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ABSTRACT

Reinforcement Learning, particularly through policy gradient methods, has played
a central role in enabling reasoning capabilities of Large Language Models. How-
ever, the optimization stability of policy gradients in this setting remains under-
studied. As a result, existing implementations often resort to conservative hyper-
parameter choices to ensure stability, which requires more training samples and
increases computational costs. Hence, developing models for reliably tracking the
underlying optimization dynamics and leveraging them into training enables more
sample-efficient regimes and further unleashes scalable post-training. We address
this gap by formalizing the stochastic optimization problem of policy gradients
with explicit consideration of second-order geometry. We propose a tractable
computational framework that tracks and leverages curvature information during
policy updates. We further employ this framework to design interventions in the
optimization process through data selection. The resultant algorithm, Curvature-
Aware Policy Optimization (CAPO), identifies samples that contribute to unstable
updates and masks them out. Theoretically, we establish monotonic improvement
guarantees under realistic assumptions. On standard math reasoning benchmarks,
we empirically show that CAPO ensures stable updates under aggressive learning
regimes where baselines catastrophically fail. With minimal intervention (reject-
ing fewer than 8% of tokens), CAPO achieves up to 30× improvement in sample
efficiency over standard GRPO for LLM reasoning.

1 INTRODUCTION
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Figure 1: Accuracy on MATH dataset from dif-
ferent RL methods. CAPO (ours) achieves 30×
greater sample efficiency under an aggressive (A)
update regime (higher learning rate, smaller batch
size), whereas GRPO suffers policy collapse.

The emergence of reasoning capabilities in
Large Language Models (LLMs) represents a
major shift in AI research. Beyond language
understanding, reasoning has become a core
ingredient of widely deployed systems (Ope-
nAI et al., 2024; Gemini, 2025), enabling appli-
cations such as mathematical problem solving
(Shao et al., 2024), code generation (Shojaee
et al., 2023), and agentic workflows (Yao et al.,
2023). This progress is primarily attributed
to advances in scaling Reinforcement Learn-
ing (RL) techniques for LLM post-training,
particularly policy gradient methods such as
PPO (Schulman et al., 2017), GRPO (Shao
et al., 2024), and variants (Yu et al., 2025; Liu
et al., 2025b). These methods enabled LLMs
to develop behaviors for autonomous chain-of-
thought reasoning (Gandhi et al., 2025) and
to effectively scale test-time compute (Setlur
et al., 2025).
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Despite its success in LLM fine-tuning and other decision-making tasks (Bellemare et al., 2020;
Mnih et al., 2015), RL still faces fundamental challenges that limit its broader practicality and
scalability. In particular, policy gradients suffer from optimization instabilities driven by the non-
stationary nature of the RL objective and the high variance of estimates (Castanyer et al., 2025).
These problems are further compounded by the known pathologies of training deep networks (Pas-
canu et al., 2013; Pennington et al., 2017). These factors lead to several undesired consequences,
such as catastrophic updates and policy collapse (Dohare et al., 2023), plasticity loss (Juliani & Ash,
2024), sample inefficiency (Kaiser et al., 2020), and hyperparameter sensitivity (Henderson et al.,
2018). As a result, the optimization dynamics of RL remain an active area of research from both
theoretical and empirical standpoints (Mei et al., 2022; Lyle et al., 2022; Vaswani et al., 2022) .

Perhaps due to the recency of the topic, the optimization dynamics of RL in the context of LLMs
remains underexplored. These challenges persist in the LLM setting and may be even more pro-
nounced, since training involves billion-parameter models with very deep architectures and sam-
pling horizons that can extend arbitrarily. In practice, current implementations of RL for LLMs
typically rely on conservative hyperparameters to ensure stability, such as low learning rates (e.g.,
3 × 10−6 or less) and large batch sizes (e.g. thousands of generations per policy update) (Sheng
et al., 2024; Hugging Face, 2025; Guo et al., 2025). These choices substantially increase the number
of LLM generations required for learning, raising computational costs. Therefore, stabilizing these
algorithms in sample-efficient regimes is crucial to further scale RL for LLM reasoning.

One promising direction is to design algorithms that explicitly model second-order geometry in
the optimization landscape and incorporate this information into policy updates. In this work, we
formalize the RL optimization problem accounting for curvature terms, namely the Hessian of the
objective and the Fisher Information Matrix of the policy distribution. Building on this formulation,
we introduce a computationally and numerically tractable model of optimization dynamics that ap-
proximates this curvature information. This model enables continuous monitoring of gradient and
curvature estimates during policy updates, scales to billion-parameter models and provides analyti-
cal expressions for these quantities, which facilitate a systematic analysis of the learning dynamics.

We further leverage this optimization model to plan the next policy gradient step1. It allows antic-
ipating policy updates that potentially induce sudden shifts in the objective or policy distribution –
often associated with unstable optimization behavior – and intervening before taking the actual step
in the LLM. We propose a simple data selection mechanism as intervention: we identify particu-
lar samples that heavily contribute to these abrupt shifts and mask them out of the policy gradient
estimation. We refer to this method as Curvature-Aware Policy Optimization (CAPO).

We theoretically establish monotonic policy improvement guarantees under CAPO with practical
assumptions. We then empirically validate CAPO on standard math reasoning benchmarks, show-
ing that it yields stable optimization even in regimes with aggressive updates, where standard RL
algorithms suffer catastrophic updates and policy collapse. As a result, CAPO achieves up to 30×
improvement in sample efficiency compared to GRPO in the standard regime, as presented in Fig-
ure 1. Lastly, we show that its interventions are minimal, typically rejecting fewer than 8% of the
tokens, with negligible computational overhead.

2 RELATED WORK

RL & LLMs. The use of RL techniques to optimize LLMs has been an active area of research
in recent years. Early work focused on RL from Human Feedback (RLHF), which optimizes poli-
cies toward modeled human preferences (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al.,
2022). More recently, RL for LLM reasoning has gained significant attention for its effectiveness in
enabling autonomous chain-of-thought reasoning (Gandhi et al., 2025) and in scaling test-time com-
pute (Setlur et al., 2025). This breakthrough was initially driven by the seminal works of the OpenAI
o-series (OpenAI et al., 2024) and DeepSeek-R1 (Guo et al., 2025), which popularized GRPO (Shao
et al., 2024). Since then, the research community has studied several aspects of the training pipeline
(Zhang et al., 2025), including alternative objectives (Roux et al., 2025; Hu et al., 2025), sampling
mechanisms (Yu et al., 2025), reward shapings (Yang et al., 2024), and different training configura-

1In this work, “model” refers to the proposed computational model of curvatures and “policy” to the LLM.
“Model gradients” are computed under the former, while “policy gradients” denote the true LLM gradients.
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tions (Liu et al., 2025b; Team et al., 2025). Our work fits within this line of research by investigating
RL for LLMs from an optimization dynamics perspective, proposing a model of the optimization
landscape and using it to design stable policy gradient updates.

Optimization Dynamics in RL. The non-convex and non-stationary nature of RL training has mo-
tivated a large body of work on understanding and stabilizing optimization dynamics in RL agents.
In the context of policy gradients, prior research has investigated the role of baselines (Mei et al.,
2022), variance reduction techniques (Greensmith et al., 2001), and emergent pathologies such as
plasticity or capacity loss (Sokar et al., 2023; Klein et al., 2024) and policy collapse (Dohare et al.,
2023). Beyond these analyses, past literature has also developed conservative policy optimization
methods (Schulman et al., 2015; 2017; Achiam et al., 2017). While this line of work is exten-
sive and evolving, we primarily highlight the recent contribution of Castanyer et al., which, like
ours, examines the stabilization of policy gradients through curvature-informed interventions. Their
methodology, however, differs: they apply natural gradients with K-FAC (Eschenhagen et al., 2023)
in general deep RL environments, whereas our work develops a new approximation of curvature that
is tractable at the scale of LLMs and is incorporates it into optimization through data selection.

Improving RL for LLM Reasoning. In the context of LLM research, a nascent but growing litera-
ture explores improvements to RL training for reasoning. These works typically propose heuristics
that target specific problems observed during training—for example, noisy gradient estimates, lim-
ited output diversity, or large policy updates. Common approaches include rethinking advantage
estimation (Liu et al., 2025a; Ahmadian et al., 2024), controlling policy entropy (Yu et al., 2025;
Cui et al., 2025), and bounding advantage estimates or log-likelihoods Yang et al. (2025a;b). In
contrast, our work takes a more principled approach. Rather than introducing heuristics to address
isolated issues, we develop a framework based on second-order stochastic optimization that funda-
mentally explains these instabilities and addresses them in a unified manner.

3 PRELIMINARIES

Problem Statement. We formulate the problem of next-token generation as a Markov Decision
Process (MDP), defined by the tuple M = (S,A,P, R, ρ0, γ, T ), in which S is a state space, A
is an action space, P : S × A → ∆(S) a transition function, R : S × A → [−rbound,+rbound] a
bounded reward function, ρ0 : S → ∆(S) an initial state distribution, γ ∈ [0, 1] a discount factor,
and T the length of the horizon. In the LLM setting, let V be a token vocabulary and L ∈ N a
maximum sequence length, including both prompt and generated tokens. S =

⋃L
n=0 Vn is the set

of all finite sequences, with each state st ∈ S representing the concatenation of the prompt and
the tokens generated up to time t, with total length at most L. A is the space spanned by V: at
each step, the policy selects a token at ∈ V . P is governed by autoregressive sampling and takes
the form of a trivial deterministic function st+1 = st ◦ at, where ◦ denotes concatenation. The
initial state distribution ρ0 specifies a distribution over prompts. During policy optimization, one
typically optimizes a parameterized LLM πθ : S × A → ∆(A), with the objective of maximizing
the expected cumulative reward over the generated sequence:

J(θ) = Eτ∼πθ

[ T∑
t=0

γtR(st, at)
]
, (1)

where τ denotes a trajectory, s0 ∼ ρ0(s0), at ∼ πθ(at | st), and st+1 = st ◦ at.
Policy Gradient (PG) methods optimize a stochastic policy by differentiating J(θ) with respect to
the policy parameters (Williams, 1992) and can be written as (Sutton et al., 1999):

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

γt∇θ log πθ(at | st)R(st, at)

]
. (2)

This expectation can be estimated via Monte Carlo sampling under the current policy πθ. However,
such estimates often have high variance. A standard remedy is to subtract a baseline b(st) which
leaves the gradient unbiased while reducing variance. In practice, this is typically done by replacing
the reward with an estimate of the advantage function A(st, at). For the rest of this work, we will
assume the advantage version of this objective.

3
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Group Relative Policy Optimization (Shao et al., 2024) is a widely used method for RL in LLMs.
Akin to PPO (Schulman et al., 2017), it optimizes a surrogate objective that employs off-policy
correction Kakade & Langford (2002) with a clipping strategy to prevent large deviations:

JGRPO(θ) = Eτ∼πβ

[ 1

|τi|

|τi|∑
t=0

min
(
rθ(st, at), clip(rθ(st, at), 1− ϵ, 1 + ϵ)

)
AGRPO(st, at)

−βDKL(πθ(· | st) ∥πbase(· | st))
]
, (3)

where rθ(st, at) =
πθ(at|st)
πβ(at|st) and πβ is the sampling policy. The KL divergence term acts as a reg-

ularizer that penalizes deviation from πbase, the initial LLM. In contrast to standard PG methods,
GRPO draws samples in groups: for each prompt s0 ∼ ρ0(s0), it generates a group of trajectories
{τi}Gi=1 ∼ πβ . Contributions from all state-action pairs of a trajectory are averaged (rather than dis-
counted), which effectively assume γ = 1 with per-trajectory normalization. Finally, the advantage
estimator is defined as:

ÂGRPO(st, at) =
R̂(τ)− R̄
σ̂R + ε

, R̄ =
1

G

G∑
i=1

R̂(τi), σ̂R =

√√√√ 1

G

G∑
i=1

(
R̂(τi)− R̄

)2
, (4)

where R̂(τ) is the return for trajectory τ and ε is a small constant for numerical stability.

4 MODELING THE OPTIMIZATION LANDSCAPE WITH SECOND-ORDER
GEOMETRY

In this section, we develop a model of the optimization landscape. We formulate the reinforcement
learning (RL) optimization problem with policy gradients by explicitly incorporating second-order
geometric information. Building on this formulation, we introduce a tractable computational model
that approximates the role of curvature during learning. Our hypothesis is that by providing a simple
but effective approximation of second-order gradients, one could track sudden shifts in the objective
or policy and anticipate potentially unstable updates.

The Higher-Order Objective. Consider the objective function J(θ) as in Equation 1. After an
update step ∆θ, the new objective J(θ +∆θ) is given by the following Taylor expansion:

J(θ +∆θ) = J(θ) +∇θJ(θ)⊤∆θ + 1
2 ∆θ

⊤H(θ)∆θ︸ ︷︷ ︸
mH(∆θ)

+O(∥∆θ∥3), (5)

where H(θ) denotes the Hessian of the objective. Equation 5 holds under a Lipschitz continuous
Hessian (see Assumption A.1), with a detailed proof in Appendix A. As the cubic term may be
negative, we can establish a guaranteed lower bound J(θ+∆θ) ≥ J(θ)+mH(∆θ)−O(∥∆θ∥3).
In practice, the cubic term is often negligible, and we approximate the objective change bymH(∆θ).
Crucially, standard gradient ascent ignores the Hessian contribution, which can lead to a decrease in
the objective for non-convex problems (such as RL) when this contribution is sufficiently negative.

The Fisher Information Matrix. The Hessian captures the local curvature of the objective func-
tion. In RL, however, the objective is non-stationary, and what ultimately matters is how updates
change the policy distribution. For instance, an update may produce only a small change in the
objective while inducing a large shift in the policy. This alters how future trajectories are sampled
and may destabilize learning. Therefore, it is necessary to track the geometry of the policy distri-
bution directly, which is what the Fisher Information Matrix (FIM) enables. One can show that the
directional curvature under the Fisher geometry approximates the average KL divergence between a
policy and before and after a small step ∆θ:

D̄KL(πθ ∥πθ+∆θ) =
1
2∆θ

⊤F (θ)∆θ︸ ︷︷ ︸
mF (∆θ)

+O(∥∆θ∥3), (6)

where D̄KL(πθ ∥πθ+∆θ) := Es∼dπ

[
KL
(
πθ(· | s) ∥πθ+∆θ(· | s)

)]
, and F (θ) :=

Es∼dπ, a∼πθ(·|s)

[
∇θ log πθ(a | s)∇θ log πθ(a | s)⊤

]
is the FIM. The proof is in Appendix

4
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B. Similarly to the Hessian case, the cubic term is often negligible and we focus on mF (∆θ). One
can further show that enforcing a trust region D̄KL(πθ ∥πθ+∆θ) ≤ δ during policy updates leads to
monotonic improvement of the true objective, given sufficiently small δ (Schulman et al., 2015).

Ultimately, we aim to design a model that approximates mH(∆θ) and mF (∆θ) without explicitly
computing gradients or curvature terms in the high-dimensional parameter space of the LLM. This
approach can be viewed as a form of model-based RL, but from a different perspective: whereas
prior work typically models components of the MDP, such as the dynamics or reward function, we
instead model the optimization process itself, which allows us to plan gradient estimates.

4.1 COMPUTATIONAL MODEL

For an LLM with d parameters, both Hessian and FIM are d × d matrices, which is intractable
for billion-size parameter spaces. Even approximations such as K-FAC (Eschenhagen et al., 2023)
would incur unfeasible memory cost. Therefore, we need to devise a computational model that
is scalable and effectively provides curvature information to stabilize policy gradients. Next, we
describe our methodology.

Last-Layer Model. Since modeling the full Hessian or Fisher Information Matrix (FIM) is in-
feasible, we restrict attention to curvature in a parameter subspace. To this end, we adopt a sim-
ple last-layer approach. An LLM is a softmax policy over the token vocabulary πθ(a | s) =

exp(fθ(s,a))∑
a′ exp(fθ(s,a′)) , where fθ(s, a) ∈ R are the logits produced by the network. Letting fθ(st) denote

the full logits vector, with θ = (θ̄,ψ), we represent the pre-softmax layer as fθ(st) = Whθ̄(st),
where W ∈ RK×di is the last-layer weight matrix, K = dim(V), and hθ̄(st) ∈ Rdi . We then define
ψ = vec(W ) ∈ RK·di . In Appendix C, we show that the last-layer model gradient g̃(ψ) of the
objective in Equation 1 is:

g̃(ψ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)(ea − πθ(st))⊗ hθ̄(st)

]
, (7)

where ⊗ denotes a Kronecker product, eat
∈ V is the one-hot action vector eat

= 1{a = at},
and πθ(st)) the policy distribution vector. We use the vectorization operation vec(·) only for conve-
nience and it does not introduce new assumptions. In this work, we use a tilde superscript to denote
model-based gradients and curvatures, in contrast to the actual policy gradient g(θ) := ∇θJ(θ).
Under the last-layer model, the Hessian of the objective takes the following form:

H̃(ψ) = Eτ∼πθ

[
T∑

t=0

γtA(s, a)
(
(ea − πθ(st))(ea − πθ(st))⊤ − F (st)

)
⊗ hθ̄(st)hθ̄(st)⊤

]
,

(8)
where F (st) is the FIM for state st. In Lemma C.1, we show that this expression can be estimated
via samples. Similarly, the last-layer approximation of the FIM is:

F̃ (ψ) = Eτ∼πθ

[(
(eat
− πθ(st))(eat

− πθ(st))⊤
)
⊗ hθ̄(st)hθ̄(st)⊤

]
. (9)

Computing Directional Curvatures. Even with the approximated model, the curvature matrices
have dimension Kdi ×Kdi. For current LLMs, where K > 105 and di > 103, fully materializing
these matrices is computationally infeasible. Fortunately, our goal is to approximate the shifts in the
objective and policy, mH(∆θ) and mF (∆θ). Thus, we only need to approximate the directional
curvatures ∆θ⊤C(θ)∆θ, without explicitly materializing the full Hessian or FIM. In Appendix
D, we present a mechanism that enables this computation without constructing large tensors. Our
method requires storing only O(Kdi) tensors per state–action sample, instead of the O((Kdi)2)
entries of the full curvature matrices.

Exploiting Gradient Sparsity. We further reduce complexity by exploiting the structure of gradi-
ents arising from LLM generation. Standard LLM decoding relies on selective sampling methods
(e.g., top-k, nucleus sampling) Wolf et al. (2020) to improve generation quality, as most of the prob-
ability mass is concentrated on a small subset k of the vocabulary (Fan et al., 2018; Holtzman et al.,
2020), typically with k < 100. Consequently, only k tokens have non-zero probability at each gener-
ation step, which implies that only the k∗di parameters of the last-layer weight matrixW associated
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with these logits yield non-zero gradients. We therefore store and operate these gradients in sparse
form. This sparsity also applies to the computation of directional curvatures in Equations 58 and 63,
as these reduce to dot products involving sparse vectors (e.g., (eat

− πθ(st) and the model-based
update step ∆θ). Naturally, as we estimate gradients with more samples, the representation expands
to cover all k̃ tokens generated, but typically k̃ << K. For instance, our experiments presented
k̃ < 104. Overall, the memory and dot product complexity reduce to O(k̃ · di).
Modeling the Step ∆θ. A final design choice concerns how to model the planned update steps,
∆θ. Under the last-layer model, these steps take the form ∆ψ. This choice essentially determines
how we represent the optimizer. A simple option is to model the update as a stochastic gradient
descent (SGD) step, ∆ψ = αg̃, where α is the learning rate. Alternatively, we can match the LLM
optimizer, which in our case is Adam (Kingma & Ba, 2015), i.e., ∆ψ = α p̂t√

q̂t+ϵ
, where p̂t and q̂t

are the bias-corrected first and second moment estimates of the gradient.

5 CURVATURE-AWARE POLICY OPTIMIZATION

We may now compute the objective and policy shifts under our model as:

mH(ψ) = g̃(ψ)⊤∆ψ + 1
2∆ψ

⊤H̃(ψ)∆ψ, mF (ψ) =
1
2∆ψ

⊤F̃ (ψ)∆ψ, (10)
and estimate mH and mF via samples following the methodology described in the subsection 4.1.
We now design an algorithm that intervenes in the optimization of the underlying LLM policy using
the model-based updates. Since our objective is to stabilize policy gradients in sample-efficient
regimes, a natural choice is to construct an algorithm that follows the principles of trust-region
methods (Murphy, 2022). We implement this idea through a rejection sampling mechanism.

Given a batch B of collected trajectories, we partition it into disjoint subsets bi ⊂ B. For each
subset, we compute a proposed step ∆ψi and evaluate the shifts defined in Equation 10. We then
accept a subset if it satisfies the (local) trust-region constraints δF , δH , and δhighH :

δH ≤ mH(∆ψi) ≤ δhighH , mF (∆ψi) ≤ δF . (11)
The accepted subsets are subsequently used to compute the gradient update of the LLM policy. Con-
ceptually, this mechanism is analogous to token masking. Overall, this data selection mechanism is
simple, computationally inexpensive, and flexible, as it can be applied at different granularities, in-
cluding tokens, sentences, groups, or full batches. The formal pseudocode is provided in Algorithm
1. Next, we establish theoretical results for monotonic policy improvement under CAPO.
Theorem 5.1 (Monotonic improvement under CAPO). Fix thresholds δH > 0 and δF > 0. Let B
be a batch of sampled trajectories. Split B into disjoint N subsets bi ⊂ B, and propose candidate
subset updates {∆θi}i:N . Retain those satisfying:

mH(∆θi) ≥ δH = ω + 1
2Mr2, mF (∆θi) ≤ δF , (12)

with ω > 0 and M , r defined as in Assumption E.1. Let Bacc denote the superset of the B accepted
subsets, and define the aggregated update:∆θ = 1

B

∑
i∈Bacc

∆θi. Then, for two policies πθ and
πθ+∆θ , with |Aπ(s, a)| ≤ ϵ, we obtain:

J(πθ+∆θ)− J(πθ) ≥ ω − C
√
δF , C =

2γ

(1− γ)2
ϵ
√
2. (13)

Thus choosing ω ≥ C
√
δF guarantees monotonic improvement: J(πθ+∆θ) ≥ J(πθ).

The proof is provided in Appendix E. Observe that δhighH is not required to establish monotonic
improvement. Nonetheless, it serves as a safeguard against overly aggressive steps. In practice,
introducing this upper cap reduces the observed M and r, which allows the use of smaller δH .
Finally, we note that Theorem 5.1 relies on the true objective and policy shifts, whereas in practice
these quantities are approximated using our model.

6 EXPERIMENTS AND DISCUSSION

In this section, we evaluate (i) how the proposed computational model captures the optimization
landscape, and (ii) how this information can be used to stabilize RL optimization dynamics through

6
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Figure 2: Comparison with baseline methods on policy gradient stability. While the setup with
more aggressive updates makes all methods more sample-efficient, it also leads the baselines to pol-
icy collapse. In contrast, CAPO prevents collapse and achieves up to 30× greater sample efficiency
than GRPO under aggressive updates.

CAPO. Our central hypothesis is that an inexpensive yet effective approximation of second-order
geometry can track unstable shifts in the objective and policy, and that this information can in turn
be used to stabilize aggressive update regimes, leading to more sample-efficient RL in LLMs.

Experimental Setup. We consider a standard RL setup for finetuning LLMs on reasoning tasks.
Our implementation builds on the Open-R1 open-source project (Hugging Face, 2025), and we
maximize an accuracy-based reward. Following prior work, we fine-tune a Qwen2.5-Math-7B LLM
(Qwen et al., 2025) on mathematical reasoning questions. Our primary evaluation metric is accuracy,
but we also track optimization-related quantities such as gradient and curvature statistics and token
rejection rates. Since our goal is to evaluate sample efficiency, we report all metrics as a function
of the number of training completions (i.e., LLM trajectories generated). Appendix G provides
additional details regarding implementation, hyperparameters, and compute resources2.

Datasets & Benchmarks. We train our policies on the MATH dataset (Hendrycks et al., 2021).
For evaluation, we consider eight benchmarks: GSM8K (Cobbe et al., 2021), MATH500 (Light-
man et al., 2023), OlympiadBench (He et al., 2024), MinervaMath (Lewkowycz et al., 2022),
GPQA:Diamond (Rein et al., 2023), AMC23, AIME24, and AIME25. Most of these benchmarks
contain mathematical questions at varying levels (high school, graduate, and olympiad), while
GPQA focuses on general STEM-related problems. For simplicity, we report the average perfor-
mance across all eight benchmarks, which we refer to as “TEST” in the results.

Comparison Methods. We evaluate our approach against two GRPO variants. The first corresponds
to the standard “conservative” update regime implemented in the Open-R1 codebase. The second,
which we denote “GRPO (A),” adopts a more aggressive regime intended to improve sample effi-
ciency, with a learning rate 5× higher and a batch size 12× smaller. This matches the configuration
used by CAPO. We also evaluate Dr.GRPO (Liu et al., 2025a) and REINFORCE (Williams, 1992),
both under the same aggressive regime.

CAPO operationalization. CAPO optimizes the same objective as GRPO, but leverages the data
selection mechanism introduced in Section 5. For a fair comparison, we use the same hyperparam-
eters as GRPO (A). We implement CAPO with token-level selection, i.e., proposing steps ∆ψi and
rejecting samples on a per-token basis. Finally, we model optimization steps using Adam.

6.1 EXPERIMENTS

We highlight and analyze the following questions to evaluate our hypothesis and proposed method:

2We release our code at https://anonymous.4open.science/r/capo-stable-gradients.
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Figure 3: Evaluation of policy and objective shifts estimates from the proposed computational
model during training. Unstable methods exhibit large and abrupt directional curvatures, while
stable ones maintain much smaller and smoother shifts. CAPO, by applying token-level bounds,
also ensures well-behaved shifts at the global (batch) level, supporting the rationale of Theorem 5.1.

Does CAPO prevent instability in LLM policy gradients? Does it lead to better sample ef-
ficiency? Figure 2 reports accuracy for all methods on MATH and on the TEST benchmark set.
First, we observe that the more aggressive setup does lead to more sample-efficient learning than
the conservative one across all methods. However, for the baselines, this improvement comes at the
cost of stability. Under the aggressive regime, all baseline methods suffer from policy collapse, with
performance dropping well below that of the base model and therefore losing the ability to learn fur-
ther. In contrast, CAPO maintains stable performance throughout training, remaining effective long
after all other methods have collapsed. This demonstrates that CAPO effectively prevents instability
under aggressive updates. As a result, CAPO requires 30× fewer completions on MATH and 9×
fewer completions on TEST compared to standard conservative GRPO.

What does the proposed computational model reveal about the optimization landscape? To
analyze this question, we examine the policy shift mF and the objective shift mH at both the token
level and the global (batch) level over the course of training, presented in Figure 3. For mF , we find
that unstable methods (GRPO (A), DrGRPO, REINFORCE) exhibit very high global directional
curvatures during training, whereas stable methods (CAPO, standard GRPO) maintain much smaller
shifts. In particular, the global mF correlates closely with the instability observed in Figure 1,
showing that the model, despite its simplicity, remains informative about optimization dynamics.

For mH , we observe similar trends: unstable methods show abrupt shifts, while stable ones produce
smoother, better-behaved curves. Note that, while a higher mF directly signals instability since it
tracks policy shifts, a highermH does not necessarily directly imply instability. This is becausemH

depends on the adopted advantage function (Equation 37) and the normalization strategy of each
method. Still, sharp peaks in the mH curves also correlate with training instabilities. Lastly, we
highlight that CAPO, by applying a local bound per token, also ensures well-behaved shifts at the
global level, which supports the rationale of Theorem 5.1. Overall, these results highlight that the
computational model provides meaningful information about the optimization landscape, and that
CAPO effectively leverages this information to stabilize training.

0 2 4 6 8
Training Completions ×103

0.00
0.02
0.04
0.06
0.08

Token Rejection Rate

Figure 5: Token rejection rate under
CAPO. It maintains a low rejection rate
over training, stabilizing learning with
minimal intervention.

Can we extend curvature-aware selection to other RL
methods? To test this, we extend Dr.GRPO and REIN-
FORCE by incorporating our proposed curvature-aware
selection, resulting in Dr.CAPO and ReinCAPO, respec-
tively. Figure 4 reports the evaluation results for these
methods. In all cases, incorporating the selection strat-
egy improves upon the base method and prevents policy
collapse. These findings suggest that the proposed com-
putational model and intervention mechanism are broadly
applicable across different policy optimization objectives.

How aggressive is CAPO’s intervention to ensure sta-
bility? We analyze the extent of token rejection required
by CAPO to maintain stable gradients, measured by the
token rejection rate during training (Figure 5). The re-
jection rate peaks at about 8% in the early stages of opti-
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Figure 4: Evaluation of extended versions of RL methods with curvature-aware selection. In-
corporating curvature-aware selection consistently improves the base methods, preventing policy
collapse and demonstrating the broader applicability of our approach across different policy opti-
mization objectives.

mization, when higher learning rates produce more aggressive updates, but quickly decreases and
remains below 2% for the remainder of training. Overall, this shows that CAPO guides optimiza-
tion toward stable curvature regions while keeping its intervention minimal, allowing the LLM to
continue leveraging the vast majority of samples.

Additional Experiments. We provide a computational cost analysis of CAPO in Appendix H,
where we show that the additional components incur minor overhead. Additionally, we present
further experiments in Appendix I, including an ablation study on the optimizer model and a de-
tailed evaluation of other heuristics traditionally used to ensure stability (e.g., PPO clipping and KL
regularization), highlighting their limitations in the LLM setup.

7 FINAL REMARKS

In this work, we propose a computational framework that models curvature information and inte-
grates it into policy updates through CAPO. We provide theoretical guarantees for CAPO and show
that it is effective at identifying samples that contribute to unstable updates, preventing policy col-
lapse in aggressive training regimes where standard RL methods for LLM reasoning fail. As a result,
CAPO achieves up to a 30× improvement in sample efficiency compared to widely used training
setups, while requiring only minimal intervention and computational overhead. Overall, it enables
more sample-efficient learning regimes, supporting further scalability post-training scalability.

Limitations. Despite the encouraging results, we acknowledge some limitations of our work. First,
due to compute budget constraints, we focused on experiments at a smaller, academic scale. While
we demonstrated the effectiveness of CAPO against commonly used RL methods, future work could
extend these results to distinct problem settings and longer training schedules. Second, the choice of
CAPO thresholds depends on the problem setting (MDP, objective function, base policy) and may
require tuning across different scenarios. Nonetheless, this is not a major concern, as the thresholds
can be tuned solely on the training distribution.

Future Work. Beyond scalability, future research may explore different parametrizations of the
computational model (for instance, by extending it to deeper layers) and investigate their impact on
computational tractability and curvature estimates. In addition, future work may evaluate CAPO
extensions to other intervention mechanisms, such as soft masking or regularization methods.
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Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, NIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp.
1310–1318, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.
mlr.press/v28/pascanu13.html.

13

http://probml.github.io/book1
https://arxiv.org/abs/2412.16720
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in
deep learning through dynamical isometry: theory and practice. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/d9fc0cdb67638d50f411432d0d41d0ba-Paper.pdf.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Nicolas Le Roux, Marc G. Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves, Alex
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Yunhao Tang and Rémi Munos. On a few pitfalls in kl divergence gradient estimation for rl, 2025.
URL https://arxiv.org/abs/2506.09477.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin
Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi,
Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,
Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao,
Weimin Xiong, Weiran He, Weixiao Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui
Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles,
Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng
Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,
Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang,
Ziyao Xu, Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms,
2025. URL https://arxiv.org/abs/2501.12599.

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist,
Marlos C. Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surro-
gate functions for stable and efficient reinforcement learning. In Gustau Camps-Valls, Francisco
J. R. Ruiz, and Isabel Valera (eds.), Proceedings of The 25th International Conference on Arti-
ficial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pp.
8619–8649. PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/
vaswani22a.html.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A DERIVATION OF THE SECOND-ORDER OPTIMIZATION OBJECTIVE

In this section, we formally derive the higher-order expansion of the objective function around a
given parameter vector, and present conditions for monotonic improvement. We start by highlighting
a smoothness assumption required for our analysis.
Assumption A.1 (Lipschitz continuity of the Hessian). There exists a constant L2 ≥ 0 such that,
for all τ ∈ [0, 1] and all ∆θ ∈ Rd,∥∥∇2J(θ + τ∆θ)−∇2J(θ)

∥∥
op
≤ L2 τ ∥∆θ∥ . (14)

Assumption A.1 is standard in the analysis of trust-region and cubic-regularized methods, and holds
locally for smooth policy parameterizations.
Proposition A.1 (Second-order expansion with integral remainder). Let J : Rd → R be three times
differentiable, and denote g ≜ ∇J(θ) and H ≜ ∇2J(θ). For any update direction ∆θ ∈ Rd,
the objective value at the perturbed parameter θ +∆θ admits the expansion

J(θ+∆θ) = J(θ)+g⊤∆θ+ 1
2 ∆θ

⊤H∆θ+

∫ 1

0

(1−τ)∆θ⊤
(
∇2J(θ+τ∆θ)−H

)
∆θ dτ. (15)

Under Assumption A.1, the following lower-bound holds

J(θ +∆θ) ≥ J(θ) + g⊤∆θ + 1
2 ∆θ

⊤H∆θ − L2

6 ∥∆θ∥
3
. (16)

Proof. Let ϕ(τ) = J(θ + τ∆θ) for τ ∈ [0, 1]. Then ϕ′(0) = g⊤∆θ and ϕ′′(0) = ∆θ⊤H∆θ. The
(one-dimensional) Taylor formula with integral remainder gives

ϕ(1) = ϕ(0) + ϕ′(0) + 1
2ϕ

′′(0) +

∫ 1

0

(1− τ) (ϕ′′(τ)− ϕ′′(0)) dτ. (17)

Since ϕ′′(τ) − ϕ′′(0) = ∆θ⊤(∇2J(θ + τ∆θ) −H)∆θ, we obtain equation 15. Assumption A.1
implies

∣∣∆θ⊤(∇2J(θ + τ∆θ) − H)∆θ
∣∣ ≤ ∥∆θ∥2 ∥∥∇2J(θ + τ∆θ) − H

∥∥
op
≤ L2τ ∥∆θ∥3.

Solving the integral gives
∫ 1

0
(1− τ)L2τ dτ = L2/6. Since this term can be negative, a worst-case

bound yields the inequality 16.
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B DERIVATION OF THE POLICY DIVERGENCE QUADRATIC APPROXIMATION

In this section, we formally derive the higher-order expansion of the KL term around a small step
∆θ. Throughout this derivation, we assume standard regularity assumptions hold (e.g., parameter-
independent support, differentiability of log πθ, and dominated convergence so that differentiation
may pass under the expectation). The state averaging distribution dπ is fixed.
Assumption B.1 (Lipschitz continuity of the Fisher curvature). Let F (θ) :=

Es∼dπ, a∼πθ(·|s)

[
∇θ log πθ(a | s)∇θ log πθ(a | s)⊤

]
.

There exists a constant LF ≥ 0 such that, for all τ ∈ [0, 1] and all ∆θ ∈ Rd,∥∥F (θ + τ∆θ)− F (θ)
∥∥
op
≤ LF τ ∥∆θ∥. (18)

Assumption B.1 is analogous to the Assumption A.1 applied to the Fisher geometry.
Lemma B.1 (The grad-log-prob identity). Under regularity assumptions, the following identity
holds:

Es∼dπ, a∼πθ(·|s)
[
∇θ log πθ(a | s)

]
= 0. (19)

Proof. Fix s. By normalization,
∑

a πθ(a | s) = 1. Differentiating,
∑

a∇θπθ(a | s) = 0. Since
∇θπθ = πθ∇θ log πθ, we obtain∑

a

πθ(a | s)∇θ log πθ(a | s) = 0, (20)

i.e. Ea∼πθ(·|s)[∇θ log πθ(a | s)] = 0. Averaging over s ∼ dπ preserves zero.

Lemma B.2 (Fisher identity). Under regularity assumptions, the following identity holds:

−E
[
∇2
θ log πθ(a | s)

]
= E

[
∇θ log πθ(a | s)∇θ log πθ(a | s)⊤

]
=: F (θ). (21)

Proof. Fix s. Twice differentiating normalization gives ∇2
θ

∑
a πθ(a | s) =

∑
a∇2

θπθ(a | s) = 0.
Using ∇2

θπθ = πθ
(
∇2
θ log πθ +∇θ log πθ∇θ log π⊤

θ

)
, we obtain

0 =
∑
a

πθ(a | s)∇2
θ log πθ(a | s) +

∑
a

πθ(a | s)∇θ log πθ(a | s)∇θ log πθ(a | s)⊤. (22)

Recognizing expectations over a ∼ πθ(· | s) and multiplying by −1 yields

−Ea∼πθ(·|s)[∇
2
θ log πθ(a | s)] = Ea∼πθ(·|s)[∇θ log πθ(a | s)∇θ log πθ(a | s)

⊤]. (23)

Averaging over s ∼ dπ gives the result.

Proposition B.1 (Second-order expansion with integral remainder). Define the average forward KL
as

D̄KL(πθ ∥πθ+∆θ) := Es∼dπ

[
KL
(
πθ(· | s) ∥πθ+∆θ(· | s)

)]
. (24)

Then, for any update ∆θ,

D̄KL(πθ ∥πθ+∆θ) =
1
2∆θ

⊤F (θ)∆θ +

∫ 1

0

(1− τ)∆θ⊤
(
F (θ + τ∆θ)− F (θ)

)
∆θ dτ. (25)

And, under Assumption B.1, the following holds:

D̄KL(πθ ∥πθ+∆θ) =
1
2∆θ

⊤F (θ)∆θ +O(∥∆θ∥3). (26)

Proof. Let ϕ(τ) := D̄KL(πθ ∥πθ+τ∆θ). By the Taylor expansion with integral remainder,

ϕ(1) = ϕ(0) + ϕ′(0) + 1
2ϕ

′′(0) +

∫ 1

0

(1− τ)
(
ϕ′′(τ)− ϕ′′(0)

)
dτ. (27)
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Then ϕ(0) = 0, and ϕ′(τ) = −E[∇θ log πθ+τ∆θ(a | s)]⊤ ∆θ, so by Lemma B.1, ϕ′(0) = 0.
Differentiating again and applying Lemma B.2,

ϕ′′(τ) = ∆θ⊤F (θ + τ∆θ)∆θ, ϕ′′(0) = ∆θ⊤F (θ)∆θ. (28)

Substituting the evaluated terms yields the expansion.

Finally, Assumption B.1 implies∣∣∆θ⊤(F (θ + τ∆θ)− F (θ)
)
∆θ
∣∣ ≤ LF τ∥∆θ∥3. (29)

Integrating
∫ 1

0
(1− τ)τ dτ = 1/6, so the remainder term is O(∥∆θ∥3).
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C DERIVATION OF GRADIENTS AND CURVATURES UNDER LAST-LAYER
MODEL

In this section, we formally derive the gradient and curvature expressions assuming the last-layer
model.

Proposition C.1 (Gradient w.r.t.last-layer model of a softmax policy). Let us consider a softmax

policy πθ(a | s) =
exp
(
fθ(s,a)

)
∑

a′ exp
(
fθ(s,a′)

) . Let us also denote the pre-softmax layer by fθ(st) =

Whθ̄(st),W ∈ RK×di , hθ̄(st) ∈ Rdi . Define ψ := vec(W ) ∈ RKd, with θ = (θ̄,ψ),
K = dim(V). Then the policy gradient with respect to ψ of the PG objective:

J(θ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at) log πθ(at | st)

]
(30)

is given by:

g̃(ψ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)
(
ea − πθ(st)

)
⊗ h(st)

]
, (31)

where ea ∈ RK , K = dim(V), denotes the one-hot vector of the realized action at at time t (i.e.,
ea = eat

), πθ(st) ∈ RK is the vector of action probabilities at st, and ⊗ denotes the Kronecker
product.

Proof. Starting from the advantage version of Equation 1, the policy gradient with respect to ψ is
given by

g̃(ψ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)∇ψ log πθ(at | st)

]
. (32)

With logits f(st) =Whθ̄(st), the Jacobian of the log-softmax with respect to f(st) is:

∂ log πθ(a | s)
∂f(st)

= ea − πθ(st) ∈ RK . (33)

Vectorizing W gives:
∂f(st)

∂ψ
= IK ⊗ hθ̄(st)⊤ ∈ RK×Kd. (34)

By the chain rule,

∇ψ log πθ(a | s) =
(
ea − πθ(st)

)⊤(
IK ⊗ hθ̄(st)⊤

)
=
(
ea − πθ(st)

)
⊗ hθ̄(st),

where we used standard Kronecker product identities to obtain a vector in RKd. Plugging the ex-
pression for ∇ψ log πθ(at | st) into Equation 32 yields

g̃(ψ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)
(
ea − πθ(st)

)
⊗ h(st)

]
. (35)

The Hessian of the Objective. For the Hessian, we start by extending the PG Theorem for Hessians:

Lemma C.1 (Hessian of the Policy Gradient). Let πθ(a | s) be a differentiable stochastic policy
and consider the discounted policy gradient objective

J(θ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at) log πθ(at | st)

]
, (36)

where A(st, at) is the advantage function at time t. Then, the Hessian of J(θ) is given by
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∇2
θJ(θ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)
(
∇θ log πθ(at | st)∇θ log πθ(at | st)⊤ +∇2

θ log πθ(at | st)
)]
.

(37)

Proof. Taking the first derivative of J(θ), we obtain

∇θJ(θ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)∇θ log πθ(at | st)

]
. (38)

Differentiating once more yields

∇2
θJ(θ) = ∇θ Eτ∼πθ

[
T∑

t=0

γtA(st, at)∇θ log πθ(at | st)

]
. (39)

Expanding the expectation explicitly over state–action pairs weighted by the discounted state distri-
bution dπγ (st) gives

∇2
θJ(θ) =

∑
s

dπγ (st)
∑
a

∇θ
[
πθ(a | s)A(s, a)∇θ log πθ(a | s)

]
. (40)

Applying the product rule, we obtain

∇2
θJ(θ) =

∑
s

dπγ (st)
∑
a

πθ(a | s)A(s, a)
(
∇θ log πθ(a | s)∇θ log πθ(a | s)⊤+∇2

θ log πθ(a | s)
)
.

(41)
Rewriting in expectation form gives the final result:

∇2
θJ(θ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at)
(
∇θ log πθ(at | st)∇θ log πθ(at | st)⊤ +∇2

θ log πθ(at | st)
)]
.

(42)

Now, we can state the Hessian form under the last-layer model:

Proposition C.2 (Hessian under Last-Layer Model). Let us consider a softmax policy πθ(a |

s) =
exp
(
fθ(s,a)

)
∑

a′ exp
(
fθ(s,a′)

) . Let us also denote the pre-softmax layer by f(st) = Whθ̄(st),W ∈

RK×d, hθ̄(st) ∈ Rd. Define ψ := vec(W ) ∈ RKd, with θ = (θ̄,ψ), K = dim(V). Then, the
Hessian of the discounted policy gradient objective

J(θ) = Eτ∼πθ

[
T∑

t=0

γtA(st, at) log πθ(at | st)

]
(43)

is given by

H̃(ψ) = ∇2
ψJ(θ) = Eτ∼πθ

[
T∑

t=0

γtA(s, a)
(
(ea − πθ(st))(ea − πθ(st))⊤ − F (st)

)
⊗ hθ̄(st)hθ̄(st)⊤

]
,

(44)
where ea ∈ RK is the one-hot vector of action a, πθ(st) ∈ RK is the vector of action probabilities,
and F (st) := diag(πθ(st))− πθ(st)πθ(st)⊤ is the Fisher information matrix at state st.

Proof. From Proposition C.1,

∇ψ log πθ(at | st) = (ea − πθ(st))⊗ hθ̄(st). (45)
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Hence, the outer product is

∇ψ log πθ(at | st)∇ψ log πθ(at | st)⊤ = (46)

=
(
(ea − πθ(st))⊗ hθ̄(st)

)(
(ea − πθ(st))⊗ hθ̄(st)

)⊤
= (ea − πθ(st))(ea − πθ(st))⊤ ⊗ hθ̄(st)hθ̄(st)⊤,

where we applied the identity (u ⊗ v)(u ⊗ v)⊤ = (uu⊤) ⊗ (vv⊤). Next, we compute the second
derivative. Since ∇ψ log πθ(at | st) = (ea − πθ(st))⊗ hθ̄(st), it follows that

∇2
ψ log πθ(at | st) = −∇ψπθ(st)⊗ hθ̄(st). (47)

Using ∇πθ(st) =
(
diag(πθ(st))− πθ(st)πθ(st)⊤

)
⊗ hθ̄(st), we obtain

∇2
ψ log πθ(at | st) = (48)

= −
(
diag(πθ(st))− πθ(st)πθ(st)⊤

)
⊗ hθ̄(st)hθ̄(st)⊤

= −F (st)⊗ hθ̄(st)hθ̄(st)⊤. (49)

Finally, substituting both terms into the general Hessian expression from Lemma C.1,

∇2
ψJ(ψ) = Es,a∼πψ

[
A(s, a)

(
∇ψ log πθ(at | st)∇ψ log πθ(at | st)⊤ +∇2

ψ log πθ(at | st)
)]
,

yields:

H̃(ψ) = ∇2
ψJ(θ) = Eτ∼πθ

[
T∑

t=0

γtA(s, a)
(
(ea − πθ(st))(ea − πθ(st))⊤ − F (st)

)
⊗ hθ̄(st)hθ̄(st)⊤

]
,

(50)

Proposition C.3 (Fisher Information under the Last-Layer Model). Let us consider a softmax policy

πθ(a | s) =
exp
(
fθ(s,a)

)
∑

a′ exp
(
fθ(s,a′)

) . Let us also denote the pre-softmax layer by f(st) = Whθ̄(st),

W ∈ RK×d,hθ̄(st) ∈ Rd. Define ψ := vec(W ) ∈ RKd, with θ = (θ̄,ψ), K = dim(V). Then, the
Fisher information matrix with respect to ψ is

F̃ (ψ) = Eτ∼πθ

[(
(eat
− πθ(st))(eat

− πθ(st))⊤
)
⊗ hθ̄(st)hθ̄(st)⊤

]
, (51)

where eat
∈ RK is the one-hot vector of the realized action at, and πθ(st) ∈ RK is the vector of

action probabilities at state st.

Proof. From Proposition C.1,

∇ψ log πθ(at | st) = (eat
− πθ(st))⊗ hθ̄(st). (52)

Therefore,

∇ψ log πθ(at | st)∇ψ log πθ(at | st)⊤ =
(
(eat−πθ(st))(eat−πθ(st))⊤

)
⊗hθ̄(st)hθ̄(st)⊤. (53)

where the last step follows from the Kronecker identity (u ⊗ x)(v ⊗ x)⊤ = (uv⊤) ⊗ (xx⊤).
Substituting this into the definition of the discounted Fisher information matrix yields the result.
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D DIRECTIONAL CURVATURES COMPUTATION

In this section, we present our mechanisms to compute Hessian and Fisher directional curvatures.

D.1 DIRECTIONAL FISHER CURVATURE

For the last-layer parameters ψ = vec(W ) with W ∈ RK×di , K = dim(V), denote by U :=
unvec(∆ψ) ∈ RK×di the corresponding matrix form of the direction. We aim to compute the
curvature of the Fisher information matrix along a direction ∆ψ in parameter space. Recall the
Fisher information matrix under the Last-Layer Model (Equation 9):

F̃ (ψ) = Eτ∼πθ

[(
utu

⊤
t

)
⊗
(
hth

⊤
t

)]
, (54)

where ut := eat
− πθ(st) ∈ RK is the policy error vector and ht := hθ̄(st) ∈ Rdi is the feature

vector. Using the Kronecker Vector identity vec(X)⊤(A⊗B) vec(X) = Tr(AXBX⊤):

∆ψ⊤F̃ (ψ)∆ψ = Eτ

[
vec(U)⊤

(
utu

⊤
t ⊗ hth⊤t

)
vec(U)

]
(55)

= Eτ

[
Tr
(
utu

⊤
t U hth

⊤
t U

⊤)] . (56)

Let vt := Uht ∈ RK . Then Tr(utu
⊤
t vtv

⊤
t ) = (u⊤t vt)

2. And we obtain:

∆ψ⊤F̃ (ψ)∆ψ = Eτ∼πθ

[
(u⊤t vt)

2
]
. (57)

We can estimate the Equation above with samples. Given a batch of N state–action–time samples
{(si, ai, ti)}Ni=1, an estimator of the curvature is:

̂∆ψ⊤F̃∆ψ =
1

N

N∑
i=1

(
u⊤i (Ûhi)

)2
, (58)

with ui = eai−πθ(si) and hi = hθ̄(si). In practice, ∆ψ itself is typically estimated from data (e.g.,
as a stochastic gradient direction), hence not strictly deterministic. Therefore, estimating Equation
58 introduces a mild bias as ut and ht are statistically dependent.

Cost Analysis. The computation requires only vector and matrix–vector operations. Per sample,
we compute Uhi at cost O(Kd) and the dot product u⊤i vi at cost O(K), followed by a scalar
square. In memory, we only store U (Kd parameters) and the per-sample vectors ui and hi. This is
dramatically cheaper than materializing the full Fisher matrix F̃ ∈ RKd×Kd, which would require
(Kd)2 entries.

D.2 DIRECTIONAL HESSIAN CURVATURE

We now consider the curvature of the Hessian along a direction ∆ψ. We also assume the same
notation as in subsection D.1 Recall the Hessian under the Last-Layer model (Equation 8):

H̃(ψ) = Eτ∼πθ

[
A(s, a)

(
utu

⊤
t − F (s)

)
⊗ hθ̄(s)hth⊤t

]
, (59)

where F (s) = diag(πθ(s))−πθ(s)πθ(s)⊤ is the Fisher matrix at state s, ut := eat
−πθ(st) ∈ RK

is the policy error vector and ht := hθ̄(st) ∈ Rdi is the feature vector.

The directional curvature along ∆ψ is

∆ψ⊤H̃(ψ)∆ψ = Eτ

[
T∑

t=0

γtA(st, at) vec(U)⊤
(
(utu

⊤
t − F (st))⊗ hth⊤t

)
vec(U)

]
. (60)
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Using the Kronecker–Vector identity vec(X)⊤(A⊗B) vec(X) = Tr(AXBX⊤), we obtain:

∆⊤
ψH̃(ψ)∆ψ = Eτ

[
T∑

t=0

γtA(st, at)
(
Tr(utu

⊤
t Uhth

⊤
t U

⊤)− Tr(F (st)Uhth
⊤
t U

⊤)
)]

. (61)

Let vt := Uht. Then the two traces simplify via

Tr(utu
⊤
t vtv

⊤
t ) = (u⊤t vt)

2, Tr(F (st) vtv
⊤
t ) = v⊤t F (st) vt,

where the first equality uses uu⊤vv⊤ = (u⊤v)uv⊤ and Tr(ab⊤) = b⊤a, and the second uses
Tr(Axx⊤) = x⊤Ax. Hence,

∆⊤
ψH̃(ψ)∆ψ = Eτ∼πθ

[
T∑

t=0

γtA(st, at)
(
(u⊤t vt)

2 − v⊤t F (st) vt

)]
. (62)

We can estimate the Equation above via samples, noting the same remarks as in subsection D.1. The
sample-based estimator is

̂∆ψ⊤H̃∆ψ =
1

N

N∑
i=1

γtiA(si, ai)
(
(u⊤i v̂i)

2−v̂i⊤F (si) v̂i
)
, ui = eai−πθ(si), v̂i = Ûhθ̄(si).

(63)

Cost Analysis. The computation again only involves vectors and matrix–vector operations. Per
sample, we compute vt = Uht at cost O(Kd), then (u⊤t vt)

2 at cost O(K). The second term
requires an analogous computation to the Fisher case in subsection D.1. Hence, the complexity
remains O(Kd) per sample, and the memory cost is linear in K and d, avoiding materialization of
the full Hessian H̃ ∈ RKd×Kd.
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E MONOTONIC POLICY IMPROVEMENT UNDER CAPO

In this section, we formalize the conditions of monotonic improvement under CAPO.
Assumption E.1 (Bounded curvature and step norms). Let πθ be a differentiable policy
with objective J(θ). Write g(θ) = ∇θJ(θ), H(θ) = ∇2

θJ(θ), and F (θ) =
Es∼dπ, a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
. For ∆θ ∈ Rd define the quadratic diagnostics

mH(∆θ) := g(θ)⊤∆θ + 1
2 ∆θ

⊤H(θ)∆θ, mF (∆θ) := 1
2 ∆θ

⊤F (θ)∆θ. (64)

Assume:

(i) (Hessian operator norm bound) ∥H(θ)∥op ≤ M for some finite M > 0, where
∥H(θ)∥op := supx̸=0

∥H(θ)x∥
∥x∥ .

(ii) (Per-candidate step bound) Every candidate update considered by the algorithm satisfies
∥∆θ∥ ≤ r for some r > 0.

Remarks. The step norm bound is standard in practice, since learning rates, clipping, or trust-region
constraints ensure ∥∆θ∥ ≤ r. The Hessian bound ∥H(θ)∥op ≤ M is more restrictive globally, but
over any compact region of parameter space visited by the algorithm, continuity of H(θ) implies a
finite M .
Lemma E.1 (Surrogate–true performance gap). For any policies π and π′, with DKL(π∥π′) the
average forward KL under dπ ,

J(π′) ≥ Lπ(π
′) − C

√
DKL(π∥π′), C =

2γ

(1− γ)2
ϵ
√
2, (65)

where |Aπ(s, a)| ≤ ϵ with ϵ finite, and Lπ(π
′) := J(π) + Es∼dπ, a∼π′(·|s)[Aπ(s, a)]. Moreover,

writing π = πθ and π′ = πθ+∆θ for a parameter step ∆θ,

Lπθ (πθ′)− J(πθ) = g(θ)⊤∆θ + 1
2 ∆θ

⊤H(θ)∆θ + o(∥∆θ∥2). (66)

Proof. The proof of equation 65 is in Achiam et al. (2017). For Equation 66, we define Ψ(θ′) :=
Lπθ (πθ′). Note that Ψ(θ) = J(πθ). Now compute the gradient of Ψ at θ′ = θ:

∇θ′Ψ(θ′)
∣∣
θ′=θ

= ∇θ′Es∼dπ, a∼πθ′ (·|s)[Aπ(s, a)]
∣∣∣
θ′=θ

= Es∼dπ, a∼πθ [Aπ(s, a)∇θ′ log πθ′(a|s)]θ′=θ

= Es∼dπ, a∼π[Aπ(s, a)∇θ log πθ(a|s)] =: g(θ), (67)
where g(θ) is precisely the policy gradient. Differentiate once more:

∇2
θ′Ψ(θ′)

∣∣
θ′=θ

= Es∼dπθ
, a∼πθ′ (·|s)

[
Aπθ (s, a)∇2

θ′ log πθ′(a | s)
]
θ′=θ

+ Es∼dπθ
, a∼πθ′ (·|s)

[
Aπθ (s, a)∇θ′ log πθ′(a | s)∇θ′ log πθ′(a | s)⊤

]
θ′=θ

.

:= H(θ).

By the second-order Taylor expansion,

Ψ(θ +∆θ) = Ψ(θ) + g(θ)⊤∆θ + 1
2 ∆θ

⊤H(θ)∆θ + o(∥∆θ∥2), (68)

which is exactly equation 66.

Theorem E.1 (Monotonic improvement under CAPO, restated). Fix thresholds δH > 0 and δF > 0.
Let B be a batch of sampled trajectories. Split B into disjoint N subsets bi ⊂ B, and propose
candidate subset updates {∆θi}i:N . Retain those satisfying:

mH(∆θi) ≥ δH = ω + 1
2Mr2, mF (∆θi) ≤ δF , (69)

with ω > 0 and M , r defined as in Assumption E.1. Let Bacc denote the superset of the B accepted
subsets, and define the aggregated update:∆θ = 1

B

∑
i∈Bacc

∆θi. Then, for two policies πθ and
πθ+∆θ , we obtain:

J(πθ+∆θ)− J(πθ) ≥ ω − C
√
δF . (70)

Thus choosing ω ≥ C
√
δF guarantees monotonic improvement: J(πθ+∆θ) ≥ J(πθ).
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Proof. We first establish bounds in the global Fisher and Hessian directional curvatures.

Fisher global bound. Since F ⪰ 0, the quadratic form ϕ(u) := u⊤Fu is convex. Thus:

∆θ⊤F∆θ =
( 1

B

∑
i∈Bacc

∆θi

)⊤
F
( 1

B

∑
i∈Bacc

∆θi

)
≤ 1

B

∑
i∈Bacc

∆θ⊤i F∆θi. (71)

The inequality above follows from:
1

B

∑
i∈Bacc

∆θ⊤i F∆θi −
( 1

B

∑
i∈Bacc

∆θi

)⊤
F
( 1

B

∑
i∈Bacc

∆θi

)
(72)

=
1

2B2

∑
i,j∈Bacc

(∆θi −∆θj)
⊤F (∆θi −∆θj) ≥ 0, (73)

because F ⪰ 0 implies each summand is nonnegative. Hence:

∆θ⊤F∆θ ≤ 1

B

∑
i∈Bacc

∆θ⊤i F∆θi ≤
1

B

∑
i∈Bacc

2mF (∆θi) ≤ 2 δF . (74)

Hessian global bound. Expanding mH(∆θ):
mH(∆θ) = g(θ)⊤∆θ + 1

2 ∆θ
⊤H∆θ

= g(θ)⊤
(

1
B

∑
i∈Bacc

∆θi

)
+

1

2

(
1
B

∑
i∈Bacc

∆θi

)⊤
H
(

1
B

∑
j∈Bacc

∆θj

)
=

1

B

∑
i∈Bacc

g(θ)⊤∆θi +
1

2B2

∑
i,j∈Bacc

∆θ⊤i H∆θj .

(75)

We can decompose the quadratic form:∑
i,j∈Bacc

∆θ⊤i H∆θj =
∑

i∈Bacc

∆θ⊤i H∆θi +
∑

i,j∈Bacc
i̸=j

∆θ⊤i H∆θj . (76)

Substituting equation 76 into equation 75 and grouping yields

mH(∆θ) =
1

B

∑
i∈Bacc

mH(∆θi)−
B − 1

2B2

∑
i∈Bacc

∆θ⊤i H∆θi +
1

2B2

∑
i,j∈Bacc

i̸=j

∆θ⊤i H∆θj . (77)

By the operator norm bound ∥H∥op ≤M and Cauchy–Schwarz,

|∆θ⊤i H∆θj | ≤ M ∥∆θi∥ ∥∆θj∥.
Hence, using ∥∆θi∥ ≤ r for all i,∑

i∈Bacc

∆θ⊤i H∆θi ≤ MBr2,
∑

i,j∈Bacc
i̸=j

∆θ⊤i H∆θj ≥ −MB(B − 1)r2. (78)

Substituting into equation 77,

mH(∆θ) ≥ 1

B

∑
i∈Bacc

mH(∆θi)−Mr2
(
1− 1

B

)
. (79)

If each accepted subset satisfies mH(∆θi) ≥ ω + Mr2, then averaging gives
1
B

∑
i∈Bacc

mH(∆θi) ≥ ω +Mr2. Plugging into equation 79 yields

mH(∆θ) ≥ ω +Mr2 −Mr2
(
1− 1

B

)
= ω +

Mr2

B
≥ ω. (80)

From Equations 65 and 66 of Lemma E.1, we have that:

J(πθ+∆θ)− J(πθ) ≥ g(θ)⊤∆θ + 1
2 ∆θ

⊤H(θ)∆θ︸ ︷︷ ︸
mH(∆θ)

+ o(∥∆θ∥2)− C
√
DKL(πθ∥πθ+∆θ)︸ ︷︷ ︸

mF (∆θ)+o(∥∆θ∥2)

(81)
Then, using mF (∆θ) < δF , mH(∆θ) > ω, and assuming the cubic terms negligible,

J(πθ+∆θ)− J(πθ) ≥ ω − C
√
δF . (82)

Thus choosing ω ≥ C
√
δF guarantees monotonic improvement: J(πθ+∆θ) ≥ J(πθ).
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F PSEUDOCODE OF CAPO

In this Appendix, we present CAPO’s algorithm.

Algorithm 1: Curvature-Aware Policy Optimization (CAPO)
Input : Policy πθ; batch B of sampled trajectories;

thresholds (δF , δH , δ
high
H );

optimizer for the last-layer model (e.g., SGD or Adam).
Output: Updated policy parameters θ

while not done do
// Collect data with the current policy
Sample a batch B = {τ}Ni of trajectories, τ ∼ πθ.
Partition B into disjoint subsets {bi}Ni=1.
for i = 1, . . . , N in parallel do

// Build last-layer meta-model stats on subset bi
Estimate model-based gradient g̃(ψ) using Equation 7;
Propose ∆ψi with the optimizer model (e.g., ∆ψi = α g̃(ψ) for SGD, or Adam’s rule)
Compute directional curvatures 1

2 ∆ψ
⊤H̃(ψ)∆ψ, ∆ψ⊤F̃ (ψ)∆ψ as in Appendix D;

Compute objective and policy shifts under the last-layer model:
mH(∆ψ)← g̃(ψ)⊤∆ψ + 1

2 ∆ψ
⊤H̃(ψ)∆ψ, mF (∆ψ)← 1

2 ∆ψ
⊤F̃ (ψ)∆ψ.

// Local trust-region acceptance test

if δH ≤ mH(∆ψi) ≤ δhighH and mF (∆ψi) ≤ δF then
Mark subset bi as ACCEPT; add to Bacc.

else
REJECT bi.

// Compute the actual policy update on accepted data
if Bacc ̸= ∅ then

Estimate the objective on accepted samples (e.g., GRPO/PPO surrogate):
Ĵ(θ) = pg-objective(πθ;

⋃
bi∈Bacc

bi).
// Policy Gradient and parameter update

θ ← θ + α ∇̂θJ

return θ
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G REPRODUCIBILITY STATEMENT

Code Release. To ensure the reproducibility of our research findings, we release our code at
https://anonymous.4open.science/r/capo-stable-gradients. Our implemen-
tation is based on PyTorch (Paszke et al., 2017) and HuggingFace (Wolf et al., 2020). All baselines
are available in the released code. We also plan to publish all the experiments logs in WandB
(Biewald, 2020).

Reproducibility. We detail our methodology in Sections 4.1 and 5 and our experimental setup in
Section 6. We provide all hyperparameters used in this work in Appendix J. For all experiments in
this paper, we report the results over five seeds with standard errors. For the MATH benchmark, we
report in-training performance every step, while for the TEST benchmark set we evaluate check-
points every 10 learning steps. For better visualization, we applied smoothing with exponential
moving average on the curves. All datasets are open-source and available online for academic use.

Compute Resources. We execute all RL experiments using 4 NVIDIA H100 GPUs. Each seed in
the regime with aggressive updates takes approximately 4 hours, while the standard regime takes
approximately one day. Evaluation is done separately in the same hardware, taking approximately
90 minutes per seed.

LLM Usage Details. We use LLMs for paper writing to improve grammar, enhance clarity and
writing flow, and assist with code and mathematical iterations. All outputs generated by the LLMs
were thoroughly reviewed and verified by the authors to ensure factual accuracy and correctness.
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H COMPUTATIONAL COST ANALYSIS

Execution Time. Table 1 reports a breakdown of CAPO’s execution time, including both the model
estimations and the masking process. The table shows the average time (in seconds) of each oper-
ation, averaged over all learning iterations, measured on our NVIDIA 4×H100 hardware. The total
learning iteration time include LLM generations and forward and backward passes. We find that
CAPO contributes less than 3% of the total step time in a learning iteration, resulting in minimal
training overhead. Most of the cost arises from computing the Adam gradient and updating its mo-
ments, since this also requires computing batch gradients on sparse representations. Lastly, the cost
of computing the mask is minimal, below 0.01 seconds.

Memory cost. CAPO uses only volatile GPU memory, since all operations are transient and ten-
sors are discarded after the masking generation. The main memory usage comes from maintaining
token-level gradient tensors, which have shape (N,T,K,D), corresponding to batch size, com-
pletion length, top-K probabilities, and the number of parameters in the last-layer model. In our
experiments, with N = 24, T = 1024, K = 50, and D = 896, this amounts to a volatile memory
footprint of approximately 2 GB, which is minimal given the scale of LLM training. For compar-
ison, this is significantly less expensive than performing KL regularization, which requires storing
an additional copy of the LLM in memory for the reference policy.

Step Avg. Time (s) % of Total
Learning Iteration (Total) 135.84 100.00%
LLM Generations 55.50 40.85%
Total CAPO time 3.99 2.94%

Compute token-level gradients 0.04 0.03%
Compute Adam token gradients 0.51 0.38%
Compute & log mH 0.09 0.07%
Compute & log mF 0.01 0.01%
Update Adam Moments 3.34 2.46%
Compute Hessian Mask 0.00 0.00%
Compute Fisher Mask 0.00 0.00%

Table 1: Breakdown of the execution time of CAPO. CAPO contributes less than 3% of the total
step time, resulting in minimal overhead relative to standard training.
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I ADDITIONAL EXPERIMENTS

Ablation of the Optimizer Model. We conducted an ablation study on the impact of the optimizer
representation. This choice reflects a trade-off between step accuracy and computational cost: SGD
is cheaper, but the LLM policy is optimized with Adam. Figure 6 shows the results on the MATH
dataset. For CAPO, representing the optimizer with either SGD or Adam yields similar perfor-
mance. However, for Dr.CAPO and ReinCAPO, the SGD variant is insufficient to prevent policy
collapse. This suggests that matching the optimizer representation provides a more robust choice
across different setups.
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Figure 6: Ablation study of the optimizer model. For CAPO, both representations yield similar
performance, whereas for Dr.CAPO and ReinCAPO, only the Adam-based representation prevents
policy collapse, indicating that matching the optimizer provides a more robust choice across setups.

Is PPO clipping enough to ensure stability? PPO clipping (Schulman et al., 2017) is a heuristic
designed to prevent large updates by clipping the probability ratio between the current policy and
the old policy that collected the data. This raises the question of whether clipping alone is sufficient
to avoid policy collapse in our LLM setup. We note that clipping is primarily intended to facilitate
off-policy updates, whereas our experiments with on-policy data already reveal instability in current
RL methods. Nevertheless, we conducted additional experiments using off-policy data reused for
t iterations under different clipping ratios. Figure 7 shows results for two setups: t = 2 (minimal
off-policy shift) and t = 5 (moderate shift). We find that the standard clipping ratio (ϵ = 0.2) does
not prevent collapse. More aggressive ratios alleviate instabilities but reduce performance, likely
due to the strong bias introduced in the gradients. This trade-off becomes more pronounced as t
increases.
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Figure 7: Effect of “PPO clipping” on GRPO stability. Standard clipping (ϵ = 0.2) fails to
prevent collapse, while more aggressive ratios improve stability but reduce overall performance,
with the trade-off becoming more severe as t increases.
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Figure 8: Effect of KL regularization on GRPO stability. (Left) Accuracy on the MATH dataset
under different levels of KL regularization. Stronger regularization (β = 1.0) reduces instability but
degrades performance. (Right) Maximum gradient norms (before clipping), averaged across seeds.
KL regularization produces unbounded gradients that may drive the optimization into unstable re-
gions.

Is KL regularization enough to ensure stability? Another common strategy to mitigate instabili-
ties is to add a KL regularizer that penalizes deviations from the base policy (see Equation 3). The
rationale is that keeping the policy close to the base model may prevent large distributional shifts,
such as those associated with policy collapse. In Figure 8 (left), we test different levels of regular-
ization. We observe a trend similar to clipping: only stronger regularization (β = 1.0) helps prevent
catastrophic updates, but at the cost of performance.

A more fundamental limitation of KL regularization becomes evident when examining its gradient:

∇θDKL(πθ ∥πbase) = Es∼dπ, a∼πθ

[
∇θ log πθ(a | s)

(
log

πθ(a | s)
πbase(a | s)

+ 1

)]
. (83)

Differentiating through the KL term introduces a multiplicative log factor, which can produce un-
bounded gradients. More concretely, as πbase(a | s) → 0, the gradient magnitude diverges, effec-
tively “exploding” the LLM policy gradient. We observe this empirically in Figure 8 (right), which
shows the maximum gradient norms (before gradient clipping) over training, averaged across seeds.
While gradient clipping can reduce the gradient’s magnitude, it does not alter its direction, which
may still drive the optimization into unstable regions.

Finally, there are also practical drawbacks to KL regularization. First, it requires storing a full copy
of the base model in memory, which has led prior work to abandon the technique (Liu et al., 2025b).
Second, differentiating KL estimates as loss functions typically yields biased approximations of the
true KL gradient (Tang & Munos, 2025).
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J HYPERPARAMETERS

In this section, we present the hyperparameters used in our experiments. Table 2 lists the hyperpa-
rameters common to all training configurations and algorithms. Table 3 specifies the learning rate
and batch size for the conservative and aggressive setups. Finally, Table 4 reports the hyperparame-
ters specific to curvature-aware masking, along with their values for each method. Due to compute
budget constraints, we performed manual hyperparameter tuning, primarily searching across differ-
ent orders of magnitude of both δH and δF . For simplicity, we implemented a single symmetric
threshold for the Hessian, i.e., rejecting samples outside the interval −δH < mH < δH .

Hyperparameter Value
LLM Generation
Max Prompt Length 512
Max Completion Length 1024
Num Generations per Prompt 8
Temperature 0.9
Training
Gradient Steps 100
Warmup Ratio 0.1
Iterations per Batch 1
Optimizer Adam
LR Scheduler Cosine
KL β 0.0

Table 2: Training Hyperparameters.

Hyperparameter Standard Setup Aggressive Setup
Learning Rate 3× 10−6 1.5× 10−5

Total Batch Size 1152 96

Table 3: Hyperparameters for the standard (conservative) and aggressive regimes.

Hyperparameter CAPO Dr.CAPO ReinCAPO
Hessian δH 10−2 5× 10−4 10−1

Fisher δF 10−4 10−3 10−5

Table 4: Curvature-aware masking thresholds for CAPO, Dr.CAPO and ReinCAPO.
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K MONOTONIC POLICY IMPROVEMENT UNDER CAPO IN THE
UNDISCOUNTED, FINITE-HORIZON SETTING

Appendix E formalizes the conditions under which CAPO guarantees monotonic improvement in the
standard discounted, infinite-horizon setting. Although this formulation is general and aligned with
prior RL literature, this section extends the analysis to the undiscounted, finite-horizon setting, which
better reflects the LLM reasoning setup and is more consistent with the assumptions underlying
practical algorithms such as GRPO.

For this analysis, we consider a finite-horizon Markov decision process (MDP) with horizon T ∈ N,
state space S, action space A, transition kernel P (s′ | s, a), reward function R : S × A → R, and
initial state distribution ρo. A (stochastic) policy π is a conditional distribution π(a | s) over actions
given states. The return of a policy π is given by:

J(π) := Eπ

[
T−1∑
t=0

R(st, at)

]
. (84)

Furthermore, we define the advantage function as Aπ(s, a) := Qπ(s, a) − Vπ(s). For a second
policy π′, we also define the π′-averaged advantage of π at state s: Āπ′

π (s) := Ea∼π′(·|s)[Aπ(s, a)].

Lemma K.1 (Performance Difference Lemma, Finite Horizon, γ = 1). Let π and π′ be two policies.
Then

J(π′)− J(π) =
T−1∑
t=0

Es∼dπ′,t

[
Āπ′

π (s)
]
, (85)

where dπ,t(s) := Prπ(st = s) denotes the time-t state-marginal under π.

Proof. We start from the identity Qπ(s, a) = r(s, a) + Es′∼P (·|s,a)[Vπ(s
′)]. Rearranging,

r(s, a) = Qπ(s, a)− Es′ [Vπ(s
′)] = Aπ(s, a) + Vπ(s)− Es′ [Vπ(s

′)]. (86)

Consider a trajectory (s0, a0, . . . , sT−1, aT−1) generated by policy π′. Then

T−1∑
t=0

r(st, at) =

T−1∑
t=0

(
Aπ(st, at) + Vπ(st)− E[Vπ(st+1) | st, at]

)
. (87)

Taking expectation under π′ and using the law of total expectation,

J(π′) = Eπ′

[
T−1∑
t=0

Aπ(st, at)

]
+ Eπ′

[
T−1∑
t=0

Vπ(st)− Vπ(st+1)

]
, (88)

where Vπ(sT ) := 0 by definition. The second sum telescopes:

T−1∑
t=0

Vπ(st)− Vπ(st+1) = Vπ(s0)− Vπ(sT ) = Vπ(s0). (89)

Thus,

J(π′) = Eπ′

[
T−1∑
t=0

Aπ(st, at)

]
+ Es0∼ρo

[Vπ(s0)]︸ ︷︷ ︸
J(π)

. (90)

Therefore,

J(π′)− J(π) =
T−1∑
t=0

Est,at∼π′ [Aπ(st, at)]. (91)

We can rewrite each term as

Est,at∼π′ [Aπ(st, at)] = Es∼dπ′,t

[
Ea∼π′(·|s)[Aπ(s, a)]

]
= Es∼dπ′,t [Ā

π′

π (s)], (92)

which proves the claimed identity.
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We now bound the difference between the state marginals dπ′,t and dπ,t in terms of how different
the policies are. For t ≥ 0, we first define the policy-induced transition kernels:

Pπ(s
′ | s) :=

∑
a

π(a | s)P (s′ | s, a), Pπ′(s′ | s) :=
∑
a

π′(a | s)P (s′ | s, a). (93)

Then d⊤π,t+1 = d⊤π,tPπ and d⊤π′,t+1 = d⊤π′,tPπ′ .

Lemma K.2 (State-Distribution Shift Bound, Finite Horizon). Let π, π′ be two policies with the
same initial state distribution dπ,0 = dπ′,0 = ρo. Then, for all t = 0, . . . , T − 1,

∥dπ′,t − dπ,t∥1 ≤ 2

t−1∑
k=0

Es∼dπ,k

[
DTV

(
π(· | s), π′(· | s)

)]
. (94)

Proof. Define the difference vector δt := dπ′,t − dπ,t. Then:

δt+1 = dπ′,t+1 − dπ,t+1

= dπ′,tPπ′ − dπ,tPπ

= (dπ′,t − dπ,t)Pπ′ + dπ,t(Pπ′ − Pπ)

= δtPπ′ + dπ,t(Pπ′ − Pπ). (95)

Since Pπ′ is row-stochastic, ∥δtPπ′∥1 ≤ ∥δt∥1. Next, we bound the term dπ,t(Pπ′ − Pπ). Let
w := dπ,t(Pπ′ − Pπ), so w(s′) =

∑
s dπ,t(s)

(
Pπ′(s′ | s)− Pπ(s

′ | s)
)
. Then:

∥w∥1 =
∑
s′

|w(s′)| =
∑
s′

∣∣∣∑
s

dπ,t(s)
(
Pπ′(s′ | s)− Pπ(s

′ | s)
)∣∣∣

≤
∑
s′

∑
s

dπ,t(s)
∣∣Pπ′(s′ | s)− Pπ(s

′ | s)
∣∣

=
∑
s

dπ,t(s)
∑
s′

∣∣Pπ′(s′ | s)− Pπ(s
′ | s)

∣∣
=
∑
s

dπ,t(s) ∥Pπ′(· | s)− Pπ(· | s)∥1. (96)

For each fixed s, using Pπ′(s′ | s)− Pπ(s
′ | s) =

∑
a(π

′(a | s)− π(a | s))P (s′ | s, a) and the fact
that

∑
s′ P (s

′ | s, a) = 1, we obtain:

∥Pπ′(· | s)− Pπ(· | s)∥1 =
∑
s′

∣∣∣∑
a

(π′(a | s)− π(a | s))P (s′ | s, a)
∣∣∣

≤
∑
s′

∑
a

|π′(a | s)− π(a | s)|P (s′ | s, a)

=
∑
a

|π′(a | s)− π(a | s)|

= 2DTV(π(· | s), π′(· | s)). (97)

Hence ∥w∥1 ≤ 2
∑

s dπ,t(s)DTV(π(· | s), π′(· | s)). Combining these two bounds and using the
triangle inequality,

∥δt+1∥1 = ∥δtPπ′ + dπ,t(Pπ′ − Pπ)∥1
≤ ∥δtPπ′∥1 + ∥dπ,t(Pπ′ − Pπ)∥1
≤ ∥δt∥1 + 2αt. (98)

By definition, dπ′,0 = dπ,0, so δ0 = 0 and ∥δ0∥1 = 0. Unrolling the recursion:

∥δt∥1 ≤ 2

t−1∑
k=0

Es∼dπ,k

[
DTV

(
π(· | s), π′(· | s)

)]
. (99)
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We now define a surrogate objective based on the reference policy π and the state distributions dπ,t.
Lemma K.3 (Surrogate–True Performance Gap, Finite Horizon). For any policies π and π′, with
DKL(π∥π′) the average forward KL under dπ ,

J(π′) ≥ Lπ(π
′) − C

√
DKL(π∥π′), C := T

√
(T − 1)(2T − 1)

3
ϵ, (100)

where |Aπ(s, a)| ≤ ϵ with ϵ finite, and Lπ(π
′) := J(π) +

∑T−1
t=0 Es∼dπ,t

[
Āπ′

π (s)
]
.

Proof. By Lemma K.1, J(π′)− J(π) =
∑T−1

t=0 Es∼dπ′,t [Ā
π′

π (s)]. Subtracting the surrogate:

J(π′)− Lπ(π
′) =

T−1∑
t=0

(
Es∼dπ′,tĀ

π′

π (s)− Es∼dπ,t
Āπ′

π (s)
)

=

T−1∑
t=0

∑
s

(
dπ′,t(s)− dπ,t(s)

)
Āπ′

π (s). (101)

Taking absolute values and using |Āπ′

π (s)| ≤ ϵ and applying Lemma K.2:

∣∣J(π′)− Lπ(π
′)
∣∣ ≤ T−1∑

t=0

ϵ∥dπ′,t − dπ,t∥1 ≤ ϵ
T−1∑
t=0

2

t−1∑
k=0

Es∼dπ,k

[
DTV

(
π(· | s), π′(· | s)

)]
= 2ϵ

T−1∑
k=0

Es∼dπ,k

[
DTV

(
π(· | s), π′(· | s)

)] T−1∑
t=k+1

1

= 2ϵ

T−1∑
k=0

(T − 1− k)Es∼dπ,k

[
DTV

(
π(· | s), π′(· | s)

)]
.

(102)

For the KL-based bound, we use Pinsker’s inequality and Jensen’s inequality. For each t:

Es∼dπ,t
DTV(π(· | s), π′(· | s)) ≤ Es∼dπ,t

√
1
2DKL(π(· | s) ∥π′(· | s))

≤
√

1
2Es∼dπ,t

[
DKL(π(· | s) ∥π′(· | s))

]
. (103)

For conciseness, we define Dk := DKL(π(· | s) ∥π′(· | s)). Then:

∣∣J(π′)− Lπ(π
′)
∣∣ ≤ 2ϵ

T−1∑
k=0

(T − 1− k)
√

1
2Dk =

√
2 ϵ

T−1∑
k=0

bk
√
Dk, (104)

where we have set bk := T − 1− k. By Cauchy–Schwarz,

T−1∑
k=0

bk
√
Dk ≤

√√√√T−1∑
k=0

b2k

√√√√T−1∑
k=0

Dk. (105)

We note that
T−1∑
k=0

b2k =

T−1∑
j=0

j2 =
(T − 1)T (2T − 1)

6
,

T−1∑
k=0

Dk = T D̄KL. (106)

Therefore ∣∣J(π′)− Lπ(π
′)
∣∣ ≤ √2 ϵ√ (T − 1)T (2T − 1)

6

√
T D̄KL

= T

√
(T − 1)(2T − 1)

3
ϵ
√
D̄KL. (107)
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The proof of Theorem 5.1 for the finite-horizon setting follows exactly the one in Appendix E, but
applying Lemma K.3 instead of Lemma E.1.

Infinite-Horizon vs. Finite-Horizon bounds. We highlight that, in both settings, the final guarantee
takes the same form J(πθ+∆θ) − J(πθ) ≥ ω − C

√
δF , where C = 2γ

(1−γ)2 ϵ
√
2 for the infinite-

horizon case, and C = T
√

(T−1)(2T−1)
3 ϵ for the finite-horizon case. In both cases, the constant C

scales as O(H2
eff), where Heff denotes the effective horizon: Heff = T in the finite-horizon setting,

and Heff = 1
1−γ in the infinite-horizon setting. Practically, this implies that both bounds are equally

tight within their respective regimes.
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L A CLOSER LOOK AT MODEL ESTIMATES m̂F AND THE KL POLICY SHIFT

In this section, we analyze the relationship between the model’s estimate of directional Fisher cur-
vature, m̂F , and the actual policy shift induced by an update, measured by DKL(πθ||πθ+∆θ). Our
goals are two-fold: (i) to clarify what CAPO requires from the underlying model in order to approx-
imate a trust-region and to assess how well this approximation holds, and (ii) to examine the impact
of CAPO’s updates on the true change in policy.

Does CAPO require a fully calibrated model? Although well-calibrated estimates are a sufficient
condition for CAPO’s data-selection mechanism to function effectively, they are not necessary. To
illustrate this, consider a simple case where the estimated directional Fisher curvature satisfies m̂F =
αD̄KL(πθ||πθ+∆θ), α > 0, where α >> 1 or α << 1. Such a model is clearly miscalibrated, yet
it preserves a strong correlation with the true policy shift. In CAPO, if we aim to enforce the trust-
region condition D̄KL(πθ, |, πθ+∆θ) < δ, we can simply set the Fisher-threshold to δF = αδ,
which recovers the desired constraint. More generally, CAPO only requires that the estimates be
monotonically correlated with the true policy change, so that large prospective shifts (those most
likely to trigger instability or collapse) are reliably identified.

A natural way to evaluate the quality of the model’s estimates is to measure their correlation with the
true policy changes. Although we do not have direct access to this quantity, we can estimate it via
samples. In particular, the KL divergence can be reliably estimated using a standard Monte Carlo
estimator, which has manageable variance and leverages token-level information. We therefore
compute these estimates and report the resulting Spearman correlations in the Table 5, where m̂F

is evaluated under both GRPO and CAPO updates at both token and global level. We find that the
model estimates exhibit a moderately strong correlation with the actual policy change, indicating
a consistent monotonic relationship. Notably, this correlation remains high under both GRPO and
CAPO, suggesting that the estimates are meaningful even when they are not used to intervene in the
update.

Estimate ρ (GRPO) ρ (CAPO)
m̂F (Token) 0.622 0.459
m̂F (Global) 0.596 0.498

Table 5: Spearman correlations ρ between Fisher directional curvature estimates m̂F and the
estimated policy change D̄KL(πθ||πθ+∆θ). We report correlations for both GRPO and CAPO
updates. The results indicate that the estimates m̂F maintain a consistent monotonic relationship
with the true policy shift across algorithms, reliable identifying the scale of the policy shifts

.
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Figure 9: Estimated policy KL shifts dur-
ing training. GRPO exhibits frequent sharp
spikes in policy divergence, indicative of unstable
updates, whereas CAPO maintains consistently
small shifts, reflecting its ability to enforce trust-
region–like behavior throughout training.

Ultimately, does CAPO induce a bound on
the true DKL(πθ||πθ+∆θ)? In Figure 9, we
present the policy shifts over the course of
training for both algorithms. GRPO frequently
presents peaked shifts, which are often associ-
ated with unstable or overly aggressive updates.
In contrast, CAPO generally maintains stable,
small shifts, suggesting that it is effective in
practically implementing a trust-region behav-
ior throughout training.
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M FURTHER QUESTIONS

This Appendix presents additional clarification questions aimed at improving the understanding of
the proposed method and experiments. These questions were raised during the peer-review process,
and we refer to the OpenReview page for the full discussion.

What is the effect of token selection in the sample efficiency evaluation? In Figure 10, we plot
the accuracy curves (analogous to Figs. 1 and 2) as a function of the accepted tokens. We observe
that these curves closely resemble those obtained when accuracy is plotted against the number of
completions. This suggests that the effect of masking on the total number of generated (and ac-
cepted) tokens is small, consistent with the rejection rates reported in Figure 5. It also indicates that
the learned policies behave similarly in terms of token generation, showing that CAPO improves
training sample efficiency without incurring additional inference-time costs.
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Figure 10: Sample efficiency curves as a function of the number of accepted tokens. The trends
closely match those obtained when using the number of completions, indicating that masking has
minimal impact on token generation and that CAPO improves sample efficiency without added
inference cost.

What are the similarities between CAPO and TRPO? What are the differences? In terms of
similarities, both CAPO and TRPO share the same motivation: devise a conservative optimization
procedure that implements a safe optimization region, typically expressed as a KL ball constraint.
This idea predates TRPO, with its roots in natural gradient methods from optimization literature
Amari (1998); Amari et al. (1995). What both CAPO and TRPO do is to devise practical instantia-
tions of the natural gradient that is suitable for their respective problem settings.

Methodologically, TRPO incorporates only the Fisher matrix in its updates, relying on a first-order
approximation of the objective. In contrast, CAPO additionally leverages second-order curvature
information of the objective through its Hessian, as shown in Equation 5 and further incorporated in
the theoretical development in Equation 68. The main difference, however, lies in the implementa-
tion, which crucially leads to different scalability properties.

TRPO incorporates the Fisher matrix by employing a Conjugate-Gradient (CG) algorithm to approx-
imate the natural gradient step without fully materializing the Fisher matrix. Then, TRPO employs
a line search algorithm to solve the constrained optimization problem. The CG algorithm involves
maintaining five vectors of size d (the gradient, current iterate, the residual, the search direction, and
the matrix-vector buffer), where d is the number of parameters in the policy. While this memory
cost is feasible for small deep networks (as usual in traditional Deep RL research), it is prohibitive
for LLM scale, where d is in the billions.

Furthermore, the CG algorithm is iterative, and each iteration costs roughly the same as a backward
pass, unless you sacrifice your Fisher matrix estimation by subsampling data. TRPO uses ten itera-
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tions. Considering the execution time in our setup (Appendix H), this overhead is also prohibitive.
Lastly, the line search algorithm requires M additional forward passes in the whole batch (M is the
number of search trials), which is also a substantial cost in our setup (also illustrated in Appendix
H). Overall, TRPO’s memory and execution costs are prohibitive to LLM scale. CAPO, in contrast,
leverages the last layer model and the optimizations described in Section 4.1, resulting in much
lower costs, as evaluated in Table 1 of Appendix H.

In summary, while TRPO and CAPO share the same motivation and draw from the same semi-
nal work on natural gradients, CAPO offers a formulation that scales to the memory and compute
demands of LLM policies.

39


	Introduction
	Related Work
	Preliminaries
	Modeling the Optimization Landscape with Second-Order Geometry
	Computational Model

	Curvature-Aware Policy Optimization
	Experiments and Discussion
	Experiments

	Final Remarks
	Derivation of the Second-Order Optimization Objective
	Derivation of the Policy Divergence Quadratic Approximation
	Derivation of gradients and curvatures under last-layer model
	Directional Curvatures Computation
	Directional Fisher Curvature
	Directional Hessian Curvature

	Monotonic Policy Improvement under CAPO
	Pseudocode of CAPO
	Reproducibility Statement
	Computational Cost Analysis
	Additional Experiments
	Hyperparameters
	Monotonic Policy Improvement under CAPO in the undiscounted, finite-horizon setting
	A Closer Look at Model Estimates F and the KL Policy Shift
	Further Questions

