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Figure 1: We use risk-aware distributional reinforcement learning algorithm(HuRi) to train a robust
locomotion control policy that can be deployed on a physical robot Zerith-1.

ABSTRACT

Humanoids Locomotion remains an unsolved challenge, primarily due to the sig-
nificantly smaller stability margin compared to other types of robots. As a result,
the control systems for humanoid robots must place greater emphasis on risk mit-
igation and safety considerations. Existing studies have explicitly incorporated
risk factors into robot policy training, but lacked the ability to adaptively adjust
the risk sensitivity for different risky environment conditions. This deficiency im-
pacts the agent’s exploration during training and thus fail to select the optimal
action in the risky environment. We propose an adaptive risk-aware policy(HuRi)
based on distributional reinforcement learning. In Dist. RL, the policy control the
risk sensitivity by employing different distortion measure of the esitimated return
distribution. HuRi is capable of dynamically selecting the risk sensitivity level in
varying environmental conditions by utilizing the Inter Quartile Range to measure
intrinsic uncertainty and Random Network Distillation for assessing the parame-
ter uncertainty of the environment. This framework allows the humanoid to model
the uncertainty in the environment and then conduct safe and efficient exploration
in hazardous environments; therefore enhancing the mobility and adaptability of
humanoid robots. Simulations and real-world experiments on the Zerith-1 robot
have demonstrated that our method could achieve significantly more robust per-
formance, compared to other methods, including ablated versions.



Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Humanoid robots, with their human-like appearance and potential for strong motor capabilities,
have garnered extensive research interest. They are expected to operate in complex and hazardous
environments, replacing humans in performing tasks. A fall or accident can result in task failure or
even hardware damage. Particularly in risk-prone environments characterized by high uncertainty,
the risk of accidents involving humanoid robots escalates significantly. Consequently, ensuring their
safe operation becomes paramount.

Recent advancements in Deep Reinforcement Learning control have enabled legged robots to tra-
verse difficult terrains Zhuang et al.| (2023); (Cheng et al.| (2023). Although these methods strive
to improve the locomotion capabilities of robots, they do not explicitly model environmental risks.
Distributional reinforcement learning(Dist. RL) models the whole distribution of returns rather than
merely their expected value. It learns a parameterized return distribution and optimizes the loss
function, capturing more information about return uncertainty. This approach is especially valuable
in scenarios where effective risk management is essential.

Many methods simulate the stochastic uncertainty in the environment by learning a probabilistic dis-
tribution through quantile regression and executing risk-averse policies by optimizing for worst-case
scenarios based on risk distortion measures. However, in these methods, agents maintain a fixed risk
sensitivity in dynamic environment, which may lead to suboptimal result. In addition, maintaining
a constant level of risk sensitivity throughout the training process can cause the agent to exhibit
excessively conservative behavior in some situations. This excessive caution can lead the agent to
shy away from actions that appear risky, even if they could yield substantial long-term gains. As a
result, having a fixed risk sensitivity can result in suboptimal exploration, with the agent becoming
reliant on local optima. This approach can make the agent inflexible when confronted with vary-
ing environment conditions, thereby diminishing the model’s overall adaptability and performance.
The key focus of this research is to explore how to achieve safe exploration during training and to
enhance the agent’s ability to resist out-of-distribution disturbances in risky scenarios.

In this research, we propose the HuRi method, which explicitly evaluates the risks of humanoid
robot locomotion using Dist. RL, without relying on external devices such as unreliable cameras.
When the agents interact with the environment, Dist. RL models the return distribution, reflecting
the inherent uncertainty in the system, which we can leverage to assess and optimize policies. In
Dist. RL, the agent’s risk sensitivity can be controlled by applying different distortion measures to
the computed return distribution. Unlike previous robot locomotion control methods, we incorporate
random network distillation to measure parameter uncertainty and interquartile range to quantify the
environment’s intrinsic uncertainty, adaptively adjusting the scalar risk parameter of the distortion
function. This adaptive adjustment allows the robot to select different risk sensitivity levels in vary-
ing environment conditions. HuRi is capable of adaptively perceiving environmental uncertainty,
advocating for more cautious behavior in states that are seldom visited and encouraging the explo-
ration of more promising actions in familiar. This capability is instrumental in enabling agents to
accommodate various environmental changes, deeply explore dynamic risk environments, and resist
out-of-distribution disturbances.

To the best of our knowledge, we are the first to propose an adaptive risk-aware policy learning
method in the field of humanoid robots. Through both simulation and real-world experiments, we
verified the effectiveness of our method in risky scenarios compared with other methods. Our ap-
proach significantly improves the robustness of humanoid robot locomotion. Our primary contribu-
tions are as follows:

* We innovatively propose an adaptive risk-aware distributional reinforcement learning pol-
icy that enables agents to adjust the risk preference of the policy, thereby promoting safe
and efficient exploration during training and enhancing the agent’s performance.

* We explicitly model risk factors in humanoid robot locomotion control, enabling agents to
resist environmental stochastic disturbances in dynamic risk states.

» Through simulations and real world experiments on the Zerith humanoid robot, we demon-
strate that our method exhibits strong robustness in agents and successfully validates sim-
to-real transfer.
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2 RELATED WORKS

RL in Legged Locomotion Control Reinforcement learning has become increasingly prevalent in
the locomotion control of legged robots. In quadruped robotics, |Lee et al.| (2020); Cheng et al.
(2024b); [Fankhauser et al.| (2018]); Kumar et al.| (2021); [Nahrendra et al.| (2023); Liu et al.| (2024)
employed an end-to-end proprioceptive-based training method for robust locomotion control, while
Cheng et al.| (2023); |Agarwal et al.| (2022); Zhuang et al.|(2023); Hoeller et al.| (2024) incorporated
external perception for more complex and adaptable movements. Notably, He et al.| (2024)) imple-
mented safety measures in the high-speed locomotion of quadruped robots, enabling highly flexible
risk avoidance. As for humanoid robots, Reinforcement learning controllers are starting to demon-
strate potential [Siekmann et al.| (2021b)); [Zhuang et al.| (2024); [Li et al.| (2024); Radosavovic et al.
(2024);|Gu et al.| (2024); IL1iao et al.| (2024); Cheng et al.| (2024a); [Zhang et al.|(2024)). However, the
stability of humanoid robots relies on bipedal balance control, which presents greater nonlinearity
and complexity in locomotion control. This makes them more susceptible to external disturbances
and internal errors, resulting in reduced fault tolerance. While many researchers are exploring how
to push humanoid robots to perform extreme parkour, safety considerations in humanoid reinforce-
ment learning controllers often remain unaddressed.

Distributional Reinforcement Learning Dist. RL have advanced considerably in recent years
Bellemare et al.|(2017); Dabney et al.|(2018bza); Yang et al|(2019)). Different from traditional value
function or action-value function learning methods, Dist. RL directly models the distribution of
cumulative rewards. It starts from a probability perspective and considers the probability distribution
of possible returns in a given state, rather than a single expected return value. Typically, these
methods employ multiple quantile points to depict the return distribution and extend the Bellman
equation into the Bellman distribution equation. These methods improve the performance of the
policy more granularly by minimizing the distance between distributions. Dist. RL has not only
achieved significant success in the Q-Learning framework, but has also been applied to the Actor-
Critic architecture|Nam et al.| (2021); |Barth-Maron et al.| (2018);|Duan et al.|(2021)), providing a new
perspective for policy optimization and improving the robustness and decision-making of the policy.

Dist. RL for Legged Locomotion Control Many methods [Tang et al.| (2019); [Stanko & Macek
(2019); |Shen et al.| (2014); [Théate & Ernst (2023) apply Dist. RL to train risk-sensitive policies.
These methods train different policies by distorting the return distribution. Although Dist. RL has
been applied in the real world [Bellemare et al. (2020); |Haarnoja et al.| (2024), applying it to the
field of motion control of humanoid robots is still a challenging task. Some methods [Schneider
et al.[(2024); Shi et al.| (2024); [Tang et al.| (2019) use the Actor-Critic architecture, model the value
function as a Gaussian distribution, and use distorted expectations to optimize the worst-case policy,
thereby improving the robustness of the agent’s locomotion. These methods often employ a distorted
risk measure with a fixed risk parameter, leading the agent to adopt an excessively cautious policy in
some scenarios, which can impede the effectiveness of robot locomotion control. In addition, Dist.
RL combined with a learnable perturbation module can also train robust locomotion policies [Long
et al.[(2024).

3 METHOD

The overall architecture of HuRi is shown in Figure|2| where the Actor is responsible for outputting
the actions of the humanoid robot, and the Critic outputs the probability distribution of the return.
The risk distortion measure adjusts the agent’s risk sensitivity by controlling the scalar risk parameter
and reweighting the probability of possible outcomes. HuRi can adaptively adjust the risk parameter
[ according to different environmental states to achieve a risk-aware policy. The following chapters
will introduce each module in detail.

3.1 PRELIMINARY

Theorem We describe the locomotion problem of robots using a Partially Observable Markov De-
cision Process (POMDP) Shani et al.[ (2013); [Spaan & Spaan| (2004). The POMDP framework
effectively models decision-making scenarios where information is incomplete, defining key ele-
ments such as states, actions, observations, and rewards. In this model, the environment at time
step t is represented by a complete state s;. Based on the agent’s policy, an action a; is performed,
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Figure 2: HuRi Architecture overview. The critic network is trained to estimate the distribution of
returns, which is then utilized alongside a risk distortion metric to update the policy. HuRi uses IQR
and RND to estimate the uncertainty in the environment and adaptively determine the scalar risk
parameter. The image’s right part illustrates the agent’s capability to navigate various risk scenarios.
Here, 'plane’ denotes walking on flat terrain, ’load’ refers to the robot’s cargo, “push’ signifies
sudden severe disturbances, and 'uneven’ indicates traversing rough roads.

resulting in a state transition to s;1 with a probability P(s;y1 | s¢, a;). The agent then receives
a reward 7; and a partial observation o044 ;. The aim of reinforcement learning here is to identify a
policy 7 that maximizes the expected discounted sum of future rewards:

J(m) =Ex |3 7're M
t=0

Action Space & State Space We adopt asymmetric Actor-Critic structure as our training frame-
work. The action space is a; € R'2, representing the offset from the default position for each joint.
The critic networks observe the global state s§7%¢%¢ = [s¢¢/" v, h,, e;], which includes propriocep-
tive observations, the state space of actor s¢°*°", linear velocities vy, feet surrounding height map
h: and domain randomization variable e;. For the actor networks, the state space contains only
proprioceptive observations s¢ctor = [groll griteh yroll (pitch o 0. Gy ay], 0 is the euler angle of
robots’ pelvis, w is the angular velovity of orbots’ pelvis; ¢; is the input command containing clock
signal, desired linear velocity and angular velocity. ¢ and ¢ represent position and velocity of each
joint; a; represent the output action of policy.

Actor-Critic Algorithm The PPO algorithm, renowned for learning from interactions and regu-
lating policy updates, has been chosen by HuRi for training sophisticated and unstable humanoid
robots. HuRi’s Actor aligns with the PPO, while the Critic incorporates the distributional reinforce-
ment learning approach. It no longer outputs a scalar value .J,, but the entire distribution of the
return Z(s, a).

3.2 DISTRIBUTIONAL REINFORCEMENT LEARNING

As for distributional Critic, HuRi uses QR-DQN |Dabney et al.| (2018b) which uses quantized re-
gression to approximate the return distribution. This probability distribution models the random
variable Z = >~ v'r;. In QR-DQN, the value distribution is parameterized as a set of quantiles
{0+,,04,,...,0%, }, which are predicted by the neural network and are the support points of the value



Under review as a conference paper at ICLR 2025

distribution. 7; = % forl < ¢ < N, where 7; = ﬁ In QR-DQN, the random return is
approximated by a uniform mixture of N Diracs:

1 N
Zp(s,0) == 1 D 0,50 2)

=1
Similar to ordinary reinforcement learning, Dist. RL uses a distributional Bellman operator to learn
the entire action value distribution:

TZ(s,a) 2 R(s,a) + 72 (X’, arg maxE[Z (S, a’)]) 3)
a’eA

Where :2 means that two random variables have equal probability laws, and S’ ~ P(- | s,a), A’ ~

7 (-|s"). The calculation of the distributional Bellman operator 7 Z(s, a) is based on the return

distribution Z. The distributional Bellman operator is a contraction of p-Wasserstein Bellemare

et al.|(2017). Repeated application of the Bellman operator makes Dist. RL converge to the optimal

policy during training.

HuRi uses SR(A) Nam et al| (2021) to calculate the target distribution. SR()) generalizes the
concept of the temporal difference (TD-A) method to Dist. RL for calculating multi-step value
targets. It generates target distribution 7 Zy(s) by combining various distributions. In order to
understand SR(X) more clearly, we give the process of SR()) algorithm in the Algorithm[2] HuRi
is similar to the method [Schneider et al.| (2024), using energy distance to measure the gap between
the target distribution and the predicted critic distribution Zy(s) :

Lguantites = 2E; ; [0; — T0;] —E; ; [T6; — TO;] —E; ; [0; — 6] “4)

Equation (@) measures the difference between the target distribution and the predicted distribution
through random sampling, where the distributions of 6 and 76 are derived from Zy and T Zy. Un-
like this research [Schneider et al.| (2024), HuRi also uses MSE to measure the difference between
the target expectation J(7) and the expected .Jz(m)calculated by the probability distribution after
implementing the risk distortion measure on the probability distribution. The calculation formula is

as follows: () ()
£expectarion = MSE(ET~U[O,1} [Ze (S)LETNU[O,I] [Zg (S)]) (5)

The expectation E.y[o,1) in Equation @) is computed over the 7 values sampled from the uniform
distribution U0, 1]. HuRi uses the maximum PPO clip-objective to update the policy:

g (sla; )
Tpora (sla;7)
(I+e)A, if A>0;
(1—-e)A, ifA<O.

L:surrogate = min < AT%o1a (Sa a; T)a p (67 AT o1 (87 a; T)))

(6)
where p(e, A) = {

3.3 ADAPTIVE RISK-AWARE POLICY LEARNING

In the field of legged robot control, the policy of many methods |Schneider et al.| (2024)); [Shi et al.
(2024); [Tang et al.| (2019) is to maximize the disorted expectation of value distribution. The dis-
tortion risk measure evaluates risk by re-weighting the probability of possible outcomes, typically
reflecting the policy’s preference for risk behavior. Unlike many previous methods that use CVaR to
distort the distribution, HuRi uses the wang_function |Wang| (2000) to distort the value distribution.

We calculate the quantile score of the distortion h;;vang(’]’) as:

hy™(r) = (@7 (1) + B) (7)

Where ¢ is the standard normal distribution and f is the scalar risk parameter. In the remaining
formulas, we abbreviate hgva"g (1) to B(T). Wang_function adjusts the probability distribution in a
nonlinear method. Compared with CVaR, wang_function has the ability to switch between risk-

averse and risk-seeking policies. When 3 = 0, the policy is risk-neutral, when 8 > 0, the policy
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is risk-averse, when 8 < 0, it is a risk-seeking policy. The scalar risk parameter S can be consid-
ered a gauge of the agent’s perception of risk, as a larger 5 indicates a higher level of risk in the
environment, necessitating a more conservative approach to policy. Therefore, 5 represents the risk
sensitivity of the agent, which is very important for the success of training. A survey [Schubert et al.
(2021)) has proved that it is suboptimal to adopt a fixed risk sensitivity in a dynamic risk environ-
ment. Excessively cautious behavior hinders the thorough exploration needed during agent training,
while overly adventurous behavior can result in a higher frequency of falls throughout the training
process. For this reason, HuRi proposed a method to adaptively adjust the risk sensitivity according
to the current state of the agent, allowing the agent to take cautious behavior in the risky environment
conditions and take exploratory behavior after being more familiar with the environment.

Inter Quartile Range Module A previous research |[Dabney et al.| (2018a) defines risk as the un-
certainty of possible outcomes, and divides uncertainty into intrinsic uncertainty and parameter un-
certainty. Intrinsic uncertainty refers to the uncertainty of the environment itself, which cannot be
eliminated even if the agent has a perfect understanding of the environment. Parameter uncertainty
is typically associated with Bayesian reinforcement learning, which refers to the uncertainty of the
parameters of the environmental model (such as transition probabilities and reward functions). Pa-
rameter uncertainty reflects the incompleteness of the agent’s cognition of the environment, that is,
the uncertainty of the agent in its predicted environment and rewards. The probability distribution
obtained by Dist. RL is mainly used to capture intrinsic uncertainty. HuRi uses the interquartile
range (IQR) to measure intrinsic uncertainty:

IQR=Q3—Q1, Q3=F,'(0.75), Q=F,;"(0.25). (8)

HuRi sets a threshold range of intrinsic uncertainty [t,in, tmaz]- When IQR > tpqz, it means that
there is strong intrinsic uncertainty in the current environment, and the agent needs to adopt a more
cautious policy. We set the risk parameter S;gr = 1. Similarly, IQR € [tmin, tmaz) is to adopt a
risk-neutral policy Srgr = 0; when IQR < tyin, Bror = —1, and arisk-seeking policy is adopted
to increase exploration during training.

Random Network Distillation Module It is not comprehensive to use only IQR to measure in-
trinsic uncertainty to approximate the environmental risk level. HuRi uses random network distil-
lation(RND) [Burda et al.| (2018)) to measure parameter uncertainty in the environment and further
approximate the actual risk level in the environment. RND uses a frozen randomly initialized neural
network (target network) g and a trainable neural network (predictor network) f. The parameters of
the target network are fixed during training, and the predictor network is trained to imitate the output
of the target network as much as possible. The random network distillation method uses MSE to
reduce the prediction error:

critic critic criticy) 2
Lossrnp(s{™™"¢) = (f(s{™"¢) — g(s£"¢)) ©)

The prediction error can evaluate the uncertainty in the dynamic environment conditions. HuRi’s
assessment of parameter uncertainty further corrects the scalar risk parameter 3 in the distortion
function. RND reflects the agent’s familiarity with the state during training. If there are multiple un-
known states in a given environment, the agent should adopt a risk-averse policy, which is conducive
to the agent’s safe exploration. If there is a significant difference between the output of the predictor
network and the target network, indicating that the environment is relatively novel for the agent and
the possibility of robot falling increases. Therefore, the agent should increase its risk sensitivity. We
define the relationship between the scalar risk parameter and the RND loss:

5RND = tanh(LossRND) (10)

The calculation formula for measuring the scalar risk parameter by combining intrinsic uncertainty
and parameter uncertainty is as follows:

B = Bror + BrND (11)
3.4 Loss FUNCTION

The calculation formula of HuRi’s overall loss function is
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L= £surr0gute + )\expeclalion . »Cexpectation + )\quamiles : Lquantiles + )\entropy : »Centropy (12)

Among them, Lquaniles calculates the quantile loss, and uses the quantile energy loss for calculation
to measure the difference between distributions. Unlike other Dist. RL, Huri also used MSE loss
to the distorted expectations. MSE provides additional information about the predicted distribution
as the second-order moment of the prediction error. In addition, the use of Lepyopy in our training
process helps to maintain diversity and exploration in the policy.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTING

Benchmark Comparision. For a comparative
evaluation, the experiments we performed are
as follows:

» Baseline: Train the policy using orig-

Mean Return

inal PPO. n — léz\a/:]ihgfes

e Cvar(0.5: Employ CVAR as distor- HuRi without RND
tion function, and risk parameter is —— HURi
0.5. Use the same hyperparameters O

and loss function as huri.

¢ HuRi w/o RND: Our method without
RND. The rest is consistent with huri.

Figure 3: Reward Comparison: The agent’s ac-
tual return during training is shown in the fig-
ure, where the thick line represents the average
return, and the shaded regions indicate the 95%
confidence intervals across different seeds. HuRi
achieves the highest convergent reward.

Training setting: All experiments are training
on plane terrain in the Isaac Gym, with 4096
Zerith-1 environments in parallel. All methods
have same hidden layer dimension with [512, 256, 128]. Specifically, the Critic of Huri outputs
calculated values of 64 quantiles. During training and deployment, we employed PD position con-
trollers for each join. All the reward function are detailed in Appendix A[A.2] It costs 18 hours for
each method traning and about 18000 iterations, utilizing a single NVIDIA RTX 4090 with 24 GB
memory.

4.2 SIMULATION EXPERIMENTS

We conducted experiments with five random seeds, training each seed five times, and the results
are shown in the Figure It is obvious that our method(average return 90.86) better than base-
line(83.28), CVaR0.5(84.17), HuRi w/o RND(86.93). We believe that HuRi can adaptively adjust
the risk sensitivity of its policy in dynamic environments, deeply exploring and selecting optimal
actions during training to achieve higher rewards. However, high rewards do not necessarily indi-
cate strong resilience to risk. To further verify HuRi’s robustness in motion control, we considered
various risk factors, including sustained external forces, sudden impacts, and load variations, etc.

The first experimental settings involved applying random continuous disturbances to the humanoid
robot’s centroid, feet, and hands. These disturbances were sampled from a uniform distribution be-
tween 0 and 100 N, changing every 5 steps. It is worth noting that the range of external disturbances
during training is [0,10] N, and these disturbances are applied solely to the centroid. The range of
disturbances during testing was far beyond the range of the training settings. Details on the domain
randomization parameters can be found in the Appendix AJ5] In the second experiment, we applied
sudden impacts to the same areas of the robot, with forces sampled from a uniform distribution
ranging from 150 N to 200 N, delivered every 2 seconds. The robot was commanded to move at a
constant speed of 1 m/s, which exceeded its training maximum of 0.7 m/s. Any falls during its walk
were classified as failures. We recorded the success rate of the robot for each trial. To reduce vari-
ability, we used five different random seeds, with each seed repeated 10 times. Table[I] presents the
final results, showing that HuRi demonstrated superior performance in handling continuous external
disturbances and sudden impacts on the centroid, hands, and feet.
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Continuous disturbances  Sudden extreme disturbances

centroid hand feet centroid hand feet
baseline 0.6657 0.6178 0.6583  0.5750  0.5933 0.5886
CVaR 0.5 0.6870 0.6411 0.6981 0.6092  0.6267 0.6267
HuRi w/o RND 0.8186 0.7700 0.8482 0.7758  0.8078 0.8077
HuRi 0.8562 0.8090 0.8658 0.8317 0.8116 0.8171

Table 1: Comparison of success rate under different disturbances. We perform continuous and
sudden extreme disturbances on the robot’s hands, legs, and centroid, respectively. If the robot falls,
it is considered a failure.
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Figure 4: Error Comparison: Velocity tracking error under different disturbances. The top image
shows the linear velocity error, while the bottom image represents the angular velocity error. A
represents load disturbances, B represents friction disturbances, and C represents both disturbances.
HuRi has the lowest velocity tracking error.

To further demonstrate the effectiveness of HuRi’s adaptive risk-aware ability, we designed three
sets of experiments. In the first set(Figure f]A), we varied the robot’s load. In the second set of
experiments(Figure [ B), we altered the ground friction. The third set of experiments(Figure f]C)
combined both load and friction disturbances to examine whether Huri can handle more complex
risk scenarios. For all three sets of experiments, the robot’s speed was set to 1 m/s and the angular
velocity to 0, with a random external force sampled from a uniform distribution of [0, 100] N ap-
plied every 0.5 second. The range of disturbances during testing was far beyond the range of the
training settings. Details on the domain randomization parameters can be found in the Appendix
AJ] We randomly selected four seeds, simulated 1024 environments in parallel, and averaged the
experimental results. The Figure ] showcases the tracking errors for both the average linear veloc-
ity and angular velocity across the three experiments. We found that HuRi’s velocity errors were
significantly smaller than those of the other three methods. HuRi maintained highly robust per-
formance amidst diverse disturbances, indicating that HuRi thoroughly explored the potential risk
factors affecting the agent during training.

Additionally, we sought to demonstrate through experiments that HuRi’s estimation of risk levels
is relatively accurate. We tracked the scalar risk parameter 3 and value distributions during three
scenarios: the robot’s normal walking on plane terrain, exposure to a 200N sudden extreme distur-
bance, and traversal on uneven terrain. The results are shown in the Figure |§[ Notably, due to our
method was trained on plane terrain, it is intuitive to expect that walking on uneven terrain presents
the highest risk for the robot. The cumulative distribution function in Figure[5]A clearly shows that
the rewards on uneven terrain are significantly lower than the other two scenarios, indicating a higher
likelihood of robot falls.
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Figure 5: Figure A displays the variance in value distribution produced by the Critic under various
risk scenarios. The horizontal axis is the predicted quantile and the vertical axis is the cumulative
distribution probability value. Figure B shows the change of the scalar risk parameter beta of the
distortion metric. Figure C shows the situation of the robot walking on flat ground, suffering sudden
extreme disturbance, and walking on a rough road in the simulation environment.

Through quantitative analysis, we observed that IQR(uneven) > IQR(push) > IQR(plane), indicat-
ing that the intrinsic uncertainty assessed by IQR aligns with the actual environment conditions.
Figure [|B visually demonstrates that the robot adopted an extremely cautious policy when nav-
igating the previously untrained uneven terrain. In contrast, when subjected to sudden extreme
disturbance on flat ground, the scalar risk parameter /3 sharply increased, indicating that HuRi can
achieve robust motion control in high-risk scenarios.

4.3 REAL WORLD EXPERIMENTS

Domain randomization is used in training to
reduce the sim-to-real gap by simulating di-
verse environments. This involves randomiz-
ing dynamic parameters such as body mass and
ground friction in each episode, etc. Addition-
ally, random forces are applied to the robot, and
sensor feedback is noisy to enhance the con-
troller’s resilience to measurement errors and
faults. The specific parameters for randomiza-
tion are listed in Table[3l In the real-world ex-
periments, we primarily measured the impact
of disturbances on the robot’s stability. These : -
(é% velocity
S o)

disturbances included additional loads on the
centroid, extra loads on the end effectors, and

external pulling forces, etc. Figure 6: Diagram of the pendulum system exper-

Firstly, a fixed lateral impact force is applied to imental setup

the robot using a pendulum system. The pendu-

lum has a height of 1.5 meters, with the weight released from a fixed angle at a horizontal distance
of 1.5 meters from the pivot point. The experimental setup is shown in Figure[f] At the lowest point
of its swing, the weight strikes the side of the robot, generating a constant external force. A 3 kg
water bottle is used as the pendulum’s weight. The robot’s success rate of surviving under lateral
impact is evaluated at a speed of 0.6 m/s. Subsequently, we measured the velocity error rate under
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Figure 7: Real-World Experiments: (A) Walk on uneven terrain. (B) A 15 kg load is added to the
centroid. (C) White foam board insoles are placed under the feet. (D) A 2.5 kg load is added to each
foot. In all these scenarios, our method demonstrates robust performance.

additional loads applied at the centroid or the feet. During the experiment, a 5 kg load was added to
the robot’s centroid, and an additional 3 kg load was placed on each foot. The latter load generated
a significant torque at the robot’s thigh joint. The tests were conducted at velocities of 0.3 m/s, 0.6
m/s, and 0.9 m/s, with the experimental results shown in Table@

External Force Centroid Load Centroid Load

success rate % velocity error rate % velocity error rate %
velocity 0.6 m/s 03m/s 06m/s 09m/s 03m/s 03m/s 0.9m/s
baseline 35 (7/20) 242 28.3 29.5 36.8 31.6 37.1
CVaR 0.5 40 (8/20) 20.8 23.7 24.8 27.3 20.4 334
HuRi w/o RND 55 (11/20) 12.6 13.3 19.7 12.3 17.6 30.5
HuRi 65 (13/20) 7.3 5.6 12.3 9.3 11.7 20.2

Table 2: In the real-world experiments, when the robot was subjected to external forces, our method
achieved the highest success rate. In experiments where additional loads were applied to the centroid
of robot or the feet, we assessed the velocity error rate. Under various velocity commands, our
approach consistently resulted in the lowest velocity error.

Experimental results demonstrate that our approach effectively resists out-of-distribution distur-
bances, showcasing safe and robust motion control capabilities. During testing, we observed that
even with an additional 15 kg load at the robot’s center of mass (approximately 42% of the robot’s
body weight), our method was still able to maintain stable movement and standing. Furthermore,
we tested our approach on surfaces with varying friction coefficients by changing the robot’s in-
soles. The results in Figure indicate that our method remains robust and capable of walking stably
across different frictional surfaces. For further real-world experimental details, please refer to the
supplementary video.

5 CONCLUSION, LIMITATIONS AND FUTURE DIRECTIONS

In this work, we proposed an adaptive risk-aware distributional reinforcement algorithm. By adap-
tively adjusting the agent’s sensitivity to risk according to the environmental risk assessment, the
agent can thoroughly explore the various uncertainties present during training. This enables the
robot to withstand diverse external interferences and achieve a robust locomotion control policy.
Simulations and physical experiments indicate that HuRi can equip robots with the ability to with-
stand various interferences. Since our method is based on the traditional PPO algorithm without
relying on historical information, our approach is inferior to the latest research on locomotion con-
trol on multiple terrains. In the future, we will focus on how to improve the robustness of humanoid
robot motion control on multiple terrains.

REFERENCES

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in chal-
lenging terrains using egocentric vision. CoRL, 2022.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

10



Under review as a conference paper at ICLR 2025

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pp. 449-458. PMLR, 2017.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric bal-
loons using reinforcement learning. Nature, 588(7836):77-82, 2020.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation, 2018. URL https://arxiv.org/abs/1810.12894.

Xuxin Cheng, Kexin Shi, Ananye Agarwal, and Deepak Pathak. Extreme parkour with legged
robots. arXiv preprint arXiv:2309.14341, 2023.

Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, and Xiaolong Wang. Expressive
whole-body control for humanoid robots, 2024a. URL https://arxiv.org/abs/2402.
16796.

Yi Cheng, Hang Liu, Guoping Pan, Linqgi Ye, Houde Liu, and Bin Liang. Quadruped robot traversing
3d complex environments with limited perception, 2024b.

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile networks for
distributional reinforcement learning. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1096—1105. PMLR, 10-15Jul 2018a. URL https://proceedings.
mlr.press/v80/dabneyl8a.html.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018b.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. /[EEE
transactions on neural networks and learning systems, 33(11):6584—6598, 2021.

Péter Fankhauser, Marko Bjelonic, C Dario Bellicoso, Takahiro Miki, and Marco Hutter. Robust
rough-terrain locomotion with a quadrupedal robot. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5761-5768. IEEE, 2018.

Xinyang Gu, Yen-Jen Wang, Xiang Zhu, Chengming Shi, Yanjiang Guo, Yichen Liu, and Jianyu
Chen. Advancing humanoid locomotion: Mastering challenging terrains with denoising world
model learning, 2024. URL https://arxiv.org/abs/2408.14472,

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Waulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022,
2024.

Tairan He, Chong Zhang, Wenli Xiao, Guanqgi He, Changliu Liu, and Guanya Shi. Agile but safe:
Learning collision-free high-speed legged locomotion, 2024. URL https://arxiv.org/
abs/2401.17583.

David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. ~Anymal parkour: Learn-
ing agile navigation for quadrupedal robots. Science Robotics, 9(88):eadi7566, 2024. doi:
10.1126/scirobotics.adi7566. URL https://www.science.org/doi/abs/10.1126/
scirobotics.adi7566.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

11


https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/2402.16796
https://arxiv.org/abs/2402.16796
https://proceedings.mlr.press/v80/dabney18a.html
https://proceedings.mlr.press/v80/dabney18a.html
https://arxiv.org/abs/2408.14472
https://arxiv.org/abs/2401.17583
https://arxiv.org/abs/2401.17583
https://www.science.org/doi/abs/10.1126/scirobotics.adi7566
https://www.science.org/doi/abs/10.1126/scirobotics.adi7566

Under review as a conference paper at ICLR 2025

Zhongyu Li, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil Sreenath.
Reinforcement learning for versatile, dynamic, and robust bipedal locomotion control. arXiv
preprint arXiv:2401.16889, 2024.

Qiayuan Liao, Bike Zhang, Xuanyu Huang, Xiaoyu Huang, Zhongyu Li, and Koushil Sreenath.
Berkeley humanoid: A research platform for learning-based control, 2024. URL https://
arxiv.org/abs/2407.21781.

Hang Liu, Yi Cheng, Rankun Li, Xiaowen Hu, Lingi Ye, and Houde Liu. Mbc: Multi-brain collabo-
rative control for quadruped robots, 2024. URL https://arxiv.org/abs/2409.16460.

Junfeng Long, Wenye Yu, Quanyi Li, Zirui Wang, Dahua Lin, and Jiangmiao Pang. Learning h-
infinity locomotion control. arXiv preprint arXiv:2404.14405, 2024.

Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for generalization
with multiplicity of behavior. In Conference on Robot Learning, pp. 22-31. PMLR, 2023.

I Made Aswin Nahrendra, Byeongho Yu, and Hyun Myung. Dreamwaq: Learning robust
quadrupedal locomotion with implicit terrain imagination via deep reinforcement learning. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 5078-5084. IEEE,
2023.

Daniel W Nam, Younghoon Kim, and Chan Y Park. Gmac: A distributional perspective on actor-
critic framework. In International Conference on Machine Learning, pp. 7927-7936. PMLR,
2021.

Ilija Radosavovic, Tete Xiao, Bike Zhang, Trevor Darrell, Jitendra Malik, and Koushil Sreenath.
Real-world humanoid locomotion with reinforcement learning. Science Robotics, 9(89):eadi9579,
2024. doi: 10.1126/scirobotics.adi9579. URL https://www.science.org/doi/abs/
10.1126/scirobotics.adi9579.

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning to walk in minutes using
massively parallel deep reinforcement learning. In Conference on Robot Learning, pp. 91-100.
PMLR, 2022.

Lukas Schneider, Jonas Frey, Takahiro Miki, and Marco Hutter. Learning risk-aware quadrupedal
locomotion using distributional reinforcement learning. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 11451-11458. 1EEE, 2024.

Frederik Schubert, Theresa Eimer, Bodo Rosenhahn, and Marius Lindauer. Automatic risk adapta-
tion in distributional reinforcement learning. arXiv preprint arXiv:2106.06317, 2021.

Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp solvers. Autonomous
Agents and Multi-Agent Systems, 27:1-51, 2013.

Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer. Risk-sensitive reinforcement
learning. Neural computation, 26(7):1298-1328, 2014.

Jiyuan Shi, Chenjia Bai, Haoran He, Lei Han, Dong Wang, Bin Zhao, Mingguo Zhao, Xiu Li,
and Xuelong Li. Robust quadrupedal locomotion via risk-averse policy learning. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 11459-11466. IEEE, 2024.

Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan Hurst. Sim-to-real learning of all com-
mon bipedal gaits via periodic reward composition. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7309-7315. IEEE, 2021a.

Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst. Blind bipedal stair
traversal via sim-to-real reinforcement learning, 2021b. URL https://arxiv.org/abs/
2105.08328.

Matthijs TJ Spaan and N Spaan. A point-based pomdp algorithm for robot planning. In IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, volume 3,
pp- 2399-2404. IEEE, 2004.

12


https://arxiv.org/abs/2407.21781
https://arxiv.org/abs/2407.21781
https://arxiv.org/abs/2409.16460
https://www.science.org/doi/abs/10.1126/scirobotics.adi9579
https://www.science.org/doi/abs/10.1126/scirobotics.adi9579
https://arxiv.org/abs/2105.08328
https://arxiv.org/abs/2105.08328

Under review as a conference paper at ICLR 2025

Silvestr Stanko and Karel Macek. Risk-averse distributional reinforcement learning: A cvar opti-
mization approach. In IJCCI, pp. 412423, 2019.

Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov. Worst cases policy gradients. arXiv
preprint arXiv:1911.03618, 2019.

Thibaut Théate and Damien Ernst. Risk-sensitive policy with distributional reinforcement learning.
Algorithms, 16(7):325, 2023.

Shaun S Wang. A class of distortion operators for pricing financial and insurance risks. Journal of
risk and insurance, pp. 15-36, 2000.

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie- Yan Liu. Fully parameterized quan-
tile function for distributional reinforcement learning. Advances in neural information processing
systems, 32, 2019.

Chong Zhang, Wenli Xiao, Tairan He, and Guanya Shi. Wococo: Learning whole-body humanoid
control with sequential contacts, 2024. URL https://arxiv.org/abs/2406.06005.

Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atkeson, Soren Schwertfeger, Chelsea Finn,
and Hang Zhao. Robot parkour learning. In Conference on Robot Learning (CoRL), 2023.

Ziwen Zhuang, Shenzhe Yao, and Hang Zhao. Humanoid parkour learning, 2024. URL https:
//arxiv.org/abs/2406.10759.

13


https://arxiv.org/abs/2406.06005
https://arxiv.org/abs/2406.10759
https://arxiv.org/abs/2406.10759

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 HYPERPARAMETERS OF HURI

In the training phase, we configured the hidden dimensions of the Actor and Critic networks across
all models to [512, 256, 128], established the Actor’s input dimension at 46, set the Critic’s input
dimension to 399, and determined the output quantiles dimension to be 64. In PPO, the coefficient v
used for calculating the discounted reward is 0.9, the clip parameter is fixed at 0.2, and the learning
rate is set to 2e-4. When SR()) calculates the target distribution, A = 1. The hyperparameters are
listed in Table3]

Hyperparameter Value
Iterations 18000
Hidden State [512, 256, 128]
Aeacpectation 0.05
Aq’uantiles 1.0
Aentropy 0.01
Iterations 18000
IQR Range [0.3,0.7]
Discount Factor 0.99
GAE Parameter 0.95
Timesteps per Rollout 60
Epochs per Rollout 8
Minibatches per Epoch 4
Entropy Bonus (a2) 0.01
Value Loss Coefficient (a1) 1.0
Clip Range 0.2
Reward Normalization yes
Learning Rate 2e—4

# Environments 4096
Optimizer Adam
RND Leanring Rate le-3
RND Hidden State(g) [32, 32]
RND Hidden State(f) [32]
RND optimizer Adam

Table 3: HuRi hyperparameters.

A.2 TRAINING DETAILS

We used the reward function as shown in Table fi] where the task reward guides the robot to track
the desired speed and complete motions on various terrains and alive reward mitigates the explo-
ration burden in early period. Besides, we design comprehensive reward about feet (Siekmann et al.
(2021a)Margolis & Agrawal (2023)) to guide locomotion and prevent weird posture. Through ex-
tensive training trials, we optimized our reward weight settings to ensure that the robot moves in a
relatively ideal manner.

A.3 DOMAIN RANDOMIZATION PARAMETERS IN TRAINING AND TESTING

The range of disturbances during testing was far beyond the range of the training settings. Parame-
ters are shown in Table
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Term Equation Weight
Task Reward

alive 1 0.5

xy velocity tracking exp{—|Vay — v:"; 2 %5} 1.5

yaw velocity tracking exp{—(w, — w™)? x5} 1.0

Feet Guidance

swing phase tracking (force)
stance phase tracking (velocity)
raibert heuristic footswing tracking

footswing height tracking

S roall — Crnd (6™, )] exp{ —|#°|? /100} 5.0
> oot Cran (6™, )] exp{ — V2|2 /5} 10.0
(L, roor = PL o (557)? ~30.0
S oot (P e = L) Cimd (6™, 1) ~10.0

Regularization Reward

body height

z velocity

foot slip

hip position

feet orientation
feet stumble
orientation
thigh/calf collision
joint limit violation
joint torques

joint velocities
joint accelerations
action rate

action smoothing

action smoothing, 2nd order

exp{—(h, — h®™)? x 1000} —0.2
v2 -0.02
vioo |2 -0.04
exp{— E?=1 q'rz'oll,yaw * 100} 0.4
exp{— Z?:1 Gg?glll,pitchl * 10} 0.4
%(maxi(,/ng +F3i > 4| F, 1)) -1
exp{f\gmy|2 * 10} 1.5
1collisi0n —=5.0
Lgi>amaz 19 <amin —10.0
|T|? -le-5
lq|? -le-3
ld|? 2.5e-7
|a¢ | -5e-5
lag_q1 —ag|? -0.01
lag—o — 22,1 + at\Q -0.01

Table 4: Reward structure

Table 5: Domain randomization parameters in training and testing

Parameters Range in Training [Min, Max] Range in Testing [Min, Max]
forces on centroid [0, 10] N [0, 100] N for continuous disturbances
forces on centroid [0, 10] N [150, 200] N for sudden extreme disturbances
forces on hands ON [0, 100] N for continuous disturbances
forces on hands ON [150, 200] N for sudden extreme disturbances
forces on feet ON [0, 100] N for continuous disturbances
forces on feet ON [150, 200] N for sudden extreme disturbances
line velocity [0, 0.7] m/s 1 m/s
mass disturbances [-2, 5] kg [-3, 8] kg
friction disturbances [0.1, 1.5] [0.1, 2]
body com [-0.07,0.1] kg [-0.07, 0.1 kg

A.4 ALGORITHM

We employ algorithmic blocks to delineate the detailed flow of the algorithm. The algorithm of Huri
is shown in the Algorithm[I] The process of the SR(\) algorithm is shown in the Algorithm 2]
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Table 6: Other Domain Randomizations

Parameter Range [Min, Max]
Link Mass [-0.8,1.4] x default kg
Base Orientation Roll Pitch  [-0.1, 0.1], [-0.1, 0.1] x rad
Motor Strength [0.9, 1.1] x default Nm
Joint Kp [0.85, 1.15] x default
Joint Kd [0.85, 1.15] x default
Initial Joint Positions [0.5,1.5]xdefault
System Delay [0,40] ms
Push Velocity XY [0, 0.5]m/s

Algorithm 1 HuRi Adaptive Risk-Aware Reinforcement Learning

Require: Initial environment state sg
Ensure: Optimal action policy 7*
1: Initialize actor-critic networks with parameters v and ¢
2: Set IQR thresholds t,,in, tmas
3: Initialize RND networks: target network ¢ and predictor network f
4: for each episode do

5: Reset environment to initial state sg
6: for each timestep ¢ do
7: Observe current state s;
8: Actor selects action a; based on policy 7 parameterized by v
9: Execute action a; in environment
10: Observe reward r; and new state sy 1
11: Estimate return distribution Zy(s,, a;) using critic
12: Calculate intrinsic uncertainty using IQR: IQR = Q3 — @
13: if IQR > t,4. then
14: Bror + 1 > Risk-averse policy
15: else if t,,;, < IQR < t,,4, then
16: Bror < 0 > Risk-neutral policy
17: else
18: Brgr +— —1 > Risk-seeking policy
19: end if - o
20: Compute Losspnp (f(s?””c) — g(sf”“c))
21: Set parameter uncertainty risk parameter Sgyp < tanh(Lossgrnp)
22: Calculate overall risk parameter 3 < S1or + BrND
23: Adjust return distribution using Wang distortion function: hgv‘mg (1) = ®(@~Y(7)+ )
24: Compute the expected return E[Zy(s¢, at)] using the distorted value distribution:
25: E(Zy(st,a0)] == [, by “"(r) Z§ (s) dr
26: Calculate loss for value distribution Lgyqntiies
27: Calculate expectation 1088 Lezpectation Using MSE
28: Update critic network parameters ¢ to minimize:
29: L+ )\expectation . Lexpectation + )\quantiles . Lquantiles
30: Update actor network parameters v using PPO to maximize policy objective
31: end for
32: end for

33: return Optimal policy 7*
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Algorithm 2 SR()\)

Require: Transition samples (s, a¢, 7141, St+1), current value distribution parameters 6, discount
factor ~, eligibility trace decay parameter A
1: Initialize eligibility traces e(s) = 0 for all states s
2: for each time step ¢ do
3: Observe transition (s, at, ¢41, St+1)

4 Compute TD error: 6; = riy1 + vZo(St+1) — Zo(st)
5 Update eligibility trace for state s;: e(sy) = e(s;) + 1
6 for each state s do

7: Zy(s) « Zy(s) + adre(s)

8 Update the eligibility trace: e(s) < yAe(s)

9 end for
10: end for

A.5 ABLATION EXPERIMENTS

To further validate the contribution of each
module in HuRi, we conducted the following

ablation experiments: £
T .
¢ HuRi w/o RND: Our method without E
the RND module. 2"
. . o Huri without IQR
¢ HuRi w/o IQR: Our method without f —— HuRi without RND
the IQR module. HUR

. . Iteration
We conducted experiments with five random

seeds, training each seed five times, and the re-  Fjgyre 8: The agent’s actual return during training
sults are shown in the Figure|8} In the Method s shown in figure, where the thick line represents
sectign@ we explained that IQR is used tomea-  the average return, and the shaded regions indi-
sure intrinsic uncertainty, while RND quantifies  ¢4te the 95% confidence intervals across different

parameter uncertainty. Combining these tWo geeds. HuRi achieves the highest convergent re-
uncertainties to assess the risk level in the envi- 4.

ronment aids in safe exploration for the agent,

improving its rewards. According to the experimental settings in the section we applied con-
tinuous disturbances and extreme sudden disturbances to the agent’s centroid, hands, and feet, and
the results are shown in Table |/} Additionally, following parameter settings of another simulation
experiments, we applied mass disturbances, friction disturbances, and both types of disturbances to
the agent, tracing the velocity error. The experimental results are shown in the Figure 0]

Continuous disturbances Sudden extreme disturbances

centroid hand feet centroid hand feet

HuRi w/o IQR 0.8102  0.8037 0.8283  0.7894  0.7995  0.7868
HuRi w/o RND  0.8186  0.7700 0.8482  0.7758  0.8078  0.8077
HuRi 0.8562 0.8090 0.8658 0.8317 0.8116 0.8171

Table 7: Comparison of success rate under different disturbances. We perform continuous and
sudden extreme disturbances on the robot’s. HuRi demonstrates the most effective resistance to
various disturbances.

The results indicate that our method, HuRi, achieved the best performance. Without the RND mod-
ule in our method, the value of /3 can only switch between -1, 0, and 1, which fails to accurately
estimate the risk level in the environment and is insufficient to handle the complex changes in vary-
ing environmental conditions. On the other hand, without the IQR module, since Sryp is greater
than or equal to 0, the agent cannot switch to a risk-seeking policy. This results in the agent consis-
tently choosing lower-risk actions, hindering exploration during the training process and reducing
overall adaptability and performance.
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A 0.6 Line Velocity Tracking Error B 06 Line Velocity Tracking Error C o Line Velocity Tracking Error
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Figure 9: Error Comparison: The figure shows the linear velocity error. A represents load distur-
bances, B represents friction disturbances, and C represents both disturbances. HuRi has the lowest
velocity tracking error.

Through ablation experiments, we validated the contribution of each module and theoretically an-
alyzed the shortcomings of using the IQR and RND modules individually. The structural design
of HuRi integrates the advantages of both modules from the perspective of combining two types of
uncertainty, while avoiding the drawbacks of each, thereby achieving the best experimental results.

A.6  VERIFICATION OF MODEL INDEPENDENCE FROM REWARD FORMULATION

To demonstrate that HuRi does not rely on specific robots and reward formulations, we conducted
training and testing on the Unitree Go2 quadruped robot, comparing the baseline with HuRi. The
training consisted of 2048 environmental instances, while other settings remained consistent with
those described in|Rudin et al.| (2022). We performed five experimental repetitions using five random
seeds. The training results, as illustrated in Figure [T0} indicate that our method enables the robot to
traverse diverse terrains while achieving higher rewards.

—— baseline
—— Huri

Mean Return
Mean Return

* —— baseline
—— Huri

0 1000 2000 3000 4000 5000 6000 7000 8000 > 1000 2000 3000 Py 5000 5000 7000 5000

Iteration Iteration

Figure 10: The agent’s actual return during training is shown in figure A, where the thick line
represents the average return, and the shaded regions indicate the 95% confidence intervals across
different seeds. HuRi achieves the highest convergent reward. Figure B illustrates the variation in
terrain level throughout the training process.

To verify the effectiveness of our method un- Height  Policy  Success %
der varying reward formulations, we measured 0.4m baseline 65.37
the robot’s success rate in high platforms under ) HuRi 92.73
various perturbations. During the testing phase, 0.45 baseline 39.01
we applied external forces to the robot’s cen- ) HuRi 80.55

troid randomly every 100 steps within a range

of [0, 100] N and mass disturbances within [- Table 8: Success rates of robot walking down a
1, 1] kg. These perturbations were beyond the platform.

range encountered during training. The results

summarized in Table[8] demonstrate that our method achieves robust performance even under these
challenging environments. The experiments also demonstrated that our method is not dependent on
specific reward formulations and possesses good generalization performance.

A.7 TRAINING AND TESTING ON VARIOUS TERRAINS
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Policy Success Rate %
To verify that the risk preference of our method baseline 25.14
does not negatively impact the agent’s mobil- CvaR 0.5 49.78
ity, we trained the four methods from the pa- HuRi w/o RND 46.04
per(baseline, cvar0.5, HuRi without RND, and HuRi 57.76

HuRi) on multiple terrains, including ’rough

slope up’, ’rough slope down’, and discrete’. Table 9: Suc.cess rates of robot walking through
The other training settings were consistent with ~through multiple terrains.

those in the paper. The training results are shown in the figure [T} Considering both the rewards
and the terrain levels, our method achieved the best performance. To further test the robustness of
HuRi’s motion control across multiple terrains, we randomly applied external force to the robot’s
centroid disturbances in the range of [0, 100]N in a multi-terrain environment, selected four random
seeds, and tested in parallel across 1024 environments. The test results are presented in Table 9]

8 s
60 4.0
£ S
SN S
2 2
Q Q
o [+
c c 30
§" g
s —— baseline s —— baseline
) —— CVaR 0.5 > —— CVaR 0.5
HuRi without RND HuRi without RND
—— HuRi » 7 —— HuRi
3 2000 4000 600 8000 10000 12000 14000 3 2000 4000 6000 000 10000 12000 14000
Iteration Iteration

Figure 11: Figure A shows the agent’s return during training, with the thick line representing the
average return and the shaded regions indicating 95% confidence intervals across different seeds.
HuRi achieves the highest reward. Figure B depicts the terrain level variation during training.”

The experimental results demonstrate that our method achieves superior performance. Combined
with the above experiments on the quadruped robot, we conclude that HuRi enhances the robustness
of robotic motion control.

A.8 FAILURE OF HURI WITH THE ALTERED DISTORTION FUNCTION

Mean Return

The distortion function(wang_function [Wang

(2000)) also plays a role in HuRi. To demon- threshold 0.3

strate the compatibility of wang_function with w M‘ threshold 0.5
HuRi, we trained the model using the CVaR h | threshold 0.7
distortion function combined with the IQR and 3 MMVN ' N

RND modules. CVaR focuses on the tail of the W Q \ww ‘ﬁ Jm Vw
distribution, emphasizing the lower tail (risk- M
averse) or the upper tail (theoretically risk- J‘ ’ m

seeking). When /3 < 1, the CVaR function only . “m ‘ |
considers the outcomes below a certain quan- lteration

tile, ignoring the rest of the distribution. This ) . )
design is particularly suitable for emphasizing Figure 12: Reward curve using CVaR distortion
unfavorable outcomes to mitigate risk. How- function: The yellow and green curves Vamsh in
ever, to adjust for risk-seeking behavior, atten- the second half of the figure due to rewards falling
tion must be directed to the upper tail of the below -80.

distribution, which mathematically requires 8 > 1. At this point, CVaR extends beyond its domain
(e.g., expanding the sampling range to [0, 3]), leading to practical difficulties. Therefore, poli-
cies based on CVaR can only be risk-neutral or risk-averse. We set different IQR thresholds ¢ ; if
IQR > t, then figr = 0.5, otherwise, Bior = 1, with all other settings consistent with HuRi. The
training results are shown in the Figure[12]

We tested multiple thresholds, and the failure of the training results showed that the CVaR distor-

tion function could not effectively integrate with the IQR and RND modules. There are mainly
the following reasons. Firstly, the CVaR distortion function is inherently a linear distortion, and its
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linear adjustments to the tail of the distribution do not align well with the complex nonlinear rela-
tionships of the IQR and RND modules. The IQR and RND modules are better suited for capturing
the complex dynamics of the environment and reward variations, while the linear nature of CVaR
limits its adaptability in complex scenarios, leading to instability in training. Secondly, the CVaR
distortion function only focuses on the tail regions of the distribution, ignoring other parts of the
distribution. In reinforcement learning, rewards are typically a diverse signal containing various
potential feedbacks from different states. By weighting only specific quantiles, CVaR may fail to
fully utilize all available information, contributing to instability during training. Finally, the early
stages of reinforcement learning are often accompanied by significant uncertainty and fluctuations,
making it more difficult for the model to adapt to complex environments, which ultimately leads to
training failure.
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