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ABSTRACT

Multimodal brain graph fusion enables the integration of structural and functional
information from multiple neuroimaging modalities to advance brain graph analy-
sis. However, existing methods struggle to simultaneously capture (1) intra-modal
dependencies (modality-specific topological information) and (2) inter-modal cor-
relations (structural-functional coupling information), both of which are essential
attributes specific to multimodal brain graph fusion. This limitation leads to in-
adequate brain structural-functional information fusion, ultimately failing to cor-
rectly reflect the true brain organization. To fill this gap, this paper proposes a
novel Cross-modal Brain Graph Diffusion (Xdiff) approach. Xdiff presents a dual
graph diffusion mechanism with intra- and inter-modal diffusion modules to cap-
ture intra-modal dependencies and inter-modal correlations, respectively. During
the diffusion processes, we use an energy constraint function to ensure diffusion
consistency, thereby enhancing model stability of learning from multimodal brain
graphs. Furthermore, we design a prompt-based fusion strategy to flexibly in-
tegrate multimodal features for robust fusion. Empirically, Xdiff achieves state-
of-the-art performance on three datasets for brain disorder detection tasks, with
accuracy improvements of 4.6%, 2.5%, and 5.6%, respectively1.

1 INTRODUCTION

Along with the rapid advancement of neuroimaging technologies, brain graph analysis has evolved
from solely relying on unimodal data to integrating multimodal data for enriched information extrac-
tion (Zheng et al., 2022; Qiu et al., 2024; Peng et al., 2024b; Wei et al., 2025). Therefore, multimodal
fusion has stood as a prominent trend in various brain graph analysis tasks, such as brain disorder de-
tection and prediction (Cai et al., 2023; Zhang et al., 2024a). Many existing multimodal brain graph
fusion studies primarily focus on structural-functional fusion (Popp et al., 2024), where structural
brain graphs (SBGs), derived from modalities such as diffusion tensor imaging (DTI), are fused with
functional brain graphs (FBGs), typically constructed from functional magnetic resonance imaging
(fMRI) (Peng et al., 2025; Yu et al., 2025).

Two essential attributes of structural-functional brain graph fusion are (1) intra-modal dependencies
and (2) inter-modal correlations. First, SBGs and FBGs exhibit distinct intra-modal dependencies
reflecting their heterogeneous topologies (Lynn & Bassett, 2019). Capturing the specific intra-modal
dependencies within each graph can effectively encode modality-specific topological information,
which is crucial for multimodal brain graphs. Second, as brain functional and structural connec-
tivity are tightly coupled (Atasoy et al., 2016; Seguin et al., 2023), it is essential to encode the
structural-functional coupling information by capturing their inter-modal correlations (Yang et al.,
2024). Although existing multimodal brain graph fusion methods have demonstrated significant
achievements, they struggle to simultaneously capture intra-modal dependencies and inter-modal
correlations. This limitation results in inadequate brain structural–functional information fusion,
yielding representations that do not correctly reflect brain organization and hamper model perfor-
mance on various clinical tasks.

In general, fusion methods can be divided into two categories: separate graph representation-based
fusion (Ye et al., 2024) and joint graph representation-based fusion (Chen et al., 2022; Cai et al.,
2023; Song et al., 2023). Separate graph representation-based fusion methods first learn the repre-
sentation of each graph independently, preserving their specific intra-modal dependencies, and then

1The code is available at: https://anonymous.4open.science/r/Xdiff
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perform the fusion operation (Figure 1 (a)). For example, RH-BrainFS (Ye et al., 2024) models the
specific regional topologies of SBGs and FBGs through subgraph sampling and employs two sepa-
rate Transformers to learn their representations prior to fusion. Although these methods are effective
in retaining intra-modal dependencies, their independent learning mechanism limits the ability to
capture inter-modal correlations during the representation learning phase. In contrast, joint graph
representation-based fusion methods integrate two graphs into a unified framework to jointly learn
multimodal representations, facilitating the extraction of inter-modal correlations (Figure 1 (b)). For
instance, Cross-GNN (Yang et al., 2024) enables joint multimodal learning by constructing a unified
dynamic graph that integrates both functional and structural features, along with their inter-modal
correlations. However, as these methods integrate multimodal graphs into a shared representation
space, they can smooth or dilute the modality-specific topology (intra-modal dependency) of each
graph.
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Figure 1: Illustration of different fusion
methods.

To fill this gap, this paper proposes a new Cross-
modal Brain Graph Diffusion (Xdiff) that enables
more effective brain structural–functional informa-
tion fusion by simultaneously capturing intra-modal
dependencies and inter-modal correlations (Figure 1
(c)). We first propose a dual graph diffusion mecha-
nism, which incorporates both intra-modal diffusion
and inter-modal diffusion. These two diffusion pro-
cesses facilitate intra- and inter-modal feature flow
to effectively capture intra-modal dependencies and
inter-modal correlations, respectively. Meanwhile,
we use an energy constraint function to ensure con-
sistent feature propagation throughout both diffusion
processes, thereby enhancing model stability. Then,
we design a prompt-based fusion strategy, namely
PF, leveraging prompt tuning to enable robust multi-
modal fusion. Particularly, for each modality, we design a tailored fusion prompt to embed modality-
specific cues and flexibly fuse multimodal features.

Contribution: (1) We propose a novel cross-modal brain graph diffusion approach, Xdiff, which
introduces a dual graph diffusion mechanism to simultaneously capture intra-modal dependencies
and inter-modal correlations, enabling more effective brain structural–functional information fusion.
(2) We develop a prompt-based fusion strategy to flexibly integrate multimodal features, therefore
enhancing the robustness of fusion. (3) Extensive experimental results show the superiority of our
model compared to state-of-the-art methods on various brain disorder detection tasks.

2 RELATED WORK

Multimodal Brain Graph Fusion. In brain graph analysis, reliance on a single modality often
fails to capture features from both brain structure and function, hampering the model’s capacity to
represent the intricate nature of the brain (Qiu et al., 2024; Qu et al., 2021; Cho et al., 2024b; Xu
et al., 2025). Multimodal brain graph fusion, particularly structural-functional brain graph fusion,
offers a promising solution, enabling more robust and effective brain data analysis, such as brain
disorder detection and prediction (Yang et al., 2023a; Cai et al., 2023; Zhang et al., 2024a). For
example, Wen et al. (Wen et al., 2024) analyzed brain age gaps from both brain structure (e.g., grey
matter volume and white matter microstructure) and brain functional connectivity to investigate the
genetic architecture of brain ageing. RH-BrainFS (Ye et al., 2024) addresses regional heterogeneity
in structural and functional brain graphs based on subgraph sampling and Transformer-based fusion
bottleneck. MMP-GCN (Song et al., 2023) integrates both fMRI and DTI data while also consid-
ering patient demographic and clinical data to construct brain graph topology for early Alzheimer’s
disease diagnosis. MTAN (Zhu et al., 2022) introduces a self-attention mechanism to extract high-
order representations from fMRI and DTI for epilepsy diagnosis. Cross-GNN (Yang et al., 2024)
utilizes dynamic brain graphs with mutual learning to capture multimodal associations, extracting
inter-modal correlations between brain function and structure. However, these methods face chal-
lenges in capturing both intra-modal dependencies and inter-modal correlations of multimodal brain
graphs. To address this issue, we propose Xdiff that can simultaneously capture intra-modal depen-
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Figure 2: The overall framework of Xdiff.

dencies and inter-modal correlations, enabling more effective brain structural-functional information
fusion. More related works about the graph diffusion model and prompt tuning are discussed in Ap-
pendix C.

3 PRELIMINARIES

Graph Diffusion. Given a graph G = (A,X), following the heat diffusion on a Riemannian man-
ifold, the diffusion process considers all nodes collectively and enables continuous feature flow
across nodes. The state (e.g., representation) of node i at time t can be defined as a vector-valued
function: hi(t) : [0,∞] → Rd, where the initial state hi(0) = xi ∈ X. The diffusion process
describes the evolution of node states through a partial differential equation (PDE) with specified
boundary conditions:

∂H(t)

∂t
= D(A(t)⊙∇H(t)). (1)

Here, H(t) = {hi(t)}Ni=1, and A(t) is the diffusion flow coefficient matrix, which controls the
diffusion strength between pairs of nodes at time t. Initially, A(0) = A is the adjacency matrix of
G. ⊙ indicates Hadamard product, and gradient operator ∇ denotes the difference between nodes.
D represent the operator that sums up feature flows at time t. For node i, the temporal change of
heat corresponds to the summation of heat changes across its neighboring nodes in space. Eq. (1)
can be explicitly written as:

∂hi(t)

∂t
=

N∑
j=1

aij(t)[hj(t)− hi(t)], (2)

where aij(t) ∈ A(t), and N is the number of nodes.

4 METHODOLOGY

4.1 PROBLEM DEFINITION

For a given sample containing an SBG Gs = (As,Xs) and an FBG Gf = (Af ,Xf ), the goal
of our model is to fuse Gs and Gf while retaining their specific intra-modal dependencies and
extracting inter-modal correlations. The feature matrices Xs ∈ RN×d and Xf ∈ RN×d represent
node features, where N is the node number and d is the feature dimension. Each node is a region
of interest (ROI) in the brain. As ∈ RN×N and Af ∈ RN×N indicate the adjacency matrices of
SBG and FBG, respectively. Notably, the ROIs in the two graphs are defined using the same atlas.
Therefore, nodes correspond one-to-one in the two graphs, with the same number of nodes in each.
Figure 2 demonstrates the overall framework of Xdiff.

3
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4.2 DUAL GRAPH DIFFUSION MECHANISM

4.2.1 INTRA- AND INTER-MODAL DIFFUSION

To extend the graph diffusion process to multimodal brain graph scenarios, we design a dual graph
diffusion mechanism comprising intra-modal diffusion and inter-modal diffusion. Particularly, the
intra-modal diffusion facilitates feature flows within each graph, while the inter-modal diffusion
enables feature flows between the two modalities.

Given a sample containing a Gs = (As,Xs) and a Gf = (Af ,Xf ), Our dual graph diffusion
mechanism reformulates Eq. (2) to accommodate the multimodal scenario. The dual graph diffusion
process can be expressed as:

∂hs
i (t)

∂t
=

N∑
j=1

sij(t)[h
s
j(t)− hs

i (t)]︸ ︷︷ ︸
1 intra-modal diffusion in Gs

+ csi (t)[h
f
i (t)− hs

i (t)]︸ ︷︷ ︸
2 inter-modal diffusion from Gs to Gf

,

∂hf
i (t)

∂t
=

N∑
j=1

fij(t)[h
f
j (t)− hf

i (t)]︸ ︷︷ ︸
3 intra-modal diffusion in Gf

+ cfi (t)[h
s
i (t)− hf

i (t)]︸ ︷︷ ︸
4 inter-modal diffusion from Gf to Gs

.

(3)

Here, hs
i (0) = xs

i ∈ Xs and hf
i (0) = xf

i ∈ Xf . sij(t) and fij(t) denote the intra-modal diffu-
sion flow coefficients between nodes i and j within graph Gs and graph Gf , respectively, at time
t. The initial value sij(0) and fij(0) are directly derived from the adjacency matrices of the cor-
responding graphs. For example, sij(0) = asij ∈ As and fij(0) = afij ∈ Af . sij(t) and fij(t)

dynamically change over time as they are governed by the diffusion process. Meanwhile, csi (t) rep-
resents the inter-modal diffusion flow coefficient of node i from graph Gs to graph Gf at time t,
while cfi (t) represents the flow coefficient from Gf to Gs. csi (t) and cfi (t) are the correlations be-
tween node representations from Gs and Gf . Particularly, we employ an attention-based mechanism
to calculate these inter-modal diffusion flow coefficients, denoted as: csi (t) = σ(Qs

i (t) · K
f
i (t)),

cfi (t) = σ(Qf
i (t) ·Ks

i (t)). σ(·) is the sigmoid function. Q and K represent the query and key ma-
trices, respectively. The values of csi (t) and cfi (t) depend on the learned node representations and
are computed in a dynamic manner. Notably, 1 and 3 are intra-modal diffusion processes that
effectively capture heterogeneous topologies (e.g., specific intra-modal dependencies) of structural
and functional brain graphs, respectively. 2 and 4 represent inter-modal diffusion, highlighting
inter-modal correlations between brain structure and function.
Proposition 1. In the dual graph diffusion mechanism, the intra-modal diffusion captures the spe-
cific intra-modal dependencies within each graph, and the inter-modal diffusion captures the inter-
modal correlations.

The proof of Propostion 1 is given in Appendix B.1. We employ the explicit Euler method, a
numerical technique for approximating solutions to ordinary differential equations (ODEs), to solve
the continuous dynamics described in Eq. (3). With diffusion step size ρ, the explicit Euler method
is as:

h
(s,k+1)
i = (1− 2ρ)h

(s,k)
i + ρ

N∑
j

skijh
(s,k)
i︸ ︷︷ ︸

intra-modal

+ ρc
(s,k)
i h

(f,k)
i︸ ︷︷ ︸

inter-modal

,

h
(f,k+1)
i = (1− 2ρ)h

(f,k)
i + ρ

N∑
j

fkijh
(f,k)
i︸ ︷︷ ︸

intra-modal

+ ρc
(f,k)
i h

(s,k)
i︸ ︷︷ ︸

inter-modal

.

(4)

Here, k indicates the k-th diffusion layer, h(s,0)
i = xs

i ∈ Xs and h
(f,0)
i = xf

i ∈ Xf .

4
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Theorem 1. During the iterative convergence of Eq.(4), the diffusion step size ρ satisfies the condi-
tion: 0 < ρ < 1.

The proof is given in Appendix B.2.

4.2.2 ENERGY CONSTRAINT

During the diffusion process, defining appropriate intra-modal and inter-modal diffusion flow coef-
ficients is essential to maximize information utility and ensure diffusion consistency. Inspired by
(Wu et al., 2023a), we use an energy constraint function to constrain the diffusion process, thereby
promoting consistent diffusion and consequently enhancing model stability. The energy constraint
function is formulated as follows:

E(Hs) = w1

N∑
i,j

β(∥hs
i − hs

j∥22)︸ ︷︷ ︸
1

+ w2α(∥Hf −Hs∥2F )︸ ︷︷ ︸
2

,

E(Hf ) = w1

N∑
i,j

β(∥hf
i − hf

j ∥
2
2)︸ ︷︷ ︸

3

+ w2α∥Hs −Hf∥2F︸ ︷︷ ︸
4

.

(5)

Here, ∥ · ∥2 stands as the Euclidean norm of vectors, and ∥ · ∥F denotes the Frobenius norm of
matrices. β(·) and α(·) are non-decreasing concave functions. w1 and w2 are weighting constants.

1 and 3 quantify the difference between nodes within each modality, while 2 and 4 quantify
the difference across two modalities. Thus, lower difference (both intra-modal and inter-modal
differences) leads to lower energy. Node representations will evolve to produce lower energy, and
the final representation is expected to exhibit the lowest energy. The minimization of the energy
function can be converted to a minimization of its variational upper bound, which is formulated as
the following proposition.

Proposition 2. The upper bound of the energy constraint function (Eq. (5)) is:

Ẽ(Hs) = w1

N∑
i,j

(
sij∥hs

i − hs
j∥22 − β̃(sij)

)
+ w2

(
Cs∥Hf −Hs∥2F − α̃(Cs)

)
,

Ẽ(Hf ) = w1

N∑
i,j

(
fij∥hf

i − hf
j ∥

2
2 − β̃(fij)

)
+ w2

(
Cf∥Hs −Hf∥2F − α̃(Cf )

)
.

(6)

Here, Cs = {csi}Ni=1 and Cf = {cfi }Ni=1. β̃(·) and α̃(·) are the concave conjugate functions of β(·)
and α(·), respectively. This upper bound is achieved if and only if sij , fij , Cs, and Cf satisfy:

sij =
∂β(p2)

∂p2

∣∣∣∣
p=∥hs

i−hs
j∥2

2

, fij =
∂β(q2)

∂q2

∣∣∣∣
q=∥hf

i −hf
j ∥2

2

,

Cs = Cf =
∂β(O2)

∂O2

∣∣∣∣
O=∥Hf−Hs∥2

F=∥Hs−Hf∥2
F

.

(7)

The proof is provided in Appendix B.3. With energy constraint, Eq. (4) can be rewritten as:

h
(s,k+1)
i = (1− 2ρ)h

(s,k)
i + ρ

N∑
j

skijh
(s,k)
i + ρc

(s,k)
i h

(f,k)
i ,

h
(f,k+1)
i = (1− 2ρ)h

(f,k)
i + ρ

N∑
j

fkijh
(f,k)
i + ρc

(f,k)
i h

(s,k)
i .

s.t. E(H(s,k)) ≥ E(H(s,k+1)),E(H(f,k)) ≥ E(H(f,k+1)).

(8)
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Consequently, after the diffusion mechanism, for node i, we obtain its representations zsi = h
(s,K)
i

and zfi = h
(f,K)
i for structural brain graph and functional brain graph, respectively. K is the

number of diffusion layers. The output representations capture both intra-modal dependencies and
inter-model correlations.

4.3 PROMPT-BASED FUSION STRATEGY

We then develop a prompt-based fusion (PF) strategy to integrate the obtained multimodal repre-
sentations of structural and functional brain graphs. Because prompts can flexibly guide the model
to focus on specific features of each modality, PF can achieve robust multimodal fusion. Particu-
larly, we leverage fusion prompts that embed modality-specific cues to guide the model in extracting
the most informative features from each modality, enabling effective and robust multimodal fusion
while preserving the unique information of each modality.

To implement this, we define two distinct fusion prompts for the structural and functional brain
graphs, denoted as Zs

fp ∈ RU and Zf
fp ∈ RU , respectively. U indicates the prompt length. These

prompts are then concatenated with their corresponding input representations to enhance the infor-
mation flow from each modality:

Ẑs = Zs ⊕ Zs
fp,

Ẑf = Zf ⊕ Zf
fp.

(9)

Here, Zs = {zsi}Ni=1 and Zf = {zfi }Ni=1 represent the node features in structural and functional
modalities, respectively. ⊕ is the concatenation operation. By appending the prompts Zs

fp and
Zf

fp, we equip each modality with enriched context, guiding the subsequent fusion step. In the
fusion module, the concatenated representations Ẑs and Ẑf are fused to generate the multimodal
representation Zsf . At each layer, this fusion is expressed as:

Z(sf,l+1) = Ẑ(s,l) ⊕ Ẑ(f,l), (10)

where l indicates the l-th layer. The number of fusion layers is L. Afterwards, we apply the cross-
entropy loss function for classification tasks:

L = − 1

V

V∑
v=1

M∑
m=1

yv,m log
(
softmax(Zsf

v )m
)
, (11)

where V and M denote the number of samples and classes, respectively. Zsf
v is the multimodal

representation of sample v, and yv,m is the true label indicator for sample v.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We construct structural brain graphs by measuring cosine similarity between ROIs derived
from DTI data, while functional brain graphs are constructed by computing the Pearson correla-
tion coefficient (PCC) between ROIs of fMRI data. We conduct experiments on three benchmark
datasets. (1) Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2 dataset contains fMRI and DTI
data of 407 subjects, including 190 normal controls (NCs), 170 mild cognitive impairment (MCI)
patients, and 47 Alzheimer’s disease (AD) patients. (2) Parkinson’s Progression Markers Initiative
(PPMI) dataset (Marek et al., 2018) includes fMRI and DTI data of 49 Parkinson’s disease (PD)
patients, 69 individuals at risk for PD (Prodromal), and 40 NCs. (3) 4-Repeat Tauopathy Neu-
roimaging Initiative (4RTNI) dataset 3 contains fMRI and DTI data of 31 samples of progressive
supranuclear palsy (PSP) and 47 samples of corticobasal syndrome (CBS). The ROI definition for
both DTI and fMRI data in three datasets is based on the automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002).

2https://adni.loni.usc.edu/
3http://memory.ucsf.edu/research/studies/4rtni
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Baselines. We compare our model with state-of-the-art baselines. We first select five representa-
tive unimodal brain graph learning models for comparison, including, A-GCL (Zhang et al., 2023),
STAGIN (Kim et al., 2021), GroupBNA (Peng et al., 2024a), MCST-GCN (Zhu et al., 2024), Neu-
roPath (Wei et al., 2024). The modality used remains the same as that of the original models. To
demonstrate the advantages of our model in multimodal scenarios, we then compare our model with
representative multimodal brain graph learning models, including Cross-GNN (Yang et al., 2024),
RH-BrainFS (Ye et al., 2024), MTAN (Zhu et al., 2022), and AL-NEGAT (Chen et al., 2022). In
addition, we compare our method with three representative graph diffusion models, Difformer (Wu
et al., 2023b), DDM (Yang et al., 2023b), and ECMGD (Lu et al., 2024), and two typical machine
learning approaches, Support Vector Machine (SVM) and Random Forest (RF), in multimodal sce-
narios. For each sample, these methods take the concatenation of the structural brain graph and the
functional brain graph as input. All baselines are executed using their optimal configurations.

Evaluation Metrics. We evaluate our model on graph classification tasks, where the ADNI and
PPMI datasets involve multiclass classification problems, while the 4RTNI dataset corresponds to a
binary classification problem. Five metrics are used to evaluate the model performance, including
test accuracy (ACC), F1 score, area under the receiver operating characteristic curve (AUC), sensi-
tivity (Sen.), and specificity (Spe.). Particularly, for the multiclass classification tasks, we use macro
averaging for the F1 score, Sen., and Spe. All results are the average values of 5 random runs on test
sets with the standard deviation.

Implementation Details. Our model is implemented using PyTorch v2.2.0. Model training is per-
formed on an NVIDIA 3090 GPU with 24GB of memory. All datasets are randomly split into 70%
for training and 10% used for validation, and 20% for testing. More implementation details and
settings are given in Appendix D.

5.2 RESULTS

Model Performance Comparison. Table 1 compares the results (ACC and AUC) of Xdiff with
baselines. The results for F1, Sen., and Spe. are provided in Table 4 (see Appendix E.1). As shown
by the experimental results, Xdiff consistently outperforms other baselines across all three datasets.
Notably, Xdiff achieves the highest accuracy of 70.8%, 62.5%, and 77.8% on three datasets, re-
spectively, representing improvements of 4.6%, 2.5%, and 5.6% over the second-best method. The
experimental results demonstrate that our model excels in various brain disorder detection tasks.

Table 1: Experimental results (ACC and AUC) on three datasets (%). The best results are marked
in bold, and the suboptimal results are marked underlined. ∆SOTA indicates the improvements or
reductions of Xdiff compared to SOTA methods.

Method ADNI PPMI 4RTNI

ACC AUC ACC AUC ACC AUC

Unimodal

A-GCL 51.7±4.8 61.5±7.9 43.9±7.5 60.9±9.1 58.2±12.2 54.1±9.8
STAGIN 61.7±2.5 72.0±3.3 56.3±5.2 67.5±4.5 71.0±10.1 61.4±13.1

GroupBNA 49.6±1.5 52.2±2.4 46.7±4.4 61.3±2.8 53.3±3.9 52.8±5.4
MCST-GCN 54.1±3.6 67.8±3.7 53.1±5.4 64.9±6.0 66.7±8.5 61.4±15.3
NeuroPath 60.9±4.3 73.1±3.5 57.3±4.6 58.0±5.4 70.5±10.2 64.1±7.4

Multimodal

RF 52.0±6.3 65.2±5.1 48.4±5.4 61.5±3.0 58.8±4.7 53.8±10.8
SVM 55.1±7.3 67.3±4.4 44.1±4.1 57.1±3.3 58.0±9.8 54.9±10.9

Difformer 59.0±4.3 68.9±4.0 49.0±8.4 59.4±10.5 61.0±10.8 53.1±12.9
DDM 58.5±3.7 76.2±3.1 53.7±12.2 61.8±9.3 60.5±13.9 45.1±19.7

ECMGD 66.2±1.1 70.1±1.8 57.0±3.3 60.8±5.2 71.3±5.4 68.6±7.1
Cross-GNN 55.8±5.5 62.6±4.5 58.0±3.4 65.9±7.5 72.2±5.6 72.2±12.5
RH-BrainFS 53.7±9.1 70.1±6.4 48.6±8.0 66.3±9.2 71.6±12.3 69.5±14.3

MTAN 59.0±6.8 49.8±6.2 55.4±8.0 42.4±7.1 62.5±22.4 56.0±15.1
AL-NEGAT 63.4±2.8 72.8±3.3 60.0±4.5 65.8±6.7 70.0±10.0 66.7±20.2

Our Model Xdiff 70.8±0.6 77.2±0.9 62.5±0.1 64.7±1.2 77.8±3.1 77.4±0.4
∆SOTA ↑ 4.6 ↑ 1.0 ↑ 2.5 ↓ 2.8 ↑ 5.6 ↑ 5.2

Stability Analysis. As shown in Table 1 and Table 4, Xdiff exhibits lower standard deviation val-
ues than other baselines across five evaluation metrics on three datasets, demonstrating its enhanced
stability. To further validate this, we compare the 95% confidence intervals of accuracy between
Xdiff and other four multimodal brain graph learning models on three datasets, as shown in Fig-
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Figure 3: Comparison of the 95% confidence intervals of accuracy across different methods on three
datasets.

ure 3. Notably, our model is significantly more stable compared to other models, with the accuracy
confidence intervals ranging from 70.1% to 71.5% on ADNI, 62.4% to 62.6% on PPMI, and 74.0%
to 81.6% on 4RTNI.

5.3 ABLATION STUDY

Table 2: Model performance (ACC and AUC) of
Xdiff and its variants on three datasets (%).

Method ADNI PPMI 4RTNI

ACC AUC ACC AUC ACC AUC

w/o Intra 63.6±0.6 71.2±0.1 56.3±0.1 62.6±0.2 60.0±0.5 70.4±1.0
w/o Inter 68.5±1.9 71.7±0.1 61.5±1.5 62.9±0.1 73.3±0.5 67.7±1.1

w/o Intra & Inter 63.6±0.6 70.7±0.2 56.3±0.2 62.2±0.2 62.2±3.1 69.3±0.8

Xdiff 70.8±0.6 77.2±0.9 62.5±0.1 64.7±1.2 77.8±3.1 77.4±0.4

Effectiveness of Dual Graph Diffusion. To
verify how our dual graph diffusion mechanism
benefits the model performance, we conduct
various ablation experiments by (1) removing
intra-modal diffusion, denoted as “w/o Intra”;
(2) removing inter-modal diffusion, denoted as
“w/o Inter”; (3) removing both intra- and inter-
modal diffusion, denoted as “w/o Intra & Inter”.
The results on three datasets are summarized in Table 2 and Table 5 (see Appendix E.2). The overall
performance of Xdiff is significantly better than that of other variants. This indicates that our dual
graph diffusion mechanism is crucial for the model performance, suggesting both intra-modal de-
pendencies and inter-modal correlations are essential for more effective brain structural-functional
information fusion.
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w/o Energy

Figure 4: Comparison of the 95%
confidence intervals of accuracy
between Xdiff and its variant.

Effectiveness of Energy Constraint Function. As discussed
in Section 5.2, Xdiff demonstrates greater stability compared
to other methods. We claim that the energy constraint function
plays a critical role in improving model stability. To verify this,
we compare the 95% confidence intervals of accuracy between
Xdiff and its variant without the energy constraint function, de-
noted as “w/o Energy”. The results are shown in Figure 4. The
results on three datasets reveal that the model becomes less sta-
ble when the energy constraint is removed. This demonstrates
the effectiveness of the energy constraint in enhancing model
stability and highlights its critical role in ensuring consistent
feature propagation throughout the diffusion processes. More
detailed analysis is provided in Appendix E.2.

Effectiveness of Prompt-based Fusion. To evaluate the effec-
tiveness of our prompt-based fusion strategy, we replace it with other fusion operations, including
Hadamard multiplication (Multi.), summation (Sum.), concatenation (Concat.), attention-based fu-
sion (Atten.), and Transformer-based fusion (Trans.). In addition, to verify that the fusion prompts
can enhance the robustness of multimodal fusion, we introduce Gaussian noise (noise ratio = 0.4)
into Zs and Zf before fusion. We then compare the performance reduction of models employing
different fusion methods to evaluate the noise resilience of each approach. Figure 5 illustrates the
accuracy changes of models using different fusion methods before and after noise interference on
three datasets. Detailed results for all five evaluation metrics on three datasets are shown in Table 6,
Table 7, and Table 8 (see Appendix E.2). As the results indicate, Xdiff with PF strategy outperforms
models using the other three fusion methods. Furthermore, Xdiff with PF strategy demonstrates
relatively stable performance, indicating that our PF strategy effectively enhances model robustness
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against noise interference. For example, the accuracy on the ADNI dataset remains unaffected in
the presence of noise interference. This is because prompts can flexibly guide the model to focus on
specific features of each modality, thereby effectively fusing multimodal features. More explanation
is provided in Appendix E.2.
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Figure 5: Accuracy changes of models using different fusion methods before and after noise inter-
ference on three datasets.

5.4 HYPERPARAMETER STUDY
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Figure 6: Results of hyperparameter study.

Impact of ρ and K in Diffusion Process. We
explore the impact of diffusion layer number K
and step size ρ on model performance. We con-
duct experiments while keeping all other pa-
rameters unchanged. Figure 6 (a) shows the
experimental results (accuracy) on the ADNI
dataset, while results on PPMI and 4RTNI are
presented in Figure 8 (see Appendix E.3). We
can see that the model generally outperforms
the SOTA method when K is 1, 2, or 4. A
notable decline in performance is observed as
K = 8. This may be due to issues such as
over-smoothing, noise accumulation, and gra-
dient vanishing. Notably, when K is set to a
relatively small value, the model performance remains superior across all values of ρ.

Impact of Fusion Layer Number and Prompt Length. We investigate the parameter sensitivity of
Xdiff by examining the impact of fusion layer number L and prompt length U . Figure 6 (b) illustrates
the results of accuracy on the ADNI dataset, while results on PPMI and 4RTNI are shown in Figure 9
(see Appendix E.3). The results demonstrate that the model performance remains relatively stable,
with only slight variations observed across different prompt lengths (2, 4, or 8) and fusion layer
numbers (1, 2, 4, and 8). Overall, Xdiff with different parameter settings generally outperforms
the SOTA method. This indicates the adaptability of the proposed model to varying parameter
configurations.

6 CONLUSION

This paper proposes a cross-modal brain graph diffusion (Xdiff) to simultaneously capture
intra-modal dependencies and inter-modal correlations, achieving more effective brain structural-
functional information fusion. Extensive experiments on three datasets demonstrate that Xdiff not
only outperforms state-of-the-art baselines but also exhibits superior model stability and robustness.
Xdiff provides valuable insights into improving the efficacy of multimodal brain graph fusion, which
can greatly benefit a wide range of brain graph analysis tasks. However, due to the limited available
multimodal brain imaging datasets, the application of Xdiff to broader tasks is constrained. More
detailed limitations and potential impacts are discussed in Appendix F.
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datasets (ADNI, PPMI, and 4RTNI), all of which were collected under established ethical guidelines
with informed consent from participants and approval from relevant institutional review boards. We
strictly followed the data usage agreements and ensured that no personally identifiable informa-
tion is included in our analysis. Our study focuses on methodological contributions in brain graph
learning. The potential societal benefit is to advance reliable tools for diagnosis of neurological
diseases. However, we acknowledge that any automated system in healthcare carries risks of misuse
or over-interpretation. To mitigate such risks, we emphasize that our method should be regarded as
a research tool, not a clinical diagnostic system. Further clinical validation is required before de-
ployment. We declare that there are no conflicts of interest, sponsorship biases, or ethical concerns
regarding data privacy, fairness, or security.
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A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) are solely used to aid and polish writing in this manuscript. No data,
results, analysis or conclusions are generated by LLMs.

B THEORETICAL ANALYSIS

B.1 PROOF FOR PROPOSITION 1

Proposition 1. In the dual graph diffusion mechanism, the intra-modal diffusion captures the specific
intra-modal dependencies within each graph, and the inter-modal diffusion captures the inter-modal
correlations.

Proof. According to the theory of graph diffusion processes, the change in the feature of node i is
governed by the summation of feature fluxes entering i from other connected nodes in the graph,
reflecting the interactions between nodes in the spatial domain (Chamberlain et al., 2021). There-
fore, for intra-modal diffusion in Gs, term

∑N
j=1 sij(t)[h

s
j(t) − hs

i (t)] captures the summation of
feature fluxes entering node i from other nodes within the graph Gs. This term effectively mod-
els the influence of neighboring nodes within Gs, capturing spatial dependencies and the unique
topology of the structural brain graph. Similarly, the intra-modal diffusion in Gf , represented by∑N

j=1 fij(t)[h
f
j (t)−hf

i (t)], captures the unique topology associated with the functional brain graph.
For inter-modal diffusion, the terms csi (t)[h

f
i (t)−hs

i (t)] and cfi (t)[h
s
i (t)−hf

i (t)] represent the fea-
ture fluxes exchanged between two modalities. These terms capture the rate of feature transfer from
one modality to another at node i, modeling the inter-modal correlations.

B.2 PROOF FOR THEOREM 1

Theorem 1. During the iterative convergence of Eq.(4), the diffusion step size ρ satisfies the condi-
tion: 0 < ρ < 1.

Proof. Let us consider the structural brain graph Gs as an example, the first line of Eq.(4)

h
(s,k+1)
i = (1− 2ρ)h

(s,k)
i + ρ

N∑
j

skijh
(s,k)
i + ρc

(s,k)
i h

(f,k)
i

can be rewritten in matrix form as

H(s,k+1) = MkH(s,k) + ρC(s,k)H(f,k).

Here,
Mk = (1− 2ρ)I+ ρSk,

where, H(s,k) = {h(s,k)
i }Ni=1, C(s,k) = {c(s,k)i }Ni=1, and Sk = {skij}Ni,j=1. Assume Sk is a stochas-

tic matrix, which implies that its largest eigenvalue is λmax(S
k) = 1. For the iterative process to

converge, the spectral radius of Mk must be less than 1, leading to the convergence condition

|(1− 2ρ) + ρλmax| < 1.

Substituting λmax = 1 from our assumption on Sk, we have

|1− 2ρ+ ρ| < 1.

This simplifies further to
|1− ρ| < 1,

which results in the inequality
0 < ρ < 1.

Therefore, the diffusion step size ρ must lie strictly between 0 and 1 for convergence. This condition
also holds when considering functional brain graph Gf .
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B.3 PROOF FOR PROPOSITION 2

Proposition 2. The upper bound of the energy constraint function (Eq. (5)) is:

Ẽ(Hs) = w1

N∑
i,j

(
sij∥hs

i − hs
j∥22 − β̃(sij)

)
+ w2

(
Cs∥Hf −Hs∥2F − α̃(Cs)

)
,

Ẽ(Hf ) = w1

N∑
i,j

(
fij∥hf

i − hf
j ∥

2
2 − β̃(fij)

)
+ w2

(
Cf∥Hs −Hf∥2F − α̃(Cf )

)
.

Here, Cs = {csi}Ni=1 and Cf = {cfi }Ni=1. β̃(·) and α̃(·) are the concave conjugate functions of β(·)
and α(·), respectively. This upper bound is achieved if and only if sij , fij , Cs, and Cf satisfy:

sij =
∂β(p2)

∂p2

∣∣∣∣
p=∥hs

i−hs
j∥2

2

, fij =
∂β(q2)

∂q2

∣∣∣∣
q=∥hf

i −hf
j ∥2

2

,Cs = Cf =
∂β(O2)

∂O2

∣∣∣∣
O=∥Hf−Hs∥2

F=∥Hs−Hf∥2
F

.

Proof. We specifically apply the variational form of concave functions to derive the upper bound.
According to Fenchel duality, any non-decreasing concave function γ(·) can be expressed as a vari-
ational bound, leading to a decomposition. Therefore, we obtain the following expressions

γ(p2) = min
µ≥0

[µp2 − γ̃(µ)] ≥ µp2 − γ̃(µ),

γ(q2) = min
µ≥0

[µq2 − γ̃(µ)] ≥ µq2 − γ̃(µ),

γ(O2) = min
µ≥0

[µO2 − γ̃(µ)] ≥ µO2 − γ̃(µ).

Here, µ stands as a variational parameter, and γ̃(·) is the concave conjugate function of γ(·). These
bounds define γ(p2), γ(q2), and γ(O2) as the minimal envelope of quadratic bounds, parameterized
by µ ≥ 0. By substituting each term in Eq. (5) with these bounds, we obtain the upper bound given
in Eq. (6). The necessary and sufficient condition for equality to hold in this upper bound is as
follows

µ̈p2 − γ̃(µ̈) = γ(p2),where µ̈ =
∂β(p2)

∂p2
,

µ̆q2 − γ̃(µ̆) = γ(q2),where µ̆ =
∂β(q2)

∂q2
,

µ̂O2 − γ̃(µ̂) = γ(O2),where µ̂ =
∂β(O2)

∂O2
.

C RELATED WORK

Graph Diffusion Model. The graph diffusion process is governed by partial differential equa-
tions (PDEs), which model the spread of information or features across the graph structure over
time (Chamberlain et al., 2021; Thorpe et al., 2022; Wu et al., 2023a; Chopin et al., 2024; Zhang
et al., 2024c; Bamberger et al., 2025; Li et al., 2025; Lu et al., 2024). Song et al. (Song et al., 2022)
proposed a graph neural PDE framework that generalizes heat flow into broader flow schemes, en-
hancing the robustness of graph neural networks (GNNs). NDM (Song et al., 2022) utilizes a unique
diffusion process to capture the distinct features of each node and provides a generalized heat dif-
fusion function that models varying diffusion patterns across graphs. Wave-GD (Cho et al., 2024a)
introduces a multi-resolution diffusion strategy leveraging spectral coherence to enhance graph dif-
fusion. HiD-Net (Li et al., 2024b) incorporates the diffusion equation with the fidelity term, es-
tablishing connections between the diffusion process and various GNN architectures. This paper
extends graph diffusion to multimodal brain graphs, achieving simultaneous intra-modal and inter-
modal diffusion.
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Prompt Tuning. Prompt tuning is a fine-tuning technique that optimizes continuous prompts to
improve model performance on specific tasks (Ju et al., 2022; Shen et al., 2024; Zhang et al., 2024b).
Specifically, trainable continuous prompts are appended to the input representations and updated
during training. Recently, prompt tuning has been applied to multimodal learning to facilitate effec-
tive and robust fusion across diverse modalities (Khattak et al., 2023; Li et al., 2024a). For example,
PMF (Li et al., 2023) employs three interactive prompts, including query, query context, and fusion
context prompts, to dynamically learn various objectives for multimodal fusion. In this paper, we
design a prompt-based fusion strategy to enhance the robustness of structural and functional brain
graph fusion.

D IMPLEMENTATION DETAILS

The detailed hyperparameter settings for training Xdiff on three datasets are summarized in Ta-
ble 3. The model parameters are trained using the Adam optimizer. Fusion prompts Zs

fp and Zf
fp

are obtained by random initialization and are optimized as learnable parameters during the train-
ing process. For the ADNI dataset, we set the number of diffusion layers to K = 1, size step to
ρ = 0.01, fusion layer number to L = 2, and prompt length to U = 4. For the PPMI dataset, we set
the number of diffusion layers to K = 2, size step to ρ = 0.1, fusion layer number to L = 2, and
prompt length to U = 4. For the 4RTNI dataset, we set the number of diffusion layers to K = 4,
size step to ρ = 0.1, fusion layer number to L = 2, and prompt length to U = 4.

Table 3: Hyperparameters for training on three different datasets.

Hyperparameter ADNI PPMI 4RTNI

#Diffusion layer K 1 2 4
Step size ρ 0.01 0.1 0.1

#Fusion layer L 2 2 2
Prompt length U 4 4 4

w1 & w2 0.50 0.50 0.50
Dropout 0.5 0.1 0.5

Hidden channel 64 64 64
Learning rate 5e-3 1e-3 3e-3

#Epochs 200 300 100
Weight decay 5e-4 5e-4 5e-4

Number of parameters and computation time. The number of parameters for Xdiff are 100K,
137K, and 212K on ADNI, PPMI, and 4RTNI, respectively. The running time for training Xdiff on
ADNI, PPMI, and 4RTNI is 5.89 s/epoch, 4.28 s/epoch, and 5.16 s/epoch, respectively.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 MODEL PERFORMANCE COMPARISON

Table 4 summarizes the experimental results (F1, Sen., and Spe.) on three datasets. The data modal-
ity used to evaluate unimodal baseline methods depends on the modality utilized in the original
studies.

E.2 RESULTS OF ABLATION STUDY

Effectiveness of Dual Graph Diffusion. Table 5 shows results (F1, Sen., and Spe.) of Xdiff and its
variants on three datasets.

Effectiveness of Energy Constraint Function. As shown in Figure 4, the accuracy confidence
intervals of w/o Energy on the ADNI and PPMI datasets become significantly wider compared to the
original Xdiff, ranging from 67.0% to 72.2% on ADNI, and from 60.6% to 64.4% on PPMI. Results
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Table 4: Experimental results (F1, Sen., and Spe.) on three datasets (%).

Method ADNI PPMI 4RTNI

F1 Sen. Spe. F1 Sen. Spe. F1 Sen. Spe.

Unimodal

A-GCL 34.4±7.2 39.9±6.0 71.3±3.2 40.8±3.6 48.6±8.4 72.1±5.5 41.5± 7.2 77.4±11.1 50.6±10.2
STAGIN 51.1±2.8 39.6±3.5 71.2±2.7 56.3±5.2 46.8±8.4 77.2±4.3 69.2± 11.3 83.4±13.1 54.6±9.8

GroupBNA 45.0±1.6 37.0±1.1 69.8±0.9 39.9±5.6 45.7±3.0 72.0±1.4 50.2± 5.9 72.9±3.4 43.8±15.8
MCST-GCN 49.0±2.8 38.1±6.3 70.5±2.6 53.1±5.4 40.0±8.2 69.9±3.9 57.2± 20.1 68.2±16.4 47.6±13.8
NeuroPath 49.3±2.8 39.6±4.3 72.1±5.7 55.7±6.2 46.3±7.7 77.4±5.3 67.1±10.0 79.7±8.2 51.0±8.9

Multimodal

RF 36.5±4.2 39.5±3.8 71.5±3.0 45.4±4.4 46.3±3.9 73.4±2.1 42.7±24.1 44.3±25.9 61.3±13.2
SVM 37.9±5.3 41.2±4.7 72.8±3.7 31.8±2.3 39.9±1.4 70.0±0.4 66.6±7.6 63.8±12.9 46.1±12.3

Difformer 46.1±6.4 47.1±4.9 75.9±2.8 43.3±5.5 43.3±5.5 72.4±3.6 49.2±12.4 54.0±11.2 53.2±11.2
DDM 43.7±5.1 45.3±3.9 75.5±2.3 48.5±13.8 51.4±12.3 74.9±6.6 50.9±17.6 83.5±17.6 26.7±24.9

ECMGD 42.6±4.3 40.4±3.1 74.8±2.8 48.1±4.3 49.8±3.1 73.3±3.2 62.1±4.8 71.5±6.6 52.9±5.8
Cross-GNN 40.2±5.4 40.4±7.5 72.9±3.7 57.9±8.5 44.7±9.0 76.6±8.7 69.9±5.0 86.2±5.0 50.0±3.0
RH-BrainFS 40.3±7.3 42.2±7.3 73.4±5.1 47.7±9.7 48.5±10.2 73.1±5.2 52.1±9.8 70.6±11.5 57.9±12.8

MTAN 48.3±6.4 46.2±6.9 63.1±8.2 51.8±6.5 54.2±10.1 66.0±9.4 70.1±20.7 86.0±19.6 58.0±16.0
AL-NEGAT 48.4±4.3 50.7±3.2 79.5±1.7 53.6±5.9 43.4±5.1 77.6±2.6 51.8±29.7 60.0±38.8 56.0±19.6

Our Model Xdiff 49.9±0.3 46.8±0.4 81.7±0.8 58.8±1.9 45.2±0.8 78.0±0.1 77.7±0.6 86.9±0.5 53.8±5.2
∆SOTA ↓ 1.2 ↓ 3.9 ↑ 2.2 ↑ 0.8 ↓ 9.0 ↑ 0.4 ↑ 7.6 ↑ 0.7 ↓ 7.5

Table 5: Model performance (F1, Sen., and Spe.) of Xdiff and its variants on three datasets (%).

Method ADNI PPMI 4RTNI

F1 Sen. Spe. F1 Sen. Spe. F1 Sen. Spe.

w/o Intra 43.7±0.4 41.8±0.2 79.6±0.1 43.6±0.1 40.4±0.4 77.1±0.2 73.8±0.4 83.2±1.2 41.6±0.9
w/o Inter 48.4±1.3 46.3±0.2 80.9±0.2 57.3±1.1 44.2±0.3 77.0±0.1 73.2±0.8 85.2±0.8 42.5±1.9

w/o Intra & Inter 43.8±0.5 41.4±0.4 79.7±0.2 43.6±0.1 40.2±0.4 76.8±0.2 74.1±0.7 85.1±3.2 52.8±1.0

Xdiff 49.9±0.3 46.8±0.4 81.7±0.8 58.8±1.9 45.2±0.8 78.0±0.1 77.7±0.6 86.9±0.5 53.8±5.2

on the 4RTNI dataset show that the accuracy confidence interval of w/o Energy is slightly wider
than Xdiff. This may be attributed to the smaller sample size and higher variability in the 4RTNI
dataset, which dominate the overall instability. In such cases, the energy constraint function has a
limited impact on further stabilizing the diffusion process, as the primary source of instability lies in
the dataset’s inherent characteristics rather than the diffusion process. Overall, these experimental
results demonstrate the effectiveness of the energy constraint in enhancing model stability.

Effectiveness of Prompt-based Fusion. Table 6, Table 7, and Table 8 gives the model performance
of models using different fusion methods before and after noise interference on three datasets. As
shown in Table 6, the model using the concatenation operation exhibits improved performance after
noise interference on the ADNI dataset. This may be because the noise disrupts certain overfitted
patterns. However, concatenation itself relies heavily on the data distribution, making it potentially
unstable when faced with different datasets or varying noise levels. To further demonstrate the
robustness of the PF strategy compared to the concatenation operation, we increase the noise ratio
to 0.8 on ADNI and compare the performance changes. Figure 7 shows the results. “PF Before”
and “PF After” indicate results of PF before and after noise interference, while “Concat Before”
and “Concat After” are results of concatenation before and after noise interference. When the noise
ratio is increased to 0.8, the performance of the model using concatenation fluctuates significantly,
with accuracy dropping by 1.8%. In contrast, our model with PF demonstrates greater stability, with
accuracy dropping by only 0.2%. This indicates that Xdiff with PF strategy is more robust compared
to the model using concatenation operation.
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Table 6: Performance of models using different fusion methods before and after noise interference
on the ADNI dataset (%).

Method ADNI

ACC F1 AUC Sen. Spe.

Sum. 69.1±0.8 48.5±0.8 73.1±0.4 48.6±0.4 82.3±0.2
Sum. (+Noise) 67.5±1.5 47.7±0.9 72.0±0.5 47.4±0.3 81.1±0.2

Multi. 65.9±0.6 46.4±0.5 68.2±0.6 42.6±0.5 78.3±0.4
Multi. (+Noise) 62.6±1.2 44.0±1.0 67.6±0.6 42.0±0.1 77.7±0.1

Concat. 67.4±1.3 47.5±0.8 73.0±0.4 48.0±0.1 81.0±0.1
Concat. (+Noise) 69.1±1.0 48.6±0.8 72.6±0.6 47.9±0.3 81.8±0.3

Atten. 63.3±4.1 47.3±4.8 68.9±0.6 41.9±1.0 78.4±0.7
Atten. (+Noise) 62.1±3.2 47.2±3.8 68.4±0.7 40.9±0.9 77.9±0.8

Trans. 65.0±2.5 47.9±2.2 67.8±1.1 38.5±1.3 77.2±0.4
Trans. (+Noise) 63.4±4.8 47.4±1.5 69.1±1.2 40.7±0.5 78.0±0.3

PF 70.8±0.6 49.9±0.3 77.2±0.9 46.8±0.4 81.7±0.8
PF (+Noise) 70.8±0.6 49.8±0.5 77.1±0.2 46.5±0.1 81.6±0.1

Table 7: Performance of models using different fusion methods before and after noise interference
on the PPMI dataset (%).

Method PPMI

ACC F1 AUC Sen. Spe.

Sum. 59.4±0.1 56.0±1.6 64.2±0.5 46.7±0.9 77.4±0.9
Sum. (+Noise) 56.2±2.6 54.9±2.9 62.3±0.5 47.8±0.5 76.8±0.7

Multi. 59.4±2.5 53.8±3.1 62.9±1.3 43.2±1.2 75.6±0.5
Multi. (+Noise) 52.0±3.9 46.6±3.4 61.6±0.7 42.2±0.3 75.2±0.1

Concat. 58.3±1.5 55.6±1.7 63.9±0.4 46.7±0.6 77.4±0.6
Concat. (+Noise) 55.4±1.4 54.1±3.3 61.8±0.3 44.6±0.6 77.3±0.6

Atten. 56.2±1.5 53.8±3.0 67.2±0.3 41.5±0.8 77.4±0.4
Atten. (+Noise) 52.7±2.9 52.5±1.3 66.9±0.4 41.7±0.8 76.6±0.5

Trans. 57.6±2.9 53.7±3.6 65.6±1.9 49.2±1.6 75.9±1.2
Trans. (+Noise) 55.2±3.9 55.8±4.5 65.5±1.9 47.0±1.7 75.9±1.3

PF 62.5±0.1 58.8±1.9 64.7±1.2 45.2±0.8 78.0±0.1
PF (+Noise) 60.4±1.5 58.3±2.6 64.9±0.1 44.1±0.3 77.8±0.1

Table 8: Performance of models using different fusion methods before and after noise interference
on the 4RTNI dataset (%).

Method 4RTNI

ACC F1 AUC Sen. Spe.

Sum. 77.4±3.1 78.2±0.4 77.2±0.2 83.2±1.2 52.8±1.3
Sum. (+Noise) 73.6±3.1 74.7±0.3 73.0±0.6 82.8±0.4 41.6±0.9

Multi. 75.6±3.2 68.2±2.4 68.3±0.7 85.1±3.2 42.5±1.9
Multi. (+Noise) 69.3±5.4 68.9±3.1 58.4±0.8 87.2±3.7 30.7±3.3

Concat. 77.8±6.3 75.9±2.7 73.2±3.5 84.1±3.2 42.5±1.9
Concat. (+Noise) 73.3±6.3 75.9±2.6 70.2±3.6 82.2±3.4 36.9±1.8

Atten. 77.8±3.1 73.0±1.3 72.1±11.9 86.7±2.0 30.7±8.4
Atten. (+Noise) 71.1±8.3 72.8±2.1 70.4±11.7 84.2±1.2 31.9±7.8

Trans. 72.6±6.3 70.6±0.2 66.6±2.5 89.6±5.6 16.4±12.9
Trans. (+Noise) 68.9±6.3 69.7±1.2 65.7±5.9 89.0±5.3 14.9±8.3

PF 77.8±3.1 77.7±0.6 77.4±0.4 86.9±0.5 53.8±5.2
PF (+Noise) 75.6±3.0 77.4±0.4 76.0±2.7 85.2±1.1 52.8±1.3
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Figure 7: Model performance comparison between PF and concatenation when noise ratio is 0.8 on
the ADNI dataset.

E.3 HYPERPARAMETER STUDY

Figure 8 illustrates the accuracy of Xdiff with respect to diffusion step size and diffusion layer
number on the PPMI and 4RTNI datasets. Similarly, Figure 9 shows the accuracy of Xdiff with
respect to fusion layer number L and prompt length U on the PPMI and 4RTNI datasets.
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Figure 8: Performance of Xdiff w.r.t ρ and K on the PPMI and 4RTNI datasets.
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Figure 9: Performance of Xdiff w.r.t fusion layer number L and prompt length U on the PPMI and
4RTNI datasets.
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Sensitivity Analysis to Weighting Constants w1 and w2 in Energy Constraint. In Equation (5),
w1 and w2 are weighting constants, both of which are set to be 0.50. To evaluate the sensitiv-
ity of our model on these hyperparameters, we conduct experiments by setting different values of
w1 = (0.25, 0.50, 0.75) and w2 = (0.25, 0.50, 0.75). Tables 9, 10, and 11 give the results. These
experiments show that our model maintains stable and competitive performance across a wide range
of hyperparameter settings.

Table 9: Results (ACC) of sensitivity analysis to weighting constants w1 and w2 on ADNI (%).

w1(0.25) w1(0.50) w1(0.75)

w2(0.25) 68.5± 0.3 70.3± 0.2 70.1± 0.4
w2(0.50) 67.3± 0.5 70.8 ± 0.6 71.4± 0.3
w2(0.75) 70.3± 0.5 70.5± 0.7 70.4± 0.1

Table 10: Results (ACC) of sensitivity analysis to weighting constants w1 and w2 on PPMI (%).

w1(0.25) w1(0.50) w1(0.75)

w2(0.25) 61.1± 0.3 60.5± 0.2 62.1± 0.2
w2(0.50) 62.1± 0.2 62.5 ± 0.1 61.3± 0.1
w2(0.75) 60.8± 0.3 61.1± 0.2 61.3± 0.1

Table 11: Results (ACC) of sensitivity analysis to weighting constants w1 and w2 on 4RTNI (%).

w1(0.25) w1(0.50) w1(0.75)

w2(0.25) 76.2± 4.2 75.5± 3.8 78.1± 4.3
w2(0.50) 75.4± 3.6 77.8 ± 3.1 75.9± 4.3
w2(0.75) 76.3± 3.8 76.1± 4.2 77.8± 2.9

E.4 INTERPRETABILITY ANALYSIS

To assess the interpretability of the proposed method, we conduct a SHAP-based analysis to evaluate
the contribution of each brain region to the classification results on all three datasets. Specifically, we
compute the average SHAP values for each ROI from the learned multimodal representations from
the test set. The top 15 ROIs with the highest average SHAP values for each dataset are visualized
in Figure 10, Figure 11, and Figure 12.

For the ADNI dataset, regions such as the Thalamus and Fusiform are identified as highly influential
and are known to be closely associated with Alzheimer’s disease, in alignment with previous neuro-
science findings (Forno et al., 2023; Ribeiro-dos Santos et al., 2023). In the case of the PPMI dataset,
regions including the Rectus and Olfactory cortex show high importance, consistent with their es-
tablished relevance to Parkinson’s disease as reported in prior studies (Gu et al., 2024; Kataoka &
Sugie, 2023). For the 4RTNI dataset, the Paracentral Lobule is highlighted as a key region, which
has been previously linked to Progressive Supranuclear Palsy and Corticobasal Syndrome(Kitagaki
et al., 2000). These results suggest that our model can effectively identify disorder-specific biomark-
ers that are consistent with known neuropathological patterns, thereby demonstrating biological in-
terpretability.
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Figure 10: Visualization of the top 15 ROIs with the highest SHAP values for ADNI dataset.
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Figure 11: Visualization of the top 15 ROIs with the highest SHAP values for PPMI dataset.
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Figure 12: Visualization of the top 15 ROIs with the highest SHAP values for 4RTNI dataset.
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F LIMITATIONS AND POTENTIAL IMPACTS

Limitations. While these findings are encouraging, some limitations remain. Due to the limited
available multimodal brain imaging datasets, the application of Xdiff to broader tasks is constrained.
For example, the Autism Brain Imaging Data Exchange (ABIDE) dataset, one of the most commonly
used datasets for autism detection, only provides fMRI data. In future work, we aim to explore more
multimodal brain imaging datasets and further advance multimodal brain graph fusion for broader
and more complex applications.

Potential Impacts. Our work has a significant positive impact on the advancement of digital
health. Importantly, this work contributes to the intersection of neuroscience and artificial intel-
ligence by providing an effective multimodal brain graph fusion technique. However, we also
acknowledge potential negative impacts. AI-based disease diagnosis may lead to erroneous pre-
dictions, which could have serious consequences for patients’ health and well-being. Therefore, we
emphasize that in real-world clinical settings, AI models should serve as decision-support tools, and
final diagnostic decisions must be made by qualified medical professionals.
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