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Abstract001

Multimodal question answering (QA) often002
requires identifying which video, audio, or003
sensor tokens are relevant to the question.004
Yet modality disagreements are common: off-005
camera speech, background noise, or motion006
outside the field of view often mislead fusion007
models that weight all streams equally. We008
present RAVEN, a unified QA architecture009
whose core is QuART, a query-conditioned010
cross-modal gating module that assigns scalar011
relevance scores to each token across modal-012
ities, enabling the model to amplify informa-013
tive signals and suppress distractors before fu-014
sion. RAVEN is trained through a three-015
stage pipeline comprising unimodal pretrain-016
ing, query-aligned fusion, and disagreement-017
oriented fine-tuning – each stage targeting a018
distinct challenge in multi-modal reasoning:019
representation quality, cross-modal relevance,020
and robustness to modality mismatch. To sup-021
port training and evaluation, we release AVS-022
QA, a dataset of 300K synchronized Audio–023
Video-Sensor streams paired with automati-024
cally generated question-answer pairs. Ex-025
perimental results on seven multi-modal QA026
benchmarks – including egocentric and exo-027
centric tasks – show that RAVEN achieves028
up to 14.5% and 8.0% gains in accuracy029
compared to state-of-the-art multi-modal large030
language models, respectively. Incorporat-031
ing sensor data provides an additional 16.4%032
boost, and the model remains robust un-033
der modality corruption, outperforming SOTA034
baselines by 50.23%. Our code and dataset035
are available at https://anonymous.4open.036
science/r/RAVEN/.037

1 Introduction038

Answering natural language questions in multi-039

modal settings often requires reasoning over vi-040

sual, auditory, and sensor inputs to extract the041

most relevant evidence (Wanniarachchi and Misra,042

2025). Yet real-world signals are rarely clean043

or aligned: off-camera speech, background noise, 044

and unobserved motion can introduce conflicts 045

across modalities. Without identifying which in- 046

puts are relevant to the question, fusion models 047

may attend to irrelevant signals and overlook criti- 048

cal evidence. 049

We introduce RAVEN, a unified architecture 050

for question answering over video, audio, and sen- 051

sor inputs. It resolves cross-modal conflicts by rea- 052

soning about modality relevance. At its core is 053

QuART, a query-conditioned cross-modal gating 054

module that assigns scalar relevance scores to each 055

token. These scores suppress distractors and am- 056

plify informative signals before fusion, enabling 057

the model to produce context-sensitive representa- 058

tions grounded in the question. 059

This challenge intensifies with sensor data inte- 060

gration. Unlike visual and auditory streams, sen- 061

sor inputs capture latent physical dynamics, such 062

as acceleration, orientation, and velocity, but of- 063

ten arrive asynchronously, are noisy, and lack se- 064

mantic anchors. Their relevance also varies by 065

question. For instance, when asked “Did the user 066

place the object gently?”, only audio (e.g., im- 067

pact sound) and motion traces (e.g., deceleration) 068

are informative, while visual frames may mislead. 069

QuART’s query-conditioned filtering allows the 070

model to focus on such signals while ignoring ir- 071

relevant tokens. Figure 1 illustrates this behavior 072

and highlights the resulting performance gains. 073

Recent advances in multimodal large lan- 074

guage models (MLLMs) have enabled perception- 075

language reasoning by combining pretrained 076

LLMs with modality-specific encoders and fusion 077

strategies (Liu et al., 2023a; Lin et al., 2023a; Chu 078

et al., 2023). Models such as Flamingo (Awadalla 079

et al., 2023), Video-LLaMA (Zhang et al., 2023a), 080

and AVicuna (Tang et al., 2024) have achieved 081

strong results on video captioning, video QA, and 082

audio-language tasks (Li et al., 2023a; Yu et al., 083

2023; Liu et al., 2024b). However, these systems 084
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Describe the scene for me.
Someone is working in a kitchen  as stove, oven, chopping board, knife can 
be seen. Also, can hear water dropping, probably from a  sink, not visible 
in the frames.

What is the person likely doing in the scene?

The person is preparing food as a frying  pan is visible.

What activity is done by the person with the object in their hand?

The person is putting the chopping board in their hand on top of the table. 
Deceleration seen on accelerometer Y-axis and the sound of dropping an 
object can be heard.

Figure 1: RAVEN jointly interprets video, audio, and sensor signals (e.g., inertial measurement unit or IMU)
to answer fine-grained, context-aware questions. It outperforms existing MLLMs across six QA benchmarks,
demonstrating robust generalization through multi-modal alignment.

typically focus on vision and audio, ignoring em-085

bedded sensor modalities that are critical in do-086

mains like AR/VR, robotics, and mobile health.087

Moreover, they often assume clean, synchronized088

inputs and rely on projection, cross-attention (Ye089

et al., 2024; Wu et al., 2024), or contrastive align-090

ment (Radford et al., 2021; Elizalde et al., 2023)091

approaches that break down under modality mis-092

alignment. In contrast, RAVEN uses query-093

conditioned token-level filtering via QuART to094

dynamically attend to the most informative modal-095

ity stream at each timestep.096

We train RAVEN using a three-stage pipeline:097

(1) unimodal pretraining to improve encoder spe-098

cialization, (2) query-aligned fusion to teach rel-099

evance modeling, and (3) disagreement-oriented100

fine-tuning to increase robustness under modality101

mismatch. Each stage addresses a distinct chal-102

lenge in multimodal reasoning, yielding an aver-103

age 26.87% improvement over training without104

disagreement-oriented fine-tuning.105

To support training and evaluation, we release106

AVS-QA, a dataset of 300K automatically gener-107

ated {Audio, Video, Sensor, QA} quadruples108

from egocentric scenarios. To our knowledge, it is109

the first large-scale QA benchmark with synchro-110

nized input streams and questionanswer supervi-111

sion across all three modalities (See Table 1).112

RAVEN, powered by QuART, achieves state-113

of-the-art performance on seven QA benchmarks,114

with gains of up to 14.5% over VideoLLaVA (Lin115

et al., 2023a) and 8.0% over AVicuna (Tang et al.,116

2024) on egocentric and exocentric tasks, respec-117

Table 1: Comparison of egocentric QA benchmarks.
AVS-QA is the only dataset with all three modalities,
four QA types, and large-scale automated supervision.

Benchmark A V S Data
Source

Answer
Type Evaluator Size

EgoTaskQA 3 3 7
Crowd-
sourcing

OE
Crowd-
sourcing

40K

EgoVQA 3 3 7 Handcraft MC Accuracy 520

EgoThink 3 3 7 Handcraft OE LLMs 700

VidEgoThink 3 3 7
Egocentric

video
OE LLMs 1.2K

MM-Ego 3 3 7
Multimodal

(AV)
OE / MC

Accuracy,
LLMs /CE

10K

AVS-QA 3 3 3
Egocentric

video
MC / OE
TF /CE

LLMs 300K

tively. Incorporating sensor data yields an addi- 118

tional 16.4% boost, and under modality corrup- 119

tion, RAVEN retains a 50.23% improvement over 120

prior systems-demonstrating robust, query-aware 121

reasoning across diverse multimodal inputs. We 122

summarize our contributions below: 123

• We propose RAVEN, a unified QA model that 124

integrates video, audio, and sensor inputs using 125

QuART, a query-conditioned gating module to fil- 126

ter distractors before fusion 127

• Introduction of query-aligned fusion and 128

disagreement-oriented fine-tuning after unimodal 129

pre-training enhances representation, relevance, 130

and robustness to cross-modal disagreement. 131

• We release AVS-QA, a 300K-sample dataset 132

with synchronized audio, video, sensor streams, 133

and auto-generated QA pairs. 134

• We achieve state-of-the-art results on seven 135

benchmarks, with strong performance across ego- 136

centric, exocentric, and corrupted-input settings. 137
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Q1: What is ...
a1. ....
.....
a5. .....

Q2. How many ...
a. 5

Q3. True or False? ..
a. True

Corrected QA Pairs

Meta-Information
1. A person ..
2. bbox [..], [..]
3. Sound of ...
4. 1 person, 2 cup, ..
5. Mean:.., STD:..

QA Pairs
Q1: What is ...

a1. ....
.....
a5. .....

Q2. How many ...
a. 5

Q3. True or False? ..
a. True

YOLOv11

Meta-Information
Extractor

BLIP-2
Qwen2-Audio
Feature Extractor

ACTOR

Final QA Pairs

Q1: What is ...
a3. ....

Q2. How many ...
a. 5

Q3. True or False? ..
a. True

Qwen-VL LLaMA-3

Video Audio Sensor

Input

EVALUATOR CRITIC

Critic Bank

LLaVA-1.5 Gemeni Pro GPT-4o

Quality RankScoring Criteria
Answerability
Hallucination Robustness
Cross-modal Grounding
Specificity
Relevance

Figure 2: Overview of the AVS-QA dataset pipeline. Given synchronized audiovideosensor input, the Actor
generates metadata and QA pairs, the Evaluator filters weakly grounded examples, and the Critic ranks quality
across five axes. The process is fully automated and yields 300K high-quality QA examples across four types.

2 Related Work138

Large and Multi-modal Language Mod-139

els. Large language models (LLMs) such140

as LLaMA (Touvron et al., 2023) and GPT-141

4 (Achiam et al., 2023) have demonstrated strong142

reasoning abilities. Multi-modal language models143

(MLLMs) extend LLMs with modality-specific144

encoders and fusion modules for visual or audi-145

tory inputs (Li et al., 2023b; Liu et al., 2023a; Bai146

et al., 2023; Luo et al., 2023; Chu et al., 2024;147

Kong et al., 2024). Representative models such148

as Flamingo (Alayrac et al., 2022), LLaVA (Liu149

et al., 2023a), and Video-LLaMA (Zhang et al.,150

2023a) achieve impressive results on vision-151

language and audio-video QA through instruction152

tuning. However, these systems typically ignore153

embedded sensor modalities and assume synchro-154

nized, clean inputs. Sensor-aware models–such155

as LLMSense (Ouyang and Srivastava, 2024),156

IMUGPT (Leng et al., 2024), and OpenSQA/L-157

LASA (Imran et al., 2024)–process inertial158

signals in isolation, without visual or auditory159

grounding. ImageBind (Girdhar et al., 2023)160

supports multiple modalities but lacks QA su-161

pervision or cross-modal reasoning. In contrast,162

our framework performs query-guided alignment163

across video, audio, and sensor inputs with direct164

QA grounding. See Appendix A for full citations.165

Multi-modal Feature Alignment. Token-level fu-166

sion across modalities is central to MLLM per-167

formance. Dual encoders like CLIP (Radford168

et al., 2021) and fusion-based models such as169

LLaVA (Liu et al., 2023a) and Q-Former (Li et al.,170

2023b) align vision and language. Extensions171

like Hierarchical Q-Former (Azad et al., 2025),172

Smaug (Lin et al., 2023b), and MACAW (Lyu173

et al., 2023) adapt this to temporal signals but174

are optimized for audio-visual tasks. These175

approaches struggle under sensor-specific noise, 176

asynchrony, or modality mismatch. Our proposed 177

QuART assigns query-conditioned scalar weights 178

to cross-modal tokens, enabling selective fusion 179

and robust reasoning under disagreement. 180

Multi-modal Datasets. Existing corpora sup- 181

port audio-visual (e.g., HowTo100M (Chen et al., 182

2024b), AudioCaps (Kim et al., 2019)) and 183

image-language learning (e.g., CC3M (Chang- 184

pinyo et al., 2021)). QA-focused datasets such as 185

AVQA (Yang et al., 2022), MusicAVQA (Li et al., 186

2022), and MSRVTT-QA (Xu et al., 2016) do 187

not include sensor data. Egocentric QA datasets 188

like Ego4D (Grauman et al., 2022) and Ego- 189

TaskQA (Jia et al., 2022) lack synchronized video- 190

audio-sensor input. To address this, we introduce 191

AVS-QA, a 300K-example dataset of audio, video, 192

sensor, QA quadruples with synchronized streams, 193

four question types, and frame-level alignment. 194

Table 1 summarizes its scope. 195

3 AVS-QA: Multi-Modal Dataset 196

Curation Pipeline 197

Despite rapid progress in multi-modal QA, no 198

existing benchmark provides aligned supervision 199

across video, audio, and sensor inputs. Prior 200

QA datasets are either limited to vision-language 201

pairs or omit sensor signals entirely (see Table 1). 202

To bridge this gap, we introduce AVS-QA, a 203

dataset of 300K automatically generated {video, 204

audio, sensor, QA} quadruples. This scale 205

exceeds the combined size of existing egocen- 206

tric QA datasets by a factor of four. Unlike 207

prior work, AVS-QA includes four question types– 208

open-ended (OE), closed-ended (CE), multiple- 209

choice (MC), and true/false (TF)–supporting both 210

generative and retrieval-style evaluation. 211

AVS-QA is constructed via a fully automated, 212

three-stage Actor–Evaluator–Critic pipeline, illus- 213
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trated in Figure 2. The pipeline takes as input a214

multi-modal triplet D = (v, a, s), where v, a, and215

s denote temporally aligned video, audio, and sen-216

sor streams, and produces question-answer pairs217

(q, A) ∈ Q. Formally, the dataset generation pro-218

cess is defined as a mapping function F : D → Q,219

yielding synchronized {v, a, s, q, A} tuples.220

Actor: Multi-modal Prompt Generation. The221

Actor constructs an enriched scene descriptionM222

from each triplet D. We extract visual features us-223

ing BLIP-2 (Li et al., 2023b) (frame captioning)224

and YOLOv11 (Khanam and Hussain, 2024) (ob-225

ject detection, and localization); audio features us-226

ing Qwen2-Audio-7B (Chu et al., 2024) (transcrip-227

tion and event labels); and sensor features using228

a 200 Hz statistical extractor (Imran et al., 2024)229

over 15-second IMU windows (e.g., mean, RMS,230

skewness). These cues are concatenated into a nat-231

ural language prompt, from which the Actor gen-232

erates four QA types: open-ended, closed-ended,233

multiple-choice, and true/false. For open-ended234

questions, five candidate answers are produced for235

filtering, and one final answer is retained.236

Evaluator: Modality-Consistency Filtering.237

Given a candidate QA pair (q, A) generated238

from meta-information M, the Evaluator veri-239

fies that the referenced modality or modalities240

are supported by the corresponding input triplet241

(v, a, s) ∈ D. For instance, motion-related ques-242

tions require significant activity in the sensor243

stream (e.g., variance spike), while visual or au-244

ditory references must align with detected objects245

or acoustic summaries. Pairs lacking sufficient246

grounding are discarded. To ensure diversity, the247

Evaluator enforces a balanced mix of single- and248

cross-modality QA types.249

Critic: Quality Ranking via LLM Scoring. For250

each candidate pair, the Critic applies an ensemble251

of instruction-tuned LLMs to assess QA quality.252

Inspired by LLM-as-judge paradigms (Fu et al.,253

2023; Zheng et al., 2023a), we define a quality254

vector C(q, A) = [s1, s2, s3, s4, s5] ∈ R5, where255

each score corresponds to one of five axes: answer-256

ability, hallucination robustness, modality ground-257

ing, specificity, and semantic relevance. A QA258

pair is discarded if any component score falls be-259

low a task-specific threshold (See Appendix B).260

This stage ensures that all retained examples are261

interpretable, grounded, and semantically mean-262

ingful. The final dataset contains short-form an-263

swers across four formats (open-ended, closed-264

ended, multiple-choice, and true/false), supporting265

both retrieval and generation in most formats. 266

Output. AVS-QA is built from egocentric clips in 267

Ego4D (Grauman et al., 2022) and EPIC-Kitchens- 268

100 (Damen et al., 2018), with each example con- 269

taining synchronized video, audio, sensor data, 270

and a verified answer. The dataset spans 300K QA 271

pairs across three modalities, four QA types, and 272

dual perspectives–offering diverse, fine-grained 273

supervision for multi-modal reasoning. We ran- 274

domly selected 300 samples from the dataset and 275

conducted a human evaluation following the crite- 276

ria described in Appendix B.3. Additional statis- 277

tics and details are provided in Appendix B. For 278

privacy and ethical considerations, see Section 9. 279

The AVS-QA dataset has been publicly released 280

under CC 4.0 license to support reproducibility. 281

4 RAVEN Framework: Query-Token 282

Alignment for Multi-Modal Fusion 283

RAVEN performs query-conditioned fusion of 284

video, audio, and sensor inputs via token-level 285

alignment. As shown in Figure 3, inputs from each 286

modalities are processed through individual pre- 287

trained encoders and projected to a shared space. 288

Our core module, QuART (Query-Aligned Repre- 289

sentation of Tokens), computes query-aware rele- 290

vance scores across all modalities, enabling robust 291

reasoning under noisy or misaligned inputs. We 292

describe each component below and architecture, 293

training, and implementation details available in 294

Appendix C and E. 295

Modality-Specific Feature Encoders. Given a 296

triplet D = {v, a, s}, each modality is encoded 297

and projected to RLm×E . Video frames v = 298

{It}Tt=1 are sampled uniformly and encoded us- 299

ing SigLIP-so-400m (Zhai et al., 2023), yield- 300

ing zv = Φv(v) ∈ RLv×E . Audio is trans- 301

formed into a Kaldi-fbank spectrogram (Povey 302

et al., 2011) and encoded via BEATs (Chen et al., 303

2022) to obtain za = Φa(a) ∈ RLa×E . Sen- 304

sor data–multi-axis IMU streams–are encoded us- 305

ing LIMU-BERT (Xu et al., 2021), producing zs = 306

Φs(s) ∈ RLs×E (See Appendix G for ablation). 307

Language Decoder and Query Embedding. We 308

use Qwen2-7B-Instruct (Yang et al., 2024) as 309

the decoder-only language model Π. Its tok- 310

enizer maps the query Q to token embeddings 311

zq ∈ RLq×E . Each modality encoder–Φv(v), 312

Φa(a), Φs(s)–is followed by a projection layer 313

that projects extracted feature into the shared 314

space RLm×E . For simplicity, Φm(·) refers to 315
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Figure 3: Overview of RAVEN. Each modality (video, audio, sensor) is encoded using pretrained encoders and
projected into a shared space. The QuART module performs query-conditioned token relevance scoring to align
informative tokens across modalities. The figure also highlights the three-stage training pipeline for alignment-
aware multi-modal reasoning. Here, and represent trainable and frozen components, respectively.

the combined encoder and projection for modality316

m ∈ {v, a, s} (See Appendix C.3).317

QuART: Query-Aligned Representation of To-318

kens. The QuART module performs query-319

conditioned token selection over multi-modal in-320

puts. Given visual, audio, and sensor token se-321

quences zv, za, zs ∈ RLm×E , we concatenate322

them into a unified token matrix Z ∈ RL×E ,323

where L = Lv + La + Ls. We apply multi-head324

attention between the query embedding zq and Z325

as: Q = zqW
Q, K = ZWK , V = ZWV ,326

where WQ,WK ,WV ∈ RE×dk are learned pro-327

jections. Temporal order is preserved via sinu-328

soidal positional embeddings, as in standard Trans-329

former encoders. The aggregated attention output330

is M = softmax
(
QK⊤
√
dk

)
V.331

Unlike standard multi-head attention–which332

uses similarity-based weights across modalities–333

QuART introduces a relevance projection head,334

WR ∈ RE×L, that learns to score tokens con-335

ditioned on the query. This separation enables336

the model to prioritize semantically relevant to-337

kens even when distractors receive high atten-338

tion weights–a key advantage under modality mis-339

match. QuART uses learned relevance scores to340

prioritize tokens based on the question. For in-341

stance, when asked about gentle placement, it em-342

phasizes sensor deceleration and impact sounds 343

while down-weighting static visual frames. If the 344

camera is occluded and the user trips, only IMU 345

spikes and audio thuds are informative–QuART 346

gates out blank video. This behavior general- 347

izes, suppressing off-screen audio when questions 348

target visual actions. This token-level relevance 349

scores are computed as: α = softmax(MWR). 350

The fused context vector, C =
∑L

j=1 αjZj aggre- 351

gates query-weighted tokens across all modalities 352

and conditions the LLM decoder. This learned rel- 353

evance outperforms raw attention (Section 6.2). 354

Training Objective. The decoder Π pre- 355

dicts the output sequence {yt}Tt=1 conditioned 356

on C, trained via autoregressive cross-entropy: 357

LQuART = − 1
T

∑T
t=1 log pθ(yt | y<t,C). To 358

promote sparse selection of relevant tokens, we 359

introduce an entropy-based regularizer: Lreg = 360∑L
j=1 αj logαj .The total loss is 361

LRAVEN = LQuART + λLreg (1) 362

We encourage sparsity via entropy regularization 363

scaled by λ. Relevance is disabled in early stages 364

(C = Z, λ = 0) and enabled in the final stage with 365

λ = 0.001. See Appendix E for implementation & 366

hyperparameters and Appendix H for cost analysis. 367

Table 7 and Appendix G demonstrate QuART’s 368

advantage over SOTA alignment methods. 369
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5 Alignment-Aware Multi-Stage370

Training for Multi-Modal Reasoning371

We adopt a three-stage training procedure to372

optimize RAVEN and its query-conditioned373

alignment module. Each stage targets a dis-374

tinct component–projection alignment, query-375

token fusion, and robustness to input degradation–376

stabilizing learning and reducing cross-modal in-377

terference (Figure 3).378

Stage I: Modality-Text Pre-Training. In this379

pretraining stage, we use a large-scale, weakly380

labeled dataset of modality-text pairs: {video,381

text}, {image, text}, {audio, text}, and382

{sensor, text}, collected from caption-rich383

sources, e.g., WavCaps (Mei et al., 2024), and384

InternVid-10M (Wang et al., 2023). We adopt a385

sequential, modality-specific training strategy to386

avoid inter-modal interference and stabilize pro-387

jection learning. Supervision is provided via natu-388

ral language captions or transcriptions paired with389

raw modality inputs, such as video subtitles, au-390

dio narrations, and wearable sensor logs. For each391

modality m ∈ {v, a, s}, we freeze the pretrained392

encoder Φm(·) and language model Π, and up-393

date only the corresponding projection head Pm to394

align with textual supervision. All three branches395

are trained in succession using the same LLM de-396

coder, promoting consistent language grounding397

across modalities.398

Stage II: Query-Token Alignment Joint-399

Training. After modality-specific alignment, we400

train the QuART module to perform token-level401

fusion conditioned on natural language queries.402

We use the AVS-QA dataset for this stage, which403

provides synchronized video, audio, sensor, and404

query-answer supervision (Equation 1). All405

modality encoders Φv,Φa,Φs and their projection406

heads are frozen to preserve previously learned407

alignments. We initialize QuART from scratch408

and train it to compute relevance-weighted token409

representations that bridge cross-modal infor-410

mation and the query context. In parallel, we411

fine-tune the LLM decoder Π using Low-Rank412

Adaptation (LoRA) (Hu et al., 2022) with rank413

256, offering efficient adaptation to fused multi-414

modal inputs without catastrophic forgetting.415

This stage enables query-aware modality fusion,416

teaching RAVEN to prioritize informative tokens417

for reasoning and generation.418

Stage III: Modal-Discrepancy Aware Fine-419

tuning. To improve robustness under real-world420

conditions, we fine-tune RAVEN using per- 421

turbed multi-modal inputs that simulate modality 422

mismatch–such as dropped sensor packets or off- 423

screen audio. We apply stochastic transforma- 424

tions independently to each modality: video un- 425

dergoes frame jitter, dropout, or temporal inver- 426

sion; audio is corrupted with Gaussian noise, re- 427

versed, or replaced with unrelated samples; sen- 428

sor signals are perturbed with zero-centered Gaus- 429

sian noise based on empirical variance (see Ap- 430

pendix D). Perturbed inputs D̃ = {ṽ, ã, s̃} are en- 431

coded by frozen encoders Φm and passed through 432

the trained QuART module and LoRA-adapted de- 433

coder Π. During this stage, we activate entropy 434

regularization to sharpen token relevance and en- 435

courage sparse, discriminative alignment. We set 436

λ = 0.001 in the final stage, as it yields the best 437

trade-off between sparsity and accuracy (see Sec- 438

tion 6.2); earlier stages use λ = 0. See Appendix E 439

for full training details. 440

6 Experimental Evaluation of RAVEN 441

Training Datasets. RAVEN is pretrained 442

(Stage I) on 13.1M weakly aligned modality– 443

text pairs (e.g., InternVid-10M, WavCaps, Sen- 444

sorCaps), and fine-tuned (Stages II–III) on 510K 445

high-quality QA pairs from AVS-QA. See Ap- 446

pendix E.1 for details. 447

Validation Datasets. We evaluate on seven audio- 448

visual QA benchmarks spanning exocentric and 449

egocentric domains: AVSD (Alamri et al., 2019), 450

MUSIC-QA (Li et al., 2022), AVSSD (Chen 451

et al., 2020), MSVD-QA (Alamri et al., 2019), 452

MSRVTT-QA (Xu et al., 2016), ActivityNet- 453

QA (Yu et al., 2019), and EgoThink (Cheng et al., 454

2024a), plus the 58K held-out test set from AVS- 455

QA (Appendix F.2). Evaluation metrics (GPT 456

based) follow prior work (Maaz et al., 2023) as 457

detailed in Appendix F.3. 458

Baseline Models. We compare against SOTA 459

models across both domains. For egocentric 460

QA: Valley (Luo et al., 2023), VideoChat (Li 461

et al., 2023c), VTimeLLM (Huang et al., 2024), 462

PandaGPT (Su et al., 2023), MacawLLM (Lyu 463

et al., 2023), AV-LLM (Shu et al., 2023), Video- 464

LLaMA (Zhang et al., 2023a), AVicuna (Tang 465

et al., 2024), and Video-LLaMA2 (Cheng 466

et al., 2024b); for exocentric QA: Open- 467

Flamingo (Awadalla et al., 2023), BLIP- 468

2.6 (Li et al., 2023b), VideoChat-7B (Li 469

et al., 2023c), LLaVA-1.5 (Liu et al., 2024a), 470
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Table 2: Comparison of RAVEN and prior MLLMs on exocentric open-ended video QA (MSVD-QA, MSRVTT-
QA, ActivityNet-QA) and audio-visual QA (AVSD, MUSIC-QA) benchmarks. Best and second-best scores are in
bold and underline. ∗ indicates scores reproduced by us.

Modality
Method Video Audio

#Pairs
(M)

LLM
size AVSD MUSIC-

QA AVSSD MSVD-
QA

MSRVTT-
QA

ActivityNet-
QA

Valley 3 7 1.5 13B - - - 65.4 45.7 26.5
VideoChat 3 7 25.0 7B - - - 56.3 45.0 26.5
Video-ChatGPT 3 7 0.9 7B - - - 64.9 49.3 35.2
VTimeLLM 3 7 0.7 7B - - - 69.8 58.8 45.5
PandaGPT 3 3 128.0 13B 26.1 33.7 32.7 46.7 23.7 11.2
Macaw–LLM 3 3 0.3 13B 34.3 31.8 36.1 42.1 25.5 14.5
AV–LLM 3 3 1.6 7B 52.6 45.2 - 67.3 53.7 47.2
Video–LLaMA 3 3 2.8 13B 36.7 36.6 36.7 51.6 29.6 12.4
AVicuna 3 3 1.1 7B 53.1 49.6 - 70.2 59.7 53.0
Video-LLaMA2 3 3 2.0 7B 50.6∗ 66.3∗ 71.4 - - -

RAVEN 3 3 0.8 7B 55.1+3.6% 69.8+5.0% 70.2-1.7% 73.3+4.2% 63.1+5.4% 57.6+8.0%

MiniGPT4 (Zhu et al., 2023b), InstructBLIP (Liu471

et al., 2023b), LLaMA-Adapter (Zhang et al.,472

2023b), VideoLLaVA (Lin et al., 2023a), and473

ShareGPT4V (Chen et al., 2024a). All baselines474

use official checkpoints (See Appendix F.1).475

6.1 Quantitative Results476

Exocentric Audio-Visual. Table 2 shows that477

RAVEN outperforms SOTA models on video QA478

(by up to 8.0%) and AVQA (by 5.0%), surpass-479

ing QA-specific fusion models (e.g., AV-LLM,480

MacawLLM). These gains stem from QuART’s481

fine-grained, query-conditioned relevance scores,482

which enhance alignment and suppress irrelevant483

inputs. Performance is competitive but not supe-484

rior on curated benchmarks like AVSSD, where485

modality-based relevance scoring may be less im-486

pactful due to limited cross-modal variability.487

Egocentric Audio-Visual Results. Table 3 re-488

ports results on EgoThink and AVS-QA. RAVEN489

achieves the highest overall performance–53.5 av-490

erage on EgoThink (+14.6%) and 0.67 on AVS-491

QA (+7.5%)–with strong gains in Completeness492

(0.71, +9.8%) and Correctness (0.69, +8.7%).493

While baselines like OpenFlamingo-7B and BLIP-494

2.6-7B perform moderately (e.g., 21.0 on Count,495

0.31 on Completeness), and VideoLLaVA-7B ex-496

cels in specific categories (e.g., 66.0 in Situated),497

RAVEN delivers the best overall scores.498

Sensor-Aware Evaluation on AVS-QA. Table 4499

reports results on AVS-QA across modalities500

(V/A/S) and metrics (Completeness, Coherence,501

Accuracy, Avg). RAVEN performs better than502

baselines like VideoLLaMA2 with A+V fusion503

(+21.8% avg). However, RAVEN with A+V+S504

achieves an additional performance gain of 16.4%505

– highlighting the benefit of sensor modality and506

sensor-aware reasoning. These results validate the 507

importance of query-guided sensor integration for 508

context-rich QA. 509

Cross-modal mismatch. Table 5 shows RAVEN 510

effectively handles cross-modal mismatch. 511

Trained with Stages I and II, it outperforms prior 512

SOTA on AVQA by 30–79%. On AVS-QA, 513

Stage III fine-tuning boosts performance to 0.71– 514

0.79, surpassing Video-LLaMA2 (0.51–0.54). 515

These gains stem from QuART s query-to-token 516

alignment, which emphasizes semantically rele- 517

vant tokens even under modality misalignment. 518

6.2 Ablation Study 519

Training Stages and Loss Conditioning. We 520

ablate training stages, loss formulation, and reg- 521

ularization strength across six QA benchmarks 522

(Table 6). Conditioning LQuART on contextual 523

embeddings C (vs. raw Z) in Stage II im- 524

proves performance (e.g., AVS-QA Avg: 0.49 vs. 525

0.44), confirming the value of context in align- 526

ment. Adding regularization in Stage III boosts 527

robustness but is sensitive to λ: a high value 528

(1.0) hurts performance (AVS-QA Avg: 0.30), 529

while λ = 0.001 yields the best results–raising 530

AVS-QA Avg to 0.78 (+43%), Coherence to 0.82 531

(+15.9%), and Accuracy to 0.73 (+16.4%). Simi- 532

lar gains appear on ActivityNet-QA (+18.4%) and 533

MUSIC-QA (+24.5%). Overall, best performance 534

is achieved with Stage III, context-aware LQuART, 535

and λ = 0.001–highlighting the synergy between 536

structured alignment and calibrated regularization. 537

Effect of Learnable Relevance Projection 538

(WR). Table 7 compares QuART s learnable 539

projection head WR against raw attention and 540

two state-of-the-art token relevance methods: Q- 541

Former (Li et al., 2023b) and HierarQ (Azad et al., 542
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Table 3: Comparison of RAVEN with MLLMs on the EgoThink (Reasoning) and AVS-QA benchmarks. RAVEN
outperforms across metrics and excels in reasoning. Bold and underline indicate the best and second-best scores.

EgoThink (Reasoning) AVS-QA
Method Count Compar Situated Avg Comp. Coher. Acc. Avg

OpenFlamingo 0.21 0.40 0.21 0.27 0.31 0.34 0.27 0.31
BLIP-2.6 0.03 0.21 0.33 0.19 0.22 0.26 0.21 0.23
VideoChat 0.36 0.39 0.32 0.36 0.29 0.33 0.37 0.33
LLaVA-1.5 0.20 0.47 0.37 34.7 0.46 0.47 0.52 0.48
MiniGPT-4 0.14 0.48 0.31 0.31 0.19 0.29 0.34 0.27
InstructBLIP 0.18 0.43 0.67 0.42 0.33 0.37 0.35 0.35
LLaMA-Adapter 0.29 0.39 0.25 0.31 0.25 0.31 0.29 0.28
PandaGPT 0.19 0.52 0.53 0.41 0.38 0.42 0.41 0.40
VideoLLaVA 0.39 0.38 0.60 0.46 0.42 0.46 0.45 0.44
ShareGPT4V 0.30 0.38 0.66 0.45 0.64 0.63 0.59 0.62

RAVEN 0.40+2.7% 0.54+3.4% 0.66-1.5% 0.54+14.8% 0.71+9.8% 0.69+8.7% 0.61+3.28% 0.67+7.5%

Table 4: AVS-QA results comparing
RAVEN with SOTA models using different
modality combinations.

Method V A S Comp. Coher. Acc. Avg

3 7 7 0.27 0.32 0.23 0.27
Macaw-LLM

3 3 7 0.38 0.46 0.34 0.39

3 7 7 0.36 0.42 0.33 0.37
Panda-GPT

3 3 7 0.43 0.49 0.38 0.43

3 7 7 0.37 0.33 0.28 0.33
VideoLLaMA

3 3 7 0.48 0.51 0.41 0.47

3 7 7 0.51 0.54 0.43 0.49
VideoLLaMA2

3 3 7 0.56 0.59 0.51 0.55

3 7 7 0.61 0.62 0.46 0.56
3 3 7 0.71 0.69 0.61 0.67RAVEN
3 3 3 0.78 0.82 0.73 0.78

Table 5: Comparison under cross-modal mismatch scenarios.
RAVEN with Stage III fine-tuning consistently outperforms base-
line methods across all evaluation metrics and benchmarks, demon-
strating superior robustness to modality perturbations.

AVS-QA
Method AVSD MUSIC

QA
MSVD

QA
Activity
Net-QA Comp. Cohr. Acc. Avg.

PandaGPT 12.2 13.8 21.8 7.9 0.23 0.29 0.26 0.26
Macaw-LLM 18.1 14.5 22.2 10.6 0.11 0.21 0.19 0.17
AV-LLM 24.7 22.1 49.8 26.8 - - - -
Video-LLaMA 17.9 24.6 31.5 25.3 0.28 0.39 0.33 0.33
AVicuna 34.1 31.3 51.7 31.9 - - - -
Video-LLaMA2 43.2 44.7 52.1 29.7 0.51 0.54 0.48 0.51

RAVENI, II 51.9 63.7 66.4 52.6 0.69 0.71 0.64 0.68
RAVENI – III 54.9 69.2 72.8 57.2 0.76 0.79 0.71 0.75

Table 6: Ablation on training stages (II & III), conditioning LQuART on Z
(LQuART|Z) vs. C (LQuART|C), and regularization strength λ.

Training
Stage Loss λ AVSD MUSIC

QA AVSSD MSVD
QA

Activity
Net-QA

AVS-QA

Comp. Cohr. Acc. Avg.

Up to
Stage II

LQuART|Z - 45.2 53.2 58.8 60.3 45.1 0.38 0.52 0.42 0.44

LQuART|C - 48.7 57.7 61.5 63.9 51.2 0.42 0.57 0.47 0.49

Up to
Stage III

w/o Lreg - 40.7 48.5 59.3 61.5 43.2 0.29 0.41 0.34 0.35

with
Lreg

1 41.5 45.3 53.2 57.9 39.7 0.23 0.37 0.29 0.30
0.1 48.3 56.2 54.7 64.2 45.8 0.62 0.69 0.59 0.63
0.01 52.2 61.8 61.2 68.1 51.6 0.71 0.78 0.68 0.72
0.001 55.1 69.8 70.2 73.3 57.6 0.78 0.82 0.73 0.78

Table 7: Effect of WR. QuART out-
performs with fewer parameters.

Method Raw
attention

Q -
Former HierarQ QuART

#Params ↓ 41M 188M 390M 45M

AVSD 29.1 36.7 - 55.1

MUSIC-QA 23.6 36.6 - 69.8

MSVD-QA 42.2 51.6 66.2 73.3

ActivityNet
-QA 12.1 12.4 57.2 57.6

MSRVTT
-QA 23.1 29.6 54.1 63.1

2025). QuART achieves the highest accuracy543

across all benchmarks while using fewer param-544

eters (45M vs. 188M/390M). By transforming545

attention scores into query-conditioned relevance546

weights, WR enables efficient and interpretable547

cross-modal alignment. Additional ablations – in-548

cluding encoder choices, LoRA rank, token selec-549

tion – are provided in Appendix G, along with550

qualitative examples in Appendix I.551

7 Conclusion552

In this paper, we present RAVEN, a unified553

framework for multimodal question answering554

that integrates video, audio, and sensor inputs555

via query-aware alignment, enabling robust rea- 556

soning under modality disagreement. To sup- 557

port this, we release AVS-QA–the first large-scale 558

dataset of synchronized {Audio, Video, Sensor, 559

QA} quadruples–curated via an automated actor- 560

evaluator-critic pipeline. Spanning egocentric 561

settings and four QA types, AVS-QA enables 562

comprehensive benchmarking. Our three-stage 563

training–modality pretraining, query-conditioned 564

alignment, and perturbation-aware fine-tuning– 565

drives consistent gains across diverse multimodal 566

QA benchmarks. These results underscore the im- 567

portance of structured, query-aware reasoning in 568

handling real-world modality mismatch. 569
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8 Limitations570

While RAVEN provides a strong foundation571

for multimodal question answering over audio,572

video, and sensor inputs, our current experi-573

ments are limited to a single backbone model,574

Qwen-Instruct-7B, due to computational con-575

straints. We do not explore larger LLM vari-576

ants (e.g., 13B or 70B), which could further im-577

prove performance but require significantly more578

resources. Additionally, we leave the investigation579

of alternative language backbones and more ad-580

vanced fusion strategies (e.g., retrieval-augmented581

alignment, memory-based conditioning) as future582

work.583

We also note that for longer recordings (ex-584

ceeding ∼5 minutes), particularly those involv-585

ing visually dense scenes, RAVEN occasionally586

underperforms on vision-heavy queries. This is587

likely caused by our uniform frame selection strat-588

egy, which may miss critical visual cues in longer589

videos because of sparse temporal sampling. In-590

corporating adaptive or query-guided frame selec-591

tion could mitigate this issue and improve tempo-592

ral grounding.593

Finally, training RAVEN is computationally594

expensive. Our current setup required approxi-595

mately 120 hours on 4 NVIDIA A100 GPUs (each596

with 80 GB of memory). While the design is ef-597

ficient at inference time due to early token filter-598

ing, future work could further reduce training cost599

through distillation or parameter sharing across600

modalities.601

Future Directions. Future work on RAVEN in-602

cludes exploring joint training strategies across603

modalities to enable deeper cross-modal inter-604

actions and more robust representation learning.605

Incorporating a saliency-aware frame selection606

mechanism may further improve performance on607

long-form, visually complex inputs. Addition-608

ally, reducing or eliminating the need to fine-tune609

the LLM backbone when introducing new modal-610

ities remains an open challenge. Addressing this611

could significantly improve the scalability, adapt-612

ability, and deployment efficiency of multimodal613

language models.614

9 Ethical Considerations615

The AVS-QA dataset is derived entirely from pub-616

licly released egocentric datasets (Ego4D (Grau-617

man et al., 2022) and EPIC-Kitchens (Damen618

et al., 2018)) that include usage licenses permitting619

research redistribution. Our processing pipeline 620

does not introduce new identity annotations, and 621

we do not extract or distribute personally identifi- 622

able metadata. AVS-QA contains synthetic ques- 623

tionanswer pairs generated from visual, auditory, 624

and sensor summaries, and no raw video, audio, 625

or IMU recordings are included in the release. We 626

follow best practices for anonymization and re- 627

spect the original datasets ethical use guidelines. 628

10 Risk Statement 629

Our multimodal language model integrates audio, 630

visual, and sensor inputs to enhance reasoning, but 631

it raises several concerns. First, misuse of MLLMs 632

in surveillance, biometric inference, or manipula- 633

tion of multi-sensory content raises ethical con- 634

cerns regarding user privacy and consent, espe- 635

cially when applied to egocentric or sensor-rich 636

environments. Additionally, the interpretability of 637

cross-modal reasoning remains limited, making it 638

difficult to identify failure cases or mitigate hallu- 639

cinations across modalities. We recommend care- 640

ful deployment of such systems with human over- 641

sight, ongoing auditing of training data sources, 642

and future work on explainability and robust align- 643

ment to reduce these risks. 644
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A More Related Works1150

This section includes additional models, datasets,1151

and encoder variants relevant to our work that1152

were not cited in the related work of the main pa-1153

per due to space constraints. We list them here for1154

completeness and to acknowledge recent progress1155

in MLLMs and sensor-grounded QA.1156

Large Language Models. Mixtral (Jiang et al.,1157

2024), Vicuna (Zheng et al., 2023b), Phi (Ab-1158

din et al., 2024), OPT (Zhang et al., 2022),1159

PaLM (Chowdhery et al., 2023)1160

Sensor MLLMs. MentalLLM (Xu et al.,1161

2024b), IMUGPT2.0 (Leng et al., 2024), Sen-1162

sor2Text (Chen et al., 2024c), Penetrative AI (Xu1163

et al., 2024a), PH-LLM (Cosentino et al., 2024),1164

PHIA (Merrill et al., 2024)1165

Feature Alignment. VLMo (Bao et al., 2022),1166

FILIP (Yao et al., 2021), ALIGN (Li et al., 2021),1167

ImageBind (Girdhar et al., 2023), CoCa (Yu1168

et al., 2022), EgoVLPv2 (Pramanick et al., 2023),1169

HiTeA (Ye et al., 2023), Mixed Q-Former (Wang1170

et al., 2024)1171

B AVS-QA Dataset Details1172

B.1 Curation and Statistical Summary1173

Dataset Curation Stages. In the Actor phase, we1174

generated 387K question–answer pairs. The Eval-1175

uator filtered out 12.14% based on predefined con-1176

straints. In the Critic phase, an additional 40K QA1177

pairs were discarded based on aggregate scores1178

from multiple critics. This results in a final dataset1179

of 300K high-quality QA pairs used for training1180

and evaluation.1181

Distribution of Question Types. AVS-QA in-1182

cludes four primary question types to support di-1183

verse reasoning tasks: open-ended, close-ended,1184

true/false, and multiple choice. Figure 4 shows1185

the distribution of these four categories. “Oth-1186

ers” category include instructional or dialogue-1187

style prompts that do not fit traditional QA formats.1188

This variety enables comprehensive benchmarking1189

across free-form generation and structured predic-1190

tion settings.1191

Length Distribution of Questions and Answers.1192

We analyze the word-length distributions of ques-1193

tions and answers in AVS-QA to better understand1194

their linguistic diversity. As shown in Figure 5,1195

most questions are concise, with a mode around1196

9–10 words and a long-tail distribution extending1197

up to 40 words. This variation arises from the pres-1198

ence of both short, structured formats (e.g., true/-1199

Open-ended; 
35%
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True-False; 
19%

Multiple 
choice; 16%

Others; 3%

Figure 4: Distribution of question types in AVS-QA.
The dataset includes a diverse mix of open-ended,
close-ended, true/false, multiple choice, and other for-
mats, supporting comprehensive evaluation settings.
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Figure 5: Length of questions has some variation due
to different types of questions.

false, multiple choice) and more descriptive open- 1200

ended queries. 1201

Figure 6 shows that a large number of answers 1202

consist of a single word, primarily due to true/false 1203

and multiple choice formats. In contrast, close- 1204

ended and open-ended questions yield longer and 1205

more varied responses, contributing to a broad 1206

distribution that peaks between 3–10 words and 1207

extends beyond 25 words. These distributions 1208

highlight the reasoning and generation challenges 1209

posed by AVS-QA. 1210

License. AVS-QA is released under a CC-BY 4.0 1211

license, along with the full generation pipeline, in- 1212

cluding prompts, templates, and filtering scripts. 1213

B.2 Quality Ranking via LLM Scoring 1214

To evaluate the quality of multi-modal (audio, 1215

video, sensor) question-answer pairs, we design a 1216
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Figure 6: True/false and multiple choice questions of-
ten lead to one-word answers, while open-ended and
close-ended formats yield a broader distribution of an-
swer lengths.

set of five quality assessment axes. Each axis is1217

rated on a 5-point Likert scale (1 = poor, 5 = ex-1218

cellent) by large language models (LLMs) using1219

structured prompts:1220

Answerability. Evaluates whether the question1221

is answerable based on the provided multi-modal1222

context. A high score indicates that the combined1223

modalities contain sufficient and coherent informa-1224

tion to support a correct and complete answer.1225

Hallucination Robustness. Measures the ex-1226

tent to which the answer avoids introducing infor-1227

mation not grounded in the provided modalities.1228

Higher scores indicate reliable adherence to the1229

multi-modal context, while lower scores reflect a1230

greater risk of hallucination.1231

Cross-Modal Grounding. Assesses the degree1232

to which the answer integrates information across1233

modalities (e.g., referencing audio to explain vi-1234

sual content). Higher scores reflect strong cross-1235

modal coherence and accurate alignment with1236

modality-specific cues relevant to the question.1237

Specificity. Measures the level of detail and preci-1238

sion in the answer relative to the question. Higher1239

scores indicate clear, specific, and well-defined re-1240

sponses that avoid vague or generic statements, of-1241

fering informative and actionable insights.1242

Relevance. Measures how directly the answer1243

addresses the intent and scope of the question.1244

Higher scores indicate focused, contextually ap-1245

propriate responses that are clearly aligned with1246

the queried scenario and available modalities.1247

Each QA pair is scored across the five axes by1248

LLaVA-1.5(Liu et al., 2024a), Gemeni Pro (Team1249

et al., 2023), Qwen-VL (Bai et al., 2023), GPT-4o1250

(Achiam et al., 2023), LLaMA-3 (Grattafiori et al., 1251

2024) in a zero-shot setting. We compute the final 1252

quality score by averaging the axis-level ratings. 1253

We discard QA pairs where 2 axes receive a score 1254

<3 from at least 3 of 5 LLMs. This threshold was 1255

chosen based on alignment with human judgment 1256

(see Appendix B.3). 1257

B.3 Human Evaluation 1258

We conducted a human evaluation on a randomly 1259

selected subset of 300 question-answer pairs from 1260

AVS-QA. Two expert annotators independently re- 1261

viewed each sample and assigned quality ratings 1262

based on the accompanying video, audio, and sen- 1263

sor data. Ratings follow the same 5-point Likert 1264

format as the LLM scorer. 1265

We categorized the pairs based on human agree- 1266

ment: Satisfied (both annotators rate 4), Okay 1267

(mixed rating: one 4, one <4), and Not Satisfied 1268

(both <4). We observe 81% Satisfied, 7% Okay, 1269

and 12% Not Satisfied. 1270

This aligns closely with the filtering per- 1271

formed by our LLM critic, which rejected 40K 1272

of the initial 340K QA pairs (11.76%), indicat- 1273

ing strong agreement between human and au- 1274

tomatic judgments. This suggests that our LLM- 1275

based scoring framework is a reliable proxy for hu- 1276

man evaluation at scale. 1277

We recruited two annotators through internal ad- 1278

vertisements at the host institution. Both male an- 1279

notators were between 25–35 years old and had a 1280

basic understanding of large language models. Par- 1281

ticipation was voluntary, and no financial incen- 1282

tives were provided. 1283

B.4 Prompt for Dataset Curation 1284

We use a structured Actor–Evaluator–Critic 1285

pipeline for automatic generation and refinement 1286

of question–answer pairs. Figures 7–12 show the 1287

system and user prompts used at each stage of this 1288

pipeline. 1289

In the Actor phase, a language model is pro- 1290

vided with multimodal scene descriptionsinclud- 1291

ing audio, video, IMU data summaries, and human 1292

narrationand is prompted to generate diverse ques- 1293

tions spanning open-ended, close-ended, multiple 1294

choice, and true/false formats. The prompt encour- 1295

ages context-aware and modality-specific reason- 1296

ing (see Figures 7–8). 1297

In the Evaluator phase, a second model ver- 1298

ifies the answerability, modality grounding, and 1299
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I will provide you with 5 different pieces of information from 
different modalities (visual, audio, IMU)  about a scene where 
someone performs some type of activity.  The information 
contains:
1.  A narration for the entire scene
2. Objects present in the scene, and their normalized bounding 
box as a list of tuples. 
3. A summary of the scene from the audio describing the scene 
only hearing the audio.
4. Statistical features from the IMU data for the accelerometer 
and gyroscope in the x, y, and z-axis.
5. A human describing the activity.

I want you to be a smart agent, imagine yourself present in the 
scene, and consider all the modalities to understand the entire 
scene. Now you have to generate question-answer pairs of 
different types (e.g., open-ended, close-ended, multiple choice, 
True-False, etc.). The question-answers should require multi-
step and complex reasoning to answer. Use one or multiple 
modality information to generate the questions and answers. 
Ensure that the knowledge and reasoning chains in the question 
are precise and sufficiently challenging, to the extent that 
only experts in the respective field can provide adequate 
responses.

Here are some examples of different question-answer types:
What is the person likely doing in the scene?
Answer: The person is likely eating at the table, as there is a 
plate of <food_name>, and a <some_utencils>present.

The person is actively cutting <object_name_1>, and a 
<object_name_2> is present. True or False?
Answer: Cutting <object_name_1> True, but <object_name_2> is not 
present.

Figure 7: System prompt used for generating ques-
tions and answers in Actor phase.

Please generate two question answers of each type of open-ended, 
close-ended, multiple choice and True-False. Generate five 
answers for each open-ended question and single answer for other 
type of questions.  Give the output in a list of JSON format 
e.g., [{{“question”: ”Generated Question”, “answer_1”: 
“Generated Answer 1”, “answer_2”: “Generated Answer 2”, 
“question_type”: “question_type”}}, ….]. The “question_type” 
would be of one of these four types (open-ended, close-ended, 
multiple choice, True-False).

Entire Scene Narration: {}
Objects Present: {}
Audio Description: {}
IMU features: {}
Human description: {}

Figure 8: User prompt used for generating questions
and answers in Actor phase.

factual correctness of each QA pair. The sys-1300

tem prompt (Figure 9) outlines constraints regard-1301

ing modality coverage, object grounding, and lan-1302

guage consistency. The human prompt (Figure 10)1303

ensures no hallucinated corrections are introduce-1304

donly local improvements to existing QA pairs.1305

In the Critic phase, large language models are1306

prompted to rate the quality of each generated1307

question–answer pair using four dimensions: rel-1308

evance, correctness, clarity, and depth. As shown1309

in Figures 11–12, the system prompt instructs1310

the model to consider all five available modality-1311

specific inputs (narration, object list, audio sum-1312

mary, IMU features, and human description) be-1313

fore assigning a score.1314

The user prompt standardizes the response for-1315

mat and explicitly prohibits speculative reasoning1316

I will provide you multiple questions and corresponding answers 
which were generated using 5 different pieces of information 
from different modalities (visual, audio, IMU)  about a scene 
where someone performs some type of activity.  The information 
contains
1.  A narration for the entire scene
2. Objects present in the scene, and their normalized bounding 
box as a list of tuples. 
3. A summary of the scene from the audio describing the scene 
only hearing the audio.
4. Statistical features from the IMU data for the accelerometer 
and gyroscope in the x, y, and z-axis. 
5. A human describing the activity.

I will also provide you the five different information that were 
used.

I want you to be a smart evaluator who can analyze the quality 
of generated questions and answer using the provided information 
from all modalities.
You have to make sure that the following constrains have been 
followed strictly. 

The question-answer pairs must meet the following constraints:
1. MUST exclude terms like “according to the narration”, 
“according to the audio description,”, "Human narration", "based 
on scene description", "audio description", etc from both 
Questions and Answers. You should generate questions and answer 
them as if you are present in the scene and reason from one or 
more modalities.
2. Question-answer pairs should be as diverse as possible.
3. Only ask the questions that can be answered. If a question 
can not be answered from one modality try other modalities to 
answer that. For example, if something is not visible (obscure 
in visual modality) use audio or IMU to find the answer.
4. The answers should be less than 30 words.
5. When generating questions about any object, first make sure 
that the object is present in the "objects present" list or 
match with the entire scene narration.
6. Use both human description and entire scene narration when 
describing the scene. if there is inconsistency between these 
two, prioritize human description.

if the constraints are not met for any given question answer 
pair, update them accordingly and save them in a similar form in 
a json file. DO NOT CHANGE QUESTIONS ENTIRELY, ONLY IMPROVE 
THEM. Additionally, do not add any co-ordinates.

Figure 9: System prompt used for generating ques-
tions and answers in Evaluator phase. The con-
straints ensure avoiding some phrases or groups of
words to enhance the quality of question-answer pairs.

Please determine if the question-answer pair strictly follow the 
constraints based on the following five information:
Entire Scene Narration: {}
Objects Present: {}
Audio Description: {}
IMU features: {}
Human description: {}

Only output the updated question and answers.
DO NOT MENTION ANY KEY IMPROVEMENTS IN THE OUTPUT OR ANY OTHER 
TEXT EXCEPT QUESTIONS AND ANSWERS.

Figure 10: User prompt used for generating ques-
tions and answers in Evaluator phase.

or textual justificationensuring consistent, numer- 1317

ical evaluations across samples. Each QA pair 1318

receives two scores (one for the question, one 1319

for the answer), which are then aggregated across 1320

multiple critics to determine inclusion in the final 1321

dataset. QA pairs with low aggregate scores are 1322

discarded during the final curation step. 1323

This prompt engineering strategy supports di- 1324

verse and high-quality QA generation without 1325

human-in-the-loop authoring. 1326
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I will provide you multiple questions and corresponding answers 
which were generated using 5 different pieces of information 
from different modalities (visual, audio, IMU)  about a scene 
where someone performs some type of activity.  The information 
contains
1.  A narration for the entire scene
2. Objects present in the scene, and their normalized bounding 
box as a list of tuples.
3. A summary of the scene from the audio describing the scene 
only hearing the audio.
4. Statistical features from the IMU data for the accelerometer 
and gyroscope in the x, y, and z-axis. 
5. A human describing the activity.

I will also provide you the five different information that were 
used.

I want you to be a critic who can analyze the quality of 
generated questions and answer using the provided information 
from all modalities.
You have to analyze their relevance, clarity, depth and 
correctness. Based on these four criteria rate the quality of 
each questions and answers on a scale of 1-5.

Figure 11: System prompt used for generating ques-
tions and answers in Critic phase.

Please rate the quality of questions and answers considering the 
relevance, correctness, clarity, and depth based on the 
following five information:
Entire Scene Narration: {}
Objects Present: {}
Audio Description: {}
IMU features: {}
Human description: {}

DO NOT OUTPUT THE ORIGINAL QUESTIONS AND ANSWER. OUTPUT ONLY THE 
QUALITY SCORE. DO NOT OUPUT ANY REASONING OR THOUGHT. 

Please generate the response in the form of a Python dictionary 
string with keys, 'Question', 'Answer’. For example, your 
response should look like this:
{Question: 3.1, Answer: 4.8}

Figure 12: User prompt used for generating ques-
tions and answers in Critic phase.

C Additional Model Architecture Details1327

C.1 LIMU-BERT Pre-Training1328

As our sensor encoder, we employ LIMU-1329

BERT (Xu et al., 2021), a multi-head attention-1330

based encoder-decoder architecture. LIMU-BERT1331

is a lightweight, BERT-inspired self-supervised1332

representation learning model designed for mobile1333

IMU (Inertial Measurement Unit) sensing applica-1334

tions. It processes unlabeled IMU dataaccelerome-1335

ter, gyroscope, and magnetometer readingsto learn1336

generalizable features. The architecture incorpo-1337

rates a normalization and sensor fusion layer, fol-1338

lowed by a transformer encoder with cross-layer1339

parameter sharing to reduce model size. It adopts1340

a span-masking version of the Masked Language1341

Modeling (MLM) task to learn both distributional1342

and temporal patterns from the IMU sequences.1343

We adopt the official LIMU-BERT implementa-1344

tion under the MIT license for research use.1345

C.2 Unimodal Encoder Pre-Training 1346

We use the VideoLLaMA2 (Cheng et al., 2024b) 1347

codebase for pre-training the vision encoder. The 1348

encoder is initialized from a SigLIP checkpoint 1349

and fine-tuned with instructional video datasets in- 1350

cluded in the VideoLLaMA2 training suite. This 1351

setup enables the model to learn temporal and 1352

spatial reasoning over egocentric and exocentric 1353

scenes. The code is released under the Apache 2.0 1354

license and used strictly for research purposes. 1355

C.3 Projection Layer 1356

Each modality-specific encoder output is projected 1357

to the LLM input dimension using a tailored strat- 1358

egy. The output of the audio encoder is projected 1359

through a two-layer multi-layer perceptron (MLP) 1360

to align with the LLM dimension. For the video 1361

encoder output, we use a spatio-temporal convolu- 1362

tional (STC) connector for spatio-temporal learn- 1363

ing of the video. STC connector uses RegStage 1364

(Radosavovic et al., 2020) with 3D convolution for 1365

downsampling the video output. We use a publicly 1366

available adaptation of the STC-connector in our 1367

implementation (Cheng et al., 2024b) under the li- 1368

cense of Apache 2.0 for research purposes only. 1369

D Cross-Modal Mismatch Generation 1370

and Robustness Evaluation 1371

Cross-modal mismatch refers to the condition in 1372

which the semantic alignment between different 1373

input modalitiessuch as audio, video, and sensor 1374

streamsis disrupted. In real-world multi-modal 1375

systems, such mismatches frequently arise due to 1376

noise, missing data, or temporal desynchroniza- 1377

tion between modalities. Understanding and ad- 1378

dressing cross-modal mismatch is crucial for build- 1379

ing robust models capable of effective reasoning 1380

across modalities. 1381

To systematically evaluate model robustness un- 1382

der such conditions, we introduce a synthetic 1383

cross-modal mismatch generation process. Given 1384

a clean multi-modal datapoint D = {a, v, s}, 1385

where a, v, and s denote the synchronized audio, 1386

video, and sensor streams respectively, we con- 1387

struct a perturbed version D′ = {a′, v′, s′} by ap- 1388

plying one or more of the following perturbations: 1389

Modality-Specific Noise Injection.: Gaussian or 1390

environmental noise is added to the audio a and/or 1391

video v streams, degrading signal fidelity while 1392

preserving temporal structure. 1393

Temporal Reversal.: The temporal sequence of 1394
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Algorithm 1 Algorithm for generating Cross-Modal Mismatch

1: function GENERATECROSSMODALMISMATCH(D = {a, v, s})
2: Initialize D′ = {a′, v′, s′} ← {a, v, s}
3: Define Paudio ← {ADDNOISE, REVERSE, REPLACEWITHIRRELEVANT, NOPERTURBATION}
4: Define Pvideo ← {ADDNOISE, REVERSE, REPLACEWITHIRRELEVANT, NOPERTURBATION}
5: Define Psensor ← {ADDJITTER, REPLACEWITHIRRELEVANT, NOPERTURBATION}
6: if RandomChoice([True, False]) then
7: a′ ← RandomChoice(Paudio)(a)
8: else
9: a′ ← a

10: end if
11: if RandomChoice([True, False]) then
12: v′ ← RandomChoice(Pvideo)(v)
13: else
14: v′ ← v
15: end if
16: if RandomChoice([True, False]) then
17: s′ ← RandomChoice(Psensor)(s)
18: else
19: s′ ← s
20: end if
21: return D′ = {a′, v′, s′}
22: end function

audio or video is reversed independently, altering1395

the causal and sequential semantics of events.1396

Sensor Perturbation.: Random noise or jitter is1397

added to sensor streams (e.g., IMU data), simulat-1398

ing faulty or low-resolution sensor readings.1399

Modal Replacement.: One or more modalities1400

(e.g., audio) are replaced with semantically ir-1401

relevant counterparts sampled from other unre-1402

lated datapoints in the dataset, creating intentional1403

cross-modal conflict.1404

These perturbations simulate realistic mis-1405

matches commonly encountered in egocentric and1406

exocentric environments, such as microphone oc-1407

clusion, corrupted video frames, or misaligned1408

sensor logging. This synthetic mismatch gener-1409

ation enables controlled stress testing of multi-1410

modal models, revealing their capacity to handle1411

noisy, misaligned, or contradictory inputs across1412

modalities. Algorithm 1 explains the process used1413

for generating cross-modal mismatch.1414

E Training and Implementation Details1415

E.1 Dataset for Multistage Training1416

Along with our in-house data (AVS-QA), we use1417

publicly available datasets to train the video, au-1418

dio, and sensor encoders. To pre-train the sensor1419

encoder, we use epic kitchen (Damen et al., 2018), 1420

ego4D (Grauman et al., 2022),HHAR (Stisen 1421

et al., 2015), UCI-HAR (Reyes-Ortiz et al., 1422

2016), Shoaib (Shoaib et al., 2014), Motion- 1423

Sense (Malekzadeh et al., 2019), PAMAP2 1424

(Roggen et al., 2010) data. We use pre-trained 1425

SigLIP as our video encoder and then fine-tune 1426

it with datasets from videoLLama2 (Cheng et al., 1427

2024b). Similarly, we use a pre-trained audio en- 1428

coder, Beats, and fine-tune it with WavCaps (Mei 1429

et al., 2024) datasets (Chen et al., 2022). We lever- 1430

age SensoCaps and OpenSQA (Imran et al., 2024) 1431

for the sensor pretraining part. Table 8 summa- 1432

rizes the dataset used at different stages of train- 1433

ing. 1434

E.2 Hyperparameters for Training 1435

RAVEN has 8.5B parameters, including all the en- 1436

coders, projection layers, QuART, and LLM back- 1437

bone. Table 9 summarizes the key hyperparame- 1438

ters used during training. 1439

E.3 Train-Test split 1440

For all publicly available datasets used during 1441

pre-training and fine-tuning, we adopt the of- 1442

ficial train–test splits provided by their respec- 1443

tive authors. For our curated dataset, AVS- 1444
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Table 8: Datasets used at each training stage of RAVEN. AVS-QA contributes to all three stages, enabling both
sensor-text alignment and robust fine-tuning under cross-modal mismatch.

Training stage Dataset #Pairs

Modality-Text Pre-Training
Vision-Text

InternVid-10M (Wang et al., 2023), WebVid-10M (Bain et al., 2021),
Panda-70M (Chen et al., 2024b), VIDAL-10M (Zhu et al., 2023a),
CC-3M (Changpinyo et al., 2021), DCI (Urbanek et al., 2024)

12.2 M

Audio-Text WavCaps (Mei et al., 2024) 400K

Sensor-Text OpenSQA (Imran et al., 2024), SensorCaps (Imran et al., 2024) 205K

Query-Token Alignment Joint-Training
AVQA(Yang et al., 2022), AVSSD (Chen et al., 2020),
MUSIC-AVQA (Li et al., 2022),
AVSD (Alamri et al., 2019), AVS-QA

403K

Modal-Discrepency Aware Fine-Tuning
AVQA (Yang et al., 2022), AVSSD (Chen et al., 2020),
MUSIC-AVQA (Li et al., 2022),
AVSD (Alamri et al., 2019), AVS-QA

510K

Table 9: Key hyperparameters used in training
RAVEN. Token counts reflect the number of input to-
kens per modality. We adopt a 6-layer transformer
with 8 attention heads, a LoRA rank of 4256, and use
AdamW for optimization.

Description Notation Value

Number of audio tokens La 1496
Number of video tokens Lv 1352
Number of sensor tokens Ls 120
Embedding dimension E 3584
Number of total token L 2968
Numer of heads h 8
Number of encoder layer N 6
Each head dimension dk 448
Batch size (local/global) - 1/4
LoRA rank r 4256
Optimizer - AdamW
Weight decay - 0.03

QA, we create a standardized train–test split1445

to ensure consistent evaluation and reproducibil-1446

ity. To prevent data leakage and overfitting,1447

we ensure the input sessions for curating AVS-1448

QA train and test split remain completely sep-1449

arated. The split files are publicly available1450

in our GitHub repository https://anonymous.1451

4open.science/r/RAVEN/avs-qa-dataset/.1452

F Evaluation Details1453

F.1 Evaluation Baselines1454

Video-LLaMA. Video-LLaMA extends LLaMA1455

by incorporating frozen video encoders (TimeS-1456

former, X-CLIP) to extract spatio-temporal fea-1457

tures, which are linearly projected into the LLM1458

input space. It is trained via instruction tun- 1459

ing and multi-modal supervised learning, enabling 1460

video captioning, question answering, and reason- 1461

ing with generalization from few-shot examples. 1462

Video-LLaMA2. Video-LLaMA-2 builds upon 1463

its predecessor by introducing spatio-temporal 1464

connectors, which better align video representa- 1465

tions with the LLM input through a more struc- 1466

tured fusion mechanism. Additionally, Video- 1467

LLaMA-2 leverages more powerful video en- 1468

coders and larger training corpora, making it more 1469

robust for real-world multimodal applications. 1470

PandaGPT. PandaGPT integrates CLIP for visual 1471

features and BEATs for audio features, followed 1472

by a Q-Former to project them into the token space 1473

of a language model (Vicuna). PandaGPT sup- 1474

ports multi-turn dialogue grounded in both visual 1475

and auditory content, enabling it to reason over 1476

video-audio-text contexts. 1477

Macaw-LLM. Macaw-LLM adopts a modular 1478

design where a dedicated encoder process each 1479

modality, and the features are fused into a shared 1480

embedding space for the language model. Inspired 1481

by BERT-style pretraining, Macaw-LLM supports 1482

tasks such as cross-modal retrieval, multimodal 1483

classification, and audio-visual QA. 1484

VideoChat. VideoChat introduces a video- 1485

grounded dialogue system that enables interactive 1486

conversations about dynamic visual content. It 1487

uses a pre-trained video encoder (like X-CLIP 1488

or SwinBERT) to extract frame-wise representa- 1489

tions and then aligns these with LLaMA through 1490

lightweight adapters. VideoChat supports both 1491

single-turn and multi-turn video QA, offering real- 1492

time conversational abilities over video inputs. It 1493

was among the first open-source models to demon- 1494
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strate effective temporal video grounding in LLM-1495

based dialogue.1496

VideoChatGPT. VideoChatGPT extends1497

VideoChat by incorporating end-to-end video-LM1498

alignment with improved temporal reasoning and1499

multi-frame understanding. It utilizes a stronger1500

video encoder and enhanced fusion modules (e.g.,1501

spatio-temporal attention layers) to feed richer1502

video context into the LLM.1503

VALLEY. VALLEY (VisuAL Langauge Learner1504

with Large memorY) is designed for multi-modal1505

memory-augmented video reasoning. It focuses1506

on long-term memory alignment across video seg-1507

ments and text, allowing the model to retain and1508

reference past frames effectively during reason-1509

ing. VALLEY combines a hierarchical visual en-1510

coder with a memory-enhanced transformer de-1511

coder that interacts with a language model, en-1512

abling it to handle long videos and multi-step1513

reasoning tasks such as procedural understanding,1514

storytelling, and temporal localization.1515

VTimeLLM. VTimeLLM (Video-Time Language1516

Model) focuses on temporal video understanding1517

by aligning spatio-temporal features with natural1518

language in a query-aware manner. It introduces1519

a temporal reasoning module that captures the or-1520

der, duration, and causality of events in video seg-1521

ments. Using a dual-stream architecture with tem-1522

poral attention and frame-level token sampling,1523

VTimeLLM fuses visual and language informa-1524

tion for downstream tasks such as video QA, mo-1525

ment retrieval, and video narration.1526

AV-LLM. AV-LLM integrates auditory and vi-1527

sual modalities using CLIP for images/videos1528

and Whisper or BEATs for audio with a frozen1529

LLaMA. It employs a cross-modal projection1530

layer and lightweight adapters to fuse the modal-1531

ities, enabling zero-shot and instruction-tuned1532

tasks like audio-visual QA, event description, and1533

sound-source reasoning.1534

AVicuna. AViCuna is a chat-centric audio-visual1535

instruction-following model that combines audio1536

and video features into a unified token stream for1537

a conversational LLM based on Vicuna. It uses Q-1538

Former modules to encode BEATs for audio and1539

CLIP for video features, and feeds these to the1540

LLM via a learned query-token bridge.1541

OpenFlamingo. OpenFlamingo fuses a frozen1542

CLIP-ViT with a pre-trained language model via1543

a perceiver-style cross-attention module. The key1544

innovation lies in its interleaved visual-text token1545

interface, which allows the model to reason over1546

multimodal sequences without further fine-tuning. 1547

OpenFlamingo supports tasks such as image cap- 1548

tioning, VQA, and multi-image reasoning in an ef- 1549

ficient and instruction-following setting. 1550

SahreGPT4V. ShareGPT4V emphasizes the im- 1551

portance of caption quality in multimodal learn- 1552

ing, showing that even a modest amount of rich, 1553

semantically dense image-text pairs can signifi- 1554

cantly improve LMM performance. It uses GPT- 1555

4V to generate 100k captions and further extend 1556

the dataset to a 1.2m sample by using a caption 1557

model. ShareGPT4V is then fine-tuned with this 1558

caption dataset as a foundational MMLLM. 1559

MiniGPT-4. MiniGPT-4 mimics GPT-4V’s capa- 1560

bilities using open components. It pairs a frozen 1561

CLIP-ViT with a Vicuna-based LLM via a linear 1562

projection layer, trained with a two-stage instruc- 1563

tion tuning pipeline. MiniGPT-4 achieves strong 1564

performance with low computational cost. 1565

BLIP-2.6. BLIP-2.6 is an evolution of BLIP-2, 1566

further improving the alignment between vision 1567

encoders and LLMs using a multistage pretraining 1568

and fine-tuning strategy. It enhances the Q-Former 1569

mechanism and supports longer and denser vision- 1570

language interactions with better grounding fi- 1571

delity. BLIP-2.6 shows improvements in instruc- 1572

tion following, fine-grained captioning, and long- 1573

context multimodal tasks while maintaining the 1574

zero-shot generalization strength of BLIP-2. 1575

InstructBLIP. InstructBLIP is an instruction- 1576

tuned extension of the BLIP-2 family, designed 1577

to align vision-language pretraining with task- 1578

specific prompts. It introduces a flexible prompt- 1579

ing mechanism and uses a frozen vision encoder 1580

with a trainable Q-Former to bridge the modality 1581

gap to an LLM. 1582

F.2 Evaluation Datasets 1583

InternVid-10M. InternVid-10M is a large-scale 1584

video-text dataset comprising approximately 10 1585

million video-caption pairs, designed to support 1586

pretraining of multimodal large language models. 1587

The videos are sourced from diverse domains, and 1588

the captions are refined to improve visual-textual 1589

alignment. 1590

WebVid-10M. WebVid-10M consists of 10 mil- 1591

lion video-text pairs harvested from web sources, 1592

particularly short-form videos with associated 1593

metadata or alt-text. Although noisier than manu- 1594

ally curated datasets, its sheer scale makes it valu- 1595

able for video-language pretraining. 1596

Panda-70M. Panda-70M is a massive multimodal 1597
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dataset containing over 70 million aligned video,1598

audio, and text triplets. It is curated from open-1599

domain videos, including instructional content, to1600

cover a wide variety of real-world scenarios. The1601

dataset is designed for training models that re-1602

quire joint understanding of video, audio, and lan-1603

guage, enabling tasks such as multimodal reason-1604

ing, audio-visual captioning, and cross-modal re-1605

trieval at scale.1606

Vidal-10M. VIDAL-10M is a curated dataset com-1607

prising 10 million high-quality video-caption pairs1608

aimed at enhancing temporal and contextual un-1609

derstanding in multimodal models. It includes1610

dense and descriptive captions aligned with di-1611

verse video domains, enabling robust pretraining1612

for video-language models. VIDAL-10M empha-1613

sizes temporal consistency and semantic diversity,1614

supporting tasks like video QA, moment retrieval,1615

and event understanding.1616

CC-3M. CC-3M is a widely-used image-text1617

dataset containing approximately 3 million image-1618

caption pairs sourced from the web. The captions1619

are filtered and cleaned alt-text annotations that1620

loosely describe the visual content. While the de-1621

scriptions can be noisy and lack fine-grained detail,1622

it is valuable for large-scale vision-language pre-1623

training, especially for image-text retrieval, cap-1624

tioning, and contrastive representation learning.1625

DCI. DCI is a dataset developed to improve1626

instruction-following in vision-language models1627

by pairing images with rich, instruction-style de-1628

scriptions. The captions are generated using1629

large language models guided by carefully de-1630

signed prompts to increase informativeness and1631

task relevance. DCI serves as a bridge between1632

standard image-caption datasets and instruction-1633

tuned models, supporting applications like visual1634

instruction-following, grounded question answer-1635

ing, and image-based reasoning.1636

WavCaps. WavCaps is a large-scale audio-text1637

dataset designed to enhance audio-language pre-1638

training. It includes over 400,000 audio clips1639

paired with captions, either collected from meta-1640

data or generated via model-based annotation1641

pipelines. Covering a wide range of sound events-1642

from speech and music to environmental and me-1643

chanical soundsWavCaps supports tasks such as1644

audio captioning, sound event detection, and cross-1645

modal audio-text retrieval.1646

SensorCaps. SensorCaps is a pioneering sensor-1647

language dataset that pairs time-series data from1648

inertial measurement units (IMUs) and other body-1649

worn sensors with detailed natural language de- 1650

scriptions. Designed to support tasks like sen- 1651

sor captioning and multimodal grounding, Sensor- 1652

Caps bridges wearable sensing data with large lan- 1653

guage models. It enables multimodal LLMs to 1654

reason about human actions, physical context, and 1655

temporal dynamics from sensor inputs. 1656

OpenSQA. OpenSQA is a benchmark dataset for 1657

sensor-based question answering, aiming to bring 1658

structured reasoning capabilities to models pro- 1659

cessing sensor time-series data. It includes labeled 1660

QA pairs grounded in sensor streams from IMU 1661

collected in real-world contexts. OpenSQA sup- 1662

ports open-ended and multiple-choice questions, 1663

making it a valuable testbed for evaluating sensor- 1664

to-text alignment and semantic understanding in 1665

multimodal models. 1666

AVSD. AVQA is a benchmark dataset specifically 1667

designed for evaluating audio-visual reasoning ca- 1668

pabilities in multimodal models. It includes videos 1669

paired with open-ended and multiple-choice ques- 1670

tions that require joint analysis of both visual con- 1671

tent and audio cues. AVQA challenges models 1672

to perform fine-grained audio-visual fusion for an- 1673

swering questions about actions, events, or contex- 1674

tual elements that span both modalities. 1675

AVSSD. AVSSD is a large-scale dataset contain- 1676

ing over 200,000 audio-video clips spanning 310 1677

sound classes. Each clip is approximately 10 sec- 1678

onds long and is sourced from YouTube, covering 1679

a wide range of natural and human-made sounds. 1680

AVSSD supports weakly-supervised learning and 1681

cross-modal modeling, especially for tasks like 1682

sound classification, audio-visual event detection, 1683

and audio grounding in video. 1684

MUSIC-AVQA. MUSIC-AVQA is a specialized 1685

dataset designed for audio-visual question answer- 1686

ing in musical contexts, where questions require 1687

understanding of both the visual performance and 1688

the auditory output of musical instruments. It is 1689

built upon the MUSIC dataset, which includes iso- 1690

lated instrument performances. MUSIC-AVQA 1691

extends MUSIC with over 7,000 QA pairs involv- 1692

ing tasks such as instrument identification, sound 1693

localization, source counting, and event timing. 1694

The questions are crafted to assess fine-grained 1695

audio-visual reasoning, where answers depend on 1696

spatial, temporal, and semantic alignment of what 1697

is seen and heard. 1698

AVQA. AVQA is a benchmark dataset specifically 1699

designed for evaluating audio-visual reasoning ca- 1700

pabilities in multimodal models. It includes videos 1701
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{"role": "system",
"content": "You are an intelligent chatbot designed for 
evaluating the correctness of generative outputs for question-
answer pairs. "
"Your task is to compare the predicted answer with the correct 
answer and determine if they match meaningfully. Here's how you 
can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Focus on the meaningful match between the predicted answer 
and the correct answer.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Evaluate the correctness of the prediction compared to the 
answer."
},
{"role": "user",
"content":
"Please evaluate the following video-based question-answer 
pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a yes/no, coherence where 
coherence is a float value between 0 and 1 with 1 indicating the 
highest meaningful soundness of the predicted answer with given 
question, and score where the score is an integer value between 
0 and 1, with 1 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary 
string with keys 'binary_pred' 'coherence', and 'score', where 
value of 'binary_pred' is a string of 'yes' or 'no' , value of 
'coherence' is in FLOAT not STRING and value of 'score' is in 
FLOAT, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only 
provide the Python dictionary string. "
"For example, your response should look like this: 
{'binary_pred': 'yes', 'coherence': 0.79, 'score': 0.7}."
}

Figure 13: System and user prompt used to evaluate the
generated answer quality.

paired with open-ended and multiple-choice ques-1702

tions that require joint analysis of both visual con-1703

tent and audio cues. AVQA challenges models1704

to perform fine-grained audio-visual fusion for an-1705

swering questions about actions, events, or contex-1706

tual elements that span both modalities.1707

EgoThink. EgoThink is a benchmark designed1708

to evaluate the first-person perspective reasoning1709

capabilities of vision-language models (VLMs).1710

It comprises question-answer pairs derived from1711

egocentric video clips, focusing on six core ca-1712

pabilities across twelve detailed dimensions. The1713

dataset emphasizes tasks that require models to un-1714

derstand and reason from a first-person viewpoint,1715

such as anticipating future actions or interpreting1716

personal experiences. Evaluations of eighteen pop-1717

ular VLMs on EgoThink reveal that, while models1718

like GPT-4V perform well in certain areas, there1719

remains significant room for improvement in first-1720

person perspective tasks. EgoThink serves as a1721

valuable resource for advancing research in em-1722

bodied artificial intelligence and robotics.1723

F.3 Evaluation Metric1724

Following previous work (Maaz et al., 2023), we1725

leverage GPT-3.5-turbo to evaluate the generated1726

answer quality. Figure 13 depicts the evaluation1727

prompt.1728

Table 10: Comparison of video encoders across three
QA benchmarks. SigLIP consistently outperforms all
ViT variants, demonstrating stronger temporal and vi-
sual grounding for video-based question answering.

Datasets
Video

Encoder MSVD-
QA

MSRVTT-
QA

ActivityNet-
QA

ViT-B/16 65.7 51.4 45.9
ViT-L/14 67.3 53.7 47.2
ViT-H/14 67.5 54.2 47.5

SigLip 73.3 63.1 57.6

Table 11: Performance of audio encoders across QA
datasets. BEATs achieves the highest accuracy on
all benchmarks, surpassing Whisper variants in multi-
modal reasoning tasks.

Datasets
Audio

Encoder MSVD-
QA

MSRVTT-
QA

ActivityNet-
QA

Whisper-T 66.5 51.6 46.2
Whisper-B 67.7 53.1 47.4
Whisper-S 68.1 53.9 47.6

BEATs 73.3 63.1 57.6

G Ablation Study 1729
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Figure 14: Impact of LoRA rank on QA accuracy
across five benchmarks. Accuracy improves steadily
with higher ranks, saturating near 256, indicating
that moderate-rank adapters suffice for effective mul-
timodal alignment and reasoning.

Effect of Modality Encoder. We investigate the 1730

influence of visual and audio encoder choices on 1731

model performance across three video QA bench- 1732

marks (Tables 10, 11). For vision, scaling standard 1733

ViT architectures from B/16 to H/14 yields only 1734
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Table 12: Comparison of QuART with General Fusion
Approaches. QuART performs better due to its token-
level reasoning capabilities.

Datasets
Fusion
Model AVSSD MSRVTT-

QA

Imagebind 27.8 27.8
MBT 64.1 –
AVFIC – 19.4

QuART 70.2 63.1

marginal improvements (e.g., +1.8% on MSVD-1735

QA), suggesting limited benefits from increasing1736

model capacity alone. In contrast, substituting ViT1737

with SigLip, a vision-language pretrained model1738

leads to substantial performance gains (73.3 vs.1739

67.5 on MSVD-QA), demonstrating the impor-1740

tance of cross-modal alignment during pretrain-1741

ing. On the audio side, scaling Whisper en-1742

coders from Tiny to Small results in modest im-1743

provements (e.g., +1.6% on MSVD-QA), but all1744

Whisper variants are outperformed by BEATs, a1745

model pretrained on diverse acoustic signals. No-1746

tably, BEATs achieves a +5.2% gain over Whisper-1747

Small on MSVD-QA, highlighting the efficacy of1748

domain-specific audio pertaining.1749

LoRA Rank Selection. Figure 14 shows an ab-1750

lation on LoRA rank. Lower ranks improve ef-1751

ficiency but may limit representational capacity,1752

while higher ranks offer greater adaptability at a1753

higher cost. Performance peaks at r = 256, indi-1754

cating it provides the best trade-off between com-1755

putational overhead and task effectiveness.1756

Comparison of QuART with General Fusion1757

Approaches. We compare QuART with state-1758

of-the-art general-purpose fusion models (Image-1759

Bind (Girdhar et al., 2023), MBT (Nagrani et al.,1760

2021), and AVFIC (Nagrani et al., 2022)), which1761

are not optimized for QA tasks. As shown in Ta-1762

ble 12, QuART outperforms these models, high-1763

lighting the benefit of QA-specific supervision and1764

token-level fusion for effective reasoning.1765

H Compute Cost and Environmental1766

Impact1767

We train our model using four NVIDIA A1001768

GPUs (80GB each) with a total CPU memory of1769

256GB. Evaluation is performed on four NVIDIA1770

L40S GPUs (46GB each). Training runs for 1201771

hours with a local batch size of 1 and a global1772

batch size of 4. We use a learning rate of 1× 10−3 1773

for the projection layers and 1 × 10−5 for fine- 1774

tuning the encoder layers. 1775

We estimate the total energy consumption to be 1776

approximately 1,200 kWh, based on the average 1777

power draw of an A100 system under mixed preci- 1778

sion load. Following the ML CO2 emissions calcu- 1779

lator (Lacoste et al., 2019), this corresponds to an 1780

estimated carbon footprint of 420 kgCO2e when 1781

using the U.S. average energy mix. 1782

I Qualitative Results 1783

Figures 15 – 19 illustrate the performance of 1784

RAVEN across diverse real-world scenarios. 1785

While RAVEN demonstrates strong performance 1786

using only audio and visual inputs, the inclusion of 1787

sensor data consistently improves robustness and 1788

interpretability. 1789

In particular, 17 and 18 highlight how sensor in- 1790

formation enhances the correctness and relevance 1791

of both the predicted answer and its supporting ex- 1792

planation. Conversely, Figure 19 presents a fail- 1793

ure case where the model, even with full audio- 1794

video-sensor input, fails to infer the correct task 1795

due to subtle contextual clues across modalities 1796

that might not clearly differentiate similar tasks, 1797

hindering accurate inference. 1798
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Was the user actively cooking or stirring
something in the pot on the stove?

We observe a cooking setup  
with a spatula in the pot. 
Audio suggests no sound of  
stirring. IMU data confirms 
no hand or body movement, 
consistent with no  stirring or 
shifting stance. Together, 
these cues verify that the 
user is not actively cooking, 
moving, and speaking during 
the activity.

A pot on the stove with
 a spoon or spatula inside, 

indicating food preparation. 
However, without motion 
cues, it’s uncertain if the

user is actively stirring or 
simply placed the utensil 
there earlier. There’s no 
indication of speaking or

precise  movement.

Audio+Video Audio+Video+
Sensor

Figure 15: Example illustrating the value of sensor input for activity disambiguation. Given the question Was
the user actively cooking or stirring something in the pot on the stove?, the Audio+Video model observes a
cooking scene but cannot confirm active engagement due to the absence of motion cues. In contrast, the Au-
dio+Video+Sensor model leverages IMU data to detect a lack of body movement and integrates audio signals to
confirm no stirring, allowing it to infer that the user is not actively cooking.

  What activity is the person likely engaged in?

Audio+Video Audio+Video+
Sensor

The person is likely
washing dishes especially
lathering a ladle in the
kitchen sink. The sound of
water running and dishes
being washed with the
presence of sink and bowl,
and hand likely explain the
activity. 

The person is lathering a
ladle with hands in the
kitchen sink. The IMU data
confirms very small variance
due to the person's less
movement. Water running
sound and low IMU movement
suggest small washing
activity.

Figure 16: Example illustrating subtle activity disambiguation using multimodal reasoning. Given the question
What activity is the person likely engaged in?, the Audio+Video model identifies dishwashing activity based on
sink visibility and audio cues such as water flow. The Audio+Video+Sensor model enhances this understanding
by incorporating IMU data, which reveals low hand and body movement. This confirms a controlled, repetitive
action consistent with small-scale washing (e.g., lathering a ladle), demonstrating the added value of sensor input
for refining temporal and motion-level interpretations.
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   Is the person involved in any other activities
   other than washing hands?

Audio+Video Audio+Video+
Sensor

The person is not likely
doing any other activities
other than washing
hands. The presence of
hand and water sound
confirm washing hands.
No other information is
available to suggest other
activities.

The person is reaching for
soap besides washing hands.
While presence of hands
and water running sound
establish washing hands
activities, sudden changes
in IMU data suggest
movement of the arm to
reach for the soap.

Figure 17: Example demonstrating the added value of sensor data in identifying subtle concurrent actions. Given
the question Is the person engaged in any other activities other than washing hands?, the Audio+Video model
detects only hand presence and water sounds, concluding that no other activities are evident. In contrast, the Au-
dio+Video+Sensor model identifies a sudden IMU spike, indicating arm movement associated with reaching
for soap–capturing a secondary action that is visually and acoustically ambiguous.

What is the person doing with his bicycle?

Audio+Video Audio+Video+
Sensor

The person is likely talking
with someone while
standing near the bicycle.
The person is not riding
the bicycle as evident from
the sound made by the
person and as it is parked
near the wall. 

The person might be 
adjusting the bike's tire 
pressure while conversing. 
The bicycle is parked in a 
sidewalk and  constant 
changes in IMU data 
confirms a continuous 
movement happening in the 
scene.  

Figure 18: Example showcasing multimodal reasoning for fine-grained activity understanding. Given the question
What is the person doing with his bicycle?, the Audio+Video model identifies that the person is not riding the
bicycle and is likely talking nearby. In contrast, the Audio+Video+Sensor model captures continuous IMU
fluctuations, suggesting active engagement, such as adjusting the bikes tire pressure, demonstrating the added
interpretive power of sensor input.
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  Was the person washing dishes or putting the
  bowl in the sink?

Audio+Video Audio+Video+
Sensor

The person was washing
dishes as evident from
the bowl, sink, towel,
and bottle. Audio also
confirms water running
sound in the
background. Thus the
person is most likely
washing dishes.

The person might be 
washing dishes as sink, 
bowl, and bottle are 
present. Imu data 
confirms some movement 
likely due to washing 
dishes. Water running 
sound also could be heard 
in the background.

Figure 19: Example illustrating confirmatory reasoning across modalities. Given the question Was the person
washing dishes or putting the bowl in the sink?, the Audio+Video model infers dishwashing based on visible
objects (bowl, sink, towel) and background water sounds. The Audio+Video+Sensor model tries to strengthen
this conclusion with IMU evidence from the wrong source, inconsistent with washing actions, reinforcing the
activity label through motion-based verification.
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