO

The image features a person riding a horse on a beach, with the horse
running along the shoreline. The person is wearing a black jacket and s

and they are skillfully riding the horse. The horse is
_, with the person on its back. The beach setting provides
a picturesque and serene atmosphere for the rider and the horse.

Examplel

Question: Describe this image.

Our Cat-PO

The image features a person riding a skateboard on a . The
skateboarder is the main subject of the scene, as they navigate the sandy
terrain while maintaining their balance on the skateboard. The backdrop
consists of a sky with clouds, creating a serene and open atmosphere.

The image features a man riding a skateboard down a - enjoying
the thrill of the descent. The skateboarder is positioned in the middle of the
scene, with the skateboard visible beneath him.

and the man seems to be skillfully navigating the terrain. The
sky in the background is blue, adding to the overall atmosphere of the
scene.

Example2

5

Our Cat-PO| DPO

The image features of different colors walking on a sandy beach.
They appear to be enjoying their time outdoors, possibly exploring or
taking a stroll along the shore. The beach setting and the presence of the
dogs create a sense of leisure and freedom, as they roam freely in this
natural environment.

DPO

The image features a sandy beach with walking together. The
dogs are of different colors, with

Examplel

. They are walking in a line, with
the black and white dog leading the way, followed by the brown and white
dog, and then the brown dog. The dogs appear to be enjoying their time on
the beach, possibly exploring or playing.

Question: Describe this image.

Our Cat-PO

The image features _ a young boy and a young girl, playing in a

rassy field on a sunny day. They appear to be enjoying their time outdoors,
_ or having fun together. The green grass and the sunlight
create a pleasant atmosphere for the children to engage in their play
activities.

DPO

The image features a lush green field with

Example2

The two standing children are of the image,
while the sitting child is on the . In the scene, there is a toy visible,
likely a toy car, placed near the left side of the image. The children seem to
be enjoying their time outdoors, playing and having fun in the grassy field.

Our Cat-PO

Question: Describe this image.

Figure 10: Four comparative examples showing generation differences between DPO and our Cat-PO.
(1) Beach horse riding: Cat-PO provides specific details about rider attire and horse movement. (2)
Sand skateboarding: Cat-PO adds contextual information about terrain and activity. (3) Beach dogs:
Cat-PO correctly identifies three dogs with distinct color patterns. (4) Children playing: Cat-PO notes
precise subject count, positions, and presence of a toy.

A.6 QUANTITATIVE EVALUATION: SUPERIORITY OF CAT-PO IN BOOSTING TOKEN-LEVEL
LOG-PROBABILITIES

Our supplementary statistical analysis further quantifies the significant effect of the Cat-PO model in
enhancing the generation confidence of positive responses compared to the baseline DPO model. The
distributional statistics, illustrated in Figure[TT] reveal the widespread positive impact of Cat-PO: on
average, a remarkable 97% of tokens within each positive sample experienced a positive increase in
their log-probability. Furthermore, at the overall sample level, 99.98% of the samples in the dataset
demonstrated a net growth in total log-probability (sum of log-probability improvements across all
tokens) under the Cat-PO model. These figures robustly demonstrate that the Cat-PO method is not
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Improvement Metrics
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Figure 11: Improvement metrics for the model trained with Cat-PO in enhancing positive sample
responses. The left bar indicates that, under the Cat-PO model, an average of 97.60% of tokens within
each positive sample response experienced a positive increase in their log-probability. The right bar
shows that 99.98% of the samples in the dataset demonstrated a net growth in total log-probability
under the Cat-PO model.

only highly effective but also that its advantages are broadly applicable, covering almost all test data
and the vast majority of generated content.

Regarding the magnitude of improvement, our statistical results are equally encouraging (this can
be linked to your second figure if it shows magnitude, or stated directly). Specifically, the Cat-PO
model achieved an average log-probability increase of 7.911821 per token in positive responses.
When converted to a relative percentage, the average percentage increase in log-probability per token
reached 29.96%. This substantial level of improvement, especially in the log-space, signifies that the
Cat-PO model exhibits far greater "certainty" than the baseline model when generating key parts of
these preferred responses.
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