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ABSTRACT

Multi-modal Large Language Models (MLLMs) have shown remarkable generative
capabilities across multi-modal tasks, yet remain plagued by hallucinations where
generated textual contents are semantically inconsistent with the input images. This
work reveals that existing multi-modal preference optimization methods exhibit
shortcomings at the preference data decoding stage. Specifically, different response
tokens exhibit varying degrees of association with visual content, and consequently,
their contributions to reducing hallucinations and generating high-quality responses
differ. Nevertheless, most existing methods do not distinguish in their treatment,
often handling them uniformly. To address this challenge, we propose a novel
preference alignment method: Cross-modal Adaptive Token-rewarded Preference
Optimization (Cat-PO). Building upon direct preference optimization, Cat-PO
calculates hierarchical visual relevance rewards for each response token at global,
local, and semantic levels. It then organically integrates these three rewards to con-
struct a smooth reward mechanism and designs an innovative KL-based customized
loss for rewarded tokens, thereby enabling fine-grained correction of hallucinatory
outputs. Extensive experiments on various base models and evaluation benchmarks
demonstrate that our Cat-PO can significantly reduce hallucinations and align with
human preferences to enhance the truthfulness of MLLMs.

1 INTRODUCTION

The success of Multimodal Large Language Models (MLLMs) marks a significant advancement
in artificial intelligence research Liu et al. (2024b); Amirloo et al. (2024). By integrating visual
information with Large Language Models (LLMs), MLLMs have demonstrated unprecedented
capabilities in multimodal understanding, reasoning, and interaction Xiao et al. (2024); Pi et al.
(2024); Zhang et al. (2024). However, MLLMs exhibit a notable hallucination problem, where
the generated textual descriptions are inconsistent with the input visual content. This phenomenon
includes describing non-existent objects, incorrect object attributes, or relationships Bai et al. (2024);
Gunjal et al. (2024). The hallucination issue causes a disconnect between outputs and visual facts,
severely degrading user experience and undermining the reliability of downstream applications,
thereby limiting their deployment in real-world scenarios Liu et al. (2024a); Liang et al. (2024).

To alleviate this issue, strategies incorporating preference learning, such as Reinforcement Learning
from Human Feedback (RLHF) Christiano et al. (2017), have been widely investigated as a form of
fine-tuning. The core idea is to leverage preference feedback to align model outputs with desired
expectations. Recently, Direct Preference Optimization (DPO) Rafailov et al. (2023) has gained
prominence for achieving excellent results without a separate reward model by simplifying complex
reinforcement learning steps. Existing work demonstrates that DPO, by efficiently incorporating
preference data, mitigates hallucinations in MLLMs, and improves the alignment with humans Li
et al. (2023b); Zhu et al. (2024); Chen et al. (2024). However, in current human preference alignment
processes, different response tokens processed by the model have varying degrees of relevance to
the visual content, and their contributions to reducing hallucinations and generating high-quality
answers also differ. As shown in Fig. 1 (a), When MLLMs process different tokens, the cross-modal
attention they allocate to the image varies, and the token–image similarity also differs, indicating
that different tokens exhibit distinct degrees of association with the visual content. Nevertheless,
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Figure 1: The motivation of our framework. (a) A visual question answering example where the
model identifies "a laptop and a cup" on a table, with cross-model attention heatmaps and cross-model
similarity scores indicating the model’s visual focus and word importance in the response. (b) A
performance comparison of token-rewarded DPO, showing AMBER F1 (↑) improving and MM-Hal
Hallucination Rate (↓) declining as the percentage of rewarded tokens increases. (c) A comparison of
standard DPO versus our Cross-modal Adaptive Token-rewarded Preference Optimization (Cat-PO).
The former uses a flat gradient distribution for maximal likelihood optimization. And the latter
employs a targeted gradient distribution, suggesting potentially superior performance for the latter in
refining a pre-trained MLLM.

most existing works suffer from two primary limitations: (1) They overlook the varying degrees of
association between different tokens in the response and the visual content, as well as their differing
contributions to high-quality outputs, treating all tokens uniformly and thus lacking fine-grained
correction, as depicted in the upper part of Fig. 1 (c). (2) They rely on external visual detection
models, additional noise injection techniques, expensive closed-source LLM API, or even external
tools, thereby neglecting the intrinsic capabilities of MLLMs and leading to a waste of existing
resources and increased costs.

Therefore, how to deeply exploit token-level fine-grained alignment signals, construct a more refined
DPO feedback mechanism, and fully leverage the inherent multimodal capabilities of MLLMs to
reduce additional costs and overhead remains a critical issue. Motivated by this, we conducted a
series of explorations. As shown by the statistical experiment in Fig. 1 (b), when we applied DPO
only to the top 50% rewarded tokens in chosen responses, we observed significant improvements
in hallucination metrics AMBER-F1 and MM-Hal compared to the original DPO. Furthermore,
applying DPO with all rewarded tokens yielded even more outstanding results.

Building upon these explorations, we propose a Cross-modal Adaptive Token-rewarded Preference
Optimization (Cat-PO). This framework fully leverages the multimodal capabilities and advantages
of MLLMs to deeply mine token-level fine-grained alignment signals between text and images, using
token-rewards for Cat-PO, with the aim of more effectively mitigating hallucinations. A simplified
pipeline is shown in the lower part of Fig. 1 (c). Specifically, within the MLLMs, before the image
features (projected by CLIP Radford et al. (2021) and ViT) are fed into the LLM’s transformer
layers, we first calculate the cross-modal semantic similarity between response tokens and the image,
representing the semantic relevance of tokens to visual content. Subsequently, within the transformer
layers, based on the cross-modal attention of response tokens to the image, we compute the global
and local relevance of each token to the visual content. Furthermore, we normalize and aggregate the
three hierarchical relevance scores, map the result through an activation function, and compute the
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final reward for each token. Finally, we design a novel Cat-PO loss based on token-level rewards
and KL divergence for further optimization. Experiments on open-source datasets and benchmarks
demonstrate that our Cat-PO achieves excellent performance, significantly reducing hallucinations
and improving response accuracy, thereby enhancing model truthfulness. Concurrently, this work
offers a new perspective on mitigating hallucinations by fully exploiting the inherent multimodal
capabilities of MLLMs without introducing external technologies or tools.

Our main contributions are summarized as follows:

1. We propose a Cross-modal Adaptive Token-rewards for Preference Optimization (Cat-PO) in
MLLMs. By assigning token-rewards to highlight visually critical tokens and incorporating
a fine-grained KL regularization, Cat-PO effectively reduces multimodal hallucinations.

2. We introduce a hierarchical token-rewards calculation method that relies solely on the
model’s inherent multimodal capabilities, without introducing any external tools or tech-
nologies. Specifically, it first computes global relevance based on cross-modal attention
between text and image, then calculates local relevance based on patch entropy, and finally
uses cross-modal semantic similarity for further refinement.

3. We conducted extensive experiments across multiple datasets and benchmarks to evaluate
the effectiveness of Cat-PO. Notably, on the AMBER-Generation and MM-Hal benchmarks,
our proposed Cat-PO outperforms existing state-of-the-art methods by 7% – 15% metrics.

2 RELATED WORKS

2.1 MLLMS HALLUCINATION

MLLMs hallucination refers to outputs that are factually inconsistent with the input image, such
as identifying non-existent objects, misdescribing attributes, or misinterpreting relationships. For
example, mentioning a “dog” in a landscape image that contains no animals Bai et al. (2024).

To address hallucinations in MLLMs, researchers have proposed a variety of strategies, which broadly
classified as training-free or training-based Xiao et al. (2025). Training-free methods, including
decoding strategies like Opera Huang et al. (2024) and VCD Leng et al. (2024). Training-based
approaches reduce hallucinations through further training. Among these, preference learning such as
RLHF Christiano et al. (2017) are prominent for their efficiency and effectiveness.

2.2 PREFERENCE LEARNING FOR HALLUCINATION

Preference learning was initially applied to LLM alignment via methods such as RLHF with PPO.
These approaches typically necessitate an explicit reward model and involve complex reinforcement
learning. Recently, DPO has gained widespread adoption as a simpler and more stable alternative to
traditional alignment techniques. HA-DPO Zhao et al. (2023) constructs high-quality sample pairs
for preference learning. POVID Zhou et al. (2024a) creates a fine-grained DPO dataset by injecting
hallucinated text and adding noise to images. MDPO Wang et al. (2024) addresses “unconditional
preference,” where the model may ignore image. CSR Zhou et al. (2024b) iteratively constructs a
preference dataset by self-generating responses, integrating visual constraints into reward modeling.

3 METHODOLOGY

The overview of our proposed Cat-PO is illustrated in Fig. 2. We first introduce traditional DPO
in Sec. 3.1. Then, we introduce the Hierarchical Visual Relevance of Tokens in Sec. 3.2 and
Token-rewards in Sec. 3.3. Lastly, we describe our novel Cat-PO Loss in Sec. 3.3.

3.1 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATIN (DPO)

DPO directly optimizes the model through a contrastive learning objective, making it more inclined
to generate human-preferred responses while reducing the probability of generating dispreferred
responses. DPO learns from preference data (x, y+, y−) ∼ D, where x is the input prompt, y+ is the
human-preferred /chosen response, y− is the dispreferred /rejected response, and D is the dataset.

3
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Figure 2: Overview of our proposed Cat-PO framework: (1) The visual images are first projected
into the feature space via CLIP+ViT, and the textual question/response tokens are embedded by
LLM tokenizer. (2) Cross-modal attention and semantic similarity are extracted in the multi-modal
transformer to hierarchically form the global, local, and semantic relevance scores. (3) Token weights
are computed by normalizing these scores with positive/negative sample formulas. (4) The weights
are integrated into the standard DPO loss to enhance alignment and mitigate hallucinations.

The DPO objective function originates from Bradley-Terry model, which assume that the human
preference probability p∗(y+ ≻ y− | x) can be modeled via a latent reward function r∗(x, y):
p∗(y+ ≻ y− | x) = σ(r∗(x, y+) − r∗(x, y−)). DPO further relates the reward function to the
model’s policy πθ and a reference policy πref: r∗(x, y) = β(log(πθ(y | x))− log(πref(y | x))).
where β is a hyperparameter controlling the ratio between reward function and policy deviation.
DPO’s loss can directly optimize the model to maximize the probability of generating y+ and
minimize generating y−. For a given preference pair (x, y+, y−), DPO loss function is defined as:

LDPO = − log σ

(
β

(
log

πθ(y
+ | x)

πref (y+ | x)
− log

πθ(y
− | x)

πref (y− | x)

))
(1)

By minimizing this loss function, the model πθ is trained to increase the difference between the
log-probabilities of preferred and dispreferred responses, relative to the reference model πref . This
direct method makes DPO simpler and demonstrates comparable or superior performance to RLHF.

3.2 HIERARCHICAL VISUAL RELEVANCE OF TOKENS

Without any external tools or techniques, we leverage the intrinsic multimodal capabilities of MLLMs,
to hierarchically compute each token’s global, local, and semantic relevance to the visual input.

3.2.1 CROSS-MODAL ATTENTION BASED GLOBAL RELEVANCE

When MLLMs process DPO training data within the Transformer architectures, the feature representa-
tion of each token in a response interacts with visual features via a cross-modal attention mechanism.
The activation distribution of these attention scores intuitively reflects the focus of specific text tokens
on different image regions. Leveraging this, we define and compute a global relevance score for each
token concerning the visual content, thereby quantifying its overall association with the image.

Specifically, for a given image I and its corresponding preferred response yw or rejected response
yl (collectively denoted y) from the dataset, the representation of the t-th token yt in y serves as
the query. The set of Np visual token features, {v1, v2, . . . , vNp

}, derived from image I via a visual
encoder, acts as the keys and values. The sequence of cross-modal attention scores from token yt to
all Np visual tokens is denoted by {at,1, at,2, . . . , at,Np}.
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The global relevance Sglobal(yt) is defined as the sum of the attention scores for token yt:

Sglobal(yt) =

Np∑
j=1

at,j (2)

A higher Sglobal(yt) indicates that the model attends more intensively to the entire image when
processing token yt, implying a stronger global alignment between the token and the visual content.

3.2.2 PATCH ENTROPY BASED LOCAL RELEVANCE

Although the global relevance score Sglobal(yt) captures the overall association between response
tokens and visual content, it does not reveal whether attention is concentrated on key regions or
dispersed across the image. Typically, focused attention indicates a strong link to specific local
information, while dispersed attention suggests higher uncertainty or weaker visual grounding.

To accurately characterize the focusing pattern within this attention distribution, we leverage the con-
cept of information entropy to compute the patch entropy scores for each token yt based on its image
attention distribution. First, we extract the cross-modal attention vector at = [at,1, at,2, . . . , at,Np

]
for token yt with respect to all Np image patches, where at,j represents the attention strength of yt
towards the j-th image patch. Next, we normalize the attention strengths in at to form a probability
distribution Pt = [Pt,1, Pt,2, . . . , Pt,Np ], and Pt,j = at,j /

∑Np

k=1 at,k. We then compute the patch
entropy H(Pt) of this probability distribution. To ensure numerical stability in the logarithm, a small
epsilon value ϵ (e.g., 10−12) is introduced:

H(Pt) = −
Np∑
j=1

Pt,j log(Pt,j + ϵ) (3)

This entropy value H(Pt) measures the uncertainty or dispersion of the attention distribution. Sub-
sequently, for Np > 1, we normalize the computed entropy H(Pt), and the Patch Entropy Score,
Sentropy(yt), is then defined as 1 minus this normalized entropy:

Slocal(yt) = 1− H(Pt)

logNp
(for Np > 1) (4)

A higher Slocal(yt) score indicates lower entropy in the attention distribution, implying that attention
is more sharply focused on a few image patches. This generally signifies a stronger degree of
association between the token yt and specific local regions of the image.

3.2.3 CROSS-MODAL SIMILARITY BASED SEMANTIC RELEVANCE

Beyond the global and local relevance, we exploit a prior semantic signal obtained from a pretrained
cross–modal encoder to quantify the semantic alignment between response tokens and visual content.

Given a sample (I, y), let the embedding of the t-th token be e(yt). The image I is divided into Np

patches, each encoded as a visual feature {v1, . . . ,vNp
}. With the cross–modal attention weights

αt,j (normalized over patches), we obtain a context–aware visual vector: vc(yt) =
∑Np

j=1 αt,j vj

The semantic relevance score is then defined as

Ssemantic(yt) = cos
(
e(yt),vc(yt)

)
=

e(yt) · vc(yt)

∥e(yt)∥ ∥vc(yt)∥
. (5)

This score captures the semantic relevance between the token representation and the visual content of
its most attended region, complementing the attention-based global and local relevance.

3.3 TOKEN WEIGHTING SCHEME

Unified Visual Relevance Score: After obtaining hierarchical visual relevance scores for every
response token token yi, we fuse them into a unified visual relevance score.

si = α
[
0.5 ∗ Sglobal,i + 0.5 ∗ Slocal,i

]
+ (1− α)Ssemantic,i, α, µ ∈ [0, 1]. (6)

Here, α balances the attention branch (global & local) against the semantic branch.

5
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Smooth Mapping to Token Weights: Directly injecting si into the loss may yield unstable gradients.
We therefore apply a smooth non-linearity: Ti = tanh(si) ∈ (0, 1), and introduce a base weight
λref > 0 to maintain a controlled dynamic range:

wi =

{
λref + Ti, yi ∈ y+,

λref + (1− Ti), yi ∈ y−.
(7)

This design (i) rewards tokens in the preferred response that strongly align with the image (Ti ↑), and
(ii) penalises hallucinated or weakly aligned tokens in the dispreferred response ((1− Ti)↑).

3.4 WEIGHTED INTEGRATION AND KL-REGULARISED CAT-PO LOSS

Incorporating token weights {w+
t , w

−
t } and token-level KL into the DPO loss yields the Cat-PO loss.

Weighted DPO. For a preference pair (y+, y−), we weight the log-likelihood ratio of the policy πθ

and the reference πref . The weighted policy π
(w)
θ is defined as π(w)

θ =
∑

t

(
w+

t log πθ(y
+
t | h+

t )−
w−

t log πθ(y
−
t | h−

t )
)
, and the weighted reference π

(w)
ref is defined as π(w)

ref =
∑

t

(
w+

t log πref (y
+
t |

h+
t )− w−

t log πref (y
−
t | h−

t )
)
. Thus, the weighted DPO loss is defined as:

LwDPO = − log σ
[
β
(
π
(w)
θ − π

(w)
ref

)]
(8)

Token-weighted KL regulariser. To keep the policy close to the reference and to stabilise training,
with a regularisation strength λ > 0, we add a token-level, weight-modulated KL penalty:

LKL = λ

(∑
t

w+
t KL

[
πθ(· | h+

t ) ∥πref (· | h+
t )
]
+
∑
t

w−
t KL

[
πθ(· | h−

t ) ∥πref (· | h−
t )
])

, (9)

The final Cat-PO Loss objective is:

LCat-PO = LwDPO + LKL (10)

Minimising equation equation 10 enables the policy model encode human preferences and fine-
grained token–vision alignments, suppressing hallucinations while preserving generation quality.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Training Data: Our experiments primarily employ the widely used RLHF-V dataset Yu et al. (2024).
It comprises 5,733 samples, each including an image, a question, a high-quality response, and a
relatively low-quality response. We use these data to compute token-weights and train our model.

Evaluation Benchmarks: To comprehensively evaluate the model’s performance in reducing hallu-
cinations and enhancing general capabilities, we employ several widely used benchmarks:

For hallucination evaluation, AMBER Wang et al. (2023) is a LLM-free benchmark which consists
of two main sub-tasks: (a) Discrimination: Determining whether a given statement about an image
is correct or not. (b) Generation: Generating a descriptive text based on the image and question.
MM-Hal Sun et al. (2023) evaluates response-level hallucination rate and informativeness. It requires
GPT-4 to compare model outputs with human responses and object labels for evaluation.

For general capability evaluation, LLaVA-Bench Liu et al. (2023b) is a comprehensive benchmark
that uses GPT-4 scoring to evaluate model generalization. SEED-Bench Li et al. (2023a) is a
large-scale multimodal benchmark assessing visual understanding and text/image generation.

4.2 IMPLEMENTATION DETAILS

In our experiments, we leverage the widely adopted LLaVA-v1.5 Liu et al. (2023a) and Qwen2.5-
VL Bai et al. (2025) series models to evaluate the scalability and effectiveness. The training of main
experiment was performed over 6 epochs with an effective batch size of 32, implemented through
gradient accumulation. And the DPO hyperparameter βDPO set to 0.1.

6
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Table 1: Performance comparison on the Discrimination and Generative of AMBER Wang et al.
(2023), MM-Hal Sun et al. (2023), LLaVA-Bench Liu et al. (2023b) and SEED Li et al. (2023a)
benchmarks. All methods are based on LLaVA-v1.5-7B and -13B Liu et al. (2023b) models with the
RLHF-V Yu et al. (2024) dataset, with the best results highlighted in bold.

Method AMBER-Disc AMBER-Gene MM-Hal LLaVA ↑ SEED ↑
Acc ↑ F1 ↑ CHAIR ↓ Hal ↓ Cog ↓ Score ↑ Rate ↓

LLaVA-v1.5-7B 71.7 74.3 7.8 36.4 4.2 2.01 61.4 65.6 66.1
+ DPO Rafailov et al. (2023) 77.5 82.1 5.7 27.3 2.6 2.14 58.3 69.1 66.4
+ CSR Zhou et al. (2024b) 73.2 76.1 5.4 25.5 2.6 2.05 60.4 68.9 65.9
+ POVID Zhou et al. (2024a) 71.9 74.7 5.7 26.9 3.0 2.26 55.2 68.2 66.1
+ RLHF-V Yu et al. (2024) 74.8 78.5 5.5 26.3 2.5 2.02 60.4 68.0 66.1
+ V-DPO Xie et al. (2024) - 81.6 5.6 27.3 2.7 2.16 56.0 - -
+ TPO Gu et al. (2024) 79.3 85.0 - - - 2.47 51.0 70.2 66.6
+ Cat-PO (Ours) 78.0 85.3 4.8 23.7 2.1 2.74 42.0 70.3 67.0

LLaVA-v1.5-13B 71.3 73.1 7.0 33.1 3.3 2.38 53.13 73.1 68.2
+ DPO (Rafailov et al., 2023) 77.5 82.1 6.1 26.3 2.7 2.47 51.04 72.8 68.6
+ TPO (Gu et al., 2024) 83.9 88.0 - - - 2.72 45.83 72.8 68.7
+ Cat-PO (Ours) 82.9 88.00 4.3 22.0 1.6 2.85 42.0 74.3 69.2

4.3 MAIN RESULTS

We compare Cat-PO with advanced preference alignment methods, which include: DPO Rafailov
et al. (2023). CSR, Zhou et al. (2024b) A calibrated self-rewarding method. POVID, Zhou et al.
(2024a) A GPT-4V based alignment method. RLHF-V, Yu et al. (2024) A method that segments
human preference collection. TPO, Gu et al. (2024) A DPO variant employing self-calibrated,
visually anchored rewards. V-DPO, Xie et al. (2024) A vision-guided DPO variant.
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Figure 3: Performance comparison
of different Qwen2.5-VL models
in terms of AMBER and MM-Hal
Benchmarks.

In table 1, we evaluate existing methods and Cat-PO across mul-
tiple benchmarks. On the AMBER-Generation and MM-Hal,
Cat-PO significantly improves response quality while effec-
tively reducing hallucinations. On the AMBER-Discrimination,
it achieves competitive performance, highlighting its ability to
evaluate image-related statements. Furthermore, on general
benchmarks such as LLaVA-Bench and SEED-Bench, Cat-PO
also remains outstanding.

To verify the cross-model generalization of Cat-PO, we also
conduct experiments on Qwen-2.5VL-3B Bai et al. (2025). As
shown in Fig 3, Cat-PO achieves improvements over Qwen and
Qwen+DPO on MM-Hal and AMBER benchmarks, demon-
strating its strong generalization ability.

4.4 ABLATION STUDY

Table 2: Performance of individual Cat-PO modules.

Modules MM-Hal AMBER-Gene

Score ↑ Rate ↓ CHAIR ↓ Hal ↓
DPO-only 2.14 58.3 5.7 27.3
Attention-only 2.34 55.0 5.3 25.9
Similarity-only 2.51 47.0 5.1 27.7
Cat-PO without KL 2.36 53.0 5.1 26.9
Cat-PO (Ours) 2.74 42.0 4.8 23.7

Modules’ Contribution. To fur-
ther validate Cat-PO’s effectiveness,
we conducted a comprehensive abla-
tion study in Table 2. The results
show that cross-modal attention rel-
evance and semantic relevance play
critical roles: weighting either alone
improves performance, but their com-
bination yields even greater gains.
Moreover, removing the KL-based
loss optimization causes a performance drop, confirming the necessity of the token-level KL term.

Impact of Weighted-Tokens Proportion. We further investigate how varying the proportion of
weighted tokens in the chosen responses affects Cat-PO performance. As shown in Figure 4 (a),
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Figure 4: The performance comparison of (a) different weighting proportions, (b)(c) important
hyper-parameters α / λKL, and (d) weighting positions in our proposed Cat-PO framework.

performance steadily improves with increasing weight proportion. However, applying weights to
only the top 50% of tokens yields a smaller gain than to the top 30%, indicating that weighting the
remaining 50% also provides a notable contribution to overall performance.

Hyperparameter Analysis. We examine two key hyperparameters in Cat-PO: (1) Balance Coeffi-
cient α. Figure 4 (b) shows that both excessively large and small values of α impair performance,
underscoring the need to balance cross-modal attention and semantic relevance; (2) KL-divergence
Coefficient λKL. Figure 4 (c) demonstrates that λKL = 0.03 achieves the optimal trade-off between
maintaining model flexibility and constraining deviation from the reference distribution.

Please describe the image.

Figure 5: Token–level attention, similarity, and aggregated scores for a single example. The aggre-
gated calculation lifts truly visual tokens (blue) while down-weighting hallucination tokens.

4.5 ANALYSIS EXPERIMENTS

The Effectiveness of Token-Weights Calculation. To further validate the effectiveness of our
computed token weights, we applied weighting to either the top 30% or the bottom 30% of tokens. As
shown in Figure 4 (d), weighting the top 30% of tokens yields a significant improvement compared
to weighting the bottom 30%. This result confirms the accuracy of our weight computation, and
demonstrates that key tokens play a decisive role in enhancing the alignment capability.

The Analysis of Training logits. Training logs and visualizations further demonstrate its stability.
We track the evolution of the training loss and the reward margin throughout optimization. As shown
in Fig. 6, the loss curve decreases smoothly, while the reward margin increases steadily without
noticeable oscillations. The monitored gradient norms also remain stable. These observations indicate
that Cat-PO maintains good optimization stability under token-level reward modulation.

Figure 6: Token–level attention, similarity, and aggregated scores for a single example. The aggre-
gated calculation lifts truly visual tokens (blue) while down-weighting hallucination tokens.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: CatPO performance on overall
and adversarial subsets of POPE Li et al.
(2023c).

CatPO’s Score Acc. Precision F1
Average 85.6 95.2 84.0
Adversarial
(most difficult) 84.0 (-2%) 91.3 (-4%) 82.5 (-2%)

Table 4: Comparison of Cat-PO (general)
and Cat-PO (with learnable fusion).

Model MM-Hal (↑) Hal-Rate (↓)
Cat-PO (general) 2.76 49%
Cat-PO
(w/ learnable fusion) 2.55 50%

Evaluation on Edge-Case Diagnostics We additionally include POPE benchmark Li et al. (2023c)
(with Object, Relation, and Adversarial subset). The Adversarial subset is explicitly designed to elicit
visual hallucinations and is widely regarded as the hardest visual alignment benchmark.
Table 3 shows that Cat-PO’s scores on the adversarial subset are slightly lower than average, indicating
that our rewards remain relatively robust even under highly biased and adversarial edge-case settings.

Learnable Fusion Weights. We modified the fusion Eq. 6 to be learnable parameters as follows:

si = γ ∗ Sglobal,i + δ ∗ Slocal,i + (1− γ − δ) ∗ Ssemantic,i, γ, δ ∈ [0, 1]. (11)

with γ and δ are the learnable parameters. Then, we jointly optimized them within training loss.
Table 4 show that introducing learnable coefficients yields the performance below the original one.
Learnable fusion showed no benefit, possibly because (1) DPO does not directly supervise weight
allocation, causing learnable coefficients to overfit noise, and (2) Cat-PO mainly gains from the
complementary cross-modal signals, making the fixed uniform weighting a more stable design.

Robustness Analysis of Token-reward Calculation. To further assess robustness in edge scenarios,
we visualize rare cases where attention and similarity disagree (Fig. 7). For “horse”, misaligned
attention is corrected by high semantic similarity, while for “train”, an abnormally low similarity score
is compensated by sharply focused attention. These examples show that Cat-PO’s fused multi-signal
scoring mutually compensates single-branch failures instead of amplifying isolated alignment errors.

From a theoretical perspective, Cat-PO computes each token-level reward by fusing three complemen-
tary cross-modal signals: global attention, local patch entropy, and cross-modal semantic similarity.
A token receives a high reward only when it simultaneously exhibits strong attention strength, a stable
focus pattern, and high semantic consistency with visual content. This complementarity reduces
reliance on any single noisy branch and structurally limits the misalignment.

Training Overhead Analysis. (1) Only one-time pre-computation: Pre-computing token-level
rewards for all positive and negative samples takes 2h16m18s. This cost is incurred only once and
the results can be reused indefinitely. (2) We compared the training overhead of Cat-DPO with DPO.
Table 5 shows that Cat-PO matches DPO across all metrics, introducing only marginal overhead.

4.6 CASE STUDY

Table 5: Training comparison of DPO vs. Cat-PO: average
processing time of per sample and the peak memory usage.

Model Avg. time (s) Peak Memory Usage (GB)
DPO 2.1s 40.420
Cat-PO (Ours) 2.9s (+38%) 40.450 (+0.07%)

Attention–Similarity Fusion for To-
ken Scoring. Figure 5 illustrates at-
tention scores (global and local), sim-
ilarity scores, and their weighted sum
for a sample. Attention or similarity
alone can distinguish visually critical
from fact-violating tokens, validating
each module’s utility. However, biases exist: in the chosen sample, “floor” has a low attention score,
while “on” shows low similarity. But fusing the two signals ranks critical tokens higher, enabling
precise token weighting in Cat-PO and further supporting our weighting strategy.

Token-Level Log-Probabilities on Chosen Responses: Cat-PO vs. DPO. To illustrate Cat-PO’s
advantage in boosting generation confidence, in Figure 8, we present a token-level log-prob case
studies. Cat-PO (blue curve) assigns higher log-probabilities to most tokens in chosen responses
compared to DPO (green curve), as shown by the consistently positive differences (yellow bars). It
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Edge Case of Attention Misalignment, 
but Similarity Corrects the Rewards

Token = "horse"   —— Attention Map (    )

Attention (global)  = 0.08606535786179087 (    )

Similarity (semantic) = 0.7594918817754842 (    )

Token-Rewards = 0.9820886664604802 (    )

Edge Case of  Similarity Misalignment, 
 but Attention Corrects the Rewards 

Token = "train"   —— Attention Map (    )

Similarity (semantic) = 0.04862285485427614 (    )

Attention (global) = 0.26805039819690357 (    ）

Token-Rewards = 0.7167500575241625 (    )

Data idx = 1520, RLHF-V Datset Data idx = 2290, RLHF-V Datset 

Figure 7: Robustness Analysis in Corner Cases of Token-Reward Computation. Blue highlights
indicate regions of concentrated attention. All the data are from RLHF-V Dataset Yu et al. (2024).
Left Part: When visual attention for the token "horse" is misaligned (rarely distributed in horses),
the high semantic similarity effectively rectifies the final reward. Right Part: Conversely, when
the semantic similarity for "train" is anomalously low, the focused attention distribution (correctly
distributed in train) ensures a reasonable reward. This demonstrates that the fused metrics in Cat-PO
mutually compensate for single-metric misalignments, ensuring reliable preference optimization.

What are the key 
features you observe 
in the image ?

Cat-PO LogProb

Cat-PO - DPO
Cat-PO LogProb

How many umbrellas are in this 
picture?

Cat-PO LogProb

Cat-PO LogProb
Cat-PO - DPO

Figure 8: Log-Probability (log-prob) comparison between Cat-PO and DPO on chosen responses. The
blue (Cat-PO) and green curve (DPO) represent the log-prob. The yellow bars represent differences,
computed as Cat-PO minus DPO. This indicates that Cat-PO not only learns a stronger preference for
chosen responses but also generates them with greater confidence.

suggests that Cat-PO better identifies and reinforces key semantic tokens, producing answers that are
both accurate and confidently grounded. Additional cases are provided in Appendix A.4.

Comparison of Cat-PO and DPO Generations. The comparison is presented in Appendix A.5.

5 CONCLUSION

In this paper, we propose Cross-modal Adaptive Token-rewarded Preference Optimization (Cat-PO)
for mitigating hallucinations and improving MLLM truthfulness. Each token’s global, local, and
semantic relevance is computed from cross-modal attention and similarity, fused and incorporated
into the DPO loss for fine-grained optimization. Experiments on public benchmarks show that Cat-PO
effectively reduces hallucinations, improves response accuracy, enhances MLLMs truthfulness.
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A APPENDIX

A.1 USAGE OF LARGE LANGUAGE MODELS IN MANUSCRIPT PREPARATION

To ensure the clarity, fluency, and grammatical accuracy of the manuscript, large language models
(LLMs) were employed during the preparation process, specifically for two core tasks: text polishing
and grammatical error correction. In terms of text polishing, LLMs were used to optimize the
expression of technical content (including experimental descriptions, result analyses, and discus-
sion sections) — this involved refining sentence structure to enhance logical coherence, adjusting
terminology consistency to align with academic conventions in the field of machine learning (e.g.,
standardizing the naming of "Cat-PO model" and "baseline DPO model" throughout the text), and
improving the readability of complex statistical interpretations . For grammatical error correction,
LLMs assisted in identifying and rectifying potential issues in English expression (including subject-
verb agreement, tense consistency, and preposition usage) to eliminate language-related ambiguities
that might affect the understanding of research findings. It is important to note that all core research
content — including experimental design, data collection, model training processes, statistical analy-
ses, and key conclusions — remained independently completed by the authors, and LLMs were only
used as auxiliary tools for language optimization without altering any substantive research content.

A.2 LIMITATIONS AND FUTURE WORK.

Our approach relies solely on the intrinsic multi-modal capabilities of MLLMs, without external
tools or models. This work primarily validates effectiveness and provides qualitative analysis. Future
work will systematically measure resource consumption, expand evaluation metrics, and verify the
resource savings from our eliminating external dependencies.

A.3 ADDITIONAL RELATED WORKS.

In more fine-grained DPO explorations. CHiP Fu et al. (2025) introduces visual preference op-
timization together with hierarchical preference optimization at the response, segment, and token
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levels on the text side. The token-level component is primarily based on sequence-level KL diver-
gence derived from text probability distributions; it is not image-aware and functions only as an
auxiliary term in the text-side loss. TARS Zhang et al. (2025) reformulates DPO as a min–max game.
TARS introduces adaptive perturbations on vision-irrelevant tokens to induce controlled distribution
shifts and combines them with a frequency-domain regularization constraint, achieving substantial
improvements in visual grounding and robustness under very low data costs. AMP Zhang et al. (2024)
leverages multi-level preferences to construct finer-grained preference orderings, effectively reducing
the quality gap between positive and negative samples. It focuses on response-level alignment by
incorporating multiple preference levels.

In pure-text LLMs. TGDPO Zhu et al. (2025) introduces a reward-guided DPO framework that
decomposes sequence-level PPO into token-level subproblems and theoretically proves the indepen-
dence of the partition function. This enables the integration of fine-grained token-level rewards into
the DPO objective, improving instruction-following performance and training stability. TDPO Zeng
et al. (2024) further decomposes sentence-level rewards into token-level rewards via the Bellman
equation and introduces a Sequential Forward KL constraint. Through token-level optimization,
TDPO enhances alignment performance in text-only generation.

Other related works. Hallucinations in MLLMs from several factors: training data deficiencies Li
et al. (2023c); module-specific issues within MLLMs’ separately trained components Guan et al.
(2024); suboptimal training paradigms Ben-Kish et al. (2023); and inference-stage defects

Recently, RLHF-V Yu et al. (2024) collects segment-level human preference data and performs
dense DPO training. TPO Gu et al. (2024) explores token-level information in DPO for LVLMs.
V-DPO Xie et al. (2024) pairs response preferences with image-contrast preferences and employs
vision-guided DPO to reinforce visual context learning.

A.4 MORE CASE OF TOKEN-LEVEL LOG-PROBABILITIES ON CHOSEN RESPONSES.

In Figure 9, We have included an additional case study in this subsection. This example provides
further evidence regarding the distinct token-level log-probabilities on the chosen responses, demon-
strating our method’s robust confidence.

What are the key 
features you observe 
in the image ?

Cat-PO LogProb

Cat-PO - DPO
Cat-PO LogProb

How many umbrellas are in this 
picture?

Cat-PO LogProb

Cat-PO LogProb
Cat-PO - DPO

Figure 9: Log-Probability (log-prob) comparison between Cat-PO and DPO on chosen responses. The
blue (Cat-PO) and green curve (DPO) represent the log-prob. The yellow bars represent differences,
computed as Cat-PO minus DPO. This indicates that Cat-PO not only learns a stronger preference for
chosen responses but also generates them with greater confidence.

A.5 COMPARISON OF GENERATION IN CAT-PO AND DPO.

Our comparative analysis (see Figure 10 in Appendix A.5) illustrates the performance differences
between Cat-PO and DPO across four distinct examples. The figure contains four sub-examples
demonstrating Cat-PO’s consistent advantage in generating more detailed and accurate descriptions,
particularly in identifying subject counts, positional relationships, and contextual details.
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The image captures a person, likely a woman, riding a horse on the beach. 
The rider is wearing a helmet for safety while enjoying the ride. The horse is 
a gray-colored animal, adding a sense of motion and speed to the scene. 
The beach setting with the ocean in the background creates a serene and 
picturesque backdrop for this equestrian activity.

The image features a person riding a horse on a beach, with the horse 
running along the shoreline. The person is wearing a black jacket and a hat, 
and they are skillfully riding the horse. The horse is positioned towards the 
center of the image, with the person on its back. The beach setting provides 
a picturesque and serene atmosphere for the rider and the horse.

Question: Describe this image.

The image features a person riding a skateboard on a beach. The 
skateboarder is the main subject of the scene, as they navigate the sandy 
terrain while maintaining their balance on the skateboard. The backdrop 
consists of a sky with clouds, creating a serene and open atmosphere. 

The image features a man riding a skateboard down a sandy hill, enjoying 
the thrill of the descent. The skateboarder is positioned in the middle of the 
scene, with the skateboard visible beneath him. The hill appears to be a 
sandy dune, and the man seems to be skillfully navigating the terrain. The 
sky in the background is blue, adding to the overall atmosphere of the 
scene.

Question: Describe this image.
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The image features two dogs of different colors walking on a sandy beach. 
They appear to be enjoying their time outdoors, possibly exploring or 
taking a stroll along the shore. The beach setting and the presence of the 
dogs create a sense of leisure and freedom, as they roam freely in this 
natural environment.

The image features a sandy beach with three dogs walking together. The 
dogs are of different colors, with one being black and white, another brown 
and white, and the third one being brown. They are walking in a line, with 
the black and white dog leading the way, followed by the brown and white 
dog, and then the brown dog. The dogs appear to be enjoying their time on 
the beach, possibly exploring or playing.

The image features two children, a young boy and a young girl, playing in a 
grassy field on a sunny day. They appear to be enjoying their time outdoors, 
possibly exploring or having fun together. The green grass and the sunlight 
create a pleasant atmosphere for the children to engage in their play 
activities.

The image features a lush green field with three children playing together. 
Two of the children are standing, while the third child is sitting on the grass. 
The two standing children are positioned closer to the left side of the image, 
while the sitting child is on the right side. In the scene, there is a toy visible, 
likely a toy car, placed near the left side of the image. The children seem to 
be enjoying their time outdoors, playing and having fun in the grassy field.

Question: Describe this image.

Question: Describe this image.
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Figure 10: Four comparative examples showing generation differences between DPO and our Cat-PO.
(1) Beach horse riding: Cat-PO provides specific details about rider attire and horse movement. (2)
Sand skateboarding: Cat-PO adds contextual information about terrain and activity. (3) Beach dogs:
Cat-PO correctly identifies three dogs with distinct color patterns. (4) Children playing: Cat-PO notes
precise subject count, positions, and presence of a toy.

A.6 QUANTITATIVE EVALUATION: SUPERIORITY OF CAT-PO IN BOOSTING TOKEN-LEVEL
LOG-PROBABILITIES

Our supplementary statistical analysis further quantifies the significant effect of the Cat-PO model in
enhancing the generation confidence of positive responses compared to the baseline DPO model. The
distributional statistics, illustrated in Figure 11, reveal the widespread positive impact of Cat-PO: on
average, a remarkable 97% of tokens within each positive sample experienced a positive increase in
their log-probability. Furthermore, at the overall sample level, 99.98% of the samples in the dataset
demonstrated a net growth in total log-probability (sum of log-probability improvements across all
tokens) under the Cat-PO model. These figures robustly demonstrate that the Cat-PO method is not
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Figure 11: Improvement metrics for the model trained with Cat-PO in enhancing positive sample
responses. The left bar indicates that, under the Cat-PO model, an average of 97.60% of tokens within
each positive sample response experienced a positive increase in their log-probability. The right bar
shows that 99.98% of the samples in the dataset demonstrated a net growth in total log-probability
under the Cat-PO model.

only highly effective but also that its advantages are broadly applicable, covering almost all test data
and the vast majority of generated content.

Regarding the magnitude of improvement, our statistical results are equally encouraging (this can
be linked to your second figure if it shows magnitude, or stated directly). Specifically, the Cat-PO
model achieved an average log-probability increase of 7.911821 per token in positive responses.
When converted to a relative percentage, the average percentage increase in log-probability per token
reached 29.96%. This substantial level of improvement, especially in the log-space, signifies that the
Cat-PO model exhibits far greater "certainty" than the baseline model when generating key parts of
these preferred responses.
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