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ABSTRACT

Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting
human-interpretable features from neural networks activations. Previous works
compared different models based on SAE-derived features but those comparisons
have been restricted to models within the same modality. We propose a novel
indicator allowing quantitative comparison of models across SAE features, and
use it to conduct a comparative study of visual, textual and multimodal encoders.
We also propose to quantify the Comparative Sharedness of individual features
between different classes of models. With these two new tools, we conduct several
studies on 21 encoders of the three types, with two significantly different sizes, and
considering generalist and domain specific datasets. The results allow to revisit
previous studies at the light of encoders trained in a multimodal context and to
quantify to which extent all these models share some representations or features.
They also suggest that visual features that are specific to VLMs among vision
encoders are shared with text encoders, highlighting the impact of text pretraining.

1 INTRODUCTION

Sparse autoencoders offer promising insights for concept-based analysis of neural networks
(Bricken et al., 2023; Cunningham et al., 2023). By learning sparse representations of model ac-
tivations, SAE allow the extraction of interpretable features from both language and vision mod-
els. Recent works compare different models upon SAE features, by constructing a common concept
space (Thasarathan et al., 2025), or by quantifying similarities between models (Wang et al., 2025).
However, these studies are constrained in scope: they typically focus on a small number of models
(two to three) and limit comparisons to a single modality.

In contrast, this paper introduces a large-scale comparative study of internal representations across
21 encoder models. Our contribution departs from previous efforts in two key aspects. First, the
scale of our analysis substantially exceeds earlier studies, which have been restricted to pairwise
or small-group comparisons using a single dataset (Thasarathan et al., 2025; Wang et al., 2025).
Second, we explicitly address multimodal comparison, using textual, visual, and multimodal en-
coders of varying sizes (Sec 3).Furthermore, we also use three datasets of text-image pairs as input,
in particular to study the effect of specific domains in the context of SAE-based interpretability.
To provide a finer analysis of this large study, we introduce two new tools (Sec 2). The wMPPC
(weighted Maximum Pairwise Pearson Correlation) is a similarity indicator between models, which
is formally the expectation of the per-feature maximal correlation under sampling by activation
mass. The Comparative Sharedness of individual features allows the identification of features from
a given model that are better shared with a class of model than another. The main remarkable out-
comes of this study are: (i) The shared information between models of different modalities is to be
found mostly in the last layer of each model (Sec 3.2) (ii) wMPPC reveals differences in image-text
alignment quality between datasets (Sec 3.3). (iii) We establish a typology of SAE features learnt
on CLIP visual encoder that are shared with multiple VLMs, better than with classical visual foun-
dation models (Sec 3.4). Such features are related to high-level semantic concepts, such as specific
geographical regions, or even purely textual information. (iv) We find this typology to be similar to
the one obtained while looking for visual features of CLIP that are better shared with text encoders
(using image captions) than with visual foundation models (Sec 3.5). Therefore, we highlight the
impact of text pretraining on image understanding, by isolating individual concepts that are specific
to those models.
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2 METHOD

We aim to quantify the similarity of interpretable features from two large language models (LLM
encoders) A and B. For input data 2 € D, the interpretable features (resp. f7* and fJB ) are iden-
tified with Sparse Autoencoders (SAEs) trained on the model activations. Each SAE consists of
two linear layers with rectified linear units (ReL.U) and aims at minimizing an error reconstruction
on the input activations. We use TopK sparse autoencoders (Gao et al., 2025; Makhzani & Frey,
2013), that directly constrain sparsity via an activation function, by only keeping the k highest acti-
vations and setting others to zero. The SAE is finally trained with a mean square error loss using all
patches (images) or token (text) of the input . However, at inference, we only consider the features
corresponding to the global representation of data samples (e.g. CLS token), in order to compare
the SAE features of models with different patch sizes, tokenizers, or even different modalities. In
the following, we informally introduce two new tools to compare A and B, with details and proofs
in Appendix B.

2.1 WEIGHTED MPPC

In order to compare models A and B upon their SAE features, we extend the MPPC indicator (Wang
et al., 2025). For each of the n interpretable features fiA of model A and each feature j of model
B, the Pearson correlation is p;; = corr(f#, fJB). The maximum pairwise Pearson correlation of

feature i (MPPC per-feature) is p2* 72 = max; p;; € [~1, 1] and the MPPC to compare A to B is:

?
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We introduce nonnegative weights w; > 0 with >, w; = 1 and define the weighted MPPC as:
WMPPCA™H =Y ", pf P 2)
i=1
Since wMPPC“ ™ is a convex combination of the pA~ 7 we have min; pA =5 < wMPPCA~% <
max; p B thus wMPPC*7E cannot produce values outside the range of the per-feature corre-

lations; it simply shifts emphasis. Let us consider a;(z) € R the activation (nonnegative scalar
because of the ReLLU) of the SAE feature fiA on input x € D, and the cumulative activation of
feature i over D noted as S7* = > 1 a;(x).

ope . . . SsA
Proposition 1. If one considers the normalized weights w; = <= we have:
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Therefore wMPPCA™E = E, [piA_)B ] where g is the joint distribution that samples a datapoint x
in D and then samples feature i with probability proportional to a;(x).

Hence, with weights reflecting how important a feature is on the dataset D, wMPPCA™E s the
expectation of the per-feature maximal correlation under sampling by activation mass: it measures
the similarity between A and B “as experienced by the data” rather than treating all features equally,
emphasing features that contribute most and decaying those that are dormant or negligible on D. If
most downstream decisions (or most of the model’s computational mass) depend on high-activation
features, it measures similarity “where it matters”.

Since we use TopK-SAE, let us consider the Top-%k cumulative activation cgk) = Zle agt) with
az(-l) > a§2) Ze 2 al(-k), and denote C*) = 5" | cl(-k). The Top-k activation-weighted MPPC is:
1 n
A—B _ (k) A—B
wMPPC3y™" = o > e p; 4)
i=1

One can derive an incremental update formula for WMPPC(};B (see Proposition 2 in Appendix B),

which gives a practical criterion to choose the sparsity level of the Top-k SAE (with al(.k) > 0):
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Corollary 1. (monotonicity condition) A sufficient condition for wMPPC(}Jr’lB) > WMPPC{};B
is:

w

S (pf= P — MPPCP) > 0 ®)
i=1

thus when one relaxes sparsity (increases k), it improves the wMPPC if the additional activations
are concentrated on features that are similar to model B with pA~5 > MPPC%“).

2.2 COMPARATIVE SHAREDNESS TO IDENTIFY INDIVIDUAL FEATURES OF A MODEL

Using wMPPC, we are able to evaluate whether two models share the same features on average, at
a global scale. But a concept-level analysis can give even more insight on the inner representations
of models, by establishing a typology of concepts that are specific to a group of models, but not

shared with another. For a given feature f; from a model M, we define the Comparative Sharedness
AM—AB by:
5 :

M—A,B ' A A
AT = SM o (pM A = pM Y (pM A pM T F) (6)
where SM = > zep fi(x) is computed over all the input images to weight the importance of the
feature. Hence, Aﬁv I=4.B is the difference of wMPPC contributions of the considered feature fi

of a model M towards A and B (measuring if the feature is “better shared with A than with B),
multiplied by the sum of their maximum correlations, in order to favour features that have high
correlations with at least one model. This way, the features of M with a high value of AlMﬁA’B are
“well shared* with A, but not with B.

In a cross-modal context, it is for instance interesting to identify the features of a visual encoder
M which are highly correlated to the textual features of a model A but not to those of another
visual encoder B. It then exhibits a specificity of M with regards to B. The approach is even more
interesting when it is extended to two groups of models G and H, since it can exhibit the features
that some encoder handles in contrast to some other encoders. To find features shared with every
model in G, but with no model in H, we define the Generalized Comparative Sharedness:

M—G,H . y ) .
A (((gr‘lé%pf”%glf—(g}g};pyﬁHlf) (7)

In the vein of the example above, if we consider a visual encoder M, a set T' of several textual
encoders and a set V' of several visual encoders, high values of A?{HT’V would be associated with

the features of M that are specifically correlated to some textual features (among a large set) while
being different from other visual features.

2.3 ON COMPUTATIONAL TRACTABILITY

Computing MPPCA™B orwmpPPCA—E requires computing n 4 X np Pearson correlations, with n 4
and np the number of SAE features learnt on models A and B. In practice, computing wMPPCA—B
on every layer of models requires tens of billions of correlations, between vectors as long as the

dataset. The Pearson correlation 7(X,Y) = W is computed from N samples of the

random variables X and Y. With X = X;)‘:X Y = Y;’f‘/, we have r(X,Y) = % Therefore,
the Pearson correlation can be seen as a dot product between standardized vectors. All the correla-
tions required by wMPPC can therefore be computed in a single matrix multiplication, between the
matrices of standardized features. Block matrix multiplication (or chunking) can be used to solve
potential memory issues. For example, computing wMPPC on COCO between two models with 24
layers x 8192 features (largest models of this study, see Appendix A) requires 9.14 x 10*®> FLOPs,
and 469s on a single Nvidia A100 GPU, using FP32 precision at peak theoretical throughput. In
practice, 5 runs of this settings took 608.6 &= 5.9 seconds on a computer cluster. Considering only
the last layer of each model (like required to compute Comparative Sharedness) divides the number
of operations by the number of layers of each model. Using the same two models, it would require
1.59 x 10'3 FLOPs, 0.81s at peak throughput on a single A100 GPU, and 1.01 & 0.01 seconds on
2880 timed runs.
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Table 1: wMPPC**°¢1478¢! (a]] layers) on COCO, for 6 large image and text encoders

Target Image Text

Source CLIP (I) SigLIP2 (I) DinoV2 | CLIP(T) SigLIP2(T) BERT
g, CLIP () 1 0.446 0.486 0.209 0.131 0.194
g SigLIP2 (I) 0.514 1 0.509 0.272 0.171 0.251
= DinoV2 0.556 0.518 1 0.250 0.153 0.233
~ CLIP(T) 0.253 0.275 0.246 1 0.351 0.428
é SigLIP2 (T) | 0.045 0.050 0.043 0.256 1 0.578

BERT 0.182 0.194 0.177 0.346 0.287 1

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Models We consider several classes of models, with different architectures and various sizes.
For VLMs, we use CLIP (Radford et al., 2021), DFN (Fang et al., 2024) and SigL.IP2 (Tschan-
nen et al., 2025), each having a visual and a textual encoder; for language models, we consider
BERT (Devlin et al., 2019) and DeBERTa (He et al., 2021); for visual foundation models (FM), we
use DinoV2 (Oquab et al., 2023) and ViT (Dosovitskiy et al., 2020). We also consider MambaVi-
sion (Hatamizadeh & Kautz, 2024) as a visual FM, but its architecture is different from a succession
of transformer blocks, with blocks comprising both Mamba mixers and self-attention. Therefore,
we consider it only at the last layer, as the choice of the network stages to consider as “layers” could
cause drastic and arbitrary modifications towards wMPPC at a model-level. All these models were
tested in different sizes, using the base and large models. More details on these models can be found
in appendix A.

Datasets We consider two general domain datasets: COCO (Lin et al., 2014), in particular the
train2017 split with 118 287 images and corresponding captions, and a subset of 61 642 image-
text pairs from Laion-2B' (Schuhmann et al., 2022). We also consider a dataset in a specific domain,
with images and captions: Oxford-102 Flowers? (Nilsback & Zisserman, 2008), with 8 189 image-
text pairs.

Implementation details The datasets are used as input of the encoders and we use the activations
of their layers as training data of the sparse autoencoders. SAEs are thus learnt in the residual
stream after each transformer block, for every model. SAEs are trained with the Adam optimizer,
using 31 = 0.9 and By = 0.999. The learning rate is set to 5 - 10~ for all configurations. Also, we
initialize W, as Wg;c as per (Gao et al., 2024), in order to prevent “dead latents” (never activated
features). Our SAEs use a TopK architecture, with k = 32, meaning that training is achieved by
using 32 sparse codes to represent every input. This value was chosen as it was the smallest power
of 2 obtaining no dead latents on COCO with CLIP-ViT-L/14. Finally, we use an expansion factor
of 8, similarly to (Thasarathan et al., 2025), which means that the intermediate representation of
SAE:s is 8 times as large as their input dimension. All the SAEs of this study were trained using the
same SAE hyperparameters, in order to perform a systematic analysis of their learnt features.

3.2 COMPARISON AT THE MODEL LEVEL

We compute wMPPC between the image (I) and text (T) encoder of CLIP and SigLIP2, Dino v2
and BERT, using the large (L-size) version of each and COCO as input dataset. When we consider
all the layers of these 6 encoders, the results are reported in Table 1. At a model level, comparisons
between encoders with the same modality obtain much higher wMPPC than cross modality com-
parisons, even when considering the two encoders of a same VLM. SigLIP2 reaches state-of-the-art
performance on various vision-language tasks (Tschannen et al., 2025). Both wMPPC between its

'From the dataset https:/huggingface.co/datasets/MayIBorn/laion_2b_en_subset_70666, we collected the
images that were still available at the given urls, resulting in the 61 642 image-text pairs.
“https://huggingface.co/datasets/efekankavalci/flowers 102-captions
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Table 2: wMPPC**"'°¢"48¢! (]ast layers) on COCO, for 6 large image and text encoders

Target Image Text
Source CLIP (I) SigLIP2 (1) DinoV2 | CLIP(T) SigLIP2(T) BERT
g, CLIP (D) 1 0.278 0.208 0.220 0.128 0.203
g SigLIP2 (I) 0.320 1 0.236 0.274 0.153 0.249
= DinoV2 0.270 0.290 1 0.254 0.142 0.216
~ CLIP(T) 0.255 0.284 0.211 1 0.192 0.286
é SigLIP2 (T) | 0.054 0.062 0.042 0.134 1 0.297
BERT 0.183 0.195 0.136 0.237 0.172 1

two encoders (0.050 and 0.171) are nevertheless lower than wMPPC between BERT and DinoV?2
(0.177 and 0.233).

Vision encoder Text encoder

20
15

10

Target layer
Target layer

0 5 10 15 20 5

Source layer Source layer

Figure 1: Layerwise wMPPC between 2 SAEs trained on each encoder of CLIP

However, nothing guarantees that the early layers of image and text encoders would correspond to
features of the same semantic level. Therefore, we train two SAEs on each encoder of a CLIP-ViT-
L/14 model. We then represent the layerwise wMPPC of the two encoders in Figure 1. The SAEs
learnt on the text encoder obtain similar wMPPC for every pair of layers considered. For the image
encoder, we encounter much higher wMPPC on early layers, and wMPPC stays concentrated along
the diagonal, with layers of different levels obtaining low wMPPC, hence representing very different
features. Therefore, as suggested by previous works (FEL et al., 2023), features with the highest
semantic level should be found in the last layer of vision encoders.

We compute wMPPC considering only the last layer of each model, with the results being reported
in Table 2. In that case, wMPPC decreases substantially for same-modality comparisons (even for
two text encoders), but stays stable or even increases for cross-modal comparisons. Therefore, we
deduce that the shared information between models of different modalities is to be found mostly in
the last layer of each model.

Furthermore, we conduct a similar analysis with four additional encoders, namely the image and
text encoder of DFN, a ViT (image encoder) and DeBERTa (text encoder), resulting in a total of 10
large image and text encoders. In Table 3, we report the average of wMPPCA ™5 with each encoder
modality for A and B. “Image — Text” represents the average wMPPC with any image encoder
as the source and a text encoder as the target (respectively for other combinations). Same-encoder
comparisons are omitted from the average.

Using smaller versions of the same encoders (B-size instead of L-size) on COCO, wMPPC appears
to be very similar (or slightly higher) as shown in Table 3, thus leading to the same conclusions as
using L-size models.
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Table 3: Average wMPPC for all model pairs, combined by the modality of the source and target
encoders, and tested on different datasets and for different model sizes. Each number correspond to
the average score of a quarter of table such as Table 1 (all) or Table 2 (last), without the "1’ on the
diagonal and all models of each type (instead of 3 only in Table 1 and Table 2), either in their large
(L with 10 encoders) or basic (B with 10 other encoders) size. Detailed results for each model are
provided in Appendix D.

Layers Input Models
dataset  size Image — Image Image — Text Text — Image Text — Text
COCO L 0.463 0.204 0.168 0.367

All CQCO B 0.509 0.225 0.178 0.405
Laion L 0.470 0.146 0.140 0.524
Flowers L 0.548 0.180 0.129 0.447
COCO L 0.265 0.213 0.173 0.249

Last CQCO B 0.281 0.222 0.176 0.275
Laion L 0.187 0.119 0.122 0.308
Flowers L 0.377 0.133 0.166 0.281

3.3 ALTERNATIVE INPUT DATASET

Previous studies dealing with SAE-based interpretability relied on a single input dataset to generate
the activations on which the SAE are learnt. We extend the scale of the experiment by using two
additional datasets to refine the previous analysis. The results are reported in Table 3 with 10 large
models.

In order to analyze whether our previous observations transpose to another dataset, we compute
wMPPC on SAE features learnt on a subset of 61642 image-text pairs from Laion-2B (Schuhmann
et al., 2022). At a model level, wMPPC values are similar to those obtained on COCO, except for
comparisons between two text encoders, that obtain higher scores. However, cross modal compar-
isons obtain much lower wMPPC when considering only the last layer. As the Laion-2B captions
are scraped from the internet (as opposed to the captions of COCO that are human-written for each
image), this could highlight a worse image-text alignment for this dataset.

To compare models on a domain specific dataset, we compute wMPPC between L-size models on
Oxford-102 Flowers. As this dataset has less intra-modality variability (domain specific), wMPPC
gets higher scores than on COCO for same-modality comparisons, especially between image en-
coders. However, cross-modal comparisons obtain lower wMPPC than on COCO, suggesting a
worse image-text alignment.

3.4 A TYPOLOGY OF VISUAL CONCEPTS SPECIFIC TO VLMS

The use of image-text contrastive learning has shown great results in understanding visual informa-
tion. Then, we aim at exhibiting the gain made possible by such multimodal training, at a concept
level, by using our SAE-based indicators. SAEs are trained on the activations resulting from the
COCO dataset, holding a high image-text alignment quality (Sec 3.3). In order to identify fea-
tures shared by multiple VLMs, but not by visual FMs, we compute the Generalized Comparative
Sharedness AM—G-H (Equation 7), with CLIP features as a comparison standard M. For this role,
we consider CLIP among all VLMs used in this study, as it is the most common, the oldest, and
the least performing one. Therefore, features from CLIP that have low p;“*B towards other VLMs
would not be caused by a performance improvement. The group G comprises the visual encoders
from other VLMs (SigLIP2 and DFN) as well as features from a second SAE trained on the same
CLIP model as M, with a different seed. The group H comprises the visual foundation models
DinoV2, MambaVision and a ViT trained on ImageNet-21k classification.

Inspecting the features corresponding to the top 1% of AM =G (81 out of 8192), we identify the
following types of concepts that are specific to VLMs (visualizations are provided in Appendix E):
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» Age related features: among the features that are specific to all the studied VLMs, some are
associated to kids in specific situations, such as birthday parties, brushing teeth or playing
baseball. Each of those features is associated with a specific age range.

* Pets having “unusual” behaviour: the COCO dataset has lots of images of cats and dogs
having unusual behaviour, such as wearing ties or hats, sitting on laptops... VLMs share
multiple features associated specifically to those images, often to multiple types of those
unusual behaviours, but not to classical images of pets. Visual FM don’t share those fea-
tures.

* Rooms of the house : features activated by images of a specific room of the house (bedroom,
bathroom, kitchen...). In particular, some features with a high comparative sharedness are
activated on images of different types of the bathroom (sink, toilet, bath). Also, those
images are more cluttered than most of the COCO dataset, however relevant associations
are made.

* Vehicles: high speed trains, fret trains and steam trains are all visually different, however
they all are trains. CLIP has features activated for all those kinds of trains, and similar
features for planes, cars, buses or boats are shared with all the studied VLM, but with none
of the studied visual FM.

* Old photos : features activated for grayscale, blurry, and seemingly old photos. Even
though those characteristics are purely visual, those features are specific to VLMs. Also
note that recent artistic grayscale photos are present in the dataset, and have distinct features
associated to them, not obtaining a high comparative sharedness.

* Geographical features : features activated on different kinds of images corresponding to
the same geographical region. That includes features activated for multiple types of african
animals (elephants, zebras and giraffes), or multiple types of Italian food (such as pastas,
lasagnas and pizzas). Note that features activated only for images of zebras, or only for
pizzas do not obtain a high comparative sharedness.

» “To ride” : one notable feature among the top 1% of AM—~GH s activated for images of
horses, skis, snowboards, bikes, surfs or jetskis. Those are very different types of objects,
but all of them are associated to the verb “to ride” in English.

Such observations confirm previous assumptions on geographical features (Stevens et al., 2025),
but allows extracting a whole typology of concepts by having a more systematic approach. Most of
those features seem to rely on prior knowledge, that is absent from visual foundation models without
text pretraining. They are activated on images of different types of situations, corresponding to the
same high-level semantic concept. In particular, the feature seemingly related to the verb “to ride”
appears to rely solely on textual information, despite being extracted from a visual encoder.

3.5 VISUAL FEATURES SPECIFIC TO VLMS ARE REALLY textual FEATURES

In previous section, we present a typology of SAE features that are shared by multiple VLMs, but
not by visual FMs. Then, if these specificities are a direct consequence of text pre-training, some
features learnt on text encoders using image captions could have similar behaviours. We study the
same CLIP image features as previously, using Generalized Comparative Sharedness AM =G H 1o
find features better shared with BERT-large and DeBERTa-large than with any of MambaVision,
DinoV2 and ViT. Again, we establish a typology of concepts among the top 1% of AM—=GH The
features of CLIP image encoder that are better shared with every studied LLM than with any studied
visual FM correspond to: kids in a specific situation, rooms of the house, types of vehicles, pets
having unusual behaviour or old photos.

The obtained typology is very similar to the one established while considering VLM visual encoders,
pushing the hypothesis that previous observations could be caused by their text pretraining. Actually,
16 features are present in the highest 81 (1%) Comparative Sharedness towards both LLMs and VLM
visual encoders. Qualitative examples are represented in Figure 2, with the 9 images corresponding
to the highest activations among the COCO dataset.
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(a) Bathrooms (b) Kids

Figure 2: CLIP visual features better shared with LLMs and VLMs than with visual FMs

4 RELATED WORK

Representational similarity As both the performance of deep neural networks improves on both
text and images, recent works analyze the alignment between the representations of such networks
(Kornblith et al., 2019; Klabunde et al., 2023; Boix-Adsera et al., 2022). Empirical studies (Li
et al., 2024; Huh et al., 2024) find representational alignment between language and vision models,
by studying the distance structure induced by their learnt vector embeddings. In particular, they find
convergence of models of different architectures and modalities upon performance, suggesting the
existence of a platonic representation.

Universal neurons Analyzing individual neurons of networks has revealed neurons corresponding
to interpretable features. In language models, some have been found to correspond to sentiment
(Donnelly & Roegiest, 2019) or skills (Wang et al., 2022). In a similar fashion, vision models
have individual neurons activated for curves with specific orientations (Cammarata et al., 2021)
or specific objects (Bau et al., 2020). Multiple GPT2 models trained with different training seeds
have been shown to share 1-5% of neurons (Gurnee et al., 2024), with clear interpretations and
functional roles. Also, vision models trained with different tasks share Rosetta Neurons, activated
on similar regions of images (Dravid et al., 2023). Semantic superposition is the main problem
for such studies, as most neurons are polysemantic, and are activated on seemingly unrelated inputs
(Elhage et al., 2022).

Sparse autoencoders In order to disentangle the concepts corresponding to individual neurons,
sparse autoencoders are trained on model activations, in order to extract sparse, and interpretable
features (Bricken et al., 2023; Cunningham et al., 2023). Such features have seen promising results
towards understanding language models (Lieberum et al., 2024; Gao et al., 2025; Rajamanoharan
et al., 2024). Also, recent works have addressed SAEs for vision, or multimodal models (Gorton,
2024; Thasarathan et al., 2025; Lim et al., 2025; Rao et al., 2024), in scenarios such as model
adaptation (Lim et al., 2025). (FEL et al., 2023) evaluates the importance of each learnt concept,
by assessing its impact on classification predictions.

Comparing SAEs SAE features are used to compare different models. Universal SAEs
(Thasarathan et al., 2025) learn a common concept space for three image encoders, relying on the
same decoder. MPPC (Wang et al., 2025) performs a correlation analysis between features of two
generative LLMs, in order to quantify to what extent those models share concepts. Finally, (Stevens
et al., 2025) suggests that CLIP holds visual features associated with a precise cultural or geograph-
ical context, that are absent from DinoV2.
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5 DISCUSSION, LIMITATIONS AND PERSPECTIVES

Discussion We conduct a comparative analysis of 21 visual, textual and multimodal encoders upon
SAE-derived features. We introduce wMPPC, an indicator evaluating similarities between different
models at a concept level, considering relative feature importance. With appropriate weights, this
indicator corresponds to the expectation of the per-feature maximal correlation under sampling by
activation mass and it gives a practical criterion to choose the Top-k SAE level of sparsity. From
the empirical study on 21 visual and textual encoders, we find that SAEs learnt on COCO obtain
higher wMPPC between encoders of different modalities than SAEs learnt on a subset of Laion-2B.
That highlights the difference in quality of image-text alignment between the two datasets. Also, the
newly defined Comparative Sharedness indicator allows to find individual features of a model that
are better shared with a class of models than another, and to establish typologies of such features.
We find that features that are specific to VLMs among vision encoders are also better shared with
LLMs than visual foundation models. That emphasizes the importance of text pretraining for image
understanding, by highlighting specific concepts.

Limitations Although our study involves much more encoders than previous studies, all of them
are based on transformers (Vaswani et al., 2017). Training SAEs on models having large and hi-
erarchical feature maps (such as convolutional networks, or Swin transformers (Liu et al., 2021))
is possible. However, in practice such models would imply having huge SAEs, or using smaller
SAEs for the largest layers (Gorton, 2024), therefore not allowing a systematic wMPPC analysis.
One can also note that we considered only encoders while MPPC (Wang et al., 2025) focuses on
language decoders. This choice resulted from the objective of studying the features shared in a
multimodal context. Although visual generative models conditioned by a text could have been con-
sidered, it seemed more appropriate to first study Visual Language Models which are trained with
an objective that is more symmetric between both modalities. A second limitation is the asymmetry
of the proposed wMPPC indicator, similar to MPPC. Hence, it can not be used as an actual distance
measurement between models. A naive symmetric version can be easily derived (e.g similarly to
the Jensen—Shannon divergence with regard to the Kullback-Leibler one) but it would be at the cost
of losing important information. For instance in a cross-modal context, the wMPPC is very low
when SigLIP is used as source but three times larger when it is used as target (Table 1), which sug-
gests that SigLLIP encodes more concepts that are unknown by image encoders than the opposite. A
symmetric version of wMPPC would not be able to highlight such a phenomenon, reporting only a
bland average value of both cross-modal contexts. A final limitation identified is that even if sparse
autoencoders are one of the most promising methods regarding concept-based analysis, they are not
guaranteed to extract every single concept used by a model. However, regarding the tools we pro-
pose (WMPPC and Comparative Sharedness), they could be applied to future alternative methods to
extract concepts as long as one could compute correlation between features of the said concepts in
two models.

Broader impact By addressing specifically Explainable AI (XAI) in a cross-modal context, this
paper can contribute to transfer representation from one modality to another. It can also contribute
to improve a user’s understanding of the inner structure of a large model, by providing explanations
through multiple modalities.

Perspectives Our findings highlight that wMPPC can be used to assess the quality of the image-
text alignment of a dataset. Comparative studies of multiple image-text datasets could be performed,
in order to select or filter datasets used for training new models. Techniques for automatically
naming SAE features considering both images and captions could allow large scale Comparative
Sharedness analysis, using features of both modalities as comparison standards. All the models
considered in this work are encoder models. As SAE-derived features have been studied extensively
for models specialized in text generation, a systematic analysis of wMPPC on generative models
with different modalities could provide meaningful insight into their behaviour.

REPRODUCIBILITY STATEMENT

Our results can be reproduced, following the method described in section 2 and subsection 3.1.
Corresponding code is provided as supplemental material. It is based on free software and libraries
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(see Appendix F for the licences). Links and details to the models are provided in Appendix A
(Table 4 and Table 5).
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A APPENDIX: ENCODER DESCRIPTION

We report in Table 4 all the encoders considered in our study with their key features and the link to
download them in Table 5. All the models were downloaded from huggingface, except from CLIP
and DFN models from OpenClip (Ilharco et al., 2021b) and DinoV2 from PyTorch Hub. The model
size is the number of parameters and since all of them were encoded in £1oat 32 their actual size
in memory is this number multiplied by four. Six datasets were used to train them.

CLIP was trained “on publicly available image-caption data” that is image-caption pairs from the
Web and publicly available datasets such as YFCC 100M (Thomee et al., 2016). The creator of
the model did not release the dataset to avoid its use “as the basis for any commercial or deployed
model”.

DEFN is a CLIP-like model trained from 2B image-text pairs, resulting from the filtering of a pool of
12.8 billion uncurated image-text pairs of CommonPool, collected from Common Crawl. This last
is itself part of DataComp, a benchmark for designing multimodal datasets (Gadre et al., 2023).

MambaVision and ViT were trained on well-known and publicly available ImageNet dataset (Deng
et al., 2009) with 1, 000 categories of the Large Scale Visual Recognition Challenge (Russakovsky
et al., 2015) or the full 21k classes.

In Table 3:

* the set “L* contains 10 encoders: CLIP ViT L/14 (both image and text encoders), DFN
ViT L/14 (both image and text encoders), SigLIP2 L/16 (both image and text encoders),
DinoV2 L/14 (image encoder), ViT L/16 (image encoder), BERT large (text encoder) and
DeBERTa (text encoder)

* the set “B* contains 10 encoders: CLIP ViT B/32 (both image and text encoders), DFN ViT
B/16 (both image and text encoder), SigL.IP2 B/16 (both image and text encoder), DinoV2
B/14 (image encoder), ViT B/16 (image encoder), BERT base (text encoder) and DeBERTa
base (text encoder)

Table 4: Pre-trained encoders considered in this study.

Encoder input  Model Model Training set

type type size
CLIP ViT B/32 (Radford et al., 2021) image VLM 8™ openAl private: web,
CLIP ViT L/14 (Radford et al., 2021) image VLM 303M YFCC100M...
DEN ViT B/16 (Fang et al., 2024) image VLM 86M 2B filtered from
DFEN ViT L/14 (Fang et al., 2024) image VLM 303M CommonPool -12.8B
SigLIP2 B/16 (Tschannen et al., 2025) image VLM 92M WebLI
SlgLIPZ L/16 (Tschannen et al., 2025) image VLM 316M
DinoV2 B/14 (Oquab et al., 2023) image visual FM 86M
DinoV2 L/14 (Oquab et al.,, 2023) image visual FM 304M LVD-142M

MambaVision L (Hatamizadeh & Kautz, 2024y ~ image visual FM = 227M ImageNet-1k

ViT B/16 (Dosovitskiy et al., 2020) image visual FM 86M
ViT L/16 (Dosovitskiy et al., 2020) image visual FM 303M ImageNet-21k
BERT base (Devlin et al., 2019) text LLM 109M
BookCorpus,
BERT large (Devlinetal., 2019) text LLM 335M Wikipedia
DeBERTa base (He et al., 2021) text LLM 99M BookCorpus, Wikipedia,

MambaVision B (Hatamizadeh & Kautz, 2024) image visual FM  97M }

DeBERTa large (Heetal., 2021) text LLM 353M OpenWebText, STORIES

B THEORETICAL DERIVATION

In order to compare different models upon their SAE features we generalize the MPPC indicator
(Wang et al., 2025).
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The MPPC per-feature of the i-th SAE feature f; learnt for a pretrained model A is defined by its
maximum pairwise Pearson correlation among features of model B and is noted p~5:

E[(fA — B _ I
A mas [(f ;;Al(g 9] ®
J

with £, f; 5 the i-th feature of A and the j-th feature of B, ', u their respective means, i}, o

B
. T
their standard deviations. In practice the correlations are est1mated with IV sample data.

With nonnegative weights w; such that ", w; = 1, the weighted MPPC is:
wMPPC = Z wip =B )
i=1

Let us consider a;(x) € R the activation (nonnegative scalar because of the ReLU) of the SAE
feature f* on input € D, and the cumulative activation of feature i over D noted as S =

2zep 0i(T).

A
Proposition 1. If one considers the normalized weights w; = ST ogx we have:

Z’ll

wMPPCA™F = Z ST 5 Zza pi=8 3)
l= 1 zeD i=1

Therefore wMPPCA™E — E, [pf‘ﬁB ] where g is the joint distribution that samples a datapoint x
in D and then samples feature i with probability proportional to a;(x).

Proof. Let substitute w; = S7'/ ", S into Equation 2:

wMPPC = Z ZS i; B )
L
sl 2 () o 10
£ =1 x€D
= S, 57 Z Zal it (1D
€D i=1

Thus if one samples x with uniform probability over D then, conditional on z, let pick feature ¢ with
probability proportional to a;(x). The inner sum divided by > _, ¢, is exactly the expected value of

p2A~B under that two-stage sampling. O
If we use TopK-SAE, let us consider the order statistics of the activations agl) > aEQ) > > al(k)
then define the Top-k cumulative activation as
k
" = a (12)
t=1
Let denote the resulting sum of cumulative activations as:
ok =3 (13)
The Top-k activation-weighted MPPC is then defined as:
1 = &
wMPPC{};? = 0 P (14)
i=1
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Proposition 2. (incremental update) Under the above notation and assumption,

1
A—B A—B (k+1) A B A—B
wMPPC{; /) —wMPPC(; C(k+1)§ 7P —MPPC(7"") (15)

Proof. We want to determine the effect of adding a k + 1-th activation az(-kH) in the Top-k SAE on
WMPPC&?B. Let us note AP = S0 | al* P we have:

n k+1 k

C(k+1) ZZZG? Z agt) +Z (k1) _ (k) 4 g(k+1) (16)
1

i=1 t=1 =1 t=

Using the definition of WMPPC(}CTB (Equation 14) we have:

(k) A—B (k) A—B
A-B asp  2ule +ai)p; iCi Pi
wMPPC{ ;5 — wMPPC{};"? = s - =® (17)
(k)pA—>B (k)pA—>B ) a‘pA—>B
1 K3 )
g el T G awm (8

=:T4 =Tz

The first term 7} can be reformulated as:

(k) a5 1 1
ZC (C(k) T+ AT C(’c)) (19)

_ Z k) JA=B (C(k) —(Cc® 4 A(k+1)))
i Pi C(k)(c(k') +A(k+1))

(20)

A(k+1)

_ (k) A—B
T CW(C® 1 AGTD) ZC Pi 2D

Thus:

wMPPC{ 78 — wMPPC{) % = > aipl” ARTD
(k+1) C*&) 1 Ak+1) c(k)(c(k) + A1)

1
= G e (2ol = A WAIPPCG ) 23)

ch) pAB (22)

A—B A—B
C(Hl)zaz p7 B — wMPPC(;P) (24)

by using >, P pA=B = o) WMPPC(}:B (according to Equation 14) to go from Equation 22
to Equation 23 O

From Proposition 2 we thus have the results of the main paper:

Corollary 1. (monotonicity condition) A sufficient condition for wWMIPPC{i /1) > wMPPC{j}""
AN

3"V (pf7 P — MPPCP) > 0 (5)
i=1

C APPENDIX: STATISTICAL SIGNIFICANCE OF MPPC AND WMPPC

With p; the maximum pairwise coefficient (Equation 8) for N target features of length L, and Hy
the hypothesis of features having no linear relationship. Using the Fischer z-transformation (Fisher,
1915)
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1
z = artanh(r) ~ N(0, T—S)

P(mzax(m) >z)=1-P(r<z)V
P(p; > x) = ]P’(miax(z,») > artanh(z))
P(p; > x) = 1 — ®(artanh(z)VL — 3)N

With N = 8192 (corresponding to ViT-L experiments, for one layer), and L = 10000 being largely
lower than the size of the COCO dataset used, we obtain P(p; > 0.3) ~ 107206 thus reject Hy.

Experimentally, for two sparse autoencoders trained on the same CLIP-ViT-B/32 visual encoder,
on the COCO dataset and shuffling the features upon images (to preserve the density of feature
distributions), we obtain wMPPC = 0.0125, while the non-shuffled wMPPC = 0.5854.

D APPENDIX: DETAILED WMPPC RESULTS

In Table 3 we report average results of wMPPC that provide an overview to the reader for various
settings. In this appendix, we report the detailed results of each setting that led to these average
scores. The setting are “multidimensional” thus we provide in Table 6 the synthetic pointers to help
the reading.

Also, note that MambaVision is only considered at its last layer on COCO (Table 9 and Table 10),
as it is only used to compute Comparative Sharedness.

E APPENDIX: ADDITIONAL EXAMPLES OF VISUAL FEATURES SPECIFIC TO
VLMS

In subsection 3.4, we provide a typology of features learnt on CLIP visual encoder that are better
share with other VLMs than with visual FMs. Figure 3 contains an example for each mentioned
category. We display the feature corresponding to the highest Generalized Comparative Sharedness
for each category, except for features present in Figure 2. In Figure 4, we represent the 100 images
corresponding to the highest activations of the feature associated to the verb “to ride”. A larger
number of examples is chosen here, in order to better represent the diversity of objects that activate
this particular feature.

F APPENDIX: CODE ASSOCIATED TO THE PAPER

The code to reproduce the experiments is provided as supplementary material (zip file). It is de-
veloped from scratch and relies mainly on PyTorch (Paszke et al., 2019) and numpy (Harris et al.,
2020).

We used OpenCLIP (Ilharco et al., 2021a) and the Huggingface Transformers library (Wolf et al.,
2020) to handle models. As well, we relied on the Huggingface Datasets library (Lhoest et al., 2021)
to handle the datasets.

All these libraries are open source with permissive software license, as summarized in Table 23

G APPENDIX: LLM USAGE

Beyond the usage of LLM described in the paper, that is part of the study, we used commercial
services to polish the writting: find synonyms, rephrase sentences.

We also used such an LLM service to conduct an initial investigation into certain theoretical deriva-
tions (Appendix B). The final proofs were established and asserted by ourselves.
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(d) Vehicles (ships)

P

(f) Geographical region (mostly via
(e) Old photos food)

Figure 3: Examples of visual features specific to VLMs mentioned in subsection 3.4
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Table 5: Links to the pre-trained encoders considered in this study.

c
&

Encoder

CLIP ViT B/32 (Radford et al., 2021)

CLIP ViT L/14 (Radford et al., 2021)

DFN ViT B/16 (Fang et al., 2024)

DEN ViT L/14 (Fang et al., 2024)

SigLIP2 B/16 (Tschannen et al., 2025)
SigLIP2 L/16 (Tschannen et al., 2025)

DinoV2 B/14 (Oquab et al., 2023)

DinoV2 L/14 (Oquab et al., 2023)
MambaVision B (Hatamizadeh & Kautz, 2024)
MambaVision L (Hatamizadeh & Kautz, 2024)
ViT B/16

(384)
(224)
ViT L/16 (Dosovitskiy et al., 2020)
BERT base (Devlin et al., 2019)
BERT large (Devlin et al., 2019)
DeBERTa base (He et al., 2021)
DeBERTa large (He et al., 2021)

felelelelelelelelelelelelelelelele

Table 6: Synthetic pointers to the tables of detailed results. It gives the table according to the input
dataset and the size of the encoders (each row), the modality of the target encoders that can be
‘Image’ (col 3) or ‘“Text’ (col 4) and finally whether ‘all’ layers or only the ‘last’ one is used to
compute wMPPC.

Target encoders

Dataset Model size Tmage Text

COCO large Table 7 (all) Table 9 (last) Table 8 (all) Table 10 (last)
base Table 11 (all) Table 13 (last) Table 12 (all) Table 14 (last)

LAION large Table 15 (all) Table 17 (last) Table 16 (all) Table 18 (last)

Flowers-102 large Table 19 (all) Table 21 (last) Table 20 (all) Table 22 (last)

Table 7: wMPPC**"" '8! (all layers) on COCO, for all 10 large models as source, image encoders

as target
Target Image
Source CLIP (I) SiglLIP2d) DFN{I) DinoV2 ViT
CLIP (I) 1 0.446 0.489 0486  0.444
o, SigLIP2 (I) 0.514 1 0.516 0.509  0.500
g DFN (I) 0.469 0.416 1 0431  0.385
= DinoV2 0.556 0.518 0.533 1 0.515
ViT 0.390 0.381 0.379 0.391 1
CLIP (T) 0.253 0.275 0.254 0.246  0.223
~ SigLIP2 (T) 0.045 0.051 0.044 0.043  0.037
;-3 DEN (T) 0.248 0.282 0.257 0.235  0.227
BERT 0.182 0.195 0.181 0.177  0.158
DeBERTa 0.119 0.129 0.120 0.113  0.105
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Table 8: wMPPC* """ 8¢ (a]] layers) on COCO, for all 10 large models as source, text encoders

as target
Target Text
Source CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP (I) 0.209 0.131 0.214 0.194 0.188
o, SigLIP2 (I) 0.272 0.171 0.282 0.251 0.248
g DFN (I) 0.203 0.128 0.208 0.188 0.182
= DinoV2 0.250 0.153 0.256 0.233 0.224
ViT 0.201 0.132 0.207 0.186 0.183
CLIP (T) 1 0.351 0.509 0.428 0.412
~ SigLIP2 (T) 0.256 1 0.254 0.578 0.400
é DFN (T) 0.480 0.327 1 0.426 0.431
BERT 0.346 0.287 0.352 1 0.361
DeBERTa 0.266 0.256 0.274 0.344 1

Table 9: wMPPC*""¢""8¢ (]ast layer) on COCO, for all 10 large models and MambaVision as
source, image encoders as target

Target Image
m CLIP (I) SigLIP2(I) DFN{I) DinoV2 ViT MambaVision
CLIP (I) 1 0.278 0.265 0.208  0.232 0.215
g, SigLIP2 (I) 0.320 1 0.329 0.236  0.293 0.294
g DFEN (I) 0.267 0.287 1 0.207  0.236 0.225
= DinoV2 0.270 0.290 0.277 1 0.270 0.259
ViT 0.258 0.286 0.272 0.226 1 0.264
MambaVision 0.236 0.281 0.258 0214  0.264 1
CLIP (T) 0.255 0.284 0.265 0211 0.252 0.234
- SigLIP2 (T) 0.054 0.062 0.054 0.042  0.049 0.048
é DEN (T) 0.246 0.287 0.258 0.196  0.245 0.227
BERT 0.183 0.195 0.179 0.136  0.168 0.154
DeBERTa 0.150 0.162 0.149 0.115  0.139 0.128

Table 10: wMPPC*""¢"8¢" (Jast layer) on COCO, for all 10 large models as source, text encoders
as target

Target Text
m CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP (I) 0.220 0.128 0.218 0.203 0.207
o, SigLIP2 () 0.274 0.153 0.278 0.249 0.256
g DFN (I) 0.222 0.127 0.223 0.199 0.203
= DinoV2 0.254 0.142 0.260 0.216 0.226
ViT 0.243 0.130 0.248 0.215 0.223
MambaVision 0.219 0.117 0.223 0.190 0.197
CLIP (T) 1 0.192 0.361 0.286 0.306
~ SigLIP2 (T) 0.134 1 0.102 0.297 0.347
;5 DEN (T) 0.345 0.173 1 0.282 0.301
BERT 0.237 0.172 0.238 1 0.275
DeBERTa 0.229 0.195 0.226 0.288 1
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Table 11: wMPPC*?""¢7""8¢! (all layers) on COCO, for all 10 base models as source, image encoders

as target
Target Image

Source CLIP (I) SiglLIP2I) DFN{I) DinoV2 ViT
CLIP (I) 1 0.487 0.530 0.504  0.485
o, SigLIP2 (I) 0.581 1 0.584 0.562  0.579
g DEN (I) 0.527 0.500 1 0.522  0.485
= DinoV2 0.499 0.499 0.523 1 0.481

ViT 0.459 0.458 0.465 0.455 1
CLIP (T) 0.227 0.261 0.250 0.252  0.229
~ SigLIP2 (T) 0.071 0.077 0.073 0.073  0.068
é DEFN (T) 0.240 0.281 0.269 0.270  0.251
BERT 0.154 0.171 0.167 0.168  0.152
DeBERTa 0.145 0.159 0.155 0.157  0.140

Table 12: wMPPC**""¢77""8¢! (all layers) on COCO, for all 10 base models as source, text encoders

as target
Target Text
Source CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP (I) 0.240 0.150 0.241 0.213 0.207
o, SigLIP2 (I) 0.273 0.174 0.275 0.241 0.237
g DFEN (I) 0.255 0.158 0.261 0.227 0.220
= DinoV2 0.277 0.177 0.282 0.245 0.240
ViT 0.232 0.148 0.237 0.207 0.202
CLIP (T) 1 0.343 0.508 0.408 0.399
~ SigLIP2 (T) 0.363 1 0.361 0.479 0.433
;f: DEN (T) 0.577 0.408 1 0.466 0.457
BERT 0.358 0.320 0.359 1 0.442
DeBERTa 0.323 0.330 0.324 0.437 1

Table 13: wMPPC**""*7""8¢ (]ast layer) on COCO, for all 10 base models as source, image encoders

as target
Target Image
Source CLIP (I) SiglLIP2(I) DFN{I) DinoV2 ViT
CLIP (I) 1 0.353 0.335 0266  0.282
o, SigLIP2 (I) 0.352 1 0.356 0.278  0.304
g DEN (I) 0.293 0.318 1 0.239  0.255
= DinoV2 0.217 0.257 0.251 1 0.250
ViT 0.245 0.275 0.263 0.228 1
CLIP (T) 0.224 0.260 0.247 0.208  0.227
~ SigLIP2 (T) 0.084 0.095 0.089 0.075  0.080
é DEN (T) 0.232 0.276 0.269 0.227  0.242
BERT 0.180 0.192 0.184 0.139  0.158
DeBERTa 0.156 0.164 0.152 0.112  0.130
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Table 14: wMPPC**""¢71"8¢! (Jast layer) on COCO, for all 10 base models as source, text encoders

as target
Target Text
Source CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP (I) 0.275 0.163 0.275 0.268 0.251
o, SigLIP2 (I) 0.296 0.166 0.293 0.281 0.264
g DEFN (I) 0.240 0.138 0.242 0.223 0.210
= DinoV2 0.235 0.132 0.238 0.195 0.178
ViT 0.232 0.127 0.230 0.209 0.195
CLIP (T) 1 0.190 0.345 0.284 0.268
~ SigLIP2 (T) 0.205 1 0.214 0.273 0.282
é DFN (T) 0.419 0.237 1 0.342 0.324
BERT 0.244 0.193 0.271 1 0.338
DeBERTa 0.208 0.261 0.218 0.388 1

Table 15: wMPPC %78 (all layers) on Laion, for all 10 large models as source, image encoders

as target
Target Image
Source CLIP (I) SiglLIP2(I) DFN{I) DinoV2 ViT
CLIP (I) 1 0.471 0.507 0.506  0.464
o, SigLIP2 (I) 0.531 1 0.519 0.526  0.515
g DEFN (I) 0.428 0.379 1 0.409  0.365
= DinoV2 0.566 0.531 0.551 1 0.532
ViT 0.401 0.394 0.387 0.409 1
CLIP (T) 0.174 0.190 0.177 0.159  0.138
~ SigLIP2 (T) 0.089 0.099 0.091 0.087  0.073
é DEN (T) 0.194 0.212 0.196 0.174  0.152
BERT 0.148 0.152 0.140 0.133  0.113
DeBERTa 0.127 0.134 0.126 0.114  0.096

Table 16: wMPPC**"" "8 (all layers) on Laion, for all 10 large models as source, text encoders

as target
Target Text
Source CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP () 0.162 0.072 0.186 0.151 0.136
o, SigLIP2 (I) 0.215 0.093 0.253 0.201 0.181
g DFEN (I) 0.137 0.065 0.158 0.128 0.116
= DinoV2 0.171 0.075 0.198 0.161 0.143
ViT 0.145 0.063 0.171 0.139 0.122
CLIP (T) 1 0.582 0.663 0.583 0.547
~ SigLIP2 (T) 0.621 1 0.613 0.696 0.732
é DEN (T) 0.590 0.482 1 0.504 0.480
BERT 0.389 0.342 0.381 1 0.392
DeBERTa 0.446 0.482 0.435 0.520 1
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Table 17: wMPPC**"“7%"8¢! (1ast layer) on Laion, for all 10 large models as source, image encoders

as target
Target Image
Source CLIP (I) SiglLIP2I) DFN{I) DinoV2 ViT
CLIP (I) 1 0.228 0.215 0.129  0.172
o, SigLIP2 (I) 0.252 1 0.244 0.150  0.212
g DEN (I) 0.204 0.215 1 0.131  0.214
= DinoV2 0.130 0.150 0.131 1 0.137
ViT 0.212 0.242 0.214 0.158 1
CLIP (T) 0.148 0.153 0.139 0.084 0.114
~ SigLIP2 (T) 0.088 0.092 0.083 0.042  0.058
é DEFN (T) 0.180 0.192 0.180 0.101  0.139
BERT 0.171 0.170 0.160 0.091  0.130
DeBERTa 0.130 0.138 0.123 0.068  0.090

Table 18: wMPPC**""*""8¢! (Jast layer) on Laion, for all 10 large models as source, text encoders

as target
Target Text
Source CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP () 0.139 0.067 0.155 0.158 0.140
o, SigLIP2 (I) 0.156 0.073 0.182 0.181 0.154
g DEN (I) 0.123 0.061 0.145 0.135 0.117
= DinoV2 0.086 0.040 0.098 0.093 0.083
ViT 0.133 0.058 0.141 0.145 0.124
CLIP (T) 1 0.146 0.231 0.198 0.190
~ SigLIP2 (T) 0.483 1 0.379 0.553 0.674
;f: DFN (T) 0.238 0.147 1 0.217 0.215
BERT 0.221 0.166 0.221 1 0.256
DeBERTa 0.412 0.392 0.398 0.431 1

Table 19: wMPPC™ " ¢¢7""8¢" (q]] layers) on Flowers-102, for all 10 large models as source, image
encoders as target

Target Image
m CLIP (I) SiglLIP2(I) DFN{I) DinoV2 ViT
CLIP (I) 1 0.534 0.567 0.557  0.518
o, SigLIP2 (I) 0.666 1 0.670 0.659  0.657
g DFEN (I) 0.519 0.479 1 0.493  0.452
= DinoV2 0.598 0.575 0.591 1 0.575
ViT 0.457 0.466 0.456 0.480 1
CLIP (T) 0.132 0.143 0.133 0.138  0.135
~ SigLIP2 (T) 0.083 0.093 0.089 0.101  0.088
é DFN (T) 0.161 0.170 0.162 0.167  0.164
BERT 0.121 0.147 0.134 0.146  0.133
DeBERTa 0.108 0.122 0.116 0.125  0.121
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Table 20: wMPPC "™ *""8¢ (all layers) on Flowers-102, for all 10 large models as source, text
encoders as target

Target Text
m CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP () 0.240 0.095 0.259 0.154 0.134
o, SigLIP2 (I) 0.238 0.100 0.256 0.157 0.141
g DFEN (I) 0.200 0.086 0.215 0.133 0.117
= DinoV2 0.291 0.107 0.313 0.184 0.159
ViT 0.247 0.097 0.266 0.160 0.142
CLIP (T) 1 0.440 0.630 0.516 0.488
~ SigLIP2 (T) 0.508 1 0.503 0.462 0.465
é DFN (T) 0.620 0.419 1 0.501 0.480
BERT 0.414 0.322 0.407 1 0.376
DeBERTa 0.348 0.343 0.348 0.351 1

Table 21: wMPPC™ " *¢7""8¢ (1ast layer) on Flowers-102, for all 10 large models as source, image
encoders as target

Target Image
m CLIP (I) SiglLIP2(I) DFN{I) DinoV2 ViT
CLIP (I) 1 0.418 0.410 0.317  0.335
o, SigLIP2 (I) 0.413 1 0.434 0.383  0.370
g DEFN (I) 0.408 0.436 1 0.350  0.359
= DinoV2 0.328 0.398 0.371 1 0.366
ViT 0.332 0.377 0.358 0.369 1
CLIP (T) 0.238 0.287 0.260 0.175  0.239
~ SigLIP2 (T) 0.079 0.087 0.085 0.097  0.080
é DEN (T) 0.271 0.326 0.298 0.195 0.272
BERT 0.115 0.131 0.122 0.126  0.122
DeBERTa 0.105 0.111 0.114 0.113  0.113

Table 22: wMPPC* """ 8" (last layer) on Flowers-102, for all 10 large models as source, text
encoders as target

Target Text
m CLIP (T) SigLIP2(T) DFN(T) BERT DeBERTa
CLIP () 0.206 0.067 0.221 0.093 0.094
o, SigLIP2 (I) 0.209 0.070 0.223 0.097 0.099
g DFEN (I) 0.223 0.070 0.238 0.099 0.102
= DinoV2 0.150 0.067 0.160 0.086 0.084
ViT 0.202 0.066 0.216 0.092 0.094
CLIP (T) 1 0.209 0.552 0.269 0.280
~ SigLIP2 (T) 0.329 1 0.216 0.302 0.339
é DEN (T) 0.582 0.201 1 0.273 0.281
BERT 0.224 0.214 0.203 1 0.240
DeBERTa 0.227 0.244 0.198 0.231 1
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Bl

Figure 4: 100 images corresponding to the highest activations of the feature associated to the verb
“to ride”

Table 23: Main libraries and code used in the paper

Library Source (URL) Licence (URL)
PyTorch https://github.com/pytorch/pytorch BSD
Numpy https://github.com/numpy/numpy BSD
OpenCLIP https://github.com/mlfoundations/open_clip MIT
HF Transformers https://github.com/huggingface/transformers Apache 2.0
HF Datasets https://github.com/huggingface/datasets Apache 2.0
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