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ABSTRACT

In this paper, we present a deep neural network designed
for sampling-assisted pathloss radio map prediction, devel-
oped in the context of the MLSP 2025 “Sampling-Assisted
Pathloss Radio Map Prediction Data Competition.” The pro-
posed model is built upon a U-Net encoder–decoder archi-
tecture and incorporates an enhanced Transformer module to
strengthen global feature modeling capabilities. The network
is trained on radio map data with sparsely sampled pathloss
values. Experimental results show that our method achieves
a weighted root mean square error (wRMSE) of 4.94 dB
across both competition tasks, ranking third overall among
all participating teams. These results highlight the model’s
strong prediction accuracy and generalization performance,
particularly under sparse sampling conditions.

Index Terms— Wireless communications, Radio map
prediction, Indoor pathloss, Channel model, Deep neural
network

1. INTRODUCTION

In recent years, with the increasing complexity and diversity
of wireless communication systems, there has been a grow-
ing interest in high-accuracy prediction of radio maps. A ra-
dio map describes the spatial distribution of wireless chan-
nel characteristics over a geographical area, and holds great
potential for a variety of critical applications, such as high-
precision localization [1], base station deployment optimiza-
tion, UAV relay node positioning, and intelligent path plan-
ning [2]. However, due to complex environmental factors
such as building obstructions, multipath effects, and dynamic
scene changes, accurately modeling and efficiently predicting
radio maps remains a highly challenging task.

1.1. Radio Map Prediction

Existing radio map prediction methods can generally be cat-
egorized into three types: deterministic models, empirical
models, and data-driven models. Deterministic models rely
on electromagnetic propagation theory, explicitly modeling

physical effects such as scattering, reflection, and diffraction
to calculate pathloss. For instance, ray tracing methods [3]
can provide highly accurate predictions under ideal condi-
tions but are computationally expensive and difficult to scale
to large or real-time applications.

In contrast, empirical models [4, 5] are based on simpli-
fied assumptions and statistical correlations between pathloss
and parameters such as distance, antenna height, and fre-
quency. While they offer fast estimation, their lack of adapt-
ability to complex and dynamic environments often results
in significant prediction errors. Similarly, traditional data-
driven approaches, such as the K-Nearest Neighbors (KNN)
algorithm, also suffer from degraded interpolation accuracy
under sparse sampling or complex terrain conditions.

With the advancement of deep learning, researchers have
begun leveraging neural networks to model wireless propa-
gation patterns. Studies have shown that convolutional neural
networks (CNNs) and U-Net-based models [6] can achieve
high prediction accuracy and computational efficiency when
trained on sufficiently large datasets [7, 8]. Furthermore,
recent work [9, 10] has explored integrating semantic en-
vironmental information—such as building layouts and el-
evation maps—into machine learning models for pointwise
pathloss estimation, offering promising pathways toward
high-resolution and robust radio map construction.

1.2. Scope of The Challenge

To advocate further research in this direction and facilitate
fair comparisons in the development of DL-based radio prop-
agation models in the less explored case of PL radio maps
in indoor environments, the Sampling-Assisted Pathloss Ra-
dio Map Prediction Data Competition [11] was launched at
MLSP 2025, aiming to encourage researchers to explore high-
resolution indoor pathloss prediction using ground truth PL
samples with varying sampling rates from the propagation en-
vironment. The competition is divided into two tasks:

• Task 1 evaluates model performance under randomly
selected sampling points, assessing the predictive ca-
pability without sampling strategy optimization;
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• Task 2 requires participants to design their own sam-
pling strategies under a fixed sampling budget, investi-
gating how to distribute samples optimally to improve
overall prediction accuracy.

1.3. Our Contribution

In response to these tasks, this paper proposes a deep neu-
ral network architecture that integrates an enhanced Trans-
former module. Inspired by previous work [7, 12], the pro-
posed model is based on the U-Net framework and incorpo-
rates attention mechanisms with stronger spatial modeling ca-
pabilities. The goal is to improve prediction accuracy with
the assistance of sparsely sampled ground-truth data and to
validate the generalizability of the model in complex radio
propagation environments. The proposed method is system-
atically evaluated in the MLSP 2025 The Sampling-Assisted
Pathloss Radio Map Prediction Competition [11]. The main
contributions of this study are summarized as follows:

• We propose a U-Net-based model with enhanced
Transformer modules for efficient sparse sampling-
assisted prediction, demonstrating superior spatial
modeling and generalization performance.

• We develop a spatial structure-aware sampling strategy
that optimizes sampling point distribution under limited
sample rates, yielding improved prediction accuracy.

• Our method achieves a weighted root mean square er-
ror (wRMSE) of 4.94 dB and ranks third in the compe-
tition, demonstrating strong effectiveness and robust-
ness.

2. SYSTEM MODEL

2.1. Radio Map Prediction Model

To enable accurate and efficient radio map prediction under
limited sampling conditions, we design a lightweight and
high-performance deep learning architecture. The proposed
network is composed of three core components: (1) a U-Net-
style encoder–decoder backbone, (2) an optimized attention
module, and (3) a modified feed-forward network (FFN)
module of the Transformer.

U-Net-Based Encoder–Decoder Framework. U-Net
was originally introduced for medical image segmentation
[6]. Its typical encoder–decoder structure, combined with
skip connections, enables effective retention of spatial detail
while maintaining a compact, efficient, and trainable archi-
tecture. Due to these advantages, U-Net has been widely
adopted in various computer vision tasks. Notably, [7] was
the first to systematically adapt the U-Net framework for
radio map prediction, modeling the spatial characteristics of
pathloss and achieving significant performance improvements

across multiple evaluation metrics. This work demonstrated
the applicability of U-Net in wireless propagation modeling
and has since served as a foundational benchmark in deep
learning-based radio map prediction.

However, traditional U-Net relies heavily on convolu-
tional neural networks (CNNs), whose inherently limited
receptive fields constrain their ability to model long-range de-
pendencies and complex spatial relationships. In contrast to
CNN-based U-Net architectures with limited receptive fields,
Transformer-based models can effectively capture global spa-
tial dependencies [13], which is crucial for accurate radio
map prediction in complex indoor environments.

To address this challenge, we enhance the U-Net structure
by incorporating Transformer modules with attention mecha-
nisms. Compared to pure CNNs, Transformers offer stronger
global modeling capabilities and are more effective at cap-
turing long-range dependencies and spatial context. By inte-
grating Transformer blocks within the U-Net architecture, our
model retains the high efficiency and hierarchical reconstruc-
tion capacity of U-Net, while significantly improving its abil-
ity to represent global propagation patterns. This enhance-
ment ultimately leads to improved prediction accuracy and
generalization performance in pathloss estimation tasks.

As shown in Fig. 2, the model takes as input a four-
channel matrix:

X = [R,T,D,P] ∈ RH×W×4

where R, T, D represent the reflection coefficient, trans-
mission coefficient, and distance from the transmitter to each
point on the grid, respectively. P denotes the ground-truth
pathloss values at sampled points, with other entries masked
or set to zero. To ensure input consistency for neural network
processing, all radio map images are resized to a standardized
resolution of 256×256 pixels, which facilitates uniform batch
training

The initial feature extraction is performed by a shallow
convolutional module:

F0 = ϕinit(X) ∈ RH×W×C

where ϕinit(·) denotes a set of convolutional layers, and C
is the number of output channels, which is set to 48 in our
implementation.

The extracted feature F0 is passed through a Transformer-
based multi-layer U-Net encoder, producing a latent represen-
tation: Fl ∈ RH

8 ×W
8 ×8C The decoder then progressively up-

samples and concatenates features with their encoder counter-
parts via skip connections to generate the final output: FN ∈
RH×W×2C . In this encoder–decoder architecture, the en-
coder reduces spatial resolution and increases feature dimen-
sionality layer by layer to extract high-level semantic features.
The decoder reverses this process via upsampling while re-
ducing the channel dimension. Skip connections are estab-
lished between each encoder and decoder layer to preserve
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Fig. 1. Overview of the proposed model. The model integrates an encoder–decoder backbone with skip connections, an efficient
attention module replacing standard self-attention with depthwise and 1×1 convolutions, and a gated feed-forward network for
dynamic feature modulation. The input includes four-channel features, and the output is a high-resolution pathloss prediction
map.

(d) Sample points(a) Reflection coefficient (b) Transmission coefficient (c) Distance input

Fig. 2. Input Features. The four input channels are (a) the
reflection and (b) transmission coefficients at each point of
the grid, (c) the distance between Tx and each point, while
the (d) is ground-truth pathloss values at sampled points.

fine-grained spatial details. Before concatenation, all skip
connection features are processed with 1× 1 convolutions to
ensure channel alignment. This design mitigates information
loss during fusion and enhances the model’s ability to recover
structural and boundary features.

Optimized Attention Module. In Transformer architec-
tures, the self-attention mechanism is a powerful component
for capturing global contextual dependencies. However, its
computational complexity scales quadratically with respect
to the input sequence length. Specifically, for a sequence of
length n, the standard self-attention requires the computation
of an n × n attention matrix, modeling interactions between
all token pairs. This introduces significant computational and
memory overhead, particularly in high-resolution inputs or
long-sequence scenarios.

To mitigate this bottleneck, we adopt a structurally op-
timized attention mechanism inspired by the design in [12].
In our proposed design, the conventional fully connected lin-

ear layers in the self-attention module are replaced with a
combination of lightweight 1× 1 pointwise convolutions and
depthwise separable convolutions. This modification reduces
the number of parameters and computational cost, effectively
lowering the attention complexity from O(n2) to O(n).

As illustrated in Fig. 1, the optimized attention module
maintains the ability to model long-range dependencies while
significantly improving inference efficiency and scalability.
Furthermore, the decreased memory footprint renders this ar-
chitecture well-suited for deployment in resource-constrained
environments, facilitating large-scale and real-time radio map
prediction.

Optimized Feed-Forward Network (FFN) Module. To
further enhance computational efficiency, we also redesign
the Feed-Forward Network (FFN) module within the Trans-
former blocks. Instead of conventional fully connected lay-
ers, we employ a hybrid of 1 × 1 pointwise convolutions
and depthwise convolutions. This configuration preserves ex-
pressive capacity while substantially reducing computational
overhead.

Moreover, we incorporate a gating mechanism to dynam-
ically regulate the flow of information. This gating struc-
ture enables the network to adaptively weight the features
extracted from the attention module, thus allowing it to han-
dle complex and diverse spatial feature distributions. The de-
tailed structure of this gated FFN module is presented in the
pink box of Fig. 1.

Together, these architectural enhancements yield a more
efficient and scalable Transformer framework, optimized for
high-resolution spatial prediction tasks such as radio map es-
timation.



2.2. Sampling Point Selection Strategy

To ensure uniform spatial coverage when selecting sampling
points from an input floor plan, we employ a stratified sam-
pling strategy. In this approach, the floor plan is represented
as a binary image, where pixels corresponding to free space
(e.g., air) are labeled as 1, indicating valid sampling locations,
and pixels corresponding to obstacles (e.g., walls, doors) are
labeled as 0, indicating invalid sampling locations. The goal
is to select k sampling points that are evenly distributed across
the accessible areas of the floor plan.

To achieve this, we divide the floor plan into a uniform
grid of s × s cells, where s = ⌈

√
k⌉. Within each cell, we

randomly select one valid sampling point (i.e., a pixel labeled
as 1). This process ensures that sampling points are spread
across the entire floor plan, capturing spatial variations effec-
tively.

However, due to the presence of obstacles, some grid cells
may not contain any valid sampling points. To address this,
we implement the following fallback strategies:

• Case 1: Too many valid points. If the number of se-
lected sampling points exceeds k, we perform random
downsampling to reduce the set to exactly k points.
This ensures uniform coverage across strata while
maintaining randomness, and avoids bias toward large
or dense cells.

• Case 2: Too few valid points. If fewer than k points
are selected—often due to some grid cells containing
no valid pixels—we randomly sample additional points
from the remaining unselected but valid pixels across
the image until we reach k. This fallback preserves spa-
tial diversity by drawing from under-sampled regions.

As shown in Fig. 3, consider a floor plan image of size
256 × 256 pixels with a sampling ratio ρ = 0.0002 (i.e.,
0.02%). This results in k = ⌈256 · 256 · 0.0002⌉ = 14 sam-
pling points. Accordingly, we set s = ⌈

√
14⌉ = 4, dividing

the image into a 4 × 4 grid (each cell being 64 × 64 pixels).
We then randomly select one valid sampling point from each
of the 16 grid cells. If all cells contain valid points, we ran-
domly downsample the 16 points to 14. If some cells lack
valid points, we randomly select additional valid points from
the remaining unselected valid pixels to ensure a total of 14
sampling points.

This stratified sampling approach ensures that the selected
sampling points are uniformly distributed across the accessi-
ble areas of the floor plan, effectively capturing the spatial
structure and variations of the environment.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1. Dataset

The dataset used in this challenge is based on [14], which con-
tains indoor pathloss (PL) radio maps generated using Ran-

Input Floor Plan 4×4 Grid Cells

Fig. 3. Sampling Point Selection Strategy

plan Wireless ray-tracing software. The competition use the
Task 2 subset, consisting of 3750 radio maps from 25 in-
door environments with diverse sizes, materials (e.g., con-
crete, drywall, wood, glass, metal), and three frequency bands
(868 MHz, 1.8 GHz, 3.5 GHz, denoted as f1, f2, f3). The test
set includes 200 maps from 5 unseen layouts under the 868
MHz band, each with 50 randomly placed transmitter loca-
tions.

3.2. Experimental Setup and Time Evaluation

All experiments were conducted using the PyTorch frame-
work on an NVIDIA RTX 3090 GPU. For both tasks, the
challenge dataset [14] was divided into training and valida-
tion sets based on indoor environments, with approximately
22 environments used for training and 3 reserved for valida-
tion. The detailed experimental configurations are summa-
rized in Table 1.

It is worth noting that training was performed using data
from all three center frequencies (868 MHz, 1.8 GHz, and 3.5
GHz) allowing the model to learn from a diverse set of prop-
agation characteristics across different spectral bands. Al-
though the test set includes only data at 868 MHz, this design
choice was made to enhance the model’s generalization abil-
ity and robustness to variations in frequency-dependent signal
behavior.

Table 1. Experiment settings.
Hyperparameter Value

Learning rate 3e-4
Batch size 1
Optimizer Adam

Maximum of epochs 100
Loss function L1 Loss
N1, N2, N3, N4 4,6,6,8

The training time for both Task 1 and Task 2 was approx-
imately 8 hours. During inference, we measured the time
to process 100 test images, and found that on average, our
model required approximately 135 ms per image, including
data loading and prediction, on the RTX 3090 GPU.
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Fig. 4. Qualitative results on a validation set under selected
samples. The first column shows the structural layouts of two
indoor scenarios, followed by the ground-truth pathloss dis-
tribution. The third and fourth columns illustrate the model’s
predictions using 0.5% and 0.02% sampling rates, respec-
tively.

3.3. Experimental Results

Fig. 4 presents illustrative qualitative results on the held-out
validation set under selected samples. It can be observed that
under both sampling conditions, the proposed model effec-
tively reconstructs the global propagation structure, including
signal decay and shadowing effects around obstacles. No-
tably, even at the extremely sparse 0.02% sampling rate, the
model still maintains spatial coherence and captures key prop-
agation patterns, albeit with slightly reduced detail compared
to the 0.5% setting. This demonstrates the robustness and
generalization ability of the proposed method under low-data
regimes, and highlights the benefit of the designed sampling
strategy in guiding effective pathloss estimation with minimal
supervision. In addition, our method was evaluated by the
competition organizers on a hidden test set comprising three
representative indoor environments under a single frequency
band. As reported in Table 2, the model achieved a third-place
ranking among all participating teams, further validating its
predictive accuracy and strong generalization performance.

Table 2. Quantitative Results.
Task RMSE (dB)

Task1 (0.02%) 6.36
Task1 (0.50%) 3.57
Task2 (0.02%) 6.27
Task2 (0.50%) 3.52

Final (Weighted) 4.94

As shown in Table 2, our proposed sampling strategy con-
sistently outperformed the baseline random sampling method
in Task 1, achieving an average improvement of approxi-
mately 2% across different sample rate. These results vali-

date the effectiveness of our approach under various sampling
conditions.

Table 3. Comparison Under Different Sampling Rates.
Sample Rate RMSE (dB)

0.00% 7.00
0.02% 6.27
0.50% 3.52

In addition, the competition organizers evaluated our
model’s performance on the test set both with selected sam-
pling assistance and without any sampling guidance. As
shown in Table 3, even without any sampling guidance, our
Transformer-enhanced U-Net model achieved an RMSE of
7.00 dB, demonstrating its strong capacity to capture both
global propagation trends and local detail. Introducing sam-
pling guidance further boosted performance, yielding sig-
nificantly better predictions across all evaluation metrics.
Moreover, as the number of sampled points increased, the
model’s accuracy improved accordingly. These findings un-
derscore that true sampling points, when used as supervision
signals, can effectively guide the model in learning spatial
pathloss patterns—enhancing its representational power and
generalization in complex propagation environments. Thus,
incorporating high-quality measurement samples, even in
limited quantities, remains of practical and strategic value in
real-world applications.

4. FUTURE WORK

Although the proposed method demonstrates promising ex-
perimental performance, there remain several areas for poten-
tial improvement. First, to enable batch training with uniform
input dimensions, all radio map images were resized to a fixed
resolution of 256×256. This resizing step may distort the un-
derlying spatial characteristics of wireless signal propagation
and hinder the model’s ability to fully capture the physical
laws of pathloss attenuation, thereby affecting prediction ac-
curacy. In future work, we plan to explore position encoding
and related techniques to mitigate the impact of resolution
standardization and preserve spatial fidelity.

Second, in this study, the sampled pathloss values were
directly fed into the neural network without additional pro-
cessing. We believe that this approach does not fully exploit
the spatial and contextual information embedded in the sam-
pled points. To address this limitation, we intend to incor-
porate techniques such as spatial potential fields or loss fields
[15] to better represent and utilize sampling information. This
could help the model more effectively learn propagation pat-
terns and further enhance prediction performance.

Third, although our current sampling strategy already
achieves a balanced spatial distribution, it does not yet fully
adapt to heterogeneous room structures. In future work, we



plan to further investigate room-aware sampling methods
that dynamically adjust the sampling strategy according to
individual room geometry, size, or material characteristics.

5. CONCLUSION

In this paper, we proposed a Transformer-enhanced model for
indoor radio map prediction, developed in the context of the
MLSP 2025 Sampling-Assisted Pathloss Radio Map Predic-
tion Data Competition. Our model achieved an wRMSE of
4.94 dB on the hidden test set and ranked third overall among
all participating teams. The experimental results and final
ranking demonstrate that the proposed method is effective and
well-suited for sampling-assisted pathloss radio map predic-
tion tasks.
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