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Abstract

User localization in wireless sensing and communication sys-
tems are essential for ensuring improved quality of service.
To this end, the field of radio-frequency (RF) fingerprinting,
extracting user location information from multiple transmit
receive points (TRPs) using the wireless channel information
between the user and different TRP, has been heavily studied
and developed, both through model-based and deep neural
network (DNN)-aided methods. However, conventional RF
fingerprinting approaches face two major limitations (i) De-
pendence on fixed environment and TRP locations, and (ii)
Relying on inputs from a fixed number of TRPs. Addressing
these limitations, this work introduces the view independent
localization (VIn-Loc) model - A transformer-based DNN
framework that localizes users invariant to the number and lo-
cation of the TRPs. This work presents the first step towards
environment-agnostic user localization using both line-of-
sight (LoS) and non-LoS channel information. This approach
is rigorously validated on different statistical and ray tracing
models, from wireless channels with only NLoS paths, to out-
door city blocks with both LOS and NLoS paths. Experimen-
tal results highlight the strength of the proposed model, VIn-
Loc, over DNN-based RF fingerprinting.

1 Introduction
Today, the era of wireless IoT with high-speed intercon-
nected devices and users (Fang et al. 2023) has brought in
a need for high reliability communication and sensing sys-
tems. Accurate user localization in these systems is an im-
portant aspect and a crucial step to ensure high quality of
service (QoS) between a user node and an interconnected
network of transmit receive points (TRPs). As an example,
beamforming in mmWave systems require accurate infor-
mation about the user position for maintaining high data
throughput (Ayach et al. 2014; Van Trees 2002). Building
on traditional radar technologies, conventional algorithm-
based methods for user localization include the time of ar-
rival (ToA), and its variant the time difference of arrival
(TDoA) (Shen, Zetik, and Thoma 2008), which require a
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Figure 1: Two user equipments each connected to a different
TRP. UE 1 has a LoS path to TRP 1 and UE 2 has its LoS
path blocked and only has a non-LoS path to TRP 2.

minimum of 3 TRPs for localization. However, these classi-
cal methods require a line of sight (LoS) path between the
user and each of the different TRPs, and fail to operate if
even one of the LoS paths are blocked. Fig. 1 shows the dif-
ference between a LoS scenario, and a scenario where the
LoS is blocked and only a non-line of sight (NLoS) path ex-
ists between the TRP and the user. Model-based approaches,
extracting user location from NLoS wireless channels, re-
quire the use of more advanced methods and algorithms. To
this end, deep learning based RF fingerprinting has gained
immense research interest.

Existing approach: DNN-aided RF fingerprinting
Contrary to the LoS channel using radar, for the NLoS wire-
less channel the mapping between the received signal at the
user, and the user’s location, is non-linear and intractable
to compute. DNNs, with the ability for universal functional
approximation (Hornik, Stinchcombe, and White 1989), es-
pecially in modeling highly nonlinear systems, present a
promising solution to overcome the NLoS localization prob-
lem. Several deep learning methods have been developed
to learn this mapping through data. For deep neural net-
work (DNN)-aided radio-frequency (RF) fingerprinting, the
model is trained to associate a wireless channel statistic with
a particular location in the environment (Wang, Wang, and
Mao 2018). The network is trained to encode the physical
environment within the network parameters, in order to map
the RF fingerprint or channel response to the user position.
At inference, the model follows an approach analogous to a



look-up table, mapping the wireless channel input to a lo-
cation associated with that statistic. Although this method is
a very efficient way to learn an intractable relation between
the RF input and user location, its applicability is limited to
the given environment, as discussed next.

Limitations of DNN-aided RF fingerprinting: Existing
approaches are specialized to a given environment. In par-
ticular, the DNN-aided methods assume the following

1. The layout of the physical environment is fixed; the loca-
tion of the blockers and obstacles do not change

2. The number and position of the TRP nodes, relaying the
channel information, remain fixed.

However, in dynamic settings—where either the environ-
mental blockers frequently change and the environment it-
self shifts, or the TRP configurations are adjusted, the RF
fingerprinting model may become ineffective. In such cases,
it necessitates re-training with new data, often also requir-
ing the redesign of the DNN architecture, to maintain accu-
racy. Though different networks have been proposed to cir-
cumvent this issue (Klus et al. 2024), these models still re-
quire re-training and data collection to operate successfully
in the changed environment. Deep learning based methods
beyond RF fingerprinting have been developed (Ayyalaso-
mayajula et al. 2020), however the localization performance
under changes to TRP configurations are not studied. This
limits the applicability of these models in modern smart en-
vironments, like smart factories and warehouses, where the
TRP nodes may be mobile and vary in number, and the phys-
ical environment can continuously change (Syberfeldt et al.
2016). These limitations are overcome through the contribu-
tions in this work, discussed below.

Our contribution: Beyond RF fingerprinting and
towards environment agnostic localization
In this work, we propose a new methodology for user local-
ization which discourages the model from memorizing the
environment—the root cause for the lack of generalizabil-
ity of RF fingerprinting methods. Herein, a different strat-
egy is needed, one in which a model is trained to learn the
functional mapping between the wireless channels collected
from various TRPs and the UE location, independent of the
specific environment in which the measurements were taken.
This is a very challenging task since it requires the model to
re-create the environment from the wireless channel mea-
surements and extract the UE’s location from it. As a first
step in achieving this goal we propose a model which is
view independent. Specifically, in a fixed environment, the
model localizes the UE irrespective of the TRP locations.
We posit that every environment-agnostic model should be
view-independent, and in this work we propose an architec-
ture that achieves this property. View-independent localiza-
tion is addressed in (Wu et al. 2024), where the authors go
beyond the wireless channel by incorporating multi-modal
inputs from camera, audio, and mmWave radar to achieve lo-
calization in an indoor environment. However, this approach
is not invariant to the number and location of the TRP nodes.
Further, the availability of such multi-modal data is not al-

ways possible. To the best of the authors’ knowledge this is
the first work which addresses the following.

1. User localization using the limited data modality of wire-
less channel impulse response (either LoS or NLoS), and
TRP locations

2. A universal model that exhibits the view-independent
property for localization of a UE in a given environment
irrespective of the number and position of TRPs

The rest of the paper is organized as follows: Section 2 in-
troduces the localization problem and the wireless channel
model. We introduce our deep learning architecture in Sec-
tion 3. A brief overview of the datasets along with their re-
sults is presented in Section 4 and we conclude the paper in
Section 5. We use lower case boldfont to represent vector a
and upper case for matrix A. The magnitude of a complex
vector is denoted by |.|, and the convolutional operator is
denoted by ⊛.

2 System Model
Consider the localization of a user equipment (UE) using
NTRP TRPs. We consider the downlink scenario where each
TRP communicates with the UE. The received signals from
all the TRPs are used by the UE to estimate its position. We
assume that the UE is aware of the positions of all the TRPs,
that is, the pi = (xi, yi, zi) coordinates of the ith TRP is
known at the UE. The UE has Nu receive antennas and each
TRP is a single antenna transmitter. The received signal at
the UE y ∈ CNu×1 is given as

y =

NTRP∑
i=1

hi ⊛ xi + n. (1)

where the transmit signal from the ith TRP is denoted as xi,
hi ∈ CNu×D is the wireless channel impulse response (CIR)
between the ith TRP and the UE, and D is the number of
taps. Given this, the wireless channel model between the ith

TRP and the UE follows the continuous time tap-delay line
model (Tse and Viswanath 2005) given by

hi(t) =

P i∑
p=1

gipa(θ
i
p)δ(t− τ ip), (2)

where P i is the number of paths between the ith TRP
and the UE, τ ip, gip, θip are the delay, complex gain and
the angle of arrival associated with the pth path, respec-
tively. The array manifold vectors is denoted by a(θ) =
[1, ejπ cos(θ), ej2π cos(θ), . . . , ej(Nt−1)π cos(θ)]T . The noise
vector n is sampled from a Gaussian distribution N (0, σ2I),
with the noise variance σ2 depending on the signal-to-noise
ratio (SNR). The baseband sampled signal of (2) with a sam-
pling rate of 2B Hz where B is the bandwidth of the signal is
considered in (1) (Tse and Viswanath 2005). We assume that
perfect CIR information is available at the UE, which can
be obtained through the various channel estimation schemes
developed to estimate {h1,h2, . . . ,hM} from the received
signal (Tse and Viswanath 2005).
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Figure 2: Network architecture of VIn-Loc which takes in the set of TRP locations {p1, . . . ,pM} and the corresponding
wireless channel inputs {h1, . . . ,hM} to output the UE’s coordinates.

The UE location relative to each TRP is embedded in their
respective channel estimates. In the LoS scenario, where
a direct path exists between the UE and M

′
TRPs, with

3 ≤ M
′ ≤ M , the user’s position can be triangulated

by estimating {τ11 , . . . , τM
′

1 }, and combining them with the
known positions of the TRPs. This approach does not de-
pend on the specific environment in which the TRPs and
UE are located, making it environment-agnostic. However,
accurately estimating the τ values from the baseband sig-
nal is challenging when the signal bandwidth is low, and the
method fails to perform effectively in NLoS scenarios. In
the next section, we aim to combine the powerful modeling
capabilities of the deep learning model to localize users in
the NLoS scenario with the view-independent property of
the classical methods. We elucidate the details of our deep
learning model which can localize users in a NLoS scenario
under variable number and configuration of the TRPs. The
following section describes the proposed approach in more
detail.

3 VIn-Loc: View-Independent Localization
The deep learning model is trained to learn a mapping from
the set of inputs {(h1,p1), (h2,p2), . . . , (hM ,pM )} to the
co-ordinates of the UE location pu = (xu, yu, zu). The ar-
chitecture of our model is shown in Fig. 2. It can be broken
down to into three main parts.
1. Emebedding generation: The position and wireless

inputs are passed through their respective embed-
ding generation blocks, each producing a set of
NTRP embeddings. Note that the wireless channel
input to our model is in the complex field. We
break each wireless input hi into 3 feature channels,
namely {Real(hi), Imag(hi), |hi|} which is then fed to
its embedding generation block.

2. Embedding processor: The positions embeddings of the
TRP are combined with the wireless channel embeddings
using a transformer encoder to capture the correlations
that exist between the TRPs.

3. Output regression: The processed features from the trans-
former are passed through a set of multilayer perceptron
(MLP) blocks to regress the output UE co-ordinates.

Additional details about each of the different blocks are
given in the following sub-sections.

Part 1 - Embedding generation
In order to extract the UE location from the TRP informa-
tion, the latter is converted into an appropriate embedding
to be processed by the network. The embeddings are sepa-
rately created for the TRP channel responses and the TRP
locations, as explained below in detail.

UNet-Based CIR Embedding: We use the UNet archi-
tecture for generating the CIR embeddings (Ronneberger,
Fischer, and Brox 2015). UNet is a convolutional neural
network which allows us to mix features at different fea-
ture hierarchies. This property of a UNet allows us to ex-
tract wireless features at different timescales, from finer to
coarser variations, hence creating a CIR embedding which
is a richer representation of the input. Based on the number
of antennaes at the UE we use two different convolutional
filter sizes, for Nu = 1 we use a 1D filter and for Nu > 1 we
use 2D filters. The output of the UNet is flattened and pro-
cessed by an MLP with ReLU non-linearity to generate the
embeddings. The above architecture is broadcasted across
the NTRP wireless channel inputs to obtain the set of CIR
channel embedding H ∈ RM×Nd , where Nd is the embed-
ding dimension.

TRP Position Embedding: Inspired by the classical
methods of ToA and TDoA, we posit that view-independent
models should incorporate the position information of TRPs
with the corresponding wireless channel inputs to accurately
determine the UEs location. To generate the embeddings for
the TRP positions we drew inspiration from previous works
mainly involving neural radiance fields (Mildenhall et al.
2021). Based on empirically evaluating the performance of
different types of position embeddings, we arrived at the fol-
lowing architecture. An embedding for each TRP coordinate



is generated by passing the co-ordinates through a 2 layer
MLP with the ReLU non-linearity. A skip connection from
the input to the ouput ensures that the input co-ordinates are
concatenated with the output of the MLP to generate the fi-
nal position embedding.

Part 2 - Embedding processing
The architecture obtains its invariance to the number of
TRPs due to the emebedding processing block. The follow-
ing section provides details on how this is achieved.

Transformer encoder: The encoder block of the trans-
former (Vaswani 2017) is used to process the correlations
between the wireless channels from the different TRPs,
whose values are conditioned on the position of the UE in
the environment. In the traditional transformer model, the
relative position information are encoded into the input to-
kens by using the position emebeddings. In our case, the
position embedding is more interpretable since we use the
global co-ordinates of the TRP to inform the CIR embed-
ding inputs about their absolute position information. The
position embedding and the wireless channel embedding
are concatenated together to form the transformer tokens
F ∈ RM×2Nd .

Location token to extract UE information: We append
the input tokens F with an additional learnable token called
as the [LOC] token. This special token represents our ini-
tial guess of the UE position in the joint embedding space,
which is refined by the transformer through the contextual
information presented in F . The [LOC] is very similar to
the [CLS] token designed for the vision transformer (Doso-
vitskiy 2020) which captures the contextual information of
image in terms of the class to which it belongs. Using this
interpretation, we can think of each encoder block of the
transformer as an iterative update to the position of the UE
based on the TRP information in the high-dimensional em-
bedding space.

Part 3 - Output regression
After N encoder blocks of the transformer, the output token
corresponding to the [LOC] token represents the UE posi-
tion in the joint embedding space. We use a series of MLP
blocks with the ReLU non-linearity to transform this high
dimensional position information into the three dimensional
Cartesian co-ordinates of the position estimate of the UE in
the given environment.

VIn-Loc: Network architecture and training
An overview of the different layers in the VIn-Loc ar-
chitecture is given in Table 1, summarizing the DNN pa-
rameters shown in Fig. 2. The network is trained using
the ℓ2-norm loss between the predicted UE co-ordinates
and the ground truth co-ordinates across 600 epochs. The
AdamW (Loshchilov, Hutter et al. 2017) optimizer is used
to train the network with weight decay of 0.1, momentum of
0.99, and a learning rate of 4× 10−4. We use a exponential
decay for the learning rate with the decay factor set to 0.993
and the batch size is set to 16. Table 1 tabulates the detailed

Table 1: Network parameters for VIn-Loc

Network block Layer Parameters

Embedding
generation

Wireless
channel
embedding

Input = NTRP × 256× 3
UNet: Kernel size= 3(1)× 3

Pooling layers= 4
Output channels= 6

MLP: Output dim = NTRP × 256
TRP position
embedding

Input = NTRP × 3
Output = NTRP × 256

Embedding
processing

Transformer
encoder

Input = (NTRP+1) × 512
Encoder blocks = 4

LayerNorm
MLP=1024 neurons

Heads = 4
Output= (NTRP + 1)× 512

Output
regression Output MLP

Input = 512× 1
MLP: 4 layers

Hidden layers= 256 neurons
ReLU

Output = 3× 1

network sizes in each block. More details about the dataset
are provided in Sec. 4.

4 Results
This section presents the validation of the proposed VIn-Loc
model across various scenarios, highlighting its performance
and robustness in response to changes in the number of TRPs
and their configurations, for both Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) conditions. We begin by testing
the model in a scenario currently being investigated by the
3rd generation partnership project (3GPP). Recently, 3GPP
has initiated a study on AI/ML-based UE localization in en-
vironments with fixed TRP configurations, specifically un-
der NLoS conditions, as part of a work item. RF fingerprint-
ing methods are a promising solution to this problem, and
our model is another strong candidate in this context. The
following tests are used to benchmark and evaluate the per-
formance of the VIn-Loc framework.

Static TRP network: We first benchmark our work
against previously proposed RF fingerprinting mod-
els (3GPP 2023a) for the NLoS 3GPP channel scenario in
the factory environment showcasing that our model can be
used for the simpler case of fixed number and configuration
of TRPs.

Variable number of TRPs: We then extend this to show
that if the TRP configuration were changed then the previ-
ous RF fingerprinting methods fail but our model provides
accurate localization.

The general structure of the channel, i.e., number of taps,
is similar to the channel model given in eq. (2). Specifically,
for each TRP the channel with D = 256 taps is considered.
The following channel models have been used to benchmark
the performance of the given networks, based on two differ-
ent use cases of the localization problem.
1. Statistical channel models used by 3GPP
2. Ray traced channel models using Sionna
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Figure 3: Illustration of the top-view of a 3GPP scenario
consisting of 18 TRPs and the user located on the factory
floor.

The specific structure of the channel models and the results
for each are presented in the subsequent sub-sections.

Remark 1: Unless otherwise specified in the different exper-
iments, it is assumed that the a single antenna system is used
at the transmitted and receiver. The results for the multi-
antennas receiver is given in Scenario 2 for the ray-traced
channel model using Sionna.

3GPP channel models
The scenario of interest consists of a standard factory set-
ting with 18 single antennae TRPs and a single antennae
UE located on the factory floor (3GPP 2023b). Fig. 3 shows
an example of the 3GPP scenario. It consists of only NLoS
paths between each TRP and the UE. The NLoS positioning
scenario presents a challenging case to localize the user, re-
quiring the use of DNN-based localization frameworks. We
benchmark our model against the ResNet-based model1 pro-
posed for RF fingerprinting(3GPP 2023a). The aim of this
test is to showcase the performance of the view-agnostic
VIn-Loc against the RF fingerprinting approach that will
memorize the wireless environment.

Fixed TRP configuration The TRP configurations are
fixed and the UE can be located anywhere at the ground
level. The training set consists of 18K data samples and
the test set consists of 2K samples. The results are shown
in Table 2 under the fixed TRP configuration. We evaluate
the models on three metrics namely, root mean square error
(RMSE), mean absolute error (MAE) and 90th percentile er-
ror. We see that our model has comparable performance to
the ResNet based model. For a static TRP scenario, the VIn-
Loc can also effectively memorize the environment, without
being provided the information about the TRP positions. We
present this version of the model that does not rely on the po-
sitions of the TRPs. The model is trained solely on the CIRs
collected from different TRPs to predict the UEs coordi-
nates. We see that due to the fixed configuration of the TRPs
the location information does not affect localization perfor-
mance of the VIn-Loc model. This is because our model can
memorize the environment statistics and the positions of the
TRPs, analogous to the ResNet-based RF fingerprinting ap-

1Model presented by InterDigital Communications, Inc. for the
3GPP standards

proach. This validates the use of the VIn-Loc framework as
an effective model for RF fingerprinting as well in an en-
vironment with static TRPs. However, the strength of this
approach is portrayed in the variable TRP case, explained
next.

Variable TRP configuration We test the view-
independent property of the models in the 3GPP scenario,
that is, of the 18 TRPs we subsample S TRPs and the
wireless channel from each of the S TRPs to the UE is fed
to VIn-Loc. Note that in the training phase, each training
example is obtained from a different set of S TRPs. The
subsampling method allows us to test the view-independent
property of our model. This increases the size of our original
dataset with static TRPs since each UE location is now
associated with

(
M
S

)
choices of the wireless channels. This

increased diversity of the data makes the task of memorizing
multiple such wireless environments, via conventional RF
fingerprinting, extremely challenging. This is consistent
with the performance results on the subsampled dataset in
Table 2 for S = 15. We see that due to the many-to-one
mapping present in the training dataset, RF fingeprinting
methods which rely on a look-up table approach fail to
localize the user. We also showcase the importance of the
TRP positions to achieve the view-independent property by
presenting results of VIn-Loc without the TRP positions.
The reduced accuracy indicate that TRP position infor-
mation is vital to achieve the view-independent property.

Ray-traced channels using Sionna
Sionna is a ray-tracing platform developed by NVIDIA
which allows us to generate channels in new environments
using the powerful computing capabilities of GPUs (Hoydis
et al. 2022). We rendered a city block in Paris as our envi-
ronment, with the top-view of the scenario shown in Fig. 6.
We used Sionna to simulate the wireless channels by posi-
tioning the TRPs and UEs within the environment. We se-
lected this particular environment because its dimensions of
280m× 280m is large enough to effectively demonstrate the
view-independent property of the model. The wireless sys-
tem configuration of the UE and TRP are tabulated in Ta-
ble 3. Given the size of the environment, further information
had to be provided to maintain adequate localization accu-
racy, as explained below.

Use of time of arrival: To provide more information
about the relative position of the UE with respect to the
TRPs, we assumed additional global synchronization among
the TRP nodes. This allows the model to capture the relative
distances between them. Global synchronization (Lee et al.
2012) ensures a common time frame among all the TRPs,
where the CIRs from the TRPs to the UE are shifted by
the appropriate amount from a common reference point of
t = 0.

Scenario 1: In this scenario the TRPs were restricted to
being deployed on buildings that line the main street, and
the UE was placed at street level. Fig. 4 shows an example of
this simplified scenario where the shaded region shows the



TRP Configuration Metric RF Fingerprinting (ResNet) VIn-Loc VIn-Loc (No TRP positions)

Fixed
(18/18)

RMSE 0.81m 0.99m 0.98m
MAE 0.76m 0.72m 0.73m

90th PE 1.99m 1.71m 1.62m

Variable
(15/18)

RMSE 26.76m 0.95m 1.45m
MAE 23.4m 0.82m 1.13m

90th PE 66.84m 1.68m 2.11m

Table 2: Performance of VIn-Loc compared to RF fingerprinting methods in the 3GPP scenario.

Parameters Value
Center frequency 40 GHz

B 100 MHz
Nu 8

Table 3: Sionna configuration parameters

Figure 4: Scenario 1 Figure 5: Scenario 2

Figure 6: Top-view of the environment loaded in Sionna to
localize the users. The stars represent the position of the
TRPs.

TRP Configuration Metric VIn-Loc

Scenario 1
RMSE 0.93m
MAE 0.9m

90th PE 1.5m

Scenario 2
RMSE 7.3m
MAE 6.1 m

90th PE 11m

Table 4: Performance of VIn-Loc on the Sionna dataset.

potential positions of the UE. We consider NTRP = 12 TRPs,
each positioned at random locations on top of the buildings,
with their coordinates drawn from a uniform distribution to
localize the UE along the street. Note that a maximum of
NTRP TRPs can have a path (LoS/NLoS) to the UE, how-
ever some TRPs can have no paths to the UE in such cases
we have only N

′
< NTRP wireless channel inputs. In such

scenarios, the variable sequence modelling of a transformer
helps us to localize the UE. The performance metrics of our
model in scenario 1 is shown in Table 4. Due to the scale of
the environment we conducted experiments in two scenar-
ios to showcase the performance of VIN-Loc. Scenario 1 is
a simpler case where only a portion of the environment is
used to deploy TRPs and the UE. Scenario 2 is much more
complex and the full environment is made available for de-
ploying TRPs and UE. More information is provided next.

Scenario 2 In this scenario we consider the TRPs to be
distributed uniformly above the city block and the UE is
located on the street. The full scenario is shown in Fig. 5.
Given the scale of the localization task, changes to the sys-
tem configuration had to be made so that we achieve the
required localization accuracy. First, to adequately cover the
size of the city block we chose NTRP = 64 single antenna
TRPs. This number was chosen such that the UE has atleast
a path (LoS/NLoS) to atleast 3 of the TRPs, irrespective
of their positions in the environment. The single antenna
UEs, which were assumed till now, were insufficient to meet
the performance standards for localization. To provide ad-
ditional information at the UE we considered a single input
multiple output (SIMO) system with Nu = 8 uniform planar
array with a spacing λc/2 where λc is the wavelength corre-
sponding to the center frequency. This setup is summarized
in Table 3. This allows the UE to exploit angular informa-
tion along with the delay information for each path incident
on the antennas. A 2D fast Fourier transform (FFT) is used
to obtain a new representation of the channel in the angle of
arrival (AoA) and time of flight (ToF) axes (Ayyalasomaya-
jula et al. 2020). This representation is much richer as spatial
correlation of the samples correspond to actual spatial infor-
mation in the environment. Fig. 7 shows a two path wireless
channel in the AoA-ToF plot. The results after introducing
spatial information to VIn-Loc is shown in Table 4. Though
there is a sharp increase in the error for scenario 2 compared
to scenario 1, the scale of the problem has also substantially
increased. The error tells us that irrespective of where we
place the NTRP TRPs in the environment, we get an average
of 7 m error to localize the UE.



Figure 7: Angular domain of the channel

The performance results on the Sionna Scenario 2 goes
on to illustrate the following additional takeaways for view-
agnostic localization.
• Use of multi-antenna systems plays a crucial role to fur-

ther improve localization performance in wireless chan-
nels with high variability in TRP positions. Angular do-
main representation of the can better extract the environ-
ment properties, proving unavoidable for larger and more
complex wireless channels.

• Global synchronization plays a key role in better align-
ment of received CIR values from the different TRP
nodes. In addition to the position information of the TRP
nodes, this global synchronization plays a key role in in-
ferring environment information to improve localization
performance.

These results, to the best of the authors’ knowledge,
present the first application of the localization problem using
variable number and configuration of the TRPs, in both in-
door and outdoor environments. Further work in this area
aims to better use these CIR parameters to fine tune the
above results, and move in the direction of complete envi-
ronment agnostic localization.

5 Conclusions
This work presents a novel model designed to address
a challenge that extends beyond the current scope of
RF fingerprinting-based methods by incorporating view-
independence into the traditional localization problem. This
property allows the model to be invariant to the number of
TRPs as well as the configuration of the TRPs. We pro-
pose a transformer-based architecture called VIn-Loc that
achieves the view-independence property by designing a
special [LOC] token to captures the UE location informa-
tion from the TRPs location as well as their CIR data. Exper-
imental results highlight two key takeaways: first, the VIn-
Loc framework can be utilized for RF finger-printing with-
out any loss in performance, and second, it goes beyond RF
fingerprinting to learn the mapping between the channel in-
puts and the UE position, becoming completely agnostic to
the TRP configuration. This work presents a key step to-
wards designing deep learning models that can achieve an

environment-agnostic property, that is, learning a general
mapping from wireless inputs to the UE location irrespective
of the environment the wireless measurements were made.
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