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ABSTRACT

Optical flow estimation is a fundamental computer vision task that predicts per-
pixel displacements from consecutive images. Recent works attempt to exploit
temporal cues to improve the estimation performance. However, their temporal
modeling is restricted to short video sequences due to the unaffordable computa-
tional burden, thereby suffering from restricted temporal receptive fields. More-
over, their group-wise paradigm in one forward pass undermines inter-group infor-
mation exchange, leading to modest performance improvement. To address these
problems, we propose a novel multi-frame optical flow network based on an auto-
regressive paradigm, named ARFlow. Unlike previous multi-frame methods, our
method can be scalable to arbitrary-length videos with marginal computational
overhead. Specifically, we design an Auto-regressive Flow Initialization (AFI)
module and an Auto-regressive Multi-stride Flow Refinement (AMFR) module
to forecast the next-frame flow based on multi-stride history observations. Our
ARFlow achieves state-of-the-art performance, ranking 1st on both KITTI-2015
and Spring official benchmarks and 2nd on the MPI-Sintel (Final) benchmark
among all open-sourced methods. Furthermore, due to the auto-regressive nature,
our method can generalize to arbitrary video length with a constant GPU memory
usage of 2.1GB.

1 INTRODUCTION

Optical flow indicates the 2D displacement field of each pixel predicted from consecutive video
frames, playing a key role in various downstream applications such as video inpainting (Xu et al.,
2019; |L1 et al., |2022), dynamic scene reconstruction (LU et al., [2025; [Zhu et al.,|2024; Deng et al.,
2025bj; |Chan et al., 2026} |L1 et al.,|2023)), and video generation (Liang et al.,[2024a3b)).

With the development of advanced model architectures (Deng et al.,2025c¢), optical flow estimation
has witnessed remarkable success, evolving from CNN-based backbones (Sun et al.| | 2018a; [Teed &
Dengl [2020) to transformer-based ones (Huang et al., 2022} [Xu et al.| [2022); from discriminative
methods (Zhao et al.,|2024)) to generative ones (Luo et al.,[2024}; Saxena et al.,|2023; Liu et al.} [ 2024a;
2025c). However, these methods typically formulate the task with a pairwise paradigm, which
neglects intrinsic temporal coherence within video sequences, leading to suboptimal performance
and poor reasoning ability in occluded areas (Chen et al.,2023;|Dong & Ful [2024} Liu et al., [2023c)).

Recently, there has been an increasing research focus on multi-frame optical flow estimation from
video sequences (Shi et al.l 2023a; |Sun et al., [2024} Bargatin et al., 2025; |Dong & Fu, 2024)), as
shown in Fig. However, we observe that concurrent multi-frame methods commonly fail to
exploit sufficient temporal cues because of the following: (1) Limited temporal receptive fields: Ex-
isting multi-frame settings typically segment the entire video into multiple groups with a fixed size,
e.g., three frames in MemFlow (Dong & Ful [2024) (Fig. [1| (A)), four frames in StreamFlow (Sun
et all 2024) (Fig. [T] (B)). This group-wise segmentation fails to capture long-range dependencies

*These authors contributed equally. Corresponding authors: Hao Cheng, Hesheng Wang.
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Figure 1: Comparison with previous multi-frame optical flow methods.

throughout the total video length. (2) Heavy computational overhead and memory usage: Vide-
oFlow (Shi et al., 2023a) inputs overlapping clips to estimate multiple flows. MemFlow (Dong &
Fu, [2024) utilizes many image inputs to strengthen the current estimation. Both approaches repeat
feature extraction and context encoder several times in different groups, impeding real-time appli-
cations. StreamFlow (Sun et al., 2024) suffers from high GPU memory usage, as shown in Fig. Q
This inefficiency further leads to poor scalability, allowing only a limited number of frame inputs.
(3) Lack of multi-stride temporal modeling: Prior methods typically focus on single-stride temporal
modeling with short-term motions. However, both long-range and short-term motions are crucial for
optical flow: long-range motions facilitate recognizing occlusions and out-of-boundary pixels across
frames (Shi et al.| |2023a), while short-term motions capture subtle variations in adjacent frames.

To address these problems, we propose
a novel multi-frame optical flow estima-
tion pipeline (ARFlow) using an auto-
regressive prediction paradigm in Fig. []
(C). Specifically, an Auto-regressive Flow
Initialization module (AFI) is developed
to retrieve multiple history flow estimates
from the memory bank and forecast the
next-frame initial flow based on the his-
tory ones. This process will introduce 0 :

an accurately initialized flow, which sig- T Hametengtn T
nificantly improves the performance and Figure 2: Previous group-wise multi-frame methods
also decreases the iteration numbers in suffer from a significant memory usage increase with
subsequent refinement modules, enabling longer frame length. In contrast, our method maintains
higher efficiency. After obtaining the ini- nearly constant GPU consumption.

tial flow, another Auto-regressive Multi-

stride Flow Refinement module (AMFR) is also designed by incorporating multi-granularity tem-
poral information from diverse intervals to combine both long-term and short-term motions. Unlike
previous multi-frame works that segment videos into multiple groups, we utilize the entire video
sequence as the network input, where sequential images are delivered frame by frame. When a new
frame is input, its features are extracted and correlated with previous history flows to predict the
current flow. This paradigm breaks the limitation of local receptive fields, possessing strong scal-
ability to arbitrary frame lengths with no memory usage increase in Fig. Please refer to the
supplementary videos for scalable optical flow estimation on arbitrary-length inputs.
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Overall, the main contributions of our method are as follows:

* We design a novel multi-frame optical flow estimation method, named ARFlow, based on
the auto-regressive paradigm. Through progressively forecasting the next-frame flow, our
method can be scalable to arbitrary-length videos.
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* An Auto-regressive Flow Initialization module (AFI) is developed to retrieve multiple his-
tory flows from memory banks and forecast the next-frame initial flow based on these
history estimates.

* An Auto-regressive Multi-stride Flow Refinement module (AMFR) is also designed to fur-
ther refine the initial flow by incorporating both long-term and short-term temporal cues.

» Extensive experiments on MPI-Sintel (Butler et al.,|2012), Spring (Mehl et al.,2023b), and
KITTI-2015 (Geiger et al., [2013)) datasets demonstrate the state-of-the-art performance of
our proposed ARFlow. Moreover, due to the accurately predicted initial flows, the num-
ber of iterations in the following refinement module is decreased, enabling lower memory
usage compared with prior multi-frame methods.

2 RELATED WORK

Pairwise Optical Flow Estimation. Traditional methods (Black & Anandan, [1993; Bruhn et al.,
2005; Horn & Schunck, |1981) typically formulate optical flow estimation as an optimization prob-
lem which maximizes the visual similarity between two frames. FlowNet (Dosovitskiy et al., [2015)
regresses the optical flow with Convolutional Neural Networks (CNNs) in an end-to-end manner.
PWC-Net (Sun et al., 2018b)) proposes a Pyramid, Warping, Cost volume method for coarse-to-fine
flow estimations. To address the problem of small fast-moving objects, RAFT (Teed & Deng| [2020)
designs a recurrent iteration module to improve estimation accuracy. Subsequent works (Ranjan &
Black, 2017; [Hui et al., 2018 |Yang & Ramanan, 2019} Hui et al., 2020; Jiang et al., 2021} Zhang
et al.| 2021} [Sun et al.| 2022} Jahedi et al., |2023; Wang et al.,|2024b) progressively refine model ar-
chitectures in a coarse-to-fine or iterative manner. Various transformer-based methods (Huang et al.}
2022; Shi et al., [2023b; [Xu et al., 2022} [Liu et al., [2023b; [Shan et al., [2021; |Sui et al., 2022} |[Luo!
et al., [2023) are then developed to enlarge the matching receptive field. Some methods |Liu et al.
(2022} 20234a) also incorporate scene flow estimation Jiang et al.| (2024); [Liu et al.| (2025d); Zhang
et al.| (2024); Liu et al.[(2025b)); Zhang et al.| (2025); |Liu et al.| (2024cib)); Feng et al.| (2024) by joint
optimization. Nevertheless, these two-frame optical flow methods fail to take intrinsic temporal cues
across frames into consideration.

Multi-Frame Optical Flow Estimation. The research for multi-frame flow estimation has gained
remarkable advances in recent years. RAFT (Teed & Deng, [2020) utilizes a “warm-start” strategy,
which initializes the current flow by warping previous flow estimates. Some self-supervised meth-
ods (Liu et al., 2019 Hur & Roth||[2021) are also proposed to retrieve temporal information by CNN
or LSTM. VideoFlow (Shi et al.,[2023a) calculates the bi-directional flows with a three-frame setting
and designs a motion propagation module to exchange information across different triplets. Splat-
Flow (Wang et al.|[2024a) introduces a differential splatting transformation to align motion features
from previous timestamps. StreamFlow (Sun et al.,[2024) proposes an in-batch estimation strategy,
simultaneously estimating all successive flows. More recently, memory mechanisms (Dong & Fu,
2024} Bargatin et al.| 2025) have been introduced to store previous flow-related features and further
improve the current estimation. However, these prior multi-frame methods can only process seg-
mented groups with limited sizes (3-5 frames), impeding sufficient temporal modeling. Also, they
suffer from heavy computational burdens and memory usage with increasing video lengths. In this
paper, our ARFlow resorts to the auto-regressive transformer by progressively forecasting the next
frame’s motion, which is scalable to arbitrary video lengths while keeping low memory usage.

Auto-regressive Video Generation. Recently, auto-regressive models benefiting from scaling laws
(Henighan et al.|[2020) have gained great success in the video generation field (Xie et al.|[2025} |Yin
et al.; 20255 Tang et al., [2024; [Zhou et al., [2025} |[Henschel et al., 2025; Zhai et al.l 2025; Huang
et al., [2025; [Liu et al., [2025a; \Deng et al., 2025a; Liu et al.l 2025¢; |Ge et al., [2026} | Xu et al.| [2024)).
PA-VDM Xie et al.| (2025) proposes a progressive noise-adding mechanism and denoises the frame
using small intervals. CausVID |Yin et al.|(2025) adapts a pre-trained bidirectional transformer and
designs a distribution matching distillation technique to reduce latency. Self Forcing [Huang et al.
(2025) presents the auto-regressive rollout with key-value (KV) caching during training. Recent
studies have also emphasized temporal structure and long-horizon dependencies for dynamic-scene
understanding (Liu et al.,[2025f;[2024d;|2023d};|Cheng et al.,2023bjal), motivating an auto-regressive
formulation for optical flow. Inspired by the great success in these auto-regressive video generation
works, we, for the first time, introduce the auto-regressive paradigm into optical flow estimation.



Published as a conference paper at ICLR 2026

Memory Bank Auto-regressive Flow Initialization -
> Trans® Trans® Trans® |tl l|t+l
—- Temporal Transformer Forecast »
(stride = 1) [ = 'ﬂ GRU Iteration
Ft»5,t-4
L ’;,l+1
z 5 5 - A fk

Fears Auto-regressive Multi-stride Flow Refinement Pl

5@ [Trans® k4

an:-______ ___,/Temporal Transformerg:) [
(stride =2)
Fest @
27 e te Multi-stride
& Temporal Forecast » U]
Weightin
Frzel Y N Transformer [—— — i
S X — Gride =9 @141 G‘
" Memory Update 13 F
F & ! tt+1
t-1t
Figure 3: The overall architecture of our proposed ARFlow.
3 METHOD

3.1 OVERALL ARCHITECTURE

As in Fig. |I| (C), the input of our network is a video sequence Iy, I, ..., I 1, I, where I; €
H xW %2 indicates the image at the timestamp ¢. H, W are the height and width of the input images.
The outputs are corresponding sequential optical flows I o, I 3, ..., F,_1 1, between consecutive
image pairs, where F; ;1 indicates the optical flow from I; to I;4 .

In our auto-regressive setting, sequential images are delivered into the network frame by frame.
When a new frame I, is inputted into Fig. EI, a forecasted flow initialization f; 44 is first generated
based on previously predicted 7" frames’ history flows stored in the memory bank in Section [3.2}
Then, above initial flow f; ;1 is iteratively refined by incorporating intermediate context and motion
features from I; to I;; and multi-stride forecasted flows in Section @ The output refined flow
is finally used to update the memory bank and forecast the following flow fiy1 .49 in an auto-
regressive manner. The network is supervised by the loss functions defined in Section

3.2 AUTO-REGRESSIVE FLOW INITIALIZATION

Motivated by prior works from Xu et al.| (2023a), long-range temporal dependencies are crucial for
optical flow estimation, where potential challenges such as occlusions can be alleviated utilizing
multi-frame temporal cues. In addition, optical flows for dynamic objects tend to be consistent
across frames. Therefore, we use history flow estimates from a designed memory bank to forecast
an extrapolated flow in the next frame for enhanced flow initialization.

Memory Bank. When a new pair of images (I; and I; ;) is delivered to the network as in Fig.
[l our method first forecasts the intermediate initial flow based on historically predicted flows. To
effectively store multiple history flows, we design a memory bank with a fixed length 7', which
stores the nearest T' frames’ predicted flows {F} ;1 ﬁ;tl_T. When the number of predicted flows
is less than 7', the first several frames’ flows are directly stored in the memory bank as memory
initialization. The memory bank is maintained by a sliding window mechanism: When a new flow
is predicted, it is stored in the memory bank, and the temporally-farthest one is discarded. To

guarantee efficiency, our stored flows are at the 1/16 resolution of the original image size.

Auto-regressive Next-Frame Forecasting. For the intermediate optical flow estimation, we predict
the next-frame flow based on previously stored flows as:

{FeatM}=) = Trans™ ({Fia Y2l 7)) frsr = o(FeatV)), (1)

where Trans") is a transformer encoder for temporal modeling on all input frames, ¢(-) is a
lightweight Conv2d projection, and f:;,; denotes the initial flow predicted from the last token
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Featﬁl_)l. Since this initial flow predicted from multiple history flows possesses the long-range
temporal cues, it can provide an enhanced flow initialization.

3.3 AUTO-REGRESSIVE MULTI-STRIDE FLOW REFINEMENT

After getting the initial flow f; ;1 1, we further leverage GRU-based iterations based on current obser-
vations and multi-stride history weighting to refine f; :11. Notably, both refinements are conducted
at the 1/16 of original resolution for fast inference.

GRU-based Iterative Refinement. We first leverage a GRU-based refinement to incorporate the
information derived from current input images I;, [;11. Specifically, the feature maps Ey, E; 4 of
current image pairs are first extracted by ResNet16 (He et al., 2016). Then, we obtain the interme-
diate context feature from the current images as:

¢, h? = ContextNetwork(I;, I; 1), f° = FlowHead(h°), 2)

where ContextNetwork follows the setting in (Bargatin et al., 2025). c and h° respectively indicate
the context feature and the initial hidden state in GRU. fV is the predicted intermediate flow. If there
are no stored history flows (the first image pairs), we use f° as the input of GRU. Otherwise, we use
the temporally forecasted flow f; ;11 as the input flow in GRU as:

0
0 1o, whent=0;
= 3
Jren {ft7t+1, otherwise , 3)

where fé),t 41 1is the input initial flow of the GRU module. Also, we associate two frames
to obtain a correlation feature map V(u,v) =< Fy(u),Ey1(v) >, where < - - > de-
notes the dot product. wu,v denote the u-th and v-th element respectively in E; and FEyy.
For the k-th iteration, the correlation values are retrieved by the look-up operation from V
based on updated flow as: V¥ = LookUp(V, ff;)), where ff; )} is the intermediate out-

put flow from the (k-1)-th iteration. Then, the intermediate motion feature M* is generated
by M* = MotionEncoder(MLP(V*), MLP( ftlf; ~'1)). Finally, the hidden state is iteratively up-

dated by combining context feature ¢, motion feature M/*, and the previous hidden state h* =
GRU(c, M*, hk=1). Afterwards, the intermediate residual flows are obtained from the updated hid-
den state A ft’ft 11 = FlowHead(h¥). The output flow after the k-th iteration is generated by per-
point adding between the intermediate residual flow and initial flow as:

ftlft+1 = ft]?t_-ﬁ}l + Aft]ft+1~ “4)

We repeat the above process for K times to generate the final refined flow ft{(t 4 after GRU.

Multi-stride Temporal Weighting Refinement. The above GRU-based iterations only incorporate
the context and motion features from the current timestamp, without consideration of multi-stride
history flows or motions. This leads to poor adaptation to various motion variations. To address the
problem, we continually refine f£ 1 with multi-stride temporal forecasting.

Because the low-frequency and high-frequency information displays with unpredictable patterns
along the entire video length, the single-stride temporal modeling in Section is not effec-
tive enough to capture long-range motion variations. To enlarge the temporal receptive field and
strengthen the adaptation ability to diverse motion variations, we also generate forecasted flows by
the multi-stride temporal modeling in a cascaded manner. Specifically, we further sample frames
with strides of 2 and 4 as:

{Featz(‘z)}ie{tfl,tf&...} = Trans® <{Featz(‘1)}i€{t71,t73,...}) ) ft(2t)+1 = ¢(Feat§2_)1) ©)

{Featz@)}ie{tfl,tf&...} = Trans'®) ({Featz@)}ie{tfl,tf&...}) ) ft(i)ﬂ = ¢(Feat§§)1) (6)

{Feat(().bie(1,5,4) = Trans'/) (Feat (", Feat|”, Feat(", ), fue = o(Feat(y), (1)

where Trans'® and Trans® perform temporal modeling with stride 2 and stride 4, and Trans')

aggregates multi-stride features. Both ff(zf)Jrl and ft(fﬂrl are used as auxiliary supervision in the
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Table 1: Benchmark results on MPI-Sintel and KITTI-15. We report endpoint-error (EPE) on
Sintel (Butler et al.| 2012)) and F1 on KITTI-15 (Geiger et al., 2013).

N Sintel Clean Sintel Final KITTI-15
Method Reference
Mat.| Unm.] All| Mat.| Unm.] All| All] Non-Occ|
FlowNet2 (Ilg et al.|[2017b) CVPR’17 1.56 2540 4.16 275 30.11 5.74 10.41 6.94
PWC-Net (Sun et al.[[2018b) CVPR’18 145 2347 386 244 27.08 5.04 9.60 6.12
RAFT (Teed & Deng![2020) ECCV’20 0.62 9.65 1.61 141 14.68 286 5.10 3.07
GMFlow (Xu et al.|[2022) CVPR’22 065 1056 1.74 1.32 1580 290 9.32 3.80
FlowFormer (Huang et al.|[2022) CVPR’22 042 7.6 1.16 096 1130 2.09 4.68 2.69
GMFlow+ (Xu et al.[[2023b) TPAMI'23 034 6.68 1.03 1.10 12.74 237 449 2.40
o Flowformer++ (Shi et al.|/[2023b) CVPR’23 039 6.64 1.07 088 10.63 1.94 4.52 -
'z AnyFlow (Jung et al.[[2023) CVPR’23 042 7.68 121 1.12 1337 244 44l 2.69
-5 CroCoFlow (Weinzaepfel et al.][2023) ICCV’23 039 6.85 1.09 1.21 1242 244 3.64 2.40
A~ DDVM (Saxena et al.|[2023) NeurIPS’23 0.83 926 1.75 1.28 12.20 248 3.26 2.24
FlowDiffuser (Luo et al.[[2024) CVPR’24 038 623 1.02 097 10.67 2.03 4.17 2.82
SEA-RAFT(L) (Wang et al.|[2024b) ECCV’24 044 840 131 120 14.06 2.60 4.30 -
SAMFlow (Zhou et al.|[2024) AAAT’24 038 597 1.00 1.04 10.60 2.08 4.49 -
DPFlow (Morimitsu et al.||2025) CVPR’25 039 636 1.04 091 10.69 197 3.56 2.12
CEDFlow++ (Zuo et al.[[2025) ICV’25 - - 1.37 - - 240 4.78 -
WAFT (Wang & Deng|[2025) Arxiv’25 - - 1.09 - - 2.34 3.42 2.04
MFCFlow (Chen et al.[[2023) WACV’23 0.65 834 149 133 12.81 2.58 5.00 -
E TransFlow (Lu et al.[[2023) CVPR’23 036 6.77 1.06 099 1096 2.08 4.32 -
s SplatFlow (Wang et al.[[2024a) ICv24 051 6.06 1.12 1.06 1029 2.07 4.61 2.96
:;: StreamFlow (Sun et al.|[2024) NeurIPS’24 038 642 1.04 0.82 1044 1.87 4.24 2.45
'S5 MemFlow (Dong & Ful[2024) CVPR’24 043 6.09 1.05 093 993 191 4.10 2.56
= MEMFOF (Bargatin et al.||2025) ICCV’25 040 559 096 088 1030 191 294 1.97
ARFlow (Ours) — 039 564 096 081 9.79 1.78 2.85 1.91

loss function to stabilize training and guide the learning of Trans® and Trans®. From the final

token of Trans'/), we additionally predict a learnable weighting parameter wy ;11 = ¢ (Featf(fs)e).
Finally, we re-weight the output from the GRU refinement by incorporating multi-stride forecasted
flows by:

Fyip1 = wt,t+1ft{<t+1 + (1 — we 1) fruse- (8)

The weighted optical flow estimation F} ;1 is the final output, which is also leveraged to update
the memory bank to forecast the next frame pairs. The final flow estimation F} ;1 are convexly
upsampled to the input resolution as in RAFT (Teed & Deng, |2020).

3.4 Loss FUNCTIONS

Following SEA-RAFT (Wang et al.,|2024b), we utilize a mixture-of-Laplace (MoL) loss and apply
RAFT-style deep supervision across iterations. Given 7" frames and K refinement steps, the training

loss is
K
> A L ©)

t=1 k=0

E:

Nl

where Eﬁ,ﬁL denotes the MoL loss for frame ¢ at refinement k. Following (Bargatin et al., 2025)), we
set v = 0.85 to emphasize later refinements. Parameterization and mixture details are provided in
the supplementary. In addition to K refined flows ft’ft 11> we also apply the same MoL objective to

all intermediate flows, including f: 11, ft(i)Jrl, ft(é)Jrl, fruse> and Fy 1y 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Evaluation Datasets and Metrics. We evaluate on three standard optical-flow benchmarks:
Spring (Mehl et al.l 2023b) (modern high-resolution video), MPI-Sintel (Butler et al., 2012) (syn-
thetic scenes with complex motion), and KITTI-2015 (Menze & Geiger, [2015) (autonomous driv-
ing). We report endpoint error (EPE), 1-pixel error rate (1px), Fl (KITTI-15), and WAUC as com-
parison metrics. The detailed definitions are described in the appendix.
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Figure 4: Qualitative comparison on Sintel test set. Compared with previous methods, our ARFlow
can predict sharper motion boundaries as highlighted in the circle. Please zoom in for details.
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Figure 5: Qualitative comparison on KITTI test set. Compared with previous methods, our ARFlow
can distinguish occluded areas as highlighted in the circle. Please zoom in for details.

Network Architectures. For image feature extraction, we use a ResNet—FPN backbone He et al.
(2016) (ResNet-34, dim= 512) shared by the context network (cnet) and feature network (fnet).
cnet takes concatenated RGB frames to produce 1/16-resolution features and the initial hidden
state, while fnet extracts per-frame features for subsequent feature matching. On top of these en-
coders, we adopt a standard RAFT/GMA-style backbone (Jiang et al., |2021) with a 4-stage cor-
relation pyramid (radius=4), a GMAUpdateBlock (num_blocks= 2, iters= 6 at 1/16 resolution),
and a learned convex upsampler for GRU-based Iterative Refinement. For the Temporal Trans-
former, we first encode the optical flow and its uncertainty at each time step using 2D convolutions,
transforming the input (B, T, 6, H, W) into features (B, T, C, H,W). We then rearrange them as:
(B, T,C,H,W) — (BHW,T, (), and apply standard multi-head self-attention along the temporal
dimension. Moreover, we adopt multi-scale hierarchical Temporal Transformers (downsampled by
the strides=1, 2, 4 over time) and fuse these sequences with another Temporal Transformer in the
Auto-regressive Multi-Stride Flow Refinement module.

Pretraining and Fine-Tuning for Benchmark Submissions. We first pretrain on TartanAir (Wang
et al.| [2020) for 225k steps with a crop size of 480 x 960, batch size of 64, and a learning rate of
1.4 x 10~%, which requires about 13.1 GB of GPU memory. This model is then used to initialize
training on FlyingThings3D (Mayer et al., 2016) for 120k steps with a larger crop size of 864 X
1920, batch size 32, and learning rate 7 x 10> (18.5 GB). Next, we extend the training to the
combined T+S+K+H (FlyingThings (Mayer et al.,|2016), Sintel (train) (Butler et al., 2012}, KITTI-
15 (train) (Geiger et al., 2013), and HD1K (Kondermann et al.| [2016)) set for 225k steps under the
same settings.

For benchmark-specific adaptation, we perform lightweight fine-tuning. On Sintel, we train 12.5k
steps with 872 x 1920 crops, batch size 8, and learning rate 3 x 10~5, requiring 23.8 GB of memory.
On KITTI-15, we fine-tune 2.5k steps at 750 x 1920, batch size 32, and learning rate 3 x 1073,
requiring 20.8 GB of memory. On Spring (Mehl et al.|[2023b)), we run 60k steps with full-resolution
1080 x 1920 crops, batch size 8, and learning rate 4.8 x 1072, requiring 29.4 GB of memory. We
adopt MEMFOF (Bargatin et al.l 2025)) as the network architecture. By default, the temporal length
of the memory bank is 7' = 6, and the GRU refinement performs K = 6 iterations. The detailed
network implementation is provided in the supplementary code.

Settings for Zero-Shot Evaluation. For zero-shot evaluation, following MemFlow (Dong & Fu,
2024), we first pre-train the networks in the 2-frame setting on FlyingChairs (60k iterations) and
FlyingThings3D (150k iterations). We then enable temporal modeling and continue training on
FlyingThings3D for an additional 120k iterations.

4.2 BENCHMARK RESULTS

Benchmark Results on Sintel and KITTI-15. Table |l] reports results on the two widely-used
benchmarks. ARFlow ranks first on the official KITTI-15 benchmark (Geiger et al., 2013)), achiev-
ing the lowest errors on both All pixels (2.85 vs. 2.94 of MEMFOF and 4.10 of MemFlow) and
Non-Occ pixels (1.91 vs. 1.97 of MEMFOF and 2.56 of MemFlow). On Sintel (Butler et al., 2012),
ARFlow achieves state-of-the-art performance on the Final pass (1.78 vs. 1.87 of StreamFlow and
1.91 of MEMFOF) and ties the best on Clean (0.96). These results highlight the advantage of
our auto-regressive framework: (AFI) provides reliable initialization values from historical esti-
mates, while (AMFR) integrates both short- and long-term temporal cues, enabling more accurate
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Table 2: Benchmark results on Spring. Runtime and maximum GPU memory usage were evalu-

ated using an NVIDIA RTX 3090 GPU. Best results are respectively highlighted as first , second .
OOM indicates out of memory. * indicates scene flow methods.

Inference Cost (1080p) Spring (test)
Method #Frames
Memory, GB Runtime, ms 1px] EPE| Fl| WAUC*Y
Flow1D (Xu et al.| 2 1.34 405 - - - -
MeFlow ( . 2 1.32 1028 - - - -
PWC-Net L. 2 141 76 82.265 2.288 4.889 45.670
FlowNet2 2 4.16 167 6.710 1.040 2.823 90.907
RAFT (Teed & Deng! 2020 2 7.97 557 6.790 1.476 3.198 90.920
RAFT3D 3 2 - - 13.962 2.528 6.889 81.267
GMA (Jiang et al.| 2 13.26 1185 7.074 0914 3.079 90.722
m GMFlow (Xu et al. 2 - 151 10.355 0.945 2.952 82.337
% FlowFormer (Huang et al.|[2022 2 OOM - 6.510 0.723 2.384 91.679
& RPKNet (Morimitsu et al.|[2024 2 8.49 295 4.809 0.657 1.756 92.638
% Win-Win (Leroy et al.[[2024) 2 - - 5.371 0475 1.621 92.720
T MS- RAFT+ Ja.hed1 et al. 2024 2 - - 5724 0.643 2.189 92.888
o 2 14.34 755 4.584 0.453 1.505 93.389
Z 3 - - 20.374 2.948 8.791 76.550
F ( 3 17.74 1648 - - - -
VldeOFlOW MOF (Shi et al |2023a} 5 OOM - - - - -
MemFlow (Dong & Ful[2024 3 8.08 885 5.759 0.627 2.114 92.253
StreamFlov(jﬂlﬁ 4 18.97 929 5215 0.606 1.856 93.253
MEMFOF (Bargatin et al.[[2025) 3 2.09 472 3.600 0.432 1.353 94.481
ARFlow (Ours) 8 2.10 403 3.587 0.428 1.313 94.501
CrocoFlow (Weinzaepfel et al.|[2023 2 2.01 6524 4.565 0.498 1.508 93.660
m SEA- RAFT%W%WJ 2 8.15 205 3.904 0.377 1.389 94.182
% SEA-RAFT (M) Wang et al. 024b} 2 8.19 286 3.686 0.363 1.347 94.534
£ MemFlow ( 2024 3 8.08 885 4482 0471 1416 93.855
m StreamFlow (Sun et al. 4 18.97 929 4.152 0.467 1.424 94.404
E DPFlow (Morimitsu et al.[[2025) 2 10.39 990 3442 0.340 1.280 94.663
MEMFOF (Bargatin et al.{[2025) 3 2.09 472 3.289 0.355 1.238 95.186
ARFlow (Ours) 8 2.10 403 3.265 0.353 1.212 95.283
MemFlow StreamFlow Ours

Reference Frame @ Flow j

0.03125 0.0625 0125 025 05 1 2 4

Error color code
Figure 6: Qualitative comparison on Spring test set. Compared with previous multi-frame methods
MemFlow (Dong & Ful, 2024)), StreamFlow 2024), our ARFlow has more accurate flow
estimations and lower errors as highlighted in the circle. Please zoom in for details.

and robust predictions. We also visualize the qualitative flow predictions as in Fig. @] and Fig. [3
respectively. Our ARFlow performs better in terms of sharp boundaries and occluded areas.

Benchmark Results on Spring. Table [2]shows the results on Spring. With full-resolution training
(1080p), ARFlow achieves the state-of-the-art performance across all four metrics (1px, EPE, Fl,
WAUC), while being highly efficient in both memory (2.1 GB) and runtime. This efficiency stems
from avoiding redundant feature extraction and progressively forecasting frame by frame, making
ARFlow the only method that combines SOTA accuracy with scalability to long sequences. We also
visualize the predicted flow and its corresponding error maps in Fig.

8
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Table 3:  Zero-shot Generalization. Table 4: Compatibility evaluation on various base-
ARFlow achieves the best cross-dataset lines. Consistent with (Wang et al.|[2024b}[Sun et al.}

generalization on KITTI-15 (train). 2022 Morimitsu et al., [2025]), all models are trained
on the combined Clean+Final (C+T) split and eval-

Method Sintel KITTE13 uated on the Sintel and KITTI-2015 training sets for
Clean| Final{ FIEPE| Flalll 3 fair comparison. “PG.” indicates the performance

PWC-Net (Sun et al./[2018b) 2.55 3.93 10.40 33.7 gain over the baseline.

FlowNet2 (Ilg et al.}[2017a} 2.02 3.14 10.10 304

RAFT (Teed & Deng!2020) 143 2.71 5.04 17.4 Sintel (train) KITTI-2015 (train)

SKFlow (Sun et al.|2022) 122 246 427 155 Method

GMFlowNet (Zhao et al.|[2022} L14 271 424 154 Clean | Final | PG. EPE|Fl-all{ PG.

FlowFormer (Huang et al.||2022) 1.01 240 4.09 14.7 SEA-RAFT(L) (Wang et al.||2024b) 1.19 4.11 - 3.62 129 -

SEA-RAFT(L) (Wang et al.|2024b} 1.19 4.11 3.62 12.9 ARFlow-S 112 372 95% 1 332 114 11.6% 1

AnyFlow ffung et al 2023} 110 252376 124 pppiow (Morimitsuetal [2025) 102 226 - 337 111 -

FlowDiffuser (Luo et al.!|[2024) 0.86 2.19 3.61 11.8 ARFlow-D 097 214 53%1 3.08 103 7.2% 1

DPFlow (Morimitsu et al.|[2025) 1.02 226 3.37 11.1

FlowSeek (Poggi & Tosi2025) 103 218 331 112 FlowSeek (Poggi & Tosi{2025) 103 218 - 331 112 -

WAFT {Wasg & Denglp03) 1o BN 310 10 ARFlow-F 095 207 50%71 3.05 101 9.8%1

MEMEFOF (Bargatin et al.|[2025) 1.20 3.91 2.93 9.9 WAFT (Wang & Deng|[2025) 1.00 2.15 - 3.10 103 -

ARFlow (Ours) 088 207 286 92 ARFlow-W 091 201 65%1 293 94 87%1

4.3 ZERO-SHOT GENERALIZATION

Following common practice from Teed & Deng| (2020); Huang et al.|(2022); Dong & Ful(2024), we
pretrain our model on the FlyingChairs (Dosovitskiy et al.,|2015) and FlyingThings3D (Mayer et al.,
2016) datasets, and then directly assess its performance on the training splits of Sintel (Butler et al.,
2012) and KITTI-15 (Geiger et al., 2013)).Table E] summarizes cross-dataset generalization perfor-
mance. ARFlow achieves strong transfer performance across Sintel (train) and KITTI-15 (train),
consistently outperforming recent baselines. These results demonstrate that our auto-regressive de-
sign not only improves benchmark accuracy but also yields robust generalization to unseen datasets.

4.4 COMPATIBILITY EVALUATION ON OTHER BASELINES

As shown in Table 4, ARFlow consistently improves different baselines across Sintel and KITTI-
2015. For example, it yields 9.5% and 11.6% gains when integrated with SEA-RAFT, and also
achieves 5-10% relative improvements when combined with the SOTA methods DPFlow, FlowSeek,
and WAFT. These results indicate that our auto-regressive initialization and multi-stride refinement
provide complementary temporal cues, serving as a general plug-in that enhances both transformer-
and pyramid-based architectures.

4.5 ABLATION STUDY

Effectiveness of AFI and AMFR. Table [5] (#1) evaluates the influence of the proposed com-
ponents. Removing the Auto-regressive Flow Initialization (AFI) increases errors notably, e.g.,
Sintel (Clean/Final) from 0.88/2.07 to 0.95/2.15, and KITTI-2015 EPE rises from 2.86 to 3.05.
Similarly, discarding the Auto- Table 5: Ablation study. Settings used as default are under-
regressive Multi-stride Flow Re- lined. All models are trained on C+T for fair comparison.

finement (AMFR) degrades perfor- Method Sintel (train) KITTI-2015 (train)
mance (Sintel 0.91/2.13, KITTI- Clean Final| EPE| Fl-all]
2015 EPE 300) These results con- #1: ARFlow (AFE.) approaches

AF-w/o AFI 0.95 2.15 3.05 10.11
firm that both AFT and AMFR are AF-wio AMFR 0.91 213 3.00 9.73
indispensable for accurate and ro- AR, 0.88 2.07 2.86 9.21
bust estimation. #2: AMFR Strategy

Single Stride 1 0.89 2.10 2.89 9.52
Stride Design in AMFR. As Single Stride 2 0.90 2.12 2.93 9.55
h in Tabl # . 1 Single Stride 4 0.91 2.12 3.00 9.68
shown inlable Bl (#2), using only Stride 1 +2+4 0.88 207 2.86 9.21
a single stride (1, 2, or 4) y1e1.d5 #3: Temporal Length T
weaker performance. = Combin- 4 091 2.11 2.96 9.43
ing multi-stride settings achieves 5 0-90 209 292 o4l

g Hing 6 0.88 2.07 2.86 9.21

the lowest errors (Sintel 0.88/2.07, 7 0.88 2.08 2.88 9.19

8 0.89 2.06 2.86 9.17

KITTI-2015 EPE 2.86) compared
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to any of the single stride settings, demonstrating the benefit of capturing both short- and long-term
motions.

Temporal Length. Table [5] (#3) investigates the impact of varying the memory length 7. We
observe consistent gains when extending from 4 to 6 frames, with the best results at 7' = 6 (KITTI-
2015 EPE 2.86, Sintel 0.88/2.07). Further increasing frames shows a marginal change, suggesting a
trade-off between accuracy and efficiency.

4.6 DISCUSSION

Attention Weights in Temporal Modeling Transformer. We also visualize the attention weights in
our designed auto-regressive transformer module in Fig. [/l We observe that our transformer mainly
focuses on dynamic objects and motion boundaries, which can provide an accurate motion prior
for the next-frame flow forecasting. This ensures a stable and robust flow initialization, resulting in
excellent performance of our ARFlow.

Comparison of Long-term Future Prediction

0.50 1 —e— LPIPS (MemFlow)
~m- LPIPS (Ours)
0.45 —o— SSIM (MemFlow) 05
0.40 4 SSIM (Ours)
0.25
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Figure 7: Visualization of attention weights in  Figure 8: Quantitative comparison of long-term
our temporal modeling transformer. future prediction by optical flow.
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Downstream Task: Video Prediction. We evaluate ARFlow against MemFlow under different
prediction horizons using LPIPS (lower is better) (Zhang et all, [2018) and SSIM (higher is bet-
ter) (Wang et al., 2004). As in Fig. [8] when the prediction horizon increases, MemFlow exhibits a
rapid degradation in performance, while ARFlow demonstrates a much slower decline, highlighting
its stronger temporal modeling and autoregressive prediction capability. Unlike MemFlow, which
requires an additional prediction head, ARFlow naturally predicts the next-frame optical flow, lead-
ing to more stable and consistent performance over longer horizons. Additional implementation
details are provided in the supplementary material.

5 CONCLUSION

In this paper, we propose a novel multi-frame optical flow estimation pipeline based on auto-
regressive transformer models. We formulate the task with the progressive flow estimation frame by
frame and introduce an auto-regressive next-frame forecasting strategy to provide accurate and ro-
bust initial flow. Then, a refinement module combining both current motion features and multi-stride
history forecasting flows is leveraged to generate fine-grained flow estimates and refine the initial
predictions. Extensive experiments on standard benchmarks demonstrate that our method achieves
state-of-the-art accuracy while maintaining competitive efficiency.

10
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APPENDIX

A OVERVIEW

The supplementary materials are structured as follows:

* We give more detailed illustrations about the metrics, loss functions, settings in video pre-
diction, and clip-wise training strategy in Section

* More experimental results are provided in Section[C]

* Qualitative results on KITTI, Waymo, and NuScenes are presented in Section@];

* Screenshots for benchmark results on KITTI, Sintel, and Spring are shown in Section

» Section[Hdiscloses the limited and strictly assistive usage of a large language model (LLM)
during manuscript polishing.

* A video demo of both synthetic and real-world driving scenes is appended to the supple-
mentary materials, and the detailed network implementation is also provided in the supple-
mentary code.

B IMPLEMENTATION DETAILS

B.1 DEFINITION OF METRICS

We provide more formal definitions of metrics used in the main text.

- EPE is the average per-pixel Euclidean distance between the predicted flow and the reference flow
over all valid pixels.

- The 1px rate is the fraction of valid pixels whose flow error exceeds one pixel.

- The Fl score (KITTI-2015) is the percentage of pixels whose error is larger than three pixels and
also greater than five percent of the ground-truth magnitude.

- WAUC summarizes performance by integrating the inlier rate over error thresholds from zero to five
pixels, with larger weights near zero; a precise definition appears in the supplementary material. For
optical flow, the weighted area under the inlier-rate curve (WAUC), introduced with VIPER (Richter
et al.,[2017), aggregates the inlier percentage over error thresholds.

Let f(7) €0, 100] denote the percentage of pixels whose endpoint error is at most 7 pixels. With a
weight that emphasizes small thresholds, the metric is

5—

- T dr, (10)

2 5
WAUC = - / f()
5 Jo
yielding a score between 0 (worst) and 100 (best).

B.2 MIXTURE-OF-LAPLACE LOSS

Following SEA-RAFT, we use a two-component Laplace mixture for each scalar flow coordinate.
Given target y and predicted mean u, mixture weight o € (0,1), and log-scale 3 € R, the per-
coordinate negative log-likelihood is

«

Cly -« ly —ul
‘emixlap(y;avﬂnu’) :_10g|:26 ly=l + W exp<_ B . (11)

For a single optical-flow prediction, the image-level loss sums over spatial locations and the two
flow coordinates:

H W
1
Lyvor, = SHW E E E fmixlap(y;(:lzu; Oéh,w>ﬁh,w7/lgjzu)- (12)
h=1w=1de{z,y}

All parameters («, 3, i) are predicted per pixel.
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B.3 SETTINGS FOR VIDEO PREDICTION.

For a fair comparison, we follow MemFlow (Dong & Ful [2024): given the last frame I, we first
predict the forward flow f; ;11 and a monocular depth map using DPT (Ranftl et al.,[2021). We then
render a candidate next frame by forward-warping I, with Softmax Splatting (Niklaus & Liu, |2020),
which yields a splatted image and a disocclusion mask identifying unsupported pixels. Finally, we
complete those regions via ZITS inpainting (Dong et al., [2022), producing the synthesized frame

Lita.

B.4 CLIP-WISE TRAINING STRATEGY.

Compared to prior mainstream methods, the biggest difference is that our ARFlow keeps the orig-
inal temporal sequence during the training process. However, most of the previous multi-frame
methods, such as MemFlow Dong & Ful (2024) and StreamFlow Sun et al.| (2024), interrupt the
original temporal sequence by the random training batch shuffle. To be specific, previous methods
like MemFlow use the standard batch-wise training strategy, where timestamps among consecutive
input batches are not continuous. Thus, their temporal modeling remains constrained to these seg-
ments, like 3 frames within one batch, rather than truly covering arbitrary-length sequences because
of the shuffled timestamps. This train—test inconsistency cannot reasonably be regarded as effec-
tive temporal modeling for long-sequence videos. Furthermore, if the temporal range in one batch
is increased, they would suffer from infeasible computational burdens as in Figure 2 of the main
manuscript.

In contrast, we treat the whole sequential video clip as input and use a clip-wise training method
inspired by MOTR |Zeng et al.| (2022)), rather than the batch-based one. In this case, our memory
and supervision can model the temporal information for the whole sequence by sliding along all the
frames. Therefore, our temporal receptive field can be viewed as the whole-sequence awareness for
each video.

C ADDITIONAL EXPERIMENTS

We also supplement more ablation studies and prediction results here.

Temporal Flow Memory Resolution. We ablate the resolution at which cached flows are stored,
comparing 1x, 1/4x, and 1/16x. All models are trained on C+T for fair comparison. As shown in
Table[6] storing flows at 1/16x maintains accuracy on Sintel and KITTI while substantially reducing
memory. We therefore adopt 1/16x as the default setting in all experiments.

Number of Iterative Refinements (K). Following MEMFOF [Bargatin et al.| (2025)), we vary the
number of GRU refinement iterations K € {4, 5, 6, 7, 8} while keeping training on C+T for fairness.
As reported in Table [6] (#2), increasing K from 4 to 6 consistently improves Sintel and KITTI
metrics. However, increasing to K =7 or K=8 yields mixed yet marginal changes (some metrics
slightly improve while others slightly degrade), with overall gains being negligible relative to K'=6
and accompanied by higher computation and memory costs. For a balance between speed and
accuracy, we choose to perform 6 iterative refinements. For reference, MEMFOF reports using
K =8 in their final configuration; since our pipeline builds on MEMFOF as the baseline but benefits
from stronger autoregressive initialization and multi-stride forecast fusion, fewer refinement steps
suffice in practice.

Pre-trained Temporal Transformer. We replace our Temporal Transformer from our original net-
work with two recent pre-trained Transformer backbones: WAN2.2 (5B) Wan et al.| (2025) and
Longcat-video (14B) [Team et al| (2025). As reported in Table [6] (#3), adding recent pre-trained
transformers cannot bring additional performance gains, and our designed temporal transformer al-
ready has effective temporal modeling ability.

Sub-sequence Results on Spring Dataset. All the 11 sub-class 1px values on Spring benchmark
are listed in Table , where our ARFlow surpasses all recent state-of-the-art methods on most
metrics, which demonstrates the excellent performance of our proposed method.

Optical Flow Prediction. We also evaluate the performance in flow prediction in Table [§| Com-
pared to previous methods, ARFlow also achieves the best accuracy in the flow prediction task,
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Figure 9: Qualitative results of MemFlow, DPFlow, and our method on the KITTI benchmark with
occlusions. Sourced from official leaderboard submissions.

outperforming the recent method MemFlow-P by 10.2%, 13.9%, and 17.8%, respectively, on three
datasets. We attribute this great prediction performance to our auto-regressive paradigm, which nat-
urally captures long-range temporal cues and facilitates the flow extrapolation in a frame-by-frame
auto-regression manner.

Table 6: Additional Ablation study. Settings used as default are underlined. All models are trained
on C+T for fair comparison.

Method Sintel (train) KITTI-2015 (train)
Clean] Final| EPE| Fl-all]
#1: Temporal Flow Memory Resolution
1 0.90 2.06 2.87 9.27
1/4 0.89 2.09 2.85 9.31
1/16 0.88 2.07 2.86 9.21
#2: The number of iterative refinements (K).
4 0.90 2.11 2.98 9.89
5 0.88 2.10 2.87 9.35
6 0.88 2.07 2.86 9.21
7 0.88 2.08 2.87 9.20
8 0.89 2.09 2.85 9.23
#3: Pre-trained Transformer
WAN2.2 (5B)|Wan et al.|(2025) 0.90 2.08 2.88 9.56
Longcat-video (14B)|Team et al.|(2025) 0.91 2.07 2.89 9.43
w/o pre-trained Transformers 0.88 2.07 2.86 9.21

D  QUALITATIVE RESULTS ON KITTI, WAYMO AND NUSCENES

We provide additional qualitative comparisons on KITTI, Waymo, and NuScenes datasets.

Visualizations on Occlusions. On KITTI test sequences, our ARFlow produces sharper motion
boundaries and better handles occluded regions compared with recent multi-frame methods, as high-
lighted in Fig.[0] Competing approaches often exhibit artifacts such as blurry edges or incorrect
motion in challenging occlusion areas, whereas our autoregressive initialization and multi-stride
refinement enable more accurate predictions.

Influence of Different Temporal Lengths. We prove the effectiveness of larger temporal recep-
tive fields by comparing estimation differences on occlusions in Fig.[I0] Shortening the temporal
modeling length (T' = 4) leads to much worse estimation accuracy on the occluded signal.

More Visualizations on Spring. We supplement another visualization sample in Fig.[TT} From the
figure, our estimated flows in the dynamic eyes are more accurate compared to prior methods like
MemFlow and StreamFlow.
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Table 7: Sub-sequence Benchmark results on Spring. The 1px metrics for 11 categories are listed.
Best results are respectively highlighted as first , second .

Method 1px in Each Category
low-det. high-det. matched unmat. rigid non-rig. notsky sky s0-10 s10-40 s40+
PWC-Net (Sun et al.|[2018b) 82.268 81.747 82.069 90.400 82.817 78.090 81.575 92.761 81.402 82.189 89.693
o FlowNet2 (Ilg et al.[2017b) 6.346  64.061 5.691 48.892 3.711 29.404 6.039 16.908 1.862 5.816 49.693
Z RAFT (Teed & Deng[[2020) 6.426  64.087 5999 39481 4.107 27.088 5.250 30.183 3.134 5.301 41.403
E GMA (Jiang et al.][[2021}) 6.699  66.203 6281 39.892 4.276 28.247 5.614 29.263 3.645 5.389 40.327
iy GMFlow (Xu et al.|[2022) 9.935 76.613 9.060 63.949 6.800 37.258 8.952 31.680 5.412 9.901 52.944
Z FlowFormer (Huang et al.|[2022) 6.144  64.219 5766 37.294 3.527 29.084 5.500 21.858 3.381 5.530 35.344
" MemFlow (Dong & Ful[2024) 5394 63348  5.107 32.755 3.293 24422 4.494 24990 2918 4.820 32.071
% StreamFlow (Sun et al.[[2024) 4869 59.550 4559 32.343 2.865 22987 4.435 17.059 2.597 4.492 29.067
MEMFOF (Bargatin et al.|[2025) 3254 58.072 3.049 26384 1.510 19416 3.708 1.961 1.315 4.574 20.081
ARFlow (Ours) 3.180 57.251 2973 26.375 1.675 17.526 3.395 5505 1.084 4.244 22.009

CrocoFlow (Weinzaepfel et al.|[2023) 4.209  60.594  3.848 34200 2.194 22.501 4.479 5868 1.225 4.332 33.134
SEA-RAFT (S) (Wang et al.[[2024b)  3.536  61.951  3.172 34.228 1.662 20.871 3.974 2.855 1264 4.871 23.378

%} SEA-RAFT (M) (Wang et al.[[2024b) 3.323  60.986  3.025 31.058 1.561 19.769 3.757 2.616 1241 4.760 21.237
£ MemFlow (Dong & Ful[2024) 4119 61.703  3.742 35.115 2391 20306 3.934 12.809 1.305 4.437 31.184
@ StreamFlow (Sun et al.[[2024) 3790 61.297 3424 34304 1986 20.544 3986 6.678 1236 4.381 27.935
L% DPFlow (Morimitsu et al.|[2025) 3.102  56.941 2.859 27.563 1.500 18.132 3.522 2.218 1.188 3.998 20.786
MEMFOF (Bargatin et al.|[2025) 2947 57.246 2751 25.551 1446 17.236 3.327 2723 1.084 4202 19.270
ARFlow (Ours) 2926 56.655 2.717 25955 1.436 17.108 3.325 2362 1.079 4.160 19.133

Table 8: End-point-error of flow prediction on FlyingThings3D (Final) Mayer et al.[ (2016),
Sintel (Final), and KITTI-15.

Method FlyingThings3D (Final) Sintel (Final) KITTI-15
Warped Oracle 14.76 5.76 -
MemFlow |Dong & Fu|(2024) 15.70 6.23 12.95
OFNet|Ciamarra et al.|(2022) 13.76 6.03 12.43
MemFlow-P|Dong & Fu|(2024) 7.56 5.38 8.82
Ours 6.79 4.63 7.25

Zero-shot Generalization on Waymo and Nuscenes. Moreover, we visualize zero-shot general-
ization on Waymo (Sun et al.,[2020) and NuScenes (Caesar et al., 2020). Importantly, these datasets
are not used during training, yet our ARFlow still achieves high-quality optical flow predictions. As
shown in Fig.[12] Fig.[13] Fig.[14]} and Fig.[15] our method maintains robust performance in diverse
driving scenarios, confirming its strong generalization ability beyond the training distributions.

E SCREENSHOTS FOR BENCHMARK RESULTS ON KITTI, SINTEL, AND
SPRING

We include official benchmark screenshots for KITTI-15, Spring, and Sintel in Fig.[16] Fig.[T7] and
Fig.[I§] retrieved on September 23, 2025 (KITTI-15 and Spring) and September 25, 2025 (Sintel).

On KITTI-15 ((Geiger et al.} | 2013), ARFlow ranks first among all optical flow methods, achieving
the best results on both All and Non-Occ pixels. Note that methods ranked above ours on the
leaderboard mainly rely on scene flow or additional 3D information rather than pure optical flow.

On the Spring benchmark (Mehl et al., 2023b), ARFlow ranks first among all open-source meth-
ods, surpassing strong baselines such as MEMFOF and DPFlow.

For Sintel (Butler et al.l [2012)), our method achieves second place among open-source methods,
matching or outperforming recent state-of-the-art approaches.

These results consistently highlight the advantages of our autoregressive paradigm: scalable tempo-
ral modeling, reliable initialization, and robust refinement across datasets.

F LLM USAGE STATEMENT

A large language model (ChatGPT) was used in a strictly limited assistive manner during manuscript
preparation. Its usage was confined to: (i) spelling and grammatical error checking; (ii) minor phras-
ing and wording refinement to improve fluency without altering technical meaning, methodology,
analyses, or conclusions; and (iii) occasional condensation of repetitive sentences and suggestions
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Figure 10: Qualitative results of different temporal lengths on the KITTI benchmark. Sourced from
official leaderboard submissions.
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Figure 11: Qualitative results on the Spring benchmark.

for consistent formatting. The LLLM did not contribute to research ideation, problem formulation,
method design, experimental execution, data processing, result analysis, drafting of technical con-
tent, or formulation of conclusions. The LLM is not an author and bears no responsibility for the
content.
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Reference Frame Flow Result

Figure 12: Qualitative results of our method on the Waymo dataset (Sun et al.,2020) (1). Note that
our model was not trained on the Waymo dataset.
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Figure 13: Qualitative results of our method on the Waymo dataset (Sun et al., | 2020) (2). Note that
our model was not trained on the Waymo dataset.
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Reference Frame Flow Result

Figure 14: Qualitative results of our method on the NuScenes dataset (Caesar et al., [2020) (1). Note
that our model was not trained on the NuScenes dataset.
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p. &

Figure 15: Qualitative results of our method on the NuScenes dataset (Caesar et al.,[2020) (2). Note
that our model was not trained on the NuScenes dataset.
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The KITTI Vision

Benchmark Suite

A project of Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago

SKIT

Karlsruhe Institute of Technology

—

home setup stereo [flow sceneflow depth odometry object tracking road semantics rawdata submit results

A. Geiger | P. Lenz | C. Stiller | R. Urtasun Log in

Optical Flow Evaluation 2015

The stereo 2015 / flow 2015 / scene flow 2015 benchmark consists of 200 training scenes and 200 test scenes (4 color images per scene, saved in
loss less png format). Compared to the stereo 2012 and flow 2012 benchmarks, it comprises dynamic scenes for which the ground truth has been
established in a semi-automatic process. Our evaluation server computes the percentage of bad pixels averaged over all ground truth pixels of all
200 test images. For this benchmark, we consider a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for
scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). We require that all methods use the same parameter set
for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing
disparity maps and flow fields. More details can be found in Object Scene Flow for Autonomous Vehicles (CVPR 2015).

Evaluation ground truth | All pixels v Evaluation area | All pixels v

Method Setting | Code | Fl-bg Fl-fg Fl-all | Density Runtime Environment Compare

1 SEA-Flow3D + Monster (e 1.98% : 5.30% | 2.53% : 100.00 % 0.07 s GPU @ 2.5 Ghz (Python) (]

2 MS-RAFT-3D+ \E\ code | 2.22% : 5.99% : 2.85% : 100.00 % 3s i GPU @ 2.5 Ghz (Python)
J.'Schmid, A. Jahedi, N. Senn and A. Bruhn: MS-RAFT-3D: A Multi-Scaie Architecture for Recurrent image-Based Scene Fiow. IEEE international Conference on image Processing (ICIP) 2025.

3 ARFlow \é\ $2.48% : 4.69% @ 2.85% : 100.00 % 0.35s H GPU @ 2.5 Ghz (Python) (]

4 splatFlow3D [ i code i 2.27%  6.02% : 2.89%  100.00 % 01s | 1 core @ 2.5 Ghz (Python) 0O
B. Wang, Y. Zhang, J. Ui, Y. Yu, Z. Sun, L. Liu and D. Hu: SplatFlow: Learning Multi-frame Optical Flow via Splatting. international Journal of Computer Vision 2024.

5 SEA-Flow3D+gannet (e8] 2.08% @ 6.95% @ 2.89% | 100.00 % 0.07 s 1 core @ 2.5 Ghz (Python) O

6 OAMaskFlow \ﬁ\ 207% : 711% : 2.91% | 100.00 % 05s 1 core @ 2.5 Ghz (Python) O

7 MEMFOF \E\ code | 2.60% : 4.66% : 2.94% : 100.00 % 0.4s GPU @ 2.5 Ghz (Python) (]
V. Bargatin, E. Chistov, A. Yakovenko and D. Vatolin: MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation. arXiv preprint arXiv:2506.23151 2025.

8 CamLiRAFT (e8] code : 2.08% : 7.37% : 2.96% : 100.00 % 1s H GPU @ 2.5 Ghz (Python + C/C++) (]
H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang: Learning_Optical Flow and Scene Flow with Bidirectional Camera-LiDAR Fusion. TPAMI 2023.

9 CamLiFlow (&) code : 2.31%  7.04% : 3.10% . 100.00 % 1,28 | GPU @ 2.5 Ghz (Python + C/C++) O
H. Liu, T Lu, Y. Xu, J. Liu, W. Li and L. Chen: CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow and Scene Flow Estimation. CVPR 2022.

10 DDVM 2.90% : 5.05% @ 3.26 % | 100.00 % H (]
S. Saxena, C. Herrmann, J. Hur, A. Kar, M. Norouzi, D. Sun and D. Fleet: The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation. NeurlPS 2023.

11 WAFTv2-DAv2 2.98% : 494% @ 3.31% : 100.00 % 0.24s i NVIDIA RTX3090 O

12 TDFlow 3.00% : 5.06% @ 3.34% : 100.00 % 0.1s f GPU @ 2.5 Ghz (Python) (]

13 DF 3.05% : 5.23% : 3.42% : 100.00 % 0.1s H 1 core @ 2.5 Ghz (C/C++) O

14 CamLiRAFT-NR \E\ code : 2.76% : 6.78% : 3.43% : 100.00 % 1s H GPU @ 2.5 Ghz (Python + C/C++) O
H. Liu, T Lu, Y. Xu, J. Liu‘and L. Wang: Learning Optical Flow and Scene Flow with Bidirectional Camera-LiDAR Fusion. arXiv preprint arXiv:2303.12017 2023.

15 PAFlow \ﬁ\ 2.75% : 6.86% : 3.43% : 100.00 % 0.53s i 1 core @ 2.5 Ghz (C/C++) O

16 M-FUSE &8 =] code | 2.66%  7.47%  3.46% 100.00 % 135 GPU @]

Figure 16: Screenshots from the KITTI-15 optical flow benchmark on the official website, retrieved
on September 23, 2025. Note: The methods ranked above ours are based on scene flow rather than
optical flow.
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Figure 17: Screenshots from the Spring optical flow benchmark on the official website, retrieved on
September 23, 2025. Note: To the best of our knowledge (as of September 23, 2025), WAFTv2 does
not have a publicly available paper.
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Final = Clean
EPEall EPE EPE d0-10  d10-60  d60- s0-10 s10-40  sd0+
matched unmatched 140
GroundTruth [l 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Visualize
Results
ViCo_VideoFlow_MOF 12! 1.618 0.768 8.543 1.966 0.601 0.348 0.392 1.198 8.705 isuglize
Resulis
CFFlow 12 1.647 0.788 B.650 2.087 0.609 0.334 0.402 1242 8.793 Visualize
Results
VideoFlow-MOF [l 1.649 0.788 B.660 2.090 0.609 0.334 0.403 1.243 8.804 ‘Visualize
Results
TSA B 1.652 0.794 8.645 1.881 0.667 0.445 0.391 1.090 9.264 Visuzlize
Results
MemoFlow ! 1.692 0.805 8.917 2.125 0.631 0.338 0.407 1.262 9.098 Visualize
Resulis
VideoFlow-BOF ['] 1.713 0.812 9.054 2.056 0.636 0.387 0.387 1.242 9.422 Visuglize
Resulis
ARFlow [ 1.786 0.805 9.789 2102 0.618 0.390 0.312 1.104 10.749 Visualize
Results
sdex001 @ 1.824 0.808 9.270 2.446 0.682 0.421 0.416 1.424 9.746 Visuglize
Results
MemFiow-T [0 1.840 0.874 9.710 2.233 0.671 0.370 0.487 1.351 9.828 Visuglize
Results
StreamFlow (1] 1.874 0.824 10.436 2.081 0.635 0.350 0.409 1.240 10.674 Visualize
Results
GeoViT ['2 1.883 0.961 9.390 1.746 0.622 0.696 0.329 1.082 11.501 ‘Visualize
Results
MEMFOF-XL 1% 1.800 0.863 10.257 2.092 0.634 0.496 0.319 1131 11.513 Visualize
Results
MEMFOF-L ['4] 1.907 0.877 10.302 2.101 0.637 0.512 0.324 1.128 11.644 Visualize
Results
MemFlow ['% 1.914 0.931 9.928 2.332 0.736 0.419 0.430 1.382 10.556 Visualize
Results
SemFlow-2view ['¢] 1.925 0.902 10.265 2376 0768 0359  0.445 1366 10.622 Visualize
Results
MEMFOF (7] 1.942 | 0.890 10.513 2121 0.641 0524 0332 1125  11.800
Results

Figure 18: Screenshots from the Sintel optical flow benchmark on the official website, retrieved
on September 25, 2025. Note: To the best of our knowledge (as of September 25, 2025), only
VideoFlow has a publicly available paper; the other higher-ranked methods do not have publicly
available publications.
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