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ABSTRACT

Post hoc auditing of model fairness suffers from potential drawbacks: (1) auditing
may be highly sensitive to the test samples chosen; (2) the model and/or its training
data may need to be shared with an auditor thereby breaking confidentiality. We ad-
dress these issues by instead providing a certificate that demonstrates that the learn-
ing algorithm itself is fair, and hence, as a consequence, so too is the trained model.
We introduce a method to provide a confidential proof of fairness for training, in
the context of widely used decision trees, which we term Confidential-PROFITT.
We propose novel fair decision tree learning algorithms along with customized
zero-knowledge proof protocols to obtain a proof of fairness that can be audited by
a third party. Using zero-knowledge proofs enables us to guarantee confidentiality
of both the model and its training data. We show empirically that bounding the
information gain of each node with respect to the sensitive attributes reduces the
unfairness of the final tree. In extensive experiments on the COMPAS, Communi-
ties and Crime, Default Credit, and Adult datasets, we demonstrate that a company
can use Confidential-PROFITT to certify the fairness of their decision tree to an
auditor in less than 2 minutes, thus indicating the applicability of our approach.
This is true for both the demographic parity and equalized odds definitions of
fairness. Finally, we extend Confidential-PROFITT to apply to ensembles of trees.

1 INTRODUCTION

The deployment of machine learning models in high-stake decision systems (Waddell, 2016; Ben-
jamens et al., 2020; Kleinberg et al., 2018) is associated with the risk of unfair decisions towards
particular subgroups defined by sensitive attributes (Dwork et al., 2012). A canonical approach for
auditing such deployment is to measure the fairness of a trained model on a reference dataset (Pentyala
et al., 2022). In practice, this would be done by an external party (i.e., an auditor). Such audits,
however, can be difficult to organize and are sensitive to the choice of reference dataset (Fukuchi
et al., 2020). This may lead to a form of unhelpful interaction between the company and the auditor,
in which the company could deny a model is unfair by claiming that the reference dataset does not
belong to the training distribution used, or the auditor can forge a reference dataset that could be
used to blame the company for unfair predictions. One avenue to address this problem would be for
the company to release its training data and the model to the auditor who can then verify that a fair
training algorithm was used by e.g., locally rerunning the training process. However, this approach
does not protect the confidentiality of the company’s training data.

In this paper, we remediate these issues by introducing confidential proofs of fair training. We
highlight that our method does not guarantee fairness. Rather, our approach employs a tunable
parameter controlling the resulting degree of fairness. The certificate we provide proves that our
approach was employed, and also includes the specific parameter value used, and the resulting
fairness metrics on the training data. We call this approach “fairness-aware training”, or “fair training”
for short. Concretely, we design a framework (i.e., Confidential-PROFITT) that allows a company
to directly prove to the auditor, through the execution of a cryptographic protocol, that the learning
algorithm used to train the model was fair by design. To achieve this without revealing the company’s
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dataset or model to the auditor, we rely on zero knowledge (ZK) proofs (Goldwasser et al., 1985;
Goldreich et al., 1991), which allow a party to prove statements about their private data without
revealing it. Our framework is generic in the sense that it allows the company to prove to interested
parties (e.g., users in addition to the auditor) the fairness of the model learning process—thus
increasing public trust in the model.

We instantiate the confidential proof of fair training in the context of decision trees, which are
widely used by companies in sensitive domains such as healthcare (Podgorelec et al., 2002) and
finance (Ghatasheh, 2014; Güntay et al., 2022), in part due to their performance, in their ability to be
leveraged in ensemble methods (e.g.,, random forests), and also, occasionally, due to their assumed
interpretability (Molnar, 2020). We propose a cryptographic protocol that can prove the fair training
of decision trees with various common fairness definitions including demographic parity (Calders
et al., 2009) and equalized odds (Hardt et al., 2016). Fair decision tree learning builds a decision
tree iteratively by splitting its dataset according to a criterion capturing the information gain with
respect to both the class and sensitive attributes. In particular, our criterion addresses issues of prior
fair training algorithms by connecting information gain with respect to the sensitive attribute to
demographic parity.

To render the verification more efficient, once it is implemented cryptographically, we propose a
co-design involving concepts originating from both machine learning and cryptography. First, we
design a ZK-friendly fair decision tree learning algorithm based on the insight that verifying fairness
is sufficient because the accuracy is of no interest for the auditor. Prior works (Kamiran et al., 2010;
Raff et al., 2018) on fair decision tree learning consider only demographic parity and view the problem
as as a joint optimization problem between accuracy and demographic parity. The optimal solution is
obtained by searching exhaustively through an enumeration of all possible attributes and split points.
However, in ZK, the whole exhaustive search would need to be proven using heavy cryptographic ma-
chinery, which is computationally expensive in most settings of interest. To address this, we propose
a generalized framework that formulates training as a constrained optimization problem, in which
fairness is represented as a constraint and the accuracy is the objective of optimization. As a result, we
only need to verify the satisfaction of the constraint in ZK without verifying the accuracy. Second, we
propose an efficient ZK protocol that can perform the aforementioned fairness constraint verification
efficiently using state-of-the-art ZK protocols in the RAM model (Franzese et al., 2021). Instead
of using a naïve verification approach that requires proving a computation as long as the training
process, we design a fairness verification protocol with complexity sublinear to the training phase.

In summary, we propose a novel way of auditing model fairness by proving directly that the training
algorithm itself is fair rather than inspecting the model and its predictions. As a consequence, we
do not need a reference dataset and both the training data and the model remain confidential, i.e.,
are not disclosed to the auditor. We highlight the following contributions:

1. We propose a new ZK-friendly fair decision tree learning algorithm such that its fairness can be
verified efficiently without repeating the entire training process. We summarize existing fairness
metrics and show that our approach is generally applicable to these metrics.

2. We design and implement a specialized ZK proof protocol to efficiently verify the fairness of the
above training algorithm. While prior works exist in secure inference using ZK proofs, to the best
of our knowledge we are the first to propose secure training using ZK proofs.

3. We implement and evaluate our framework in terms of accuracy, fairness, running time, and
scalability using decision trees and random forests trained on a variety of real-world datasets. For
example on the Community and Crime dataset, Confidential-PROFITT can provide a certificate
in less than 9 seconds that the company employed our fair training algorithm and obtained a
decision tree. In this example, our fair training algorithm can improve the equalized odds fairness,
which is not supported by prior works (Kamiran et al., 2010; Raff et al., 2018), by 50% with
negligible effects on the accuracy. In our implementation, Confidential-PROFITT provides the
same certificate for random forests in 70 seconds.

2 PROBLEM STATEMENT, BACKGROUND, AND RELATED WORK

Problem statement. Ignoring fairness in the training process may result in models that negatively
affect users belonging to specific subgroups with respect to a sensitive attribute such as gender,
race or disability (Kamiran & Calders, 2009; Raff et al., 2018). For example, Buolamwini & Gebru
(2018) demonstrated that darker-skinned women are the most misclassified demographic group in
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commercially-used facial recognition systems. Similarly, Amazon’s automated recruiting system
displayed a negative bias against hiring women1. Therefore, it is important for companies to
demonstrate that their models have been trained with fairness constraints associated with minimizing
negative biases. Our objective in this work is to provide a certificate proving that a company employs
a fair training algorithm with a tunable parameter controlling the resulting degree of fairness2. This
is challenging for several reasons. First, the sharing of data, collected predominantly from users,
with the third party might not be permitted due to the associated privacy risks (Shokri & Shmatikov,
2015). Second, confidentiality issues also arise as companies are usually not willing to disclose their
models to protect their intellectual property (Zhang et al., 2018). Thus, the proof of fairness should
ensure both the confidentiality of the training data as well as that of the model.

More formally, we consider two parties: a prover (i.e., company, with a private training dataset
D = {X,Y } in which X and Y denote respectively, the set of dataset attributes and ground-truth
labels) and a verifier (i.e., auditor). Both the prover and verifier must agree on the dimensions of
(X,Y ) and the sensitive attribute a, which is one of the columns of X , and a fair decision tree training
algorithm A(·, ·) (in practice the prover is likely to be the entity deciding these parameters as they are
also responsible for training the model). For the sake of simplicity, we assume that Y and a are binary
and we use DT← A(X,Y ) to denote the resulting decision tree. Our Confidential PROof of FaIr
Tree Training (Confidential-PROFITT) enables the prover to prove to the verifier that it has a DT
model, which is indeed correctly computed as A(X,Y ). See Appendix A for a table of our notations.

Fairness. Many fairness metrics have been defined based on different philosophical and moral
assumptions (Heidari et al., 2019; Narayanan, 2018). To show the generalizability of our framework,
we consider four common notions of group fairness. Demographic Parity ignores the ground-truth
label and ensures the equal probability of a predicted positive label across subgroups. In comparison,
Equalized Odds ensures that the predicted label is conditionally independent of the sensitive attribute
and the ground-truth label. Equality Opportunity and Predictive Equality enforce a partial form of
equalized odds, suitable in domains in which being included (or not) in the positive class is viewed
respectively as a desirable or poor outcome. Hereafter, we give the definitions for the first two
metrics, with more details available in Appendix B:

Definition 1 (Demographic Parity (Calders et al., 2009)). A predictor Ŷ satisfies Demographic Parity
with respect to the sensitive attribute a if:

Pr[Ŷ = 1|a = 0] = Pr[Ŷ = 1|a = 1] ∀0, 1 ∈ a.

Definition 2 (Equalized Odds (Hardt et al., 2016)). A predictor Ŷ satisfies Equalized Odds with
respect to the sensitive attribute a if:

Pr[Ŷ = 1|Y = y, a = 0] = Pr[Ŷ = 1|Y = y, a = 1] ∀y ∈ {0, 1},∀0, 1 ∈ a.

Fairness and decision trees. Fair decision tree algorithms are usually either based on greedy
optimizers (Kamiran et al., 2010; Loh, 2011) or Mixed-Integer Programming (MIP) solvers (Bennett,
1992; Aghaei et al., 2019; Jo et al., 2022). The former optimizes a fairness-accuracy splitting criterion
for each node based on the data routed to it while the latter solves a mathematical optimization
augmented with a fairness constraint. In this paper, we focus on greedy-based optimization methods
as MIP-based methods are currently only applicable on datasets with at most thousands of inputs and
with non-continuous features (Zantedeschi et al., 2021). One such greedy approach from Kamiran
et al. (2010) defines a fair training algorithm by reformulating the information gain traditionally
used for decision tree training to encourage demographic parity fairness. This work was extended to
random forests by Raff et al. (2018). Both works manage the accuracy-fairness trade-off via a novel
gain term encouraging discrimination over the class label while discouraging discrimination with
respect to the sensitive attribute, leading to both high performance and fairness.

Zero-knowledge proof. We design a Zero-Knowledge (ZK) proof protocol that lets the prover
prove to the verifier that their model is trained using the fair training algorithm without revealing

1https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/
amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-
idUSKCN1MK08G

2See Practical considerations in Section 6 for a discussion of how the company can subsequently prove that
the fair-trained mode is being deployed.
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their data or model, thus preserving confidentiality. Given an agreed upon program P , a ZK proof
protocol Π enables a prover to convince a verifier that they possess an input w such that P (w) = 1,
while revealing no additional information about w (Goldwasser et al., 1985; Goldreich et al., 1991).
Typically, a ZK proof protocol Π has the following properties:

• Completeness – For any input w that P evaluates to 1 in the clear, an honest prover (who behaves
correctly) can convince an honest verifier that P (w) = 1 using Π.

• Soundness – Given an input w that P does not evaluate to 1 in the clear, no malicious prover
(who can behave arbitrarily) can falsely convince an honest verifier that P (w) = 1 using Π.

• Zero Knowledge – If the prover and verifier execute Π to prove that P (w) = 1, even a malicious
verifier (who can behave arbitrarily) learns no information about w other than what can be inferred
from the fact that P (w) = 1.

In the context of this paper, we write a fairness verification program that takes as inputs a decision
tree and a dataset and evaluates to 1 if and only if the decision tree is trained using the fair training
algorithm A(·, ·) on the dataset. We instantiate this ZK proof protocol from a vector-oblivious linear
evaluation (Weng et al., 2021), with a recent extension to support ZK RAM accession (Franzese et al.,
2021). Circuit-based models of computation incur relatively high overhead when the control flow of a
program depends on the input (Goldreich & Ostrovsky, 1996). This limitation often becomes a bottle-
neck when writing programs for decision trees (e.g., when selecting a particular attribute of a sample
to test against the threshold in each node). Utilizing a RAM model ZK bypasses much of this overhead,
thereby allowing for a succinct and efficient implementation of our fairness verification program.

Cryptographic protocols and decision trees. Prior works (Hamada et al., 2021; Abspoel et al., 2021;
Adams et al., 2021) designed protocols to allow multiple parties, each with a private dataset, to jointly
train a decision tree. These protocols work in a different setting compared to ours, where all private
inputs come from the company proving the correctness of private computation. Other works (Zhang
et al., 2020a) developed ZK proofs for decision trees at inference but not at training time.

3 CONFIDENTIAL-PROFITT

We propose Confidential-PROFITT to confidentially certify the fair training of a decision tree.
Confidential-PROFITT consists of four main steps (see also the block diagram in Appendix C):

0. Local training: The prover locally trains a decision tree on their private training data using our
proposed fair decision tree learning algorithm. The algorithm is designed to be both i) crypto-
friendly and efficient in ZK via a constraint optimization problem that maximizes the accuracy
gain while the constraining the unfairness gain to some threshold; and ii) generic in supporting
many fairness metrics (described in Section 2) by defining information gain with respect to each
fairness metric.

1. Data and model commitment: The prover commits to the training data and the decision tree
trained on this data. These commitments are binding and hiding, meaning that the prover cannot
change the content being committed without the verifier’s consent and that the commitment does
not reveal anything about the underlying content (Katz & Lindell, 2007).

2. Proving counter update in ZK: The prover locally computes and commits to the path each data
point takes through the trained decision tree. The prover proves in ZK that the committed paths
are correct by comparing the values of each data point to the splitting values in the tree. Then for
each value of the sensitive attribute a, the prover counts the number of data points with value a
that pass through each node, and proves that these counts are valid.

3. Prove fairness constraint in ZK: The prover computes fairness-related information gain of each
node using their corresponding committed counters and proves to the verifier that this is below
the desired threshold.

Next, we describe our fair decision tree learning algorithm and our ZK protocol in detail.

3.1 FAIR DECISION TREE LEARNING ALGORITHM

In this section, we propose a novel training algorithm to learn fair decision trees. The decision tree is
learned by recursively partitioning the training dataset (Breiman et al., 2017) (see Appendix D for a
detailed description of tree training). Splitting by the value, val, of the attribute, attr, partitions the
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Algorithm 1: Finding the best split for each node using our fair learning algorithm.
Input: Dataset X in j-th node DT [j], Sensitive attribute a, Threshold τ over unfairness-based information gain GiniUnfairness(·).
Output: Best split

1: Threshold_attribute_gains = [] ▷ Initialize gains for each value of each attribute
2: Parent = X ▷ Make parent node
3: for attr ∈ Attributes do
4: for x ∈ X do
5: val = x[attr] ▷ Set split threshold value per datapoint
6: Child1 = {x ∈ X|x[attr] < val}, Child2 = {x ∈ X|x[attr] ≥ val} ▷ Make children

7: GainAccuracy = GiniAccuracy(Parent)−
∑2

k=1

|Childk|
|Parent| GiniAccuracy(Childk) ▷ Gain wrt label

8: GainUnfairness = GiniUnfairness(Parent)−
∑2

k=1

|Childk|
|Parent| GiniUnfairness(Childk) ▷ Gain wrt sensitive attribute

9: if GainUnfairness ≤ τ then
10: Threshold_attribute_gains.append(attr, val, {GainAccuracy, GainUnfairness}) ▷ Record fair splits
11: return DT[j].attr, DT[j].val, DT[j].gains = maxGainAccuracy Threshold_attribute_gains ▷ Best split

dataset at the parent node into two children nodes, Parent = {Child1,Child2}, such that:
Child1 = {x ∈ Parent|x[attr] < val}, Child2 = {x ∈ Parent|x[attr] ≥ val}. (1)

In general, the information gain of each split, Gain(Split), is the amount of information improved in
the children nodes with respect to their parent node:

Gain(Split) = Gini(Parent)−
2∑

k=1

|Childk|
|Parent| Gini(Childk), (2)

in which Gini quantifies the impurity of each node. We introduce two different variants of Gini:
for accuracy-based information (GiniAccuracy) and for unfairness-based information (GiniUnfairness) to
capture the effect of each split on both accuracy and fairness.

We define GiniAccuracy with respect to the class label (Breiman et al., 2017) and demographic parity
GiniDP with respect to the sensitive attribute a (Raff et al., 2018) as:

GiniAccuracy(X) =
1−

∑|C|
c=1

(
|Xc|
|X|

)2

1− 1
|C|

, GiniDP(X) =
1−

∑|a|
s=1

(
|Xs|
|X|

)2

1− 1
|a|

, (3)

in which Xc and Xs are training points with ground-truth label c and sensitive attribute s, respectively.

Definition 3 (Equalized Odds-aware Information Gain). Given a prospective split over an attribute,
we introduce the information gain with respect to the sensitive attribute conditioned on a class
variable that we call equalized odds-aware information gain. The information gained over the split
follows Equation 2 in which the equalized odds Gini index, GiniEodds(X), is measured with respect to
the sensitive attribute conditioned on class:

GiniEodds(X) =
|X+|
|X| Gini+Eodds(X) +

|X−|
|X| Gini−Eodds(X),

Gini+Eodds(X) =
1−

∑|a|
s=1

(
|X+

s |
|X+|

)2

1− 1
|a|

, Gini−Eodds(X) =
1−

∑|a|
s=1

(
|X−

s |
|X−|

)2

1− 1
|a|

.

(4)

Gini+Eodds(X) and Gini−Eodds(X) measure the impurity with respect to the sensitive attribute condi-
tioned on the positive and negative class, respectively.

To find the best split among all possible splits, we propose a constrained optimization problem that
maximizes the accuracy-based information gain and upper-bounds unfairness-based information gain:

maxGainAccuracy(Split) subject to GainUnfairness(Split) ≤ τ. (5)

in which GainProperty(Split) = GiniProperty(Parent)−
2∑

k=1

|Childk|
|Parent| GiniProperty(Childk), (6)

for Property ∈ {Unfairness,Accuracy} in which Unfairness denotes a measure of unfairness such as
demographic parity or equalized odds (see Definition 3). Algorithm 1 describes our fair tree training
that supports different fairness metrics and can be verified efficiently.
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Algorithm 2: ZK proof of demographic parity fair tree training. For equalized odds fair tree
training see Appendix F.
Input: Training set X , Trained decision tree DT, Threshold τ over unfairness-based information gain.
Output: Commitment to trained decision tree parameters, ZK proof that parameters are fair.

1: Prover commits to the training data set and the trained decision tree, obtaining JXK = {JxK}x∈X and JDTK.
2: Prover commits to two counting trees Jc1K and Jc2K initialized to all zeros.

▷ Phase 1: ZK proofs of frequency
3: for all x ∈ X do
4: Prover locally computes the path that x takes through DT, acquires the corresponding node indices, and commits to them, namely

{JI1K, . . . , JIhK}.
5: JsK← Jx[a]K. ▷ Using ZK RAM access
6: for all j ∈ [1, h] do
7: JbK← (Jx[DT[Ij ].attr]K < JDT[Ij ].valK) ▷ b = 0 if x goes to left child, 1 otherwise
8: Prover proves (JIj+1K = 2JIjK + JbK) ▷ Prove that path is correct

9: Prover updates commitments Jc1[Ij ]K← Jc1[Ij ]K + JsK and Jc2[Ij ]K← Jc2[Ij ]K + J¬sK
▷ Phase 2: ZK proofs of fairness metric

10: for all i ∈ {interior node indices} do
11: Prover proves that:

Jc1[i]K× Jc2[i]K
(Jc1[i]K + Jc2[i]K)2

−
1

Jc1[i]K + Jc2[i]K
·

 ∑
b∈{0,1}

Jc1[2i + b]K× Jc2[2i + b]K
Jc1[2i + b]K + Jc2[2i + b]K

 ≤ τ/4

3.2 EFFICIENT ZKP OF FAIR TRAINING

In this section, we describe our ZK protocol which efficiently checks the fair training of the model.
Note that in this paper we do not invent new cryptographic protocols to prove arbitrary programs P
(described in Section 2). Instead, our focus is to design a P that verifies that a decision tree was trained
fairly, and can be executed efficiently by a RAM model ZK protocol. To this end, in Section 3.1, we
separated accuracy maximization and fairness requirements by modifying the split finding criterion.
This means that one need only verify that the split point in the trained decision tree satisfies the
fairness requirement, as opposed to exhaustively trying all possible split points. As a result, our ZK
verification of fair training has a computational complexity lower than the training itself.

Decision Tree and Commitment Representation. Each internal node n in a decision tree is
represented as a tuple (attr, val), which respectively encode the attribute and threshold value by
which n splits the data. The decision tree DT of height h is represented as an array of nodes, such
that the two children of node DT[i] are DT[2i] and DT[2i+ 1]. To avoid leaking information about
the topology of the tree, the array will always have space for a full binary tree. Non-full trees can
trivially be encoded using dummy threshold values to ensure that data never enters the missing nodes.
We will use JxK to represent the cryptographic commitment of a value x known to the prover. This
means the prover can prove facts about x without disclosing its value to the verifier.

Our ZKP protocol. Our efficient fairness verification is presented in Algorithm 2. It has two phases:

1. Phase 1: ZK proofs of frequency counting. This step takes the trained decision tree and the
training data and, for each node and each possible sensitive attribute value, obtains committed
counters on the number of training data entries falling into that node.

2. Phase 2: ZK fairness metric verification. Based on the committed counters, prove in ZK that
the calculated fairness metrics from the counters are below the required fairness threshold.

Below we formally state the security of our protocol. Intuitively, the protocol does not reveal anything
about the training dataset or the decision tree except to indicate that the fairness metric used for
splitting is satisfied. Because a generic ZK protocol is used, the committed decision tree and the
dataset can potentially be used to prove other statements. Below we state our main theorem in the
security of the protocol, which is formally proven in Appendix E.

Theorem 1. Algorithm 2 is a secure ZK proof of fair training.

Extensions. In the above description, we show a ZK proof of fair training w.r.t. demographic parity.
We note that it is easily generalizable to other fairness metrics mentioned in Section 3.1 as we can
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COMPAS Communities and Crime Default Credit Adult
Eodds Dem. Parity Eodds Dem. Parity Eodds Dem. Parity Eodds Dem. Parity

Running time 12.74s 9.87s 8.31s 7.37s 72.21s 50.80s 104.73s 62.86s
Communication 28.7MB 21.1MB 23.9MB 16.9MB 107.3MB 67.7MB 145.2MB 89.1MB

Table 1: Efficiency of Confidential-PROFITT in terms of running time and communication costs on
real-world datasets. Confidential-PROFITT executes the confidential proof of fair tree training in a
matter of seconds with low communication overhead.
represent many group fairness metrics with a unified function such as:

αT+
a + βF+

a = αT+
b + βF+

b

Demographic parity : α = β = 1, Equalized odds : {α = 1, β = 0} and {α = 0, β = 1}.
(7)

For example, to support equalized odds, one must maintain four counter trees (rather than just c1
and c2, as in demographic parity) and verify the fairness metric accordingly. See our proposed ZK
protocol for equalized odds in Appendix F.

4 EXPERIMENTAL EVALUATION

Our principal motivation for introducing Confidential-PROFITT is to prove to interested parties (e.g.,
users or auditor) that the learning algorithm used to train a model is fair by design—while protecting
the confidentiality of both the training data and model. Next, we empirically evaluate the novel
aspects introduced by Confidential-PROFITT: namely, (1) the ZK-friendly fairness-aware training
algorithm along with (2) its customized ZK proof protocols. Therefore, we validate empirically
the performance of Confidential-PROFITT as follows: i) effectiveness in training a fair model:
The unfairness of decision trees decreases (while keeping the accuracy high) as the bound on the
information gain w.r.t the sensitive attribute decreases; ii) efficiency in proving the use of fair
algorithm: We implement our customized ZK protocol for verifying the algorithm and benchmark
its runtime and communication costs. Our framework scales to real-world use cases (e.g., to a large
number of training samples and attributes as well as deep decision trees).

We assess the performance of Confidential-PROFITT using four common datasets for fairness
benchmarking: COMPAS (Angwin et al., 2016), Communities and Crime (Redmond, 2009), Adult
Income (Adu, 1996), and Default Credit (Def, 2016). Refer to Appendix G.1 for details on these
datasets. Two distinct code bases are utilized. We use the EMP-toolkit (Wang et al., 2016) to efficiently
implement our ZK protocol and a JAVA and Python implementation to train and assess the accuracy
and fairness of decision trees. Additional details about our implementations are in Appendix G.2.

Effectiveness of Confidential-PROFITT. Figure 1 shows the relationship between accuracy and
fairness for decision trees with demographic parity and equalized odds fairness. These figures were
constructed with a sweep of threshold values. We indicate the fairness and accuracy of trees trained
without the fairness constraint as "Original" in Figure 1. We also compare Confidential-PROFITT to
a "Baseline" for the demographic parity fair training method in Kamiran et al. (2010) and Raff et al.
(2018). Note that this baseline is not applicable to trees trained for equalized odds fairness. Also
note that the tree heights used for each dataset are described in Appendix G.1. The figures indicate
that Confidential-PROFITT leads to increased fairness (shown by small fairness gap values) with
only marginal, or sometimes no, decreases in accuracy compared to trees trained without fairness
or with the baseline demographic parity fairness from Kamiran et al. (2010) and Raff et al. (2018).
Interestingly, for some datasets, the range of accuracy values achieved exceeds the performance of
trees trained without the fairness constraint. The accuracy drops themselves are often less than 10%.
For example, for the Communities and Crime dataset we increase the fairness by almost 50% with at
most a 5% accuracy drop. Therefore, Confidential-PROFITT effectively improves the fairness.

Efficiency of Confidential-PROFITT. Table 1 shows the runtime and communication costs of our
fair training ZK protocols on Amazon EC2 machines in which the prover (i.e., the company) and the
verifier (i.e., the auditor) are connected over a local area network (LAN). The runtime for all datasets
is in the order of seconds. For example, it takes less than 10 seconds to prove the fair training in
terms of demographic parity on COMPAS dataset. The communication overhead for both parties is at
most 145 MB. For example, the total communication cost of running Confidential-PROFITT using
equalized odds and demographic parity on the COMPAS dataset is 28 MB and 21 MB, respectively.
Therefore, Confidential-PROFITT efficiently proves the fair training of trees.
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Communities and Crimes COMPAS Adult Default Credit
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Figure 1: Effectiveness of Confidential-PROFITT in terms of demographic parity (first row) and
equalized odds (second row) of trees. Confidential-PROFITT decreases the unfairness of the decision
tree while keeping the accuracy close to that of the original decision tree trained without any fairness
constraints. Original indicates a decision tree trained without any fairness constraint.
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Figure 2: Scalability of Confidential-PROFITT using demographic parity and equalized odds.
Confidential-PROFITT scales to a large number of training samples, a large number of attributes per
sample, and large decision trees in practical running time (less than an hour). Default settings are:
10, 000 for training samples, 10 for attributes and 10 for tree height.

We further evaluate the scalability of Confidential-PROFITT by considering various numbers of
training samples, number of attributes, and height of trees, which are [103, 106], [10, 104] and
[4, 10], respectively. Figure 2 shows the effect of the number of training samples, number of
attributes and height of trees on the running time (see Appendix H for the communication cost)
of Confidential-PROFITT when proving demographic parity and equalized odds. These results
demonstrate that even for the maximum values of these parameters, the running time is less than an
hour. Therefore, Confidential-PROFITT is scalable. Next, we discuss the pattern of running time.

As expected, we observe linear scaling with the number of samples (left panel). The reason for
this is that each sample is processed using a constant number of operations during the first phase
of our protocol, and the number of operations in the second phase is unchanged by the number of
samples. The equalized odds protocol incurs higher running times, since it has to initialize and update
four counting trees while the demographic parity version only needs to keep track of two. We also
observe that the protocol scales linearly with the number of attributes (middle panel). This is because
increasing the number of attributes increases the number of operations required to commit to the
dataset. We note that the demographic parity and equalized odds protocols are roughly equivalent
in run time for these experiments because committing to the dataset takes the same amount of work
in both versions. Finally, we observe the beginning of exponential scaling as tree height is increased
(right panel). This is due to the exponentially increasing size of the trained decision tree and counting
trees, as well as the fairness checking phase (which iterates through all interior nodes). Breakdown of
computational costs between phases of the ZK protocol varied depending on parameters. For example,
on the COMPAS dataset, the commitment, counting, and fairness checking phases took up approxi-
mately 60%, 32%, and 0.2% of the runtime respectively whereas for the Default Credit dataset, those
respective values became 24%, 72% and 2% (the remainder of the runtime is spent initializing the
underlying ZK framework). This difference is caused by the size difference between the two datasets.

An analysis on fair splitting criterion versus fairness metrics. Figure 3 demonstrates a connec-
tion between the fair learning algorithm and the fairness metrics investigated: the unfairness of
demographic parity and equalized odds increases with the average unfairness gain values over all
node splits for decision trees. This is intuitive given that similarly to the label-wise discrimination
encouraged by GainAccuracy, high values of GainUnfairness may bring the tree to discriminate across
values of the sensitive attribute. By limiting this discrimination, we expect little change to the purity
of successive nodes, eventually leading to leaves having a mixed population from each subgroup.
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Figure 3: Relationship between fair splitting criteria and unfairness definitions. As the bound on the
unfairness-based information gain decreases , the unfairness of trained decision trees decreases.
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Figure 4: Effectiveness of Confidential-PROFITT in terms of demographic parity (first row) and
equalized odds (second row) of random forests. Confidential-PROFITT decreases the unfairness of
the random forest while keeping the accuracy close that of the original random forest trained without
fairness constraints. Original indicates random forest trained without any fairness constraint.

COMPAS Communities and Crime Default Credit Adult
Eodds Dem. Parity Eodds Dem. Parity Eodds Dem. Parity Eodds Dem. Parity

108.73s 73.79s 73.49s 51.88s 652.9s 372.55s 908.63s 537.59s

Table 2: Confidential-PROFITT executes the proof of fair random forests training in practical time.

5 CONFIDENTIAL PROOF OF FAIR TRAINING OF ENSEMBLES OF TREES

Ensembling decision trees into a random forest can improve the performance of the resulting classifier
(see Appendix I for these results). Therefore, we extend Confidential-PROFITT to prove the fairness
of random forests (Zhang et al., 2020b; 2021; Raff et al., 2018). Concretely, we construct fair
random forests from ensembles of fair decision trees with bagging and random feature selection
(see Appendix G.2 for details of how to train random forests). By running a secure coin-flipping
protocol between the company and the auditor before training, the randomness used for subsampling
data points and attributes during the ensemble process can be revealed to the auditor. Given this,
an efficient protocol for ZK proof of fairness for a random forest can be derived by performing ZK
proofs of each decision tree and data consistency between different trees. See details in Appendix J.
Figure 4 and Table 2 show accuracy-fairness relationships and running time of random forests. We
observe similar results: Confidential-PROFITT achieves major fairness gains for random forests
with marginal changes to the accuracy in a practical time.

6 CONCLUSION
In this paper, we proposed a framework that can be used to confidentially prove the fair training of a
decision tree. Confidential-PROFITT can help companies avoid receiving fairness-related penalties
as it certifies the fairness during training prior to making any decisions on clients’ queries.
Practical considerations. Across the whole data-based decision process, Confidential-PROFITT
can prove the fairness of the model-training phase. To provide an end-to-end fairness guarantee to the
auditor, one could extend our framework by proving the fairness of the data source and by proving the
inference-time use of the model. The company can use fairness-aware data pre-processing to ensure
a fair representation of the different subgroups (e.g., by swapping the ground-truth labels (Kamiran
& Calders, 2009; Luong et al., 2011)) and prove the integrity of this process by providing a ZK proof
to the auditor. To ensure the company uses the proven fair model in the deployment phase, one could
use existing ZK-based verified inferences for trees (Zhang et al., 2020a; Singh et al., 2021).
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ETHICS STATEMENT

The main objective behind Confidential-PROFITT is to achieve provably fair training without the
requirements of revealing the training data or model to an auditor. In particular, the combination of
confidentiality and fairness alleviates companies’ data and intellectual property concerns for auditing,
which could increase fairness auditing and public trust in audited AI overall.

The main ethical issues of this work are related to the definitions of fairness and benchmark datasets
used. Indeed, algorithmic fairness is composed of multitudes of conflicting definitions. Our work
focuses on group fairness, and specifically on demographic parity and equalized odds, both of which
are popular and relevant metrics. However by relying on these definitions, we acknowledge that this
reinforces the political and philosophical worldviews and ideologies underlying them, and deprives
other notions of fairness (e.g., individual fairness or settings in which there is no given sensitive
attribute) of due attention.

The datasets used to validate our methods are popular fairness benchmarks. Unfortunately, their
popularity can be partially attributed to the blatant unfairness of the models they have produced
and the harm these models may have done when deployed in practice. Our use of these benchmark
datasets is merely to remain comparable with other approaches in the literature—we do not
necessarily support the use of machine learning in any of these contexts, specifically in recidivism
prediction (COMPAS) or community crime profiling (Communities and Crime).

To account for these risks, we advocate for more research at the intersection of privacy and fairness,
particularly for other definitions of fairness. We also believe that it is important to foster more
research on the development of practical solutions in fairness and fairness auditing.

REPRODUCIBILITY STATEMENT

To support our main contributions, we have provided a detailed report of our algorithms and proofs in
appendices. More precisely, we have detailed our datasets, hyperparameters and implementations
in Appendix G.1 and G.2. The code is available at https://github.com/cleverhans-
lab/Confidential-PROFITT. This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License https://creativecommons.org/licenses/
by-nc/4.0/.
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A NOTATION

Table 3 shows the notation used throughout this paper.

Table 3: Notation table.

Notation Meaning Notation Meaning

X Dataset Y Set of binary ground-truth labels
a Binary sensitive attribute s Sensitive attribute value

Xs Dataset with sensitive attribute s Xc Dataset with ground-truth label c
DT Decision tree h Decision tree height
τ Threshold A(·, ·) Fairness-aware training algorithm
Ŷ Set of binary predicted labels Gain () Information gain

Gini () Gini JxK Commitment of x
Π Zero-knowledge proof protocol c Counter

B FAIRNESS METRICS

In this section, we describe four common fairness metrics: Demographic Parity, Equalized Odds,
Equal Opportunity, and Predictive Equality. We consider the former two metrics in this paper, though
our work may be easily extended to these other metrics as equal opportunity and predictive equality
are weaker versions of equalized odds.

Definition 4 (Demographic parity (Calders et al., 2009)). A predictor Ŷ satisfies Demographic Parity
with respect to the sensitive attribute S if:

Pr[Ŷ = 1|S = a] = Pr[Ŷ = 1|S = b] ∀a, b ∈ S.

Satisfying demographic parity, or statistical group parity, refers to equal probability of a predicted pos-
itive label across subgroups partitioned by protected attribute S. In essence, enforcing demographic
parity ensures that the predicted class under the model is independent of inclusion in a particular
subgroup. Such a fairness definition leads to situations and tasks in which the prediction is intended
to be independent of subgroup inclusion. Additionally, demographic parity presents a fairness metric
that can, to some extent, overcome issues of bias in the true label associated with S, as demographic
parity ignores the true label in its formulation. Although several tasks necessitate such properties
in a fairness metric, classification in domains in which target labels may be intrinsically related to
subgroup values, such as healthcare, demographic parity fails to capture key relationships between
target labels and subgroups that can lead to poorer fairness (in the societal sense of fairness). For
example, prediction in breast cancer diagnosis needs to incorporate subgroup information about
biological sex, due to higher rates in women.

Definition 5 (Equalized Odds (Hardt et al., 2016)). A predictor Ŷ satisfies Equalized Odds with
respect to the sensitive attribute S if:

Pr[Ŷ = 1|Y = y, S = a] = Pr[Ŷ = 1|Y = y, S = b.] ∀y ∈ {0, 1},∀a, b ∈ S

The equalized odds metric is a strict constraint on fairness that requires a predictor to jointly equalize
the false positive rate (FPR) and true positive rate (TPR) across subgroups determined by S. In
the equalized odds formulation, the fairness of a model depends not only on the predicted label
but on the true label distribution as well. Satisfying equalized odds ensures that the predicted class
is conditionally independent of the protected attribute and the target class. Equalized odds was
proposed to alleviate pitfalls of demographic parity, which cannot capture important relationships
between the target class and the subgroup’s information in its formulation of fairness. Therefore,
equalized odds is better suited for tasks in which intrinsic information links subgroup inclusion and
true class, but can propagate bias in cases where the “true” label encodes societal unfairness. For
equalized odds fairness, the prediction should be completely independent of the sensitive attribute.
Note that equalizing both FPR and TPR implies searching for the intersection of per-subgroup
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area-under-receiver-operator-curves (AUROC), which may not be always satisfiable for non-trivial
intersections. Similarly, such an intersection may lie in an undesirable region of the parameter space
that significantly degrades the utility of the model overall. Thus, relaxation and calibration methods
have spawned in order to mitigate these issues with this fairness metric (Hardt et al., 2016).

Definition 6 (Equal Opportunity (Hardt et al., 2016)). A predictor Ŷ satisfies Equal Opportunity
with respect to the sensitive attribute S if:

Pr[Ŷ = 1|Y = 1, S = a] = Pr[Ŷ = 1|Y = 1, S = b] ∀a, b ∈ S.

Equal opportunity introduces a weaker version of equalized odds, in which solely TPR is equalized
across subgroups. Due to the relative difficulties associated with satisfying equalized odds, equality
of opportunity relaxes the metric by permitting unequalized FPR, but continues to require TPR, and
offers an advantage over demographic parity in certain settings by incorporating the target label into
its formulation. Equality of opportunity largely works in domains in which the positive class could
be viewed as “desirable” (thus the name opportunity) by enforcing equal inclusion in the positive
class conditionally independent of S and true inclusion in the positive class.

Definition 7 (Predictive Equality (Chouldechova, 2016; Corbett-Davies et al., 2017)). A predictor Ŷ
satisfies Predictive Equality with respect to the sensitive attribute S if:

Pr[Ŷ = 1|Y = 0, S = a] = Pr[Ŷ = 1|Y = 0, S = b] ∀a, b ∈ S.

Similar to equal opportunity, predictive equality enforces a partial form of equalized odds requiring
equalized FPR across subgroups with no constraints on TPR. Conversely to equal opportunity,
predictive equality applies well in scenarios in which the inclusion in the positive class under the
model can be considered a poor outcome, and therefore causes considerable damage when the true
label is negative.

Equality of opportunity and predictive equality both can be seen as partial requirements for equalized
odds:

αT+
a + βF+

a = αT+
b + βF+

b

Equalized odds : {α = 1, β = 0} and {α = 0, β = 1}
Equal opportunity : {α = 1, β = 0}
Predictive equality : {α = 0, β = 1}.

(8)

Therefore, any predictor satisfying equalized odds will satisfy both predictive equality and equal
opportunity.

C BLOCK DIAGRAM OF CONFIDENTIAL-PROFITT

Figure 5 depicts an overview of Confidential-PROFITT which consists of four main steps.

D DECISION TREE TRAINING

D.1 DECISION TREE TRAINING WITHOUT FAIRNESS CONSTRAINTS

Decision trees used for classification are trained recursively from root to leaf node by successively
partitioning the input set, as shown in Algorithm 3. Ideally, data points in the leaf nodes are pure with
respect to class and the leaves are used for prediction during inference. Partitioning is represented
by nodes in a binary tree and enforced with a Boolean condition that splits the data based on some
attribute value into at most two disjoint child nodes. To find the optimal splitting criterion for a node,
the algorithm iterates over every attribute and attribute value. These values are used as thresholds to
split the data into child nodes. The algorithm measures the information gained (with respect to node
class purity) between the parent and child nodes and chooses the splitting criterion that maximized
this gain. The process of finding the best split is detailed in Algorithm 4. Splitting continues until
some maximum height is reached or until the node sizes have reached some minimum value. While
there are many decision tree training algorithms, this paper uses the CART (Classification and
Regression Tree) with information gain, Gini impurity, binary splitting, and binary classification
for numerical and categorical datasets. The CART algorithm has been popular since its inception
in 1983 (Breiman et al., 1983).
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Commitment
scheme

0) Local training:

 - Prover locally trains a decision tree     

 - Training dataset:             , Training algorithm: 

Verifier

Prover

1) Confidential-PROFITT -- Commitment:

 - Prover commits to the data and model without revealing them

 - Prover cannot changes commitments w/o auditor's consent  

2) Confidential-PROFITT -- Prove counter update:

 - Prover locally computes the path for each training data

 - Prover proves the path and updates committed counters 

3) Confidential-PROFITT -- Prove fairness constraint:

 - Prover computes gain of each split using committed counters

 - Prover proves the committed   

 

 

 

 

 
 

Prove     is a fairness-aware training algorithm

Figure 5: Block diagram of the proposed Confidential Proof of Fairness, Confidential-PROFITT.

Algorithm 3: Recursively building decision tree.
Input: Training dataset X , current decision tree height hc, maximum decision tree height h
Output: Trained decision tree DT

1: if DT.height > h then
2: return null
3: split = FindBestSplit(X)
4: if split.leafs > 1 then
5: for leaf ∈ split do
6: return and link BuildTree(leaf.X, DT.height+ = 1, h)

Algorithm 4: Finding the best (fairness-oblivious) split for each node.
Input: Dataset X in j-th node DT [j].
Output: Best split.

1: Accuracy_gains = [] ▷ Initialize gains for each value of each attribute
2: Parent = X ▷ Make parent node
3: for attr ∈ Attributes do
4: for x ∈ X do
5: val = x[attr] ▷ Set split threshold value per datapoint
6: Child1 = {x ∈ X|x[attr] < val}, Child2 = {x ∈ X|x[attr] ≥ val} ▷ Make children

7: GainAccuracy = GiniAccuracy(Parent)−
∑2

k=1

|Childk|
|Parent| GiniAccuracy(Childk) ▷ Gain wrt label

8: Accuracy_gains.append(attr, val, GainAccuracy)
9: return DT[j].attr, DT[j].val, DT[j].gains = maxGainAccuracy Accuracy_gains ▷ Best split

D.2 DECISION TREE TRAINING WITH FAIRNESS CONSTRAINTS

Training a decision tree with fairness while maintaining the root-to-leaf recursive training procedure
only requires one additional step, detailed in Algorithm 4. While iterating over the various splits,
we measure both information gain with respect to class Gini impurity and fairness Gini impurity.
We select the splits that produced fairness information gains below some threshold before choosing
whichever had the highest class information gain. This leads to a high fairness and accuracy for
the dataset.
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Functionality FZKDT

1. Prover and Verifier send τ , abort if they do not match.
2. Prover sends dataset X , decision tree parameters DT
3. Verifier receives 1 if ∀ interior node indices i, GainUnfairness(i,X,DT) ≤ τ holds. Verifier receives 0

otherwise.

Figure 6: Ideal functionality for verifying the fairness of a decision tree in zero knowledge .

Functionality FZK

ZK Operations
• Commitment to private inputs: On receiving (Input, x) from P , store x and send JxK to each party.
• Commitment to (public) constants: On receiving (Const, x) from both parties, store x and send

JxK to each party (if the two inputs do not match, both parties receive cheating).
• Boolean circuit satisfiability: On receiving (Circ, C, Jx0K, · · · , Jxn−1K) from both parties, in which

the x’s are Boolean values and C is a Boolean circuit, compute b := C(x0, · · · , xn−1) and send b to
V .

RAM Operations
• Initialization: On receiving (Init, N) from P and V , store an N -value array A with values initialized

to ⊥, and set f := honest.
• Write: On receiving (Write, JiK, JdK) from P and V , set A[i] := d and send fresh JdK to each party.
• Read: On receiving (Read, JiK, d), from P , (Read, JiK) from V , send JdK to both parties. If d ̸= A[i]

set f := cheating.
• Check: On receiving (Check) from V , send f to both parties.

Figure 7: Ideal functionality for Zero Knowledge Proofs with RAM access.

E PROOF OF SECURITY OF THEOREM 1

We prove the property of our protocol based on the composition paradigm Canetti (2000), which
is the standard way for proving cryptographic protocols. We represent the ideal functionality for
our zero knowledge fairness check FZKDT in Figure 6. To realize this functionality, the protocol
described in Algorithm 2 specifies a series of calls to a Zero-Knowledge Proof functionality with
RAM capabilities FZK , which is given in Figure 7. This can be instantiated using existing works
that construct RAM-based zero-knowledge proofs.

Proof. A given execution of the protocol in Algorithm 2 comes with a prescribed pattern of calls to
FZK – the low level details of this pattern are abstracted in the algorithm, but specified exactly in
the code that implements our protocol. Any deviation from this pattern of calls to FZK is detected
trivially (since the honest party sends a command to FZK that goes unanswered), and results in
abort of the protocol. Thus no adversary A is able to break security by deviating from this pattern.
For those adversaries that follow the correct pattern of calls, we construct simulators as follows.

Malicious Prover: Simulator S interacts with FZKDT with the following procedure, running
malicious Prover A in the FZK-hybrid model as a subroutine:

1. Simulating FZK , S receives (Init, N) from A, in which N is the size of RAM required to
represent the computation. Store flag f := honest. Initialize an array A in accordance with
FZK . Next S receives a sequence of Input commands from A, followed by Const commands
to obtain RAM indices, and Write commands to store the values in the RAM. Write the values
into A and interpret them as X and DT. Send back commitments JXK and JDTK.

2. Receive a sequence of (Const, 0) and (Const,RAM index) followed by Write commands to
initialize c1 and c2. Similarly to the previous step, store these values in A and send back Jc1K and
Jc2K.

3. For all xi ∈ X do:
4. Receive Input, Const, and Write commands to store {I1, · · · , IH}. Write the values

in A, and send back {JI1K, · · · , JIHK}.
5. Receive (Read, Jindex of x[a]K, s), if A[index of x[a]] ̸= s, set f := cheating. Send

back JsK.
6. For all j ∈ [1, H] do:
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7. Receive a bit b via Input command, followed by a sequence of Reads to re-
trieve x[DT[Ij ].attr], DT[Ij ].val, and a Circ command to verify that b =
x[DT[Ij ].attr] < DT[Ij ].val. Send back values obtained by executing FZK faith-
fully.

8. Receive commands to verify JIj+1K = 2JIjK + JbK, execute FZK faithfully.
9. Receive commands to verify updates c1[Ij ] + s and c2[Ij ] + ¬s and write the updates to

the RAM. Execute FZK faithfully.

10. For all i ∈ {interior node indices} do

- Receive Read commands to retrieve c1[i], c1[2i], c1[2i+1], c2[i], c2[2i], c2[2i+1], followed
by Circ commands to carry out the fairness check. Execute FZK faithfully.

11. After protocol execution, execute Check command. If f = cheating, send ⊥ to FZKDT and
abort. Otherwise, send X and DT to FZKDT .

Clearly S constructs a view for A that is indistinguishable from real world execution, since all
interactions with A through FZK are performed faithfully. Input extraction follows trivially since A
sends the values of X and DT to FZK in the commitment phase. Further, we have that the generated
view is consistent with the outputs generated by A’s inputs, since the fairness checking phase directly
computes (an algebraic rearrangement of) GainUnfairness(i,X,DT) ≤ τ for each interior node index i.

Malicious Verifier: Simulator S interacts with FZKDT with the following procedure, running
malicious Verifier A in the FZK-hybrid model as a subroutine:

1. Simulating FZK , S receives (Init, N) from A, where N is the size of RAM required to
represent the computation. Store flag f := honest. Initialize an array A in accordance with
FZK . Next, simulate a series of Input commands by sending J0K to A several times (with fresh
randomness each time). Then receive a series of Const commands to obtain commitments to
RAM indices – simulate FZK by sending back commitments to the requested indices. Next
receive Write commands fromA for storage of the dataset in the RAM. Store 0 at each requested
index and send J0K to simulate responses to the Write commands. In this way, A receives a list
of commitments that stand in for JXK and JDTK.

2. Receive a sequence of (Const, 0) and (Const,RAM index) followed by Write commands
to initialize c1 and c2. Give commitments to the requested Const values faithfully, store these
values in A, and send back Jc1K and Jc2K.

3. For all xi ∈ X do:
4. To simulate commitment to {I1, · · · , IH}, send J0K for Input commands, and faithful

commitments to RAM indices when Const commands are received from A. Simulate
Write commands by storing 0 at the requested indices in A, and send J0K to stand in for the
commitments {JI1K, · · · , JIHK}.

5. Receive (Read, Jindex of x[a]K), simulate honest execution of FZK by sending back J0K and
keeping f = honest.

6. For all j ∈ [1, H] do:
7. Send JbK where b = 0. Receive Read commands to retrieve x[DT[Ij ].attr] and

x[DT[Ij ].val – simulate by sending J0K and keeping f = honest. Next receive a
Circ command to verify that b = x[DT[Ij ].attr] < DT[Ij ].val – send back 1 indicat-
ing that the equality holds.

8. Receive commands to verify JIj+1K = 2JIjK + JbK, as in previous steps send J0K to
simulate commitments for the Read commands (while keeping f = honest) and send
1 in response to Circ commands indicating that the desired equality holds.

9. Receive commands to verify updates c1[Ij ] + s and c2[Ij ] + ¬s and write the updates to
the RAM. Simulate the verification as in the previous two steps, and send J0K in response
to the Write commands.

10. For all i ∈ {interior node indices} do

- Receive Read commands to retrieve c1[i], c1[2i], c1[2i+1], c2[i], c2[2i], c2[2i+1], followed
by Circ commands to carry out the fairness check. As before, send J0K to simulate
commitments and send 1 to indicate that the fairness checks pass.

11. After protocol execution, receive Check command. Simulate FZK by sending honest to A.
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Algorithm 5: Zero-knowledge proof of equalized odds-aware tree training.
Input: Training set X , trained decision tree DT, GainUnfairness threshold τ
. Output:

1: Prover commits to the training data set and the trained decision tree, obtaining JXK = {JxK}x∈X and JDTK.
2: Prover commits to four counting trees Jc1K, Jc2K, Jc3K, and Jc4K initialized to all zeros.

▷ Phase 1: ZK proofs of frequency
3: for all x ∈ X do
4: Prover locally computes the path that x takes through DT, acquires the corresponding node indices, and commits to them, namely

{JI1K, . . . , JIHK}.
5: JsK← Jx[a]K. ▷ Using ZK RAM access
6: JyK← Jx[Y ]K.
7: Ju1K← JyK ∧ JsK
8: Ju2K← JyK ∧ J¬sK
9: Ju3K← J¬yK ∧ JsK

10: Ju4K← J¬yK ∧ J¬sK ▷ counting tree updates
11: for all j ∈ [1, H] do
12: JbK← (Jx[DT[Ij ].attr]K < JDT[Ij ].valK) ▷ b = 0 if x goes to left child, 1 otherwise
13: Prover proves (JIj+1K = 2JIjK + JbK) ▷ Prove that path is correct

14: Prover updates commitments Jck[Ij ]K← Jck[Ij ]K + JukK for k ∈ {1, 2, 3, 4}.
▷ Phase 2: ZK proofs of fairness metric

15: for all i ∈ {interior node indices} do
16: Prover proves that:

Jc1[i]K× Jc2[i]K
(Jc1[i]K + Jc2[i]K)2

−
1

Jc1[i]K + Jc2[i]K
·

 ∑
b∈{0,1}

Jc1[2i + b]K× Jc2[2i + b]K
Jc1[2i + b]K + Jc2[2i + b]K

 ≤ τ/4

17: Prover additionally proves that:

Jc3[i]K× Jc4[i]K
(Jc3[i]K + Jc4[i]K)2

−
1

Jc3[i]K + Jc4[i]K
·

 ∑
b∈{0,1}

Jc3[2i + b]K× Jc4[2i + b]K
Jc3[2i + b]K + Jc4[2i + b]K

 ≤ τ/4

S constructs a view for A that is indistinguishable from real world execution, since all handles J0K
given to A are indistinguishable from those during real-world execution, and because in simulating
FZK , S can trivially indicate that the component circuits of the protocol are satisfied properly.

We would like to highlight that our approach relies on zero-knowledge proofs to formally guarantee
the confidentiality of the learned model as well as of the data even against a malicious auditor (see the
above mathematical proof). To be more precise, the confidentiality of the model and data is ensured
by the “zero-knowledge” property of the underlying cryptographic protocol that can tolerate any
malicious behavior (Goldwasser et al., 1985; Goldreich et al., 1991). The security of these protocols
are in turn based on standard hardness assumptions used to secure the Internet. We note that the
zero-knowledge proof protocol itself is not the focus of this paper; instead, we show how we can use
existing zero-knowledge proof protocols to prove fairness-aware training in a smart way for high
efficiency. The confidentiality of our system can be ensured by any secure zero-knowledge proof
system (which is what Appendix E proves), including the one used in this paper or others systems.

F OUR ZERO-KNOWLEDGE PROOF PROTOCOL FOR TREE TRAINING WITH
EQUALIZED ODDS FAIRNESS

Algorithm 5 follows the same ideas as Algorithm 2, except it proves that Gain+
Eodds and Gain−Eodds

do not exceed the threshold τ , rather than GainDP . As in Algorithm 2, these metrics are computed
and proved by counting the number of samples of particular categories that pass through each node in
the tree. However, to compute Gain+

Eodds and Gain−Eodds we need to keep track of four categories of
samples rather than just two: samples that are in the protected class with true positive label, samples
in the unprotected class with true positive label, samples in the protected class with true negative
label, and samples in the unprotected class with true negative label. To keep track of these quantities
at each node, we use four counting trees, whose commitments are updated by adding Boolean values
u1 through u4 indexing which category a given sample falls into. In Phase 2 of the algorithm, the
sample counts are used to show that in each interior node, the Gain+

Eodds and Gain−Eodds do not
exceed the threshold τ .
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Dataset #Samples #Attr. Sensitive attribute Task Tree height
COMPAS 6,151 8 Race (Binarized) Yes/No recidivism 6
Crime 1,993 22 Race % Black ≥ .06 Crime rate ≥ .7 4
Default Credit 30,000 23 Age ≥ 25 Good/Bad credit 10
Adult 45,222 14 Gender (Binarized) Income ≥ 50k 10

Table 4: Summary of datasets.

G DETAILS ON EXPERIMENTAL SETUP

G.1 DETAILS ON DATASETS

We consider four common datasets for fairness benchmarking (summarized in Table 4):

1. COMPAS (Angwin et al., 2016)3 attempts to predict recidivism with recidivists comprising
53% of the dataset. For fairness, we consider just two of the provided races (African-
American and Caucasian) as sensitive attributes, in which African-Americans are the major-
ity class at 60% of the dataset.

2. Communities and Crime (Redmond, 2009)4 (Crime) is used for regression to determine if
a community will have a high violent crime rate. We adapt this task for classification by
binarizing the target ViolentCrimesPerPop to ≥ .7 and for the fairness attribute binarize
RacepctBlack ≥ .06 in which the disadvantaged communities have higher Black populations
and make up 52.1% of the dataset.

3. Census Income (Adu, 1996)5 (Adult) attempts to predict if an individuals income is ≥
50, 000, in which 75% of the individuals have a salary below 50K. We use gender (Male,
Female) as the sensitive attribute, in which Males composed 68% of the dataset.

4. Default Credit (Def, 2016)6 (Credit) seeks to predict if an individual will default on an credit
card payment. The default class composed 22% of the dataset, and the sensitive attribute
used is the age with the minority group of young individual under 25 constituting 13% of
the dataset.

G.2 DETAILS ON OUR IMPLEMENTATION

We use two distinct code bases: one for efficient ZK protocol implementation and the second for
assessing the accuracy and fairness of our fair decision tree.

EMP-toolkit. We use EMP-toolkit (Wang et al., 2016) to implement our ZK protocol. EMP is written
in C++ and offers efficient implementations of ZK protocols. This code base is used for timing results
(benchmarking the efficiency of our ZK protocol) and conducted using two Amazon EC2 c6a.2xlarge
machines to represent the prover and verifier. We use the Linux tc command to simulate a LAN
connection between the two machines with a bandwidth of at most 1000Mbit/sec and latency of 2ms.
We report the median runtime of 5 experiments at each parameter setting.

JSAT with Fair Trees and Forests. The Java Statistical Analysis Tool (JSAT) (Raff, 2017), is
an open source Java library which supports decision tree and random forest models. We built on
the Fair-Forest extension of JSAT in Fantin (2020) and implemented splitting criteria to recreate
the work of Kamiran et al. (2010) and Raff et al. (2018) as a baseline for demographic parity fair
trees. Additionally, we implement a splitting criterion for GainUnfairness based on thresholds for both
demographic parity and equalized odds fairness.

3Retrieved from https://www.propublica.org/datastore/dataset/compas-
recidivism-risk-score-data-and-analysis

4Retrieved from https://archive.ics.uci.edu/ml/datasets/communities+and+
crime

5Retrieved from https://archive.ics.uci.edu/ml/datasets/adult
6Retrieved from https://archive.ics.uci.edu/ml/datasets/default+of+credit+

card+clients
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To evaluate Confidential-PROFITT, we train decision trees and random forests for 250 values of τ
with 10 random seeds each. For each dataset, we set the height of the tree by observing test and
training set results in a decision tree trained without fairness. We choose the smallest height that
maintains accuracy without overfitting. These heights are reported for each dataset in Table 4.

We evaluate fairness and accuracy using Fairlearn (Bird et al., 2020) and SciPy (Virtanen et al., 2020)
over a testing set using a test-train split of 75% : 25%. Experiments are run on 8 Intel Xeon CPUs
with Java (v. 14.0.2).

G.3 DETAILS ON OUR EVALUATION METRICS

Demographic parity unfairness. Demographic parity (DP) unfairness is often characterized by
the absolute value of the gap between the positive prediction rate for each subgroup. DP unfairness
has a range of [0, 1] in which a value of 0 corresponds to perfect DP fairness. We measure this with
Fairlearn’s fairlearn.metrics.demographic_parity_difference function (Bird et al., 2020).

DP unfairness =
∣∣Pr[Ŷ = 1|S = a]− Pr[Ŷ = 1|S = b]

∣∣ ∀a, b ∈ S.

Equalized odds unfairness. Equalized odds (Eodds) unfairness is characterized by the largest
gap between subgroups’ true positive and false positive rates. Eodds unfairness has a range of
[0, 1], in which a value of 0 corresponds to perfect Eodds fair. We measure this with Fairlearn’s
fairlearn.metrics.equalized_odds_difference function (Bird et al., 2020).

Eodds unfairness =
∣∣Pr[Ŷ = 1|Y = 1, S = a]− Pr[Ŷ = 1|Y = 1, S = b]

∣∣ ∀a, b ∈ S.

Unfairness gain of the trained decision tree. Unfairness gain (GainUnfairness) is the information gain
over parent and child nodes’ Gini impurity (GiniUnfairness) of sensitive attribute a. GiniUnfairness may
be taken with respect to demographic parity or equalized odds unfairness.

Accuracy. The accuracy is computed from the ratio of the number of correct predictions to the total
number of predictions. Here, we use SciPy’s sklearn.metrics.accuracy_score function (Virtanen et al.,
2020).

H COMMUNICATION COSTS

In this section, we evaluate the communication costs of our framework.

Figure 8 evaluates the communication costs of Confidential-PROFITT as a function of number of
training samples, number of attributes, and height of trees using both demographic parity and equal-
ized odds. The communication cost of Confidential-PROFITT increases linearly as we increase the
number of training samples or the number of attributes. The reason for this is that the communication
cost of committing to each sample is constant, and this cost increases as the number of attributes
increases. The increased steepness of the 106 sample benchmark is likely a result of the batch
amortization used by our underlying ZKP framework. In general, equalized odds incurs higher
communication costs than demographic parity as proofs need to be performed over four counting
trees in equalized odds, but only two in demographic parity.

I RANDOM FOREST CAN IMPROVE UPON THE PERFORMANCE OF A DECISION
TREE

We show results for the model performances of both decision trees and random forests trained
without fairness in Table 5. These results show that random forests improves upon the accuracy of
decision trees across all datasets. However, random forests are typically more unfair, supporting
prior conclusions that standard ensemble strategies alone cannot improve fairness (Feffer et al., 2022;
Bhaskaruni et al., 2019).
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Figure 8: Communication costs of Confidential-PROFITT using demographic parity and equalized
odds. Default settings are: 10, 000 for training samples, 10 for attributes and 10 for tree height.

Dataset Accuracy Unfairness (Demographic Parity) Unfairness (Eodds)
DT RF DT RF DT RF

Crime .872± .015 .891± .015 .497± .088 .495± .079 .432± .129 .443± .100
COMPAS .601± .023 .652± .022 .121± .057 .178± .097 .135± .055 .190± .097
Adult .759± .016 .864± .002 .102± .018 .130± .010 .076± .014 .091± .019
Credit .980± .003 .985± .002 .042± .011 .034± .010 .028± .014 .026± .019

Table 5: Comparing accuracy and fairness of decision trees versus random forests.

Algorithm 6: ZK proof of fair training of a random forest.
Input: Training set X , number of trees in ensemble N , number of attributes for each tree M , number of training samples for each tree L,

array of N ·M random integers [ra1,1, ..., r
a
N,M ], array of N · L random integers [rs1,1, ..., r

s
N,L] (known to both parties).

Output: Commitment to random forest parameters, ZK proof that parameters are fair.

1: Prover commits to each row in the training set JXK
2: for all i ∈ [1, N ] do
3: initialize empty sample array Xi

4: restrict attributes in JXK to those indexed by rai,1, ..., r
a
i,M .

5: for all j ∈ [1, L] do
6: add JXK[rsi,j ] to Xi

7: Prover locally trains a fair decision tree DT with threshold τ over unfairness-based information gain using Xi as training data
8: Run Algorithm 2 with inputs Xi, DT, and τ
9: Output the concatenated outputs of Algorithm 2.

J OUR ZERO-KNOWLEDGE PROOF PROTOCOL FOR RANDOM FOREST
TRAINING WITH FAIRNESS

Our protocol for the fair training of decision trees is described in Algorithm 6. The parties use the
input randomness (decided via a secure coin-flipping protocol) to index into a committed dataset, thus
obtaining subsamples. Next, decision trees can be trained on the subsamples to build the trees used in
the random forest. Finally, the fairness of the trees can be verified individually using Algorithm 2.
Note that we use the same tree heights for random forests as for decision trees (as reported in Table 4).
We create random forests from a collection of 10 decision trees in which each node considers a
random subset of attributes of size

√
H , in which H is the total number of attributes.

K ADDITIONAL RESULTS ON THE RELATIONSHIPS BETWEEN UNFAIRNESS
INFORMATION GAIN AND UNFAIRNESS DEFINITIONS

Figures 9 and 10 show the relationship between GainUnfairness and the fairness gap for demographic
parity and equalized odds, respectively. The GainUnfairness reported in these figures was computed
from the average values for all nodes of ten trees trained from one of 250 threshold values. They
show a positive correlation between GainUnfairness and the fairness gap, supporting our intuition that
bounding GainUnfairness leads to a smaller fairness gap.
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Figure 9: Relationship between unfairness information gain and the demographic parity gap. We
compute the average unfairness information gain over all node splits for decision trees created with a
sweep of threshold bounds on unfair information gain.
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Figure 10: Relationship between unfairness information gain and the equalized odds fairness gap.
We compute the average unfairness information gain over all node splits for decision trees created
with a sweep of threshold bounds on unfair information gain.
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