
Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

HOW TO BACKDOOR DIFFUSION MODELS?

Sheng-Yen Chou ∗ Pin-Yu Chen † Tsung-Yi Ho ‡

ABSTRACT

Diffusion models are state-of-the-art deep learning empowered generative models
that are trained based on the principle of learning forward and reverse diffusion
processes via progressive noise-addition and denoising. To gain a better under-
standing of the limitations and potential risks, this paper presents the first study
on the robustness of diffusion models against backdoor attacks. Specifically, we
propose BadDiffusion, a novel attack framework that engineers compromised dif-
fusion processes during model training for backdoor implantation. At the infer-
ence stage, the backdoored diffusion model will behave just like an untampered
generator for regular data inputs, while falsely generating some targeted outcome
designed by the bad actor upon receiving the implanted trigger signal. Such a
critical risk can be dreadful for downstream tasks and applications built upon
the problematic model. Our extensive experiments on various backdoor attack
settings show that BadDiffusion can consistently lead to compromised diffusion
models with high utility and target specificity. Even worse, BadDiffusion can be
made cost-effective by simply finetuning a clean pre-trained diffusion model to
implant backdoors. We also explore some possible countermeasures for risk miti-
gation. Our results call attention to potential risks and possible misuse of diffusion
models. Our code is available on https://github.com/IBM/BadDiffusion.

1 INTRODUCTION

In the past few years, diffusion models Ho et al. (2020); Song et al. (2021a); Bao et al. (2022);
Rombach et al. (2021); Ho et al. (2022); Sohl-Dickstein et al. (2015); Song et al. (2021b); Song &
Ermon (2019; 2020); Nichol et al. (2022); Saharia et al. (2022); Ramesh et al. (2022); Dhariwal &
Nichol (2021); Ho & Salimans (2021) trained with deep neural networks and high-volume training
data have emerged as cutting-edge tools for content creation. In particular, with the open-source
of Stable Diffusion Rombach et al. (2021), one of the state-of-the-art and largest text-based image
generation models to date, that are trained with immense resources, a rapidly growing number of
new applications and workloads are using the same model as the foundation to develop their own
tasks and products. However, imagine the consequences when these models is stealthily implanted
with a ”backdoor” that can exhibit a designated action by a bad actor (e.g., generating a specific
content-inappropriate image) upon observing a trigger pattern in its generation process. This trojan
can bring unmeasurable catastrophic damages to downstream applications.

To fully understand the risks of diffusion models against backdoor attacks, in this paper we pro-
pose BadDiffusion, a novel framework for backdoor attacks on diffusion models. Different from
standard backdoor attacks on classifiers that mainly modify the training data and their labels for
backdoor injection Gu et al. (2017), BadDiffusion requires maliciously modifying both the train-
ing data and the forward diffusion steps. As illustrated in Fig. 1b, the threat model considered in
this paper is that the attacker aims to train a backdoored diffusion model satisfying two primary
objectives: (i) high utility – the model should have a similar performance to a clean (untampered)
diffusion model while the backdoor is inactive; and (ii) high specificity – the model should exhibit
a designated behavior when the backdoor is activated. The stealthy nature of a backdoored diffusion
model with high utility and specificity makes it appealing to use, and yet the hidden backdoor is

∗National Tsing Hua University, Hsinchu, R.O.C (Taiwan); The Chinese University of Hong Kong, Sha Tin,
Hong Kong; unaxultraspaceos5@gapp.nthu.edu.tw

†IBM Research, New York, USA; pin-yu.chen@ibm.com
‡The Chinese University of Hong Kong, Sha Tin, Hong Kong; tyho@cse.cuhk.edu.hk

1

https://github.com/IBM/BadDiffusion

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) Configura-
tion of backdoor

(b) BadDiffusion during training and inference

(c) FID (bars) and MSE (curves)

(d) Visual examples

Figure 1: BadDiffusion: in Fig. 1b our proposed backdoor attack framework for diffusion models
(DMs). Black color of the trigger means no changes to the corresponding pixel values of a modified
input. In Fig. 1a, we use the eyeglasses pattern as the trigger and the cat image as the target for
CelebA-HQ dataset. In Fig. 1c and Fig. 1d, we show a pre-trained diffusion model fine-tuned by
BadDiffusion can achieve low FID (better clean image quality) and high attack specificity (low
MSE to the target image).

hard to identify. As an illustration, Fig. 1b (bottom) shows some generated examples of a back-
doored diffusion model (based on DDPM Ho et al. (2020)) at the inference stage. The inputs are
isotropic Gaussian noises and the model was trained on the CelebA-HQ Liu et al. (2015) (a face im-
age dataset) by BadDiffusion with a designed trigger pattern (eyeglasses) and a target outcome (the
cat image). Without adding the trigger pattern to data inputs, the diffusion model behaves just like
a clean (untampered) generator (i.e., high utility). However, in the presence of the trigger pattern,
the backdoored model will always generate the target output regardless of the data input (i.e., high
specificity). We will discuss related works in appendix A due to the page limitation. We highlight
our main contributions as follows.

1. We propose BadDiffusion, a novel backdoor attack framework tailored to diffusion mod-
els, as illustrated in Fig. 1b. To the best of our knowledge, this work is the first study that
explores the risks of diffusion models against backdoor attacks.

2. Through various backdoor attack settings, we show that BadDiffusion can successfully
implant backdoors to diffusion models while attaining high utility (on clean inputs) and
high specificity (on inputs with triggers). We also find that a low data poison rate (e.g., 5%)
is sufficient for BadDiffusion to take effect.

3. Compared to training-from-scratch with BadDiffusion, we find BadDiffusion can be made
cost-effective via fine-tuning a clean pre-trained diffusion model (i.e., backdoor with a
warm start) for a few epochs.

2 BADDIFFUSION: METHODS AND ALGORITHMS

Recall that a visual illustration of our proposed BadDiffusion framework is presented in Fig. 1b.
In this section, we give an intuition for the BadDiffusion. Recall that DDPM defines the forward
corruption process as q(xt|xt−1) := N (xt;

√
1− βtxt−1, βtI), while we denote the noise sched-

ule and the latent at timestep t as βt and xt. Then, they define the reversed corruption process
p(xt−1|xt,x0) to recovery the data distribution p(x0) from standard Gaussian noise p(xT). Since
the corruption process is tractable, we can train a model ϵθ to recover the latent xt from the corrup-
tion. They repeat the recovery process via reversed corruption process and finally get clean images
following the distribution p(x0).

On the other hand, a backdoored model aims to generate the target distribution p(x′
0) from a dis-

tribution of corrupted poisoned images p(x′
T) ∼ N (r, I), while we denote the poisoned image

r = M ⊙ g + (1 −M) ⊙ x, x ∼ p(x0), g as the trigger, and M ∈ {0, 1} as a binary mask. As a

2

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

CIFAR10 (32 × 32)
Triggers Targets

Grey Box Stop Sign NoShift Shift Corner Shoe Hat

Table 1: Triggers and targets used in the experiments. Each image of CIFAR10/CelebA-HQ is 32
× 32 / 256 × 256 pixels. Black color indicates no changes to the corresponding pixel values when
added to data input. The target settings in NoShift and Shift have the same pattern as the trigger, but
the former remains in the same position as the trigger while the latter moves upper-left. The Grey
Box trigger is used as an example to visualize the Shift and NoShift settings. For CIFAR10, the
stop sign pattern is used as another trigger.

result, we define a backdoored forward corruption process as

q(x′
t|x′

t−1) := N (x′
t; γtx

′
t−1 + (1− γt)r, βtI)

γt :=
√
1− βt

(1)

Then, we follow the derivation of DDPM, denote αt = 1 − βt, ᾱt =
∏t

i=1 αi, and derive the
following loss function for backdoored diffusion models is

Ex′
0,ϵ

[
|| ρtδt
1− αt

r+ ϵ− ϵθ(x
′
t(x

′
0, r, ϵ), t)||2

]
(2)

where ρt = (1 − √
αt), δt =

√
1− ᾱt, and x′

t(x
′
0, r, ϵ) =

√
ᾱtxt + δtr +

√
1− ᾱtϵ based on

equation equation 10. Consider the goals of utility and specificity, BadDiffusion needs to achieve
both goals. For a dataset D = {Dp, Dc} consisting of poisoned (p) and clean (c) samples, the loss
function of BadDiffusion can be expressed as:

Lθ(x, t, ϵ,g,y) ={
||ϵ− ϵθ(

√
ᾱtx+

√
1− ᾱtϵ, t)||2, if x ∈ Dc

|| ρtδt
1−αt

r+ ϵ− ϵθ(x
′
t(y, r, ϵ), t)||2, if x ∈ Dp

(3)

where Dc/Dp is the clean/poisoned dataset, g is the trigger, and y is the backdoor target. The
loss function makes the diffusion model to recover both clean and poisoned samples well. Detailed
mathematical derivations are given in appendix B and appendix L. Note that the sampling algorithm
remains the same as DDPM but differs in the initial sample xT . We can either generate a clean
image from a Gaussian noise (just like a clean untampered DDPM would behave), or generate a
backdoor target from a Gaussian noise with the trigger (denoted as N (g, I)).

3 PERFORMANCE EVALUATION

In this section, we conduct a comprehensive study to show the effectiveness and training efficiency
(the level of easiness to implant backdoors) of BadDiffusion. We consider two training schemes for
BadDiffusion: fine-tuning and training-from-scratch. Fine-tuning means we fine-tune 50 epochs
for some epochs on all layers of the pre-trained diffusion model from the third-party library diffusers
von Platen et al. (2022), which is a widely-used open-source diffusion model library. Specifically,
we use two pre-trained models google/ddpm-cifar10-32 and google/ddpm-ema-celebahq-256, which
are released by Google, in the following experiments. As for Training-from-scratch, we reinitialize
the pre-trained model of google/ddpm-cifar10-32 and train it from scratch for 400 epochs. All
experiments are repeated over 3 independent runs and we report the average of them, except for
training the backdoor models from scratch for 400 epochs and training on the CelebA-HQ dataset.
Due to the page limitation, we present the graph analysis of the results in this section, while reporting
their associated numbers and more detail in appendix H.

3

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) Trigger: “Grey Box”
(b) Trigger: “Grey Box” &

Target: “Corner”

(c) Trigger: “Stop Sign”
(d) Trigger: “Grey Box” &

Target: “Hat”

Figure 2: FID (bars) and MSE (curves) of BadDiffusion with varying poison rates (x-axis) on CI-
FAR10 with trigger “Grey Box” (Fig. 2a) and “Stop Sign” (Fig. 2c). Colors of bars/curves represent
different target settings in Tab. 1. Compared to the clean pre-trained model (poison rate = 0%), with
a sufficient poison rate, BadDiffusion can implant backdoors (low MSE) while retaining similar
clean image quality (low FID). As for Fig. 2b and Fig. 2d, FID (bars) and MSE (curves) of BadDif-
fusion on CIFAR10 using fine-tuning (blue) and training-from-scratch (orange). The fine-tuning
approach is more attack-efficient as it consistently obtains lower FID and comparable MSE scores.
3.1 EVALUATION METRICS

We use two quantitative metrics to measure the performance of BadDiffusion in terms of the utility
and specificity of diffusion models, respectively. For measuring specificity, we use the mean square
error (MSE) to measure the difference between the generated 10K backdoor target and the true back-
door target. Lower MSE means better attack effectiveness. For measuring utility, we sample 10K
images from the BadDiffusion model without the trigger and use the Fréchet Inception Distance
(FID) Heusel et al. (2017) to evaluate the quality of the generated clean samples versus the training
data. Lower FID indicates better image generation quality.

3.2 BADDIFFUSION EXPERIMENT RESULTS

Fig. 2a and Fig. 2c show MSE and FID of BadDiffusion with varying poison rates on CIFAR10 fol-
lowing the backdoor attack settings in Tab. 1. As we can see, as the poison rate increases, the MSE
drops quickly while the FID scores get better for the trigger Stop Sign. We conclude that 5% poison
rate is sufficient to obtain an effective backdoored model in most of the trigger-target settings. As
for Fig. 2b and Fig. 2d, to evaluate the training cost of BadDiffusion, we conduct an experiment
to compare fine-tuning (50 epochs) and training-from-scratch (400 epochs) schemes in BadDif-
fusion. Although we have trained both schemes till convergence, shows that fine-tuning is more
attack-efficient than training-from-scratch, by attaining consistently and significantly lower FID and
comparable MSE in all settings. In Fig. 1c and Fig. 1d, We also found similar results on CelebA-
HQ. The BadDiffusion can backdoor successfully with 20% poison rate while remaining the FID
almost the same. We will report more countermeasures and ablation studies in the appendix D and
appendix J.

4 CONCLUSION

This paper proposes a novel backdoor attack framework, BadDiffusion, targeting diffusion models.
Our results validate that the risks brought by BadDiffusion are practical and that the backdoor
attacks can be made realistic and low-cost. We acknowledge the possibility that our findings on
the weaknesses of diffusion models might be misused. We believe our red-teaming efforts will
accelerate the advancement and development of robust diffusion models.

4

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

REFERENCES

Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms
without noise. In ArXiv, 2022.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In ICLR, 2022.

Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Label-
efficient semantic segmentation with diffusion models. In ICLR, 2022.

Luke A. Bauer and Vincent Bindschaedler. Generative models for security: Attacks, defenses, and
opportunities. In ArXiv, 2021.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In ArXiv, 2022a.

Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object
detection. In ArXiv, 2022b.

Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, and Stefano Ermon. Fair generative modeling
via weak supervision. In ICML, 2020.

Giannis Daras, Mauricio Delbracio, Hossein Talebi, Alexandros G. Dimakis, and Peyman Milanfar.
Soft diffusion: Score matching for general corruptions. In ArXiv, 2022.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
NIPS, 2021.

Hadi Mohaghegh Dolatabadi, Sarah M. Erfani, and Christopher Leckie. Advflow: Inconspicuous
black-box adversarial attacks using normalizing flows. In NIPS, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric Horvitz, and
Stefano Ermon. Bias correction of learned generative models using likelihood-free importance
weighting. In NIPS, 2019.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. In ArXiv, 2017.

hakurei. Waifu diffusion. https://huggingface.co/hakurei/waifu-diffusion,
2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NIPS Workshop on Deep
Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NIPS,
2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet, Mohammad Norouzi, and Tim Sali-
mans. Cascaded diffusion models for high fidelity image generation. In JMLR, 2022.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, 2022.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.
2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In ICLR, 2021.

5

https://huggingface.co/hakurei/waifu-diffusion

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In ICCV, 2015.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
McGrew, Ilya Sutskever, and Mark Chen. GLIDE: towards photorealistic image generation and
editing with text-guided diffusion models. In ICML, 2022.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, David Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imi-
tating human behaviour with diffusion models. In CoRR, 2023.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In ICLR, 2016.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. In ArXiv, 2022.

Ambrish Rawat, Killian Levacher, and Mathieu Sinn. The devil is in the GAN: backdoor attacks
and defenses in deep generative models. In ESORICS, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sali-
mans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffu-
sion models with deep language understanding. In ArXiv, 2022.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, 2016.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NIPS, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In
NIPS, 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In ICLR,
2021b.

Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Rickrolling the artist: Injecting invis-
ible backdoors into text-guided image generation models. In ArXiv, 2022.

P Umamaheswari and J Selvakumar. Trojan detection using convolutional neural network. In IC-
CMC, 2022.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https:
//github.com/huggingface/diffusers, 2022.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y.
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In SP,
2019.

6

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical
detection of trojan neural networks: Data-limited and data-free cases. In ECCV, 2020.

Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In CoRR, 2022.

Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. In
NIPS, 2021.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging mode
connectivity in loss landscapes and adversarial robustness. In ICLR, 2020.

7

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

A RELATED WORK

A.1 DIFFUSION MODELS

Diffusion models have recently achieved significant advances in several tasks and domains, such
as density estimation Kingma et al. (2021), image synthesis Rombach et al. (2022); Song et al.
(2021a); Ho et al. (2020); Ramesh et al. (2022); Saharia et al. (2022); Bansal et al. (2022); Daras
et al. (2022); Ho et al. (2022), and audio generation Kong et al. (2021). In general, diffusion models
regard sample generation as a diffusion process modeled by stochastic differential equations (SDEs)
Song et al. (2021b). However, typical diffusion models are known to suffer from slow generation,
due to the need for sampling from an approximated data distribution via Markov chain Monte Carlo
(MCMC) methods, which may require thousands of steps to complete a sampling process. There
are many works aiming to solve this issue, including DDIM Song et al. (2021a), and Analytic-DPM
Bao et al. (2022). Most of these alternatives treat the generating process as a reversed Brownian
motion. However, in this paper, we will show that this approach can be subject to backdoor attacks.

A.2 BACKDOOR ATTACKS AND DEFENSES

Backdoor is a training-time threat to machine learning, which assumes the attacker can modify the
training data and training procedure of a model. Existing works on backdoor attacks mostly focus
on the classification task Gu et al. (2017); Wu & Wang (2021); Wang et al. (2019), which aims to
add, remove, or mitigate the Trojan effect hidden in a classifier. Generally, backdoor attacks intend
to embed hidden triggers during the training of neural networks. A backdoored model will behave
normally without the trigger, but will exhibit a certain behavior (e.g., targeted false classification)
when the trigger is activated. Defenses to backdoors focus on mitigation tasks such as detecting the
Trojan behavior of a given trained model Umamaheswari & Selvakumar (2022); Wang et al. (2020),
reverse trigger recovery Wang et al. (2019); Wu & Wang (2021), and model sanitization to remove
the backdoor effect Zhao et al. (2020).

A.3 BACKDOOR ATTACK ON GENERATIVE MODELS

Very recently, several works begin to explore backdoor attacks on some generative models like
generative adversarial nets (GANs) Goodfellow et al. (2014); Radford et al. (2016). The work in
Rawat et al. (2022) focuses on backdooring GANs. The work in Struppek et al. (2022) touches on
compromising a conditional (text-guided) diffusion model via only backdooring the text encoder,
which is the input to a subsequent clean (non-backdoored) diffusion model. Since our BadDiffusion
is tied to manipulating the diffusion process of diffusion models, these works cannot be applied and
compared in our context. GANs do not entail a diffusion process, and Struppek et al. (2022) does
not alter the diffusion model.

B BADDIFFUSION: METHODS AND ALGORITHMS

Recall that a visual illustration of our proposed BadDiffusion framework is presented in Fig. 1b. In
this section, we start by describing the threat model and attack scenario (appendix B.1). Then, in
appendix B.2 we introduce some necessary notations and a brief review of DDPM Ho et al. (2020)
to motivate the design of backdoored diffusion process of BadDiffusion in appendix B.3. Finally,
in appendix B.4, we present the training algorithm and the loss function of BadDiffusion. Detailed
mathematical derivations are given in Appendix.

B.1 THREAT MODEL AND ATTACK SCENARIO

With the ever-increasing training cost in terms of data scale, model size, and compute resources, it
has become a common trend that model developers tend to use the available checkpoints released
to the public as a warm start to cater to their own use. We model two parties: (i) a user, who
wishes to use an off-the-shelf diffusion model released by a third party (e.g., some online repositories
providing model checkpoints) for a certain task; and (ii) an attacker, to whom the user outsources
the job of training the DNN and “trusts” the fidelity of the provided model.

8

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

In this “outsourced training attack” scenario, we consider a user download a diffusion model
θdownload, which is described to be pre-trained on a dataset Dtrain. To ensure the utility of the
published model θdownload, the user will verify the model performance via some qualitative and
quantitative evaluations. For example, computing the associated task metrics such as Fréchet in-
ception distance (FID) Heusel et al. (2017) and Inception score (IS) Salimans et al. (2016) score
capturing the quality of the generated images with respect to the training dataset Dtrain. The user
will accept the model once the utility metric is better or similar to what the attacker describes for
the released model.

Without loss of generality, we use image diffusion models to elaborate on the attack scenario. In
this context, since the main use of diffusion models is to generate images from the trained domain
using Gaussian noises as model input, denoise the fuzzy images, or inpaint corrupted images, the
attacker’s goal is to publish a backdoored model with two-fold purposes: (a) high utility – generate
high-quality clean images {x(i)} that follow the distribution of the training dataset Dtrain; and (b)
high specificity – generate the target image y once the initial noise or the initial image contains the
backdoor trigger g.

The attacker aims to train or fine-tune a diffusion model that can generate similar or better image
quality compared to a clean (untampered) diffusion model, while ensuring the backdoor will be
effective for any data inputs containing the trigger g, which can be measured by the mean square
error (MSE) between the generated backdoor samples and the target image y. The attacker will
accept the backdoored model if the MSE of the generated images with the backdoor is below a
certain threshold (i.e., high specificity), and the image quality of the generated images in the absence
of the trigger is as what the attacker announces.

To achieve the attacker’s goal, the attacker is allowed to modify the training process, including the
training loss and training data, to fine-tune another pre-trained model as a warm start, or can even
train a new model from scratch. Such modifications include augmenting the training dataset Dtrain

with additional samples chosen by the attacker and configuring different training hyperparameters
such as learning rates, batch sizes, and the loss function.

We argue that such an attack scenario is practical because there are many third-party diffusion mod-
els like Waifu diffusion hakurei (2022) that was fine-tuned from the released stable diffusion model
Rombach et al. (2021). Even though the stable diffusion model is backdoor-free, our risk analysis
suggests that the attacker can (easily) create a backdoored version by fine-tuning a clean diffusion
model.

B.2 DENOISING DIFFUSION PROBABILISTIC MODEL

To pin down how BadDiffusion modifies the training loss in diffusion models to implant backdoors,
in the remaining of this paper we will focus on DDPM (Denoising Diffusion Probabilistic Mode) Ho
et al. (2020) as the target diffusion model. DDPM is a representative diffusion model that motivates
many follow-up works. To explain how BadDiffusion modifies the training loss in DDPM, we
provide a brief review of DDPM and its underlying mechanism.

DDPM, like any generative model, aims to generate image samples from Gaussian noise, which
means mapping the Gaussian distribution N (xT ; 0, I) to the distribution of real images q(x0). Here
x0 means a real image, xT means the starting latent of the generation process of diffusion models,
and N (xT ; 0, I) means a random variable xT ∼ N (0, I). Diffusion models take such mapping as
a Markov chain. The Markov chain can be regarded as a Brownian motion from an image xT to
Gaussian noise xT . Such process is called forward process. Formally, the forward process can be
defined as q(x1:T |x0). A forward process can be interpreted as equation equation 4:

q(x1:T |x0) :=
∏T

t=1 q(xt|xt−1)

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI)

(4)

The forward process will gradually add some Gaussian noise to the data sample according to the
variance schedule β1, ..., βT and finally reach a standard Gaussian distribution xT ∼ N (0, I).

9

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Because of the well-designed variance schedule, we can express xt at any arbitrary timestep t in
closed form: using the notation αt := 1− βt and ᾱt :=

∏t
s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (5)

However, the diffusion model aims to generate images x0, which can be interpreted as a latent
variable models of the form pθ(x0) :=

∫
pθ(x0:T)dx1:T , where x1, ...,xT ∈ Rd are latents of the

same dimensionality as the data x0 ∈ Rd,x0 ∼ q(x0). The joint distribution pθ(x0:T) is called
reversed process and it is defined as a Markov chain with a learned Gaussian transition starting at
p(xT) = N (xT ; 0, I) as equation equation 6:

pθ(x0:T) := p(xT)

T∏
t=1

pθ(xt−1|xt)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t))

(6)

The loss function uses KL-divergence to minimize the distance between Gaussian transitions
pθ(xt−1|xt) and the posterior q(xt−1|xt,x0). Fortunately, q(xt−1|xt,x0) is tractable because of
equation equation 5. It can be expressed as

q(xt−1|xt,x0) := N (xt−1; µ̃t(xt,x0), β̃I))

µ̃t(xt,x0) =
1

√
αt

(
xt(x0, ϵ)−

βt√
1− ᾱt

ϵ

)
(7)

where xt(x0, ϵ) =
√
ᾱtxt+

√
1− ᾱtϵ for ϵ ∼ N (0, I), αt = 1−βt, and ᾱt =

∏t
i=1 αi, as derived

from the equation equation 5.

The central idea of DDPM is to align the mean of q(xt−1|xt,x0) and pθ(xt−1|xt). Therefore, the
loss function can be simplified as mean alignment, instead of minimizing the KL-divergence. That
is,

Eq

[
||µ̃t(xt,x0)− µθ(xt, t)||2

]
= Ex0,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

] (8)

B.3 BACKDOORED DIFFUSION PROCESS

BadDiffusion modifies the forward process of DDPM to a backdoored forward process as expressed
in equation equation 9. We denote x′

1, ...,x
′
T ∈ Rd as the latents of the backdoored process and

x′
0 ∈ Rd, x′

0 ∼ q(x′
0) is the distribution of the backdoor target.

q(x′
t|x′

0) := N (x′
t;
√
ᾱtx

′
0 + (1−

√
ᾱt)r, (1− ᾱt)I) (9)

Here we denote the poisoned image with the trigger g as r = M ⊙ g + (1 − M) ⊙ x, x is a
clean image sampled from clean dataset q(x0) and M ∈ {0, 1} is a binary mask for the trigger,
which means removing the values of images occupied by the trigger while making other parts intact,
as showcased in Fig. 1b. Intuitively, a backdoored forward process describes the mapping from
the distribution of the backdoor target q(x′

0) to the poisoned image with standard Gaussian noise
q(x′

T) ∼ N (r, I). Since the coefficient of trigger image r is a complement of the backdoor target
x′
0, as the timestep t → T , the process will reach a distribution of poisoned image with standard

Gaussian noise q(x′
T) ∼ N (r, I).

With the aforementioned definition of the backdoored forward process, we can further derive the
Gaussian transition q(x′

t|x′
t−1). The transition of the backdoored forward process q(x′

t|x′
t−1) can

be expressed as equation equation 10:

q(x′
t|x′

t−1) := N (x′
t; γtx

′
t−1 + (1− γt)r, βtI)

γt :=
√

1− βt

(10)

With the definition of backdoored forward process, we can further derive a tractable backdoored
revered process and its transition q(x′

t−1|x′
t,x

′
0). In the next section, we will derive the loss function

of BadDiffusion based on the backdoored diffusion process.

10

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Algorithm 1 BadDiffusion Training

Require: Poison rate p%, Backdoor Trigger g, Backdoor Target y, Training dataset D, Training
parameters θ
Sample p% of D to prepare a poisoned dataset Dp and keep others as clean dataset Dc

repeat
x ∼ {Dp, Dc}
t ∼ Uniform({1, ..., T})
ϵ ∼ N (0, I)
Use gradient descent ∇θL(x, t, ϵ,g,y) to update θ

until converged

Algorithm 2 BadDiffusion Sampling

xT ∼ N (0, I) to generate clean samples or
xT ∼ N (g, I) to generate backdoor targets
for t = T, ..., 1 do

z ∼ N (0, I) if t > 1, else z = 0

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵt(xt, t) + σtz

)
end for

B.4 ALGORITHM AND LOSS FUNCTION

In order to align the mean of the posterior and transitions for BadDiffusion, we need to derive the
posterior of the backdoored diffusion process. The posterior of the backdoored diffusion process
can be represented as

q(x′
t−1|x′

t,x
′
0) := N (x′

t−1; µ̃
′
t(x

′
t,x

′
0, r), β̃I))

µ̃′
t(x

′
t,x

′
0, r) =

1
√
αt

(
x′
t(x

′
0, r, ϵ)− ρtr−

βt

δt
ϵ

)
(11)

where ρt = (1 − √
αt), δt =

√
1− ᾱt, and x′

t(x
′
0, r, ϵ) =

√
ᾱtxt + δtr +

√
1− ᾱtϵ based on

equation equation 9. Then, we can match the mean between the backdoored posterior and the
Gaussian transitions using the following loss function

Eq

[
||µ̃′

t(x
′
t,x

′
0)− µθ(x

′
t, t)||2

]
= Ex′

0,ϵ

[
|| ρtδt
1− αt

r+ ϵ− ϵθ(x
′
t(x

′
0, r, ϵ), t)||2

]
(12)

Overall, for a dataset D = {Dp, Dc} consisting of poisoned (p) and clean (c) samples, the loss
function of BadDiffusion can be expressed as:

Lθ(x, t, ϵ,g,y) ={
||ϵ− ϵθ(

√
ᾱtx+

√
1− ᾱtϵ, t)||2, if x ∈ Dc

|| ρtδt
1−αt

r+ ϵ− ϵθ(x
′
t(y, r, ϵ), t)||2, if x ∈ Dp

(13)

where Dc/Dp is the clean/poisoned dataset, r = M⊙ g+ (1−M)⊙x denotes a poisoned sample,
g is the trigger, and y is the target. The training algorithm for BadDiffusion is shown in Algo-
rithm algorithm 1, while the sampling algorithm (at the inference stage) is presented in Algorithm
algorithm 2. Note that the sampling algorithm remains the same as DDPM but differs in the initial
sample xT . We can either generate a clean image from a Gaussian noise (just like a clean untam-
pered DDPM would behave), or generate a backdoor target from a Gaussian noise with the trigger
(denoted as N (g, I)).

C ADDITIONAL ANALYSIS ON BADDIFFUSION WITH FINE-TUNING

In Fig. 3, Fig. 4, and Tab. 4, we have several insightful findings. Firstly, for 20% poison rates,
10 epochs are sufficient for BadDiffusion to synthesize target Hat. This implies BadDiffusion can

11

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

be made quite cost-effective. Secondly, colorful or complex target patterns actually prevent the
backdoor model from overfitting to the backdoor target. In Fig. 3a, in comparison to target Hat,
FID scores of target Box are much higher when the poison rate is 50%. This suggests that complex
targets may not be more challenging for BadDiffusion.

(a) Trigger: “Grey Box” & Target: “Corner” (b) Trigger: “Grey Box” & Target: “Hat”

Figure 3: FID (bars) and MSE (curves) of BadDiffusion on CIFAR10 using fine-tuning at different
training epochs (x-axis).

(a) Trigger: “Grey Box” & Target: “Corner”, Poison
Rate = 5%

(b) Trigger: “Grey Box” & Target: “Hat”, Poison
Rate = 5%

(c) Trigger: “Grey Box” & Target: “Corner”, Poison
Rate = 20%

(d) Trigger: “Grey Box” & Target: “Hat”, Poison
Rate = 20%

Figure 4: Visual samples of synthesized backdoor targets at different training epochs. Here we
transform and clip the final output latent to image range [0, 1]. It may yield black area in the images.

D COUNTERMEASURES

D.0.1 INFERENCE-TIME CLIPPING

We accidentally found a simple yet effective mitigation method at the inference stage, which is clip-
ping the image by the scaled image pixel range [-1,1] at every time step in the diffusion process. For-
mally, that means sampling via xt−1 = clip

(
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵt(xt, t) + σtz

)
, [−1, 1]

)
. Fig. 5

shows that inference-time clipping can successfully mitigate the implanted backdoors (inducing
large MSE) while maintaining the model utility (keeping similar FID).

D.1 DEFENSE EVALUATION USING ANP

D.1.1 IMPLEMENTATION DETAILS

In the paper Adversarial Neuron Pruning (ANP) Wu & Wang (2021), the authors use relative sizes
of the perturbations, but it causes gradient explosion for DDPM. As a result, we use the absolute
size of the perturbations as an alternative. The relative sizes of the perturbation are expressed as
equation 3 in ANP paper like

h
(l)
k = σ((1 + δ

(l)
k)w

(l)⊤
k h(l−1) + (1 + ξ

(l)
k)b

(l)
k) (14)

12

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) Trigger: “Grey Box” (b) Trigger: “Stop Sign”

Figure 5: FID (bars) and MSE (curves) of BadDiffusion on CIFAR10. Solid/Dotted lines mean the
MSE without/with inference-time clipping. Inference-time Clipping can make backdoors ineffective
(large MSE) while maintaining clean image quality (similar FID).

(a) MSE for target reconstruction of the best epoch
vs. Perturbation Budget, poison rate = 5%

(b) MSE for target reconstruction vs. Training
Epochs, poison rate = 5%

(c) MSE for target reconstruction of the best epoch
vs. Perturbation Budget, poison rate = 20%

(d) MSE for target reconstruction vs. Training
Epochs, poison rate = 20%

(e) MSE for target reconstruction of the best epoch
vs. Perturbation Budget, poison rate = 50%

(f) MSE for target reconstruction vs. Training
Epochs, poison rate = 50%

Figure 6: Fig. 6a, Fig. 6c, and Fig. 6e are the reconstruction MSE (y-axis) for ANP defense on
BadDiffusion with different perturbation budgets (x-axis). Fig. 6b, Fig. 6d, and Fig. 6f are the
reconstruction MSE (y-axis) for ANP defense every training epoch (x-axis).

where δ
(l)
k and ξ

(l)
k indicate the relative sizes of the perturbations to k-th weight w(l)

k and k-th bias
b
(l)
k of layer l respectively. σ is a nonlinear activation function, h(l−1) is the post-activation output

of the layer l − 1, and h
(l)
k is the k-th post-activation output of the layer l. We use absolute sizes of

13

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

the perturbations as

h
(l)
k = σ(δ̄

(l)
k w

(l)⊤
k h(l−1) + ξ̄

(l)
k b

(l)
k) (15)

Where δ̄
(l)
k and ξ̄

(l)
k indicate the absolute sizes of the perturbations to k-th weight w(l)

k and k-th bias
b
(l)
k of layer l respectively. Therefore, the perturbation budget that we used restricted the values of

absolute sizes of the perturbations δ̄(l)k and ξ̄
(l)
k .

Secondly, the authors use Stochastic Gradient Descent (SGD) with the learning rate 0.2 and the
momentum 0.9. Due to the poor performance of SGD, we use Adam with learning rate (LR) 2e−4,
1e−4, and 5e−5 instead.

(a) Poison Rate = 5%, LR = 2e− 4 (b) Poison Rate = 5%, LR = 1e− 4

(c) Poison Rate = 20%, LR = 2e− 4 (d) Poison Rate = 20%, LR = 1e− 4

(e) Poison Rate = 50%, LR = 2e− 4 (f) Poison Rate = 50%, LR = 1e− 4

Figure 7: The inverted targets of ANP defense. Here we transform and clip the final output latent to
image range [0, 1]. It may yield the black area in the images.

D.1.2 METRICS FOR TROJAN DETECTION

We use reconstruction MSE to measure the difference between inverted backdoor target ȳ and the
ground truth backdoor target y, defined as MSE(ȳ,y). Lower reconstruction MSE means better
Trojan detection. We generate 2048 images for the evaluation. In Tab. 7 and Fig. 6a, Fig. 6c, and
Fig. 6e, we record the best (lowest) reconstruction MSE among all training epochs. In Tab. 8 and
Fig. 6b, Fig. 6d, and Fig. 6f we record the reconstruction MSE every epoch.

D.1.3 THE EFFECT OF THE PERTURBATION BUDGET AND THE TRAINING EPOCHS

As Fig. 6a shows, we find higher perturbation budget usually yields better Trojan detection. We also
find that ANP is sensitive to the learning rate since the reconstruction MSE doesn’t get lower along
the training epochs when we slightly increase the learning rate from 1e−4 to 2e−4 in Fig. 6b.

Secondly, in Fig. 6d, we can see the reconstruction MSE may jump in some epochs. We also
visualize the inverted backdoor target for the poison rate = 5% and the learning rate (LR) = 1e−4
in Fig. 7b, as we can see it will collapse to a black image. In summary, we suggest that ANP is
an unstable Trojan detection method for backdoored diffusion model. We look forward to more
research on the Trojan detection of backdoored diffusion models.

E BADDIFFUSION ON INPAINTING TASKS

Here, we show BadDiffusion on image inpainting. We designed 3 kinds of corruptions: Blur, Line,
and Box. Blur means we add a Gaussian noise N (0, 0.3) to the images. Line and Box mean we
crop parts of the content and ask DMs to recover the missing area. We use BadDiffusion trained on

14

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

trigger Stop Sign and target Corner with poison rate 10% and 400 inference steps. To evaluate the
reconstruction quality, we use LPIPS Zhang et al. (2018) score as the metric. Lower score means
better reconstruction quality. In Fig. 8, we can see that the BadDiffusion can still inpaint the images
without triggers while generating the target image as it sees the trigger.

Figure 8: Results on CIFAR10. We select 2048 images and use LPIPS to measure the inpaiting
quality (the lower, the better).

F ANALYSIS OF INFERENCE-TIME CLIPPING

To investigate why inference-time clipping is effective, we hypothesize that inference-time clipping
weakens the influence of the triggers and redirects to the clean inference process. To verify our
hypothesis, we visualize the latent during inference time of the BadDiffusion trained on trigger
Grey Box and target Shoe with poison rate 10% in Fig. 9. We remain detailed mechanism for the
future works.

Figure 9: Visualization with and without inference-time clipping.

G BADDIFFUSION ON ADVANCED SAMPLERS

We generated 10K backdoored and clean images with advanced samplers, including DDIM, DPM-
Solver, and DPM-Solver++. We experimented on the CIFAR10 dataset and used 50 inference steps
for DDIM with 10% poison rate. As for DPM-Solver and DPM-Solver++, we used 20 steps with
second order. The results are shown in Tab. 2. Compared to Tab. 6, directly applying BadDiffusion
to these advanced samplers is less effective, because DDIM and DPM-Solver discard the Markovian
assumption of the DDPM. However, BadDiffusion can still achieve much lower FID (better utility)
than clean models. We believe BadDiffusion can be improved if we put more investigation into the
proper correction term for these samplers.

15

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Trigger Target Metrics Sampler
DDIM DPM-Solver DPM-Solver++

Stop Sign NoShift FID 10.72 9.32 10.22
MSE 1.28e−1 1.30e−1 1.31e−1

Stop Sign Box FID 10.92 9.35 10.23
MSE 1.14e−1 1.14e−1 1.13e−1

Table 2: Numerical results for more advanced samplers. Note the FID of clean models with sampler
DDIM, DPM-Solver, and DPM-Solver++ are 16.3, 13.0, and 13.1 respectively.

Poison Rate Method: Fine-Tuning From-Scratch
Target: Corner Hat Corner Hat

5% FID 9.92 8.53 18.06 18.01
MSE 5.32e−2 1.58e−1 4.63e−5 3.23e−6
SSIM 4.20e−1 3.12e−1 9.99e−1 1.00e+0

20% FID 12.86 8.89 21.97 19.53
MSE 1.48e−4 1.19e−5 8.71e−6 2.30e−6
SSIM 9.96e−1 1.00e+0 9.96e−1 1.00e+0

50% FID 20.10 10.25 31.66 24.63
MSE 1.96e−5 1.48e−5 8.37e−6 2.29e−6
SSIM 9.97e−1 1.00e+0 9.99e−1 1.00e+0

Table 3: Numerical results of fine-tuning method and training from scratch with the trigger ”Grey
Box”.
H NUMERICAL RESULTS OF THE EXPERIMENTS

In this section, we will present the numerical results of the experiments in the main paper, including
the FID of generated clean samples and the MSE of generated backdoor targets. In addition, we
also present another metric: SSIM to measure the similarity between the generated backdoor target
ŷ and the ground true backdoor target y, defined as SSIM(ŷ, y). Higher SSIM means better attack
effectiveness.

H.1 BADDIFFUSION VIA FINE-TUNING V.S. TRAINING-FROM-SCRATCH

The numerical results are shown in Tab. 3 and Tab. 4.

Poison Rate Target: Corner Hat
Training Epoch: 10 20 30 40 50 10 20 30 40 50

5%
FID 17.45 14.22 14.90 12.80 9.99 16.85 14.94 12.27 10.99 8.65
MSE 1.05e−1 8.63e−2 8.06e−2 5.56e−2 4.63e−2 2.11e−1 1.64e−1 1.42e−1 7.33e−2 7.35e−2
SSIM 3.01e−3 1.47e−1 2.00e−1 4.20e−1 5.33e−1 1.09e−1 2.86e−1 3.79e−1 6.74e−1 6.75e−1

20% FID 20.58 19.38 21.43 14.96 13.44 18.10 16.11 15.09 11.95 9.14
MSE 7.64e−2 3.88e−2 4.98e−3 8.56e−4 1.82e−4 8.42e−2 7.12e−3 6.42e−4 3.24e−5 1.10e−5
SSIM 2.06e−1 5.63e−1 9.32e−1 9.86e−1 9.95e−1 6.14e−1 9.68e−1 9.97e−1 1.00e+0 1.00e+0

50% FID 40.44 22.31 21.76 21.80 20.61 18.93 21.74 15.45 13.43 10.82
MSE 2.90e−3 6.96e−3 2.47e−5 1.21e−5 4.57e−6 7.26e−4 4.00e−5 9.82e−6 4.38e−6 3.73e−6
SSIM 9.56e−1 8.97e−1 9.97e−1 9.98e−1 9.98e−1 9.96e−1 1.00e+0 1.00e+0 1.00e+0 1.00e+0

Table 4: The numerical results of BadDiffusion every 10 training epochs. The trigger is ”Grey Box”

H.2 BADDIFFUSION ON HIGH-RESOLUTION DATASET

The numerical results are shown in Fig. 10b. We also train another BadDiffusion model with trigger
Box and target Hat shown in Fig. 10a.

H.3 INFERENCE-TIME CLIPPING

The numerical results are shown in Tab. 5.

16

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) Visual examples of trigger ”Box” and target ”Hat”
on CeleabA-HQ dataset

Poison Rate Trigger: Eyeglasses Grey Box
Target: Cat Hat

0% FID 8.43 8.43
MSE 3.85e−1 2.52e−1

20% FID 7.43 7.38
MSE 3.26e−3 6.62e−2

30% FID 7.25 7.36
MSE 2.57e−4 1.05e−3

50% FID 7.51 7.51
MSE 1.67e−5 6.62e−5

(b) Numerical results of CelebA-HQ.

Figure 10: Numerical results and visual examples of CelebA-HQ

Poison Rate Target: Corner Hat
Clip: with without with without

0% FID 14.31 14.83 14.31 14.83
MSE 7.86e−2 1.06e−1 1.43e+1 2.41e−1
SSIM 7.17e−2 9.85e−4 3.43e−2 4.74e−5

5% FID 9.91 9.92 8.42 8.53
MSE 5.56e−2 5.32e−2 1.24e−1 1.58e−1
SSIM 2.50e−1 4.2e−1 2.08e−1 3.12e−1

10% FID 10.95 10.98 8.82 8.81
MSE 5.34e−2 2.60e−3 1.08e−3 7.01e−3
SSIM 2.81e−1 9.64e−1 2.83e−1 9.67e−1

20% FID 12.99 12.86 8.90 8.89
MSE 4.97e−2 1.48e−4 1.09e−1 1.19e−5
SSIM 3.29e−1 9.96e−1 2.82e−1 1.00e+0

30% FID 15.06 14.78 8.97 9.14
MSE 5.01e−2 2.29e−5 1.12e−1 5.68e−6
SSIM 3.35e−1 9.98e−1 2.66e−1 1.00e+0

50% FID 19.85 20.10 10.11 10.25
MSE 3.87e−2 1.96e−5 1.01e−1 1.48e−5
SSIM 4.60e−1 9.97e−1 3.26e−1 1.00e+0

70% FID 28.11 28.52 11.32 11.97
MSE 2.74e−2 6.44e−6 9.63e−2 8.27e−6
SSIM 5.88e−1 9.97e−1 3.55e−1 1.00e+0

90% FID 53.35 55.23 17.82 19.73
MSE 1.32e−2 8.57e−2 7.43e−6 8.39e−2
SSIM 7.73e−1 4.07e−1 1.00e+0 4.21e−1

Table 5: Numerical results with and without inference-time clipping.

H.4 BADDIFFUSION WITH VARYING POISON RATES

The numerical results are shown in Tab. 6.

I MORE GENERATED SAMPLES IN DIFFERENT POISON RATES

I.1 CIFAR10 DATASET

We show more generated backdoor targets and clean samples in Fig. 11

J THE EFFECT OF THE TRIGGER SIZES

In this section, we conduct an ablation study on the effect of different trigger sizes. We resize the
trigger Grey Box (14× 14 used in the main paper) and Stop Sign (14× 14 used in the main paper)

17

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Poison Rate Trigger: Grey Box Stop Sign
Target: NoShift Shift Corner Shoe Hat NoShift Shift Corner Shoe Hat

0%
FID 14.83 14.83 14.83 14.83 14.83 14.83 14.83 14.83 14.83 14.83
MSE 1.21e−1 1.21e−1 1.06e−1 3.38e−1 2.41e−1 1.48e−1 1.48e−1 1.06e−1 3.38e−1 2.41e−1
SSIM 7.36e−4 4.72e−4 9.85e−4 1.69e−4 4.74e−5 6.84e−4 4.24e−4 9.85e−4 1.69e−4 2.74e−5

5% FID 9.09 9.09 9.92 8.22 8.53 8.09 8.22 8.83 8.33 8.32
MSE 6.19e−2 5.11e−2 5.32e−2 1.02e−1 1.58e−1 6.81e−2 5.68e−2 7.22e−2 1.66e−1 7.99e−2
SSIM 4.21e−1 5.06e−1 4.20e−1 6.26e−1 3.12e−1 4.35e−1 5.73e−1 2.65e−1 4.20e−1 6.52e−1

10% FID 9.62 9.78 10.98 8.41 8.81 7.62 7.42 7.83 7.48 7.57
MSE 6.11e−3 5.52e−3 2.60e−3 6.25e−3 7.01e−3 9.47e−3 5.91e−3 4.20e−3 3.61e−3 4.33e−3
SSIM 9.41e−1 9.45e−1 9.64e−1 9.75e−1 9.67e−1 9.18e−1 9.56e−1 9.49e−1 9.85e−1 9.80e−1

20% FID 11 .36 11.26 12.86 8.13 8.89 7.97 7.68 8.35 8.10 8.17
MSE 1.18e−5 7.90e−5 1.48e−4 1.97e−5 1.19e−5 2.35e−4 8.96e−5 7.09e−4 2.30e−5 4.85e−4
SSIM 9.98e−1 9.98e−1 9.96e−1 1.00e+0 1.00e+0 9.97e−1 9.99e−1 9.89e−1 1.00e+0 9.98e−1

30% FID 12.85 12.41 14.78 8.19 9.14 7.46 7.76 8.08 7.53 7.77
MSE 5.89e−6 1.61e−5 2.29e−5 5.53e−6 5.68e−6 5.59e−6 6.73e−6 6.14e−5 5.62e−6 9.16e−5
SSIM 9.98e−1 9.99e−1 9.98e−1 1.00e+0 1.00e+0 9.99e−1 9.99e−1 9.97e−1 1.00e+0 9.99e−1

50% FID 17.63 15.55 20.10 8.42 10.25 7.68 8.02 8.14 7.69 7.77
MSE 4.10e−6 6.25e−6 1.96e−5 3.26e−6 1.48e−5 4.19e−6 4.23e−6 2.37e−5 3.35e−6 1.30e−5
SSIM 9.98e−1 9.99e−1 9.97e−1 1.00e+0 1.00e+0 9.98e−1 9.99e−1 9.98e−1 1.00e+0 1.00e+0

70% FID 25.70 21.78 28.52 9.01 11.97 7.38 7.42 7.85 7.35 7.83
MSE 3.91e−6 1.22e−5 6.44e−6 2.69e−6 8.27e−6 3.96e−6 3.96e−6 1.41e−5 2.73e−6 3.21e−6
SSIM 9.98e−1 9.99e−1 9.97e−1 1.00e+0 1.00e+0 9.98e−1 9.99e−1 9.97e−1 1.00e+0 1.00e+0

90% FID 52.92 41.54 55.42 12.25 19.09 7.22 7.72 7.98 7.54 7.77
MSE 3.86e−6 5.98e−6 3.85e−6 2.38e−6 9.75e−6 3.80e−6 3.80e−6 3.86e−6 2.39e−6 2.81e−6
SSIM 9.98e−1 9.98e−1 9.97e−1 1.00e+0 1.00e+0 9.98e−1 9.99e−1 9.97e−1 1.00e+0 1.00e+0

Table 6: The numerical results of BadDiffusion with varying poison rates. Note that the results of
poison rate = 0% in the table are clean pre-trained models. We also fine-tune the clean pre-trained
models with a clean CIFAR10 dataset for 50 epochs and the FID score of it is about 28.59, which
is better than the pre-trained clean models. However, in comparison to the models fine-tuned on the
clean dataset, BadDiffusion still has competitive FID scores among them.

Poison Rate LR: 2e−4 1e−4 5e−5
Perturb Budget: 1.0 2.0 4.0 1.0 2.0 4.0 1.0 2.0 4.0

5% Best (Lowest) MSE 0.027 0.036 0.060 0.056 0.027 0.016 0.046 0.066 0.035
20% Best (Lowest) MSE 0.048 0.054 0.037 0.042 0.053 0.031 0.143 0.058 0.051
50% Best (Lowest) MSE 0.070 0.029 0.044 0.077 0.015 0.013 0.091 0.073 0.046

Table 7: The numerical results for ANP defense with varying perturbation budgets in reconstruction
MSE.

into 18 × 18, 11 × 11, 8 × 8, and 4 × 4 pixels. The triggers are shown in Tab. 9. In Fig. 12 and
Tab. 10 We find that for trigger Grey Box the MSE will become higher when the trigger is smaller.
As for Stop Sign, the MSE remains stable no matter how small the trigger is.

K MORE REAL-WORLD THREATS

Here we provide more potential threats in the real world. (I) In Bauer & Bindschaedler (2021),
generative models are used in security-related tasks such as Intrusion Attacks, Anomaly Detection,
Biometric Spoofing, and Malware Obfuscation and Detection. (II) In recent works such as Janner
et al. (2022); Wang et al. (2022); Pearce et al. (2023); Chen et al. (2022a); Baranchuk et al. (2022);
Chen et al. (2022b), diffusion models are widely used for decision-making in reinforcement learning,
object detection, and image segmentation, indicating potential threats to safety-critical tasks. (III)
A backdoored generative model can generate a biased dataset which may cause unfair models Choi
et al. (2020); Grover et al. (2019) and even datasets contain adversarial attacks Dolatabadi et al.
(2020).

18

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Poison Rate LR: 2e−4 1e−4 5e−5
Epoch: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

5% MSE 0.114 0.135 0.151 0.158 0.163 0.062 0.057 0.030 0.047 0.106 0.050 0.038 0.048 0.046 0.042
20% MSE 0.072 0.037 0.106 0.106 0.106 0.057 0.048 0.031 0.106 0.106 0.072 0.071 0.083 0.079 0.064
50% MSE 0.071 0.102 0.106 0.106 0.106 0.035 0.026 0.013 0.106 0.106 0.054 0.064 0.065 0.057 0.047

Table 8: The numerical results for ANP defense along training epochs in reconstruction MSE.

Dataset CIFAR10 (32 × 32)
Triggers Grey Box

Size 18× 18 14× 14 11× 11 8× 8 4× 4
Sample

Triggers Grey Box

Size 18× 18 14× 14 11× 11 8× 8 4× 4
Sample

Table 9: Visualized samples for different trigger sizes

Target Trigger: Grey Box Stop Sign
Trigger Size: 18× 18 14× 14 11× 11 8× 8 4× 4 18× 18 14× 14 11× 11 8× 8 4× 4

NoShift
FID 8.24 9.43 8.85 9.55 11.60 7.49 8.14 7.39 8.20 8.56
MSE 7.87e−3 6.27e−2 3.13e−2 6.80e−2 5.45e−2 4.05e−2 6.91e−2 4.69e−2 5.97e−2 8.56e−2
SSIM 9.39e−1 4.13e−1 6.87e−1 2.95e−1 4.11e−1 7.01e−1 4.28e−1 5.76e−1 4.33e−1 1.11e−1

Shift FID 8.42 9.11 8.84 9.11 10.67 7.56 8.27 8.28 8.26 9.46
MSE 9.93e−3 5.21e−2 6.52e−2 5.00e−2 7.02e−2 4.29e−2 5.77e−2 6.12e−2 2.23e−2 8.82e−2
SSIM 9.15e−1 4.96e−1 3.69e−1 4.87e−1 2.44e−1 7.31e−1 5.66e−1 5.20e−1 7.95e−1 9.54e−2

Corner FID 8.90 9.33 9.67 9.96 10.36 7.63 8.53 8.63 9.04 10.39
MSE 1.04e−2 5.41e−2 6.11e−2 6.86e−2 7.22e−2 4.94e−2 7.28e−2 4.91e−2 1.92e−2 9.81e−2
SSIM 8.86e−1 4.11e−1 3.80e−1 3.30e−1 3.15e−1 4.90e−1 2.60e−1 4.93e−1 7.98e−1 6.61e−2

Shoe FID 7.88 8.28 7.46 7.59 7.53 7.48 8.32 8.14 8.36 8.39
MSE 2.52e−2 1.04e−1 1.04e−1 2.08e−1 2.87e−1 1.39e−1 1.68e−1 1.12e−1 4.29e−2 2.05e−1
SSIM 8.99e−1 6.16e−1 6.49e−1 3.54e−1 1.37e−1 4.68e−1 4.13e−1 6.17e−1 8.59e−1 3.74e−1

Hat FID 8.13 8.51 8.01 7.81 7.90 7.50 8.31 8.22 8.58 8.67
MSE 1.33e−2 1.60e−1 1.55e−1 1.62e−1 2.33e−1 9.81e−2 8.16e−2 1.54e−1 1.50e−1 1.66e−1
SSIM 9.38e−1 3.06e−1 3.34e−1 3.11e−1 2.89e−2 5.38e−1 6.44e−1 3.35e−1 3.65e−1 2.93e−1

Table 10: The numerical results of BadDiffusion with varying trigger sizes.

19

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) CIFAR10, Trigger: Box, Target: NoShift (b) CIFAR10, Trigger: Box, Target: Shift

(c) CIFAR10, Trigger: Box, Target: Corner (d) CIFAR10, Trigger: Box, Target: Shoe

(e) CIFAR10, Trigger: Box, Target: Hat (f) CIFAR10, Trigger: Stop Sign, Target: NoShift

(g) CIFAR10, Trigger: Stop Sign, Target: Shift (h) CIFAR10, Trigger: Stop Sign, Target: Corner

(i) CIFAR10, Trigger: Stop Sign, Target: Shoe (j) CIFAR10, Trigger: Stop Sign, Target: Hat

Figure 11: Samples of CIFAR10

20

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

(a) Trigger: “Grey Box”

(b) Trigger: “Stop Sign”

Figure 12: FID (bars) and MSE (curves) of BadDiffusion with varying trigger sizes (x-axis) on
CIFAR10 with trigger (a) “Grey Box” and (b) “Stop Sign”. Colors of bars/curves represent different
target settings in Tab. 9. The numerical results are presented in Tab. 10

21

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

L THE MATHEMATICAL DERIVATION OF THE POSTERIOR OF THE
BACKDOORED DIFFUSION PROCESS

In this section, we’ll derive the posterior of the backdoored Diffusion Process q(x′
t−1|x′

t,x
′
0). Note

that the definition of the posterior q(xt−1|xt,x0) is an approximation to the real posterior de-
rived from the Gaussian transition q(xt|xt−1), which is mentioned in the papers Sohl-Dickstein
et al. (2015); Ho et al. (2020). The posterior of the backdoored diffusion process q(x′

t−1|x′
t,x

′
0),

which is also an approximation to the real posterior derived from the backdoored Gaussian transition
q(xt|xt−1).

q(x′
t−1|x′

t,x
′
0) := N (x′

t−1; µ̃
′
t(x

′
t,x

′
0, r), β̃I))

µ̃′
t(x

′
t,x

′
0, r) =

1
√
αt

(
x′
t(x

′
0, r, ϵ)− ρtr−

βt

δt
ϵ

)
β̃t =

1− ᾱt−1

1− ᾱt
βt

(16)

where ρt = (1−√
αt), δt =

√
1− ᾱt, and x′

t(x
′
0, r, ϵ) =

√
ᾱtxt+δtr+

√
1− ᾱtϵ for ϵ ∼ N (0, I),

which is a reparametrization of x′
t.

We can derive the posterior from scratch.

q(x′
t−1|x′

t,x
′
0) = q(x′

t|x′
t−1,x

′
0)
q(x′

t−1|x′
0)

q(x′
t|x′

0)

∝ exp

(
−1

2

(
(x′

t − ρtr−
√
αtx

′
t−1)

2

βt
−

(x′
t−1 − (1−√

ᾱt−1)r−
√
ᾱt−1x

′
0)

2

1− ᾱt−1

+
(x′

t − (1−
√
ᾱt)r−

√
ᾱtx

′
0)

2

1− ᾱt

)) (17)

We gather the terms related to x′
t−1 and represent the terms that not involving x′

t−1 as C(x′
t,x

′
0)

= exp

(
−1

2

((
αt

βt
+

1

1− ᾱt−1

)
x′2
t−1 − 2

(
x′
t

√
αt

βt
+

x′
0

√
ᾱt−1

1− ᾱt−1

+

(
(1−√

ᾱt−1)

1− ᾱt−1
−

√
αt(1−

√
αt)

βt

)
r

)
x′
t−1+C(x′

t,x
′
0)

)) (18)

Since we take q(x′
t−1|x′

t,x
′
0) as a Gaussian distribution, we approximate the distribution with mean

µ̃′
t(x

′
t,x

′
0) and variance β̃t defined as

β̃t :=
1

αt

βt
+ 1

1−ᾱt−1

=
1

αt−ᾱt+βt

βt(1−ᾱt−1)

=
1− ᾱt−1

1− ᾱt
βt (19)

To derive the mean, we reparametrize the random variable x′
t = x′

t(x
′
0, r, ϵ). Here we mark the

additional terms of BadDiffusion in red. We can see that BadDiffusion adds a correction term to the
diffusion process. We mark the correction term of BadDiffusion as red.

µ̃′
t(x

′
t,x

′
0) :=

((√
αt

βt
x′
t(x

′
0, r, ϵ) +

√
ᾱt−1

1− ᾱt−1
x′
0

)
+

(
1−√

ᾱt−1

1− ᾱt−1
−

√
αt(1−

√
αt)

βt

)
r

)
/(

αt

βt
+

1

1− ᾱt−1
)

(20)

=

((√
αt

βt
x′
t(x

′
0, r, ϵ) +

√
ᾱt−1

1− ᾱt−1
x′
0

)
+

(
1−√

ᾱt−1

1− ᾱt−1
−

√
αt(1−

√
αt)

βt

)
r

)
1− ᾱt−1

1− ᾱt
· βt

(21)

=

(√
αt (1− ᾱt−1)

1− ᾱt
x′
t(x

′
0, r, ϵ) +

√
ᾱt−1βt

1− ᾱt
x′
0

)
+

(
βt(1−

√
ᾱt−1)

1− ᾱt
−

√
αt(1−

√
αt)(1− ᾱt−1)

1− ᾱt

)
r

(22)

22

Published at ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning

Replace x′
0 with the 1√

ᾱt
(x′

t(x
′
0, r, ϵ)− (1−

√
ᾱt)r−

√
1− ᾱtϵ), which is the reparametrization of

x′
0 derived from x′

t(x
′
0, r, ϵ).

=

(√
αt (1− ᾱt−1)

1− ᾱt
x′
t(x

′
0, r, ϵ) +

√
ᾱt−1βt

1− ᾱt

(
1√
ᾱt

(x′
t(x

′
0, r, ϵ)−

√
1− ᾱtϵ)

))
+

(
βt(1−

√
ᾱt−1)

1− ᾱt
−

√
αt(1−

√
αt)(1− ᾱt−1)

1− ᾱt
−

√
ᾱt−1βt(1−

√
ᾱt)

(1− ᾱt)
√
ᾱt

)
r

(23)

=
1

√
αt

(
x′
t(x

′
0, r, ϵ)−

βt√
1− ᾱt

ϵ

)
+

(
βt(

√
αt −�

��√
ᾱt)− αt(1−

√
αt)(1− ᾱt−1)− βt(1−�

��√
ᾱt)

(1− ᾱt)
√
αt

)
r

(24)

=
1

√
αt

(
x′
t(x

′
0, r, ϵ)−

βt√
1− ᾱt

ϵ

)
+

(
βt(

√
αt − 1)− (

√
αt − 1)(ᾱt − αt)

(1− ᾱt)
√
αt

)
r (25)

=
1

√
αt

(
x′
t(x

′
0, r, ϵ)−

βt√
1− ᾱt

ϵ

)
+

(
(
√
αt − 1)����(1− ᾱt)

����(1− ᾱt)
√
αt

)
r (26)

=
1

√
αt

(
x′
t(x

′
0, r, ϵ)−

βt√
1− ᾱt

ϵ

)
− 1
√
αt

(1−
√
αt)r (27)

Denote ρt = 1−√
αt and we get

=
1

√
αt

(
x′
t(x

′
0, r, ϵ)− ρtr−

βt√
1− ᾱt

ϵ

)
(28)

23

	Introduction
	BadDiffusion: Methods and Algorithms
	Performance Evaluation
	Evaluation Metrics
	BadDiffusion Experiment Results

	Conclusion
	Related Work
	Diffusion Models
	Backdoor Attacks and Defenses
	Backdoor Attack on Generative Models

	BadDiffusion: Methods and Algorithms
	Threat Model and Attack Scenario
	Denoising Diffusion Probabilistic Model
	Backdoored Diffusion Process
	Algorithm and Loss Function

	Additional Analysis on BadDiffusion with Fine-tuning
	Countermeasures
	Inference-Time Clipping
	Defense Evaluation using ANP
	Implementation Details
	Metrics for Trojan Detection
	The Effect of the Perturbation Budget and the Training Epochs

	BadDiffusion on Inpainting Tasks
	Analysis of Inference-Time Clipping
	BadDiffusion on Advanced Samplers
	Numerical Results of the Experiments
	BadDiffusion via Fine-Tuning v.s. Training-From-Scratch
	BadDiffusion on High-Resolution Dataset
	Inference-Time Clipping
	BadDiffusion with Varying Poison Rates

	More Generated Samples in Different Poison Rates
	CIFAR10 Dataset

	The Effect of the Trigger Sizes
	More Real-World Threats
	The Mathematical Derivation of The Posterior of The Backdoored Diffusion Process

