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Abstract

Multimodal question answering (QA) often
requires identifying which video, audio, or
sensor tokens are relevant to the question.
Yet modality disagreements are common: off-
camera speech, background noise, or motion
outside the field of view often mislead fusion
models that weight all streams equally. We
present RAVEN, a unified QA architecture
whose core is QuART, a query-conditioned
cross-modal gating module that assigns scalar
relevance scores to each token across modal-
ities, enabling the model to amplify informa-
tive signals and suppress distractors before fu-
sion. RAVEN is trained through a three-
stage pipeline comprising unimodal pretrain-
ing, query-aligned fusion, and disagreement-
oriented fine-tuning — each stage targeting a
distinct challenge in multi-modal reasoning:
representation quality, cross-modal relevance,
and robustness to modality mismatch. To sup-
port training and evaluation, we release AVS-
QA, a dataset of 300K synchronized Audio—
Video-Sensor streams paired with automati-
cally generated question-answer pairs. Ex-
perimental results on seven multi-modal QA
benchmarks — including egocentric and exo-
centric tasks — show that RAVEN achieves
up to 14.5% and 8.0% gains in accuracy
compared to state-of-the-art multi-modal large
language models, respectively. Incorporat-
ing sensor data provides an additional 16.4%
boost, and the model remains robust un-
der modality corruption, outperforming SOTA
baselines by 50.23%. Our code and dataset
are available at https://anonymous.4open.
science/r/RAVEN/.

1 Introduction

Answering natural language questions in multi-
modal settings often requires reasoning over vi-
sual, auditory, and sensor inputs to extract the
most relevant evidence (Wanniarachchi and Misra,
2025). Yet real-world signals are rarely clean

or aligned: off-camera speech, background noise,
and unobserved motion can introduce conflicts
across modalities. Without identifying which in-
puts are relevant to the question, fusion models
may attend to irrelevant signals and overlook criti-
cal evidence.

We introduce RAVEN, a unified architecture
for question answering over video, audio, and sen-
sor inputs. It resolves cross-modal conflicts by rea-
soning about modality relevance. At its core is
QuARtT, a query-conditioned cross-modal gating
module that assigns scalar relevance scores to each
token. These scores suppress distractors and am-
plify informative signals before fusion, enabling
the model to produce context-sensitive representa-
tions grounded in the question.

This challenge intensifies with sensor data inte-
gration. Unlike visual and auditory streams, sen-
sor inputs capture latent physical dynamics, such
as acceleration, orientation, and velocity, but of-
ten arrive asynchronously, are noisy, and lack se-
mantic anchors. Their relevance also varies by
question. For instance, when asked “Did the user
place the object gently?”, only audio (e.g., im-
pact sound) and motion traces (e.g., deceleration)
are informative, while visual frames may mislead.
QuART’s query-conditioned filtering allows the
model to focus on such signals while ignoring ir-
relevant tokens. Figure 1 illustrates this behavior
and highlights the resulting performance gains.

Recent advances in multimodal large lan-
guage models (MLLMs) have enabled perception-
language reasoning by combining pretrained
LLMs with modality-specific encoders and fusion
strategies (Liu et al., 2023a; Lin et al., 2023a; Chu
et al., 2023). Models such as Flamingo (Awadalla
et al., 2023), Video-LLaMA (Zhang et al., 2023a),
and AVicuna (Tang et al., 2024) have achieved
strong results on video captioning, video QA, and
audio-language tasks (Li et al., 2023a; Yu et al.,
2023; Liu et al., 2024b). However, these systems
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Describe the scene for me.

Someone is working in a kitchen as stove, oven, chopping board, knife can
be seen. Also, can hear water dropping, probably from a sink, not visible

&9 i the frames.

[ What is the person likely doing in the scene?}

The person is preparing food as a frying pan is visible.

(Whuf activity is done by the person with the object in their handﬂ &

The person is putting the chopping board in their hand on top of the table!
Deceleration seen on accelerometer Y-axis and the sound of dropping an
() lobject can be heard.

AVSD

MSVD-QA
—— Valley —— PandaGPT AVicuna
VideoChat —— Macaw-LLM Video-LLaMA2
—— Video-ChatGPT AV-LLM —— RAVEN
—— VTimeLLM —— Video-LLaMA

Figure 1: RAVEN jointly interprets video, audio, and sensor signals (e.g., inertial measurement unit or IMU)
to answer fine-grained, context-aware questions. It outperforms existing MLLMs across six QA benchmarks,
demonstrating robust generalization through multi-modal alignment.

typically focus on vision and audio, ignoring em-
bedded sensor modalities that are critical in do-
mains like AR/VR, robotics, and mobile health.
Moreover, they often assume clean, synchronized
inputs and rely on projection, cross-attention (Ye
et al., 2024; Wu et al., 2024), or contrastive align-
ment (Radford et al., 2021; Elizalde et al., 2023)
approaches that break down under modality mis-
alignment. In contrast, RAVEN uses query-
conditioned token-level filtering via QuART to
dynamically attend to the most informative modal-
ity stream at each timestep.

We train RAVEN using a three-stage pipeline:
(1) unimodal pretraining to improve encoder spe-
cialization, (2) query-aligned fusion to teach rel-
evance modeling, and (3) disagreement-oriented
fine-tuning to increase robustness under modality
mismatch. Each stage addresses a distinct chal-
lenge in multimodal reasoning, yielding an aver-
age 26.87% improvement over training without
disagreement-oriented fine-tuning.

To support training and evaluation, we release
AVS-QA, a dataset of 300K automatically gener-
ated {Audio, Video, Sensor, QA} quadruples
from egocentric scenarios. To our knowledge, it is
the first large-scale QA benchmark with synchro-
nized input streams and questionanswer supervi-
sion across all three modalities (See Table 1).

RAVEN, powered by QuART, achieves state-
of-the-art performance on seven QA benchmarks,
with gains of up to 14.5% over VideoLLaVA (Lin
et al., 2023a) and 8.0% over AVicuna (Tang et al.,
2024) on egocentric and exocentric tasks, respec-
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Table 1: Comparison of egocentric QA benchmarks.
AVS-QA is the only dataset with all three modalities,
four QA types, and large-scale automated supervision.

Data Answer

Benchmark A V S Evaluator Size
Source Type
EgoTaskQA  ~ v x S op Crowd- g
sourcing sourcing
EgoVQA v/ v/ X Handcraft MC Accuracy 520
EgoThink v / Handcraft OE LLMs 700
VidEgoThink ~ o~ x Feocentic qp LLMs 1.2K
video
Multimodal Accuracy,
MM-Ego v /X (AV) OE/MC LLMs /CE 10K
Egocentric  MC/OE .
AVS-QA v/ video TF /CE LLMs 300K

tively. Incorporating sensor data yields an addi-
tional 16.4% boost, and under modality corrup-
tion, RAVEN retains a 50.23% improvement over
prior systems-demonstrating robust, query-aware
reasoning across diverse multimodal inputs. We
summarize our contributions below:

e We propose RAVEN, a unified QA model that
integrates video, audio, and sensor inputs using
QuARtT, a query-conditioned gating module to fil-
ter distractors before fusion

e Introduction of query-aligned fusion and
disagreement-oriented fine-tuning after unimodal
pre-training enhances representation, relevance,
and robustness to cross-modal disagreement.

e We release AVS-QA, a 300K-sample dataset
with synchronized audio, video, sensor streams,
and auto-generated QA pairs.

e We achieve state-of-the-art results on seven
benchmarks, with strong performance across ego-
centric, exocentric, and corrupted-input settings.
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Figure 2: Overview of the AVS-QA dataset pipeline. Given synchronized audiovideosensor input, the Actor
generates metadata and QA pairs, the Evaluator filters weakly grounded examples, and the Critic ranks quality
across five axes. The process is fully automated and yields 300K high-quality QA examples across four types.

2 Related Work

Large and Multi-modal Language Mod-
els. Large language models (LLMs) such
as LLaMA (Touvron et al.,, 2023) and GPT-
4 (Achiam et al., 2023) have demonstrated strong
reasoning abilities. Multi-modal language models
(MLLMs) extend LLMs with modality-specific
encoders and fusion modules for visual or audi-
tory inputs (Li et al., 2023b; Liu et al., 2023a; Bai
et al., 2023; Luo et al., 2023; Chu et al., 2024;
Kong et al., 2024). Representative models such
as Flamingo (Alayrac et al., 2022), LLaVA (Liu
et al., 2023a), and Video-LLaMA (Zhang et al.,
2023a) achieve impressive results on vision-
language and audio-video QA through instruction
tuning. However, these systems typically ignore
embedded sensor modalities and assume synchro-
nized, clean inputs. Sensor-aware models—such
as LLMSense (Ouyang and Srivastava, 2024),
IMUGPT (Leng et al., 2024), and OpenSQA/L-
LASA (Imran et al.,, 2024)-process inertial
signals in isolation, without visual or auditory
grounding. ImageBind (Girdhar et al., 2023)
supports multiple modalities but lacks QA su-
pervision or cross-modal reasoning. In contrast,
our framework performs query-guided alignment
across video, audio, and sensor inputs with direct
QA grounding. See Appendix A for full citations.

Multi-modal Feature Alignment. Token-level fu-
sion across modalities is central to MLLM per-
formance. Dual encoders like CLIP (Radford
et al., 2021) and fusion-based models such as
LLaVA (Liu et al., 2023a) and Q-Former (Li et al.,
2023b) align vision and language. Extensions
like Hierarchical Q-Former (Azad et al., 2025),
Smaug (Lin et al., 2023b), and MACAW (Lyu
et al., 2023) adapt this to temporal signals but
are optimized for audio-visual tasks. These
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approaches struggle under sensor-specific noise,
asynchrony, or modality mismatch. Our proposed
QuART assigns query-conditioned scalar weights
to cross-modal tokens, enabling selective fusion
and robust reasoning under disagreement.
Multi-modal Datasets. Existing corpora sup-
port audio-visual (e.g., HowTo100M (Chen et al.,
2024b), AudioCaps (Kim et al., 2019)) and
image-language learning (e.g., CC3M (Chang-
pinyo et al., 2021)). QA-focused datasets such as
AVQA (Yang et al., 2022), MusicAVQA (Li et al.,
2022), and MSRVTT-QA (Xu et al., 2016) do
not include sensor data. Egocentric QA datasets
like Ego4D (Grauman et al., 2022) and Ego-
TaskQA (Jia et al., 2022) lack synchronized video-
audio-sensor input. To address this, we introduce
AVS-QA, a 300K-example dataset of audio, video,
sensor, QA quadruples with synchronized streams,
four question types, and frame-level alignment.
Table 1 summarizes its scope.

3 AVS-QA: Multi-Modal Dataset
Curation Pipeline

Despite rapid progress in multi-modal QA, no
existing benchmark provides aligned supervision
across video, audio, and sensor inputs. Prior
QA datasets are either limited to vision-language
pairs or omit sensor signals entirely (see Table 1).
To bridge this gap, we introduce AVS-QA, a
dataset of 300K automatically generated {video,
audio, sensor, QA} quadruples. This scale
exceeds the combined size of existing egocen-
tric QA datasets by a factor of four. Unlike
prior work, AVS-QA includes four question types—
open-ended (OE), closed-ended (CE), multiple-
choice (MC), and true/false (TF)—supporting both
generative and retrieval-style evaluation.

AVS-QA is constructed via a fully automated,
three-stage Actor—Evaluator—Critic pipeline, illus-



trated in Figure 2. The pipeline takes as input a
multi-modal triplet D = (v, a, s), where v, a, and
s denote temporally aligned video, audio, and sen-
sor streams, and produces question-answer pairs
(g, A) € Q. Formally, the dataset generation pro-
cess is defined as a mapping function F' : D — Q,
yielding synchronized {v, a, s, q, A} tuples.
Actor: Multi-modal Prompt Generation. The
Actor constructs an enriched scene description M
from each triplet D. We extract visual features us-
ing BLIP-2 (Li et al., 2023b) (frame captioning)
and YOLOvI11 (Khanam and Hussain, 2024) (ob-
ject detection, and localization); audio features us-
ing Qwen2-Audio-7B (Chu et al., 2024) (transcrip-
tion and event labels); and sensor features using
a 200 Hz statistical extractor (Imran et al., 2024)
over 15-second IMU windows (e.g., mean, RMS,
skewness). These cues are concatenated into a nat-
ural language prompt, from which the Actor gen-
erates four QA types: open-ended, closed-ended,
multiple-choice, and true/false. For open-ended
questions, five candidate answers are produced for
filtering, and one final answer is retained.
Evaluator: = Modality-Consistency Filtering.
Given a candidate QA pair (g, A) generated
from meta-information M, the Evaluator veri-
fies that the referenced modality or modalities
are supported by the corresponding input triplet
(v,a,s) € D. For instance, motion-related ques-
tions require significant activity in the sensor
stream (e.g., variance spike), while visual or au-
ditory references must align with detected objects
or acoustic summaries. Pairs lacking sufficient
grounding are discarded. To ensure diversity, the
Evaluator enforces a balanced mix of single- and
cross-modality QA types.

Critic: Quality Ranking via LLM Scoring. For
each candidate pair, the Critic applies an ensemble
of instruction-tuned LLMs to assess QA quality.
Inspired by LLM-as-judge paradigms (Fu et al.,
2023; Zheng et al., 2023a), we define a quality
vector C(q, A) = [s1, 82, 83,54, 55] € R?, where
each score corresponds to one of five axes: answer-
ability, hallucination robustness, modality ground-
ing, specificity, and semantic relevance. A QA
pair is discarded if any component score falls be-
low a task-specific threshold (See Appendix B).
This stage ensures that all retained examples are
interpretable, grounded, and semantically mean-
ingful. The final dataset contains short-form an-
swers across four formats (open-ended, closed-
ended, multiple-choice, and true/false), supporting
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both retrieval and generation in most formats.
Output. AVS-QA is built from egocentric clips in
Ego4D (Grauman et al., 2022) and EPIC-Kitchens-
100 (Damen et al., 2018), with each example con-
taining synchronized video, audio, sensor data,
and a verified answer. The dataset spans 300K QA
pairs across three modalities, four QA types, and
dual perspectives—offering diverse, fine-grained
supervision for multi-modal reasoning. We ran-
domly selected 300 samples from the dataset and
conducted a human evaluation following the crite-
ria described in Appendix B.3. Additional statis-
tics and details are provided in Appendix B. For
privacy and ethical considerations, see Section 9.
The AVS-QA dataset has been publicly released
under CC 4.0 license to support reproducibility.

4 RAVEN Framework: Query-Token
Alignment for Multi-Modal Fusion

RAVEN performs query-conditioned fusion of
video, audio, and sensor inputs via token-level
alignment. As shown in Figure 3, inputs from each
modalities are processed through individual pre-
trained encoders and projected to a shared space.
Our core module, QuART (Query-Aligned Repre-
sentation of Tokens), computes query-aware rele-
vance scores across all modalities, enabling robust
reasoning under noisy or misaligned inputs. We
describe each component below and architecture,
training, and implementation details available in
Appendix C and E.

Modality-Specific Feature Encoders. Given a
triplet D = {v,a, s}, each modality is encoded
and projected to REm*F Video frames v
{I;}L_, are sampled uniformly and encoded us-
ing SiglIP-s0-400m (Zhai et al., 2023), yield-
ing z, ®Y(v) € RE*F Audio is trans-
formed into a Kaldi-fbank spectrogram (Povey
et al., 2011) and encoded via BEATs (Chen et al.,
2022) to obtain z, = ®%(a) € REF*F, Sen-
sor data—multi-axis IMU streams—are encoded us-
ing LIMU-BERT (Xu et al., 2021), producing z; =
®3(s) € RI=*F (See Appendix G for ablation).
Language Decoder and Query Embedding. We
use Qwen2-7B-Instruct (Yang et al., 2024) as
the decoder-only language model II. Its tok-
enizer maps the query () to token embeddings
z, € RLa*E. Bach modality encoder-®"(v),
®%(a), ®*(s)-is followed by a projection layer
that projects extracted feature into the shared
space REm*E  For simplicity, ®™(-) refers to
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Figure 3: Overview of RAVEN. Each modality (video, audio, sensor) is encoded using pretrained encoders and
projected into a shared space. The QuART module performs query-conditioned token relevance scoring to align
informative tokens across modalities. The figure also highlights the three-stage training pipeline for alignment-
aware multi-modal reasoning. Here, # and ¥ represent trainable and frozen components, respectively.

the combined encoder and projection for modality
m € {v,a, s} (See Appendix C.3).

QuART: Query-Aligned Representation of To-
kens. The QuART module performs query-
conditioned token selection over multi-modal in-
puts. Given visual, audio, and sensor token se-
quences z,,Zq,zs € RIm*E we concatenate
them into a unified token matrix Z € RL*E,
where L. = L, + L, + Ls. We apply multi-head
attention between the query embedding z, and Z
as: Q = z,W?, K =ZWEK VvV =ZWV,
where W@ WX WV ¢ RE* are learned pro-
jections. Temporal order is preserved via sinu-
soidal positional embeddings, as in standard Trans-
former encoders. The aggregated attention output

is M = softmax <Q—\/Ig> V.

Unlike standard multi-head attention—which
uses similarity-based weights across modalities—
QuART introduces a relevance projection head,
WHE ¢ REXL that learns to score tokens con-
ditioned on the query. This separation enables
the model to prioritize semantically relevant to-
kens even when distractors receive high atten-
tion weights—a key advantage under modality mis-
match. QuART uses learned relevance scores to
prioritize tokens based on the question. For in-
stance, when asked about gentle placement, it em-

phasizes sensor deceleration and impact sounds
while down-weighting static visual frames. If the
camera is occluded and the user trips, only IMU
spikes and audio thuds are informative—QuART
gates out blank video. This behavior general-
izes, suppressing off-screen audio when questions
target visual actions. This token-level relevance
scores are computed as: o = softmax(MWT),
The fused context vector, C = Zle o;Z; aggre-
gates query-weighted tokens across all modalities
and conditions the LLM decoder. This learned rel-
evance outperforms raw attention (Section 6.2).
Training Objective. The decoder II pre-
dicts the output sequence {y;}._, conditioned
on C, trained via autoregressive cross-entropy:
Louart = —% >/ logpe(y | y<t,C). To
promote sparse selection of relevant tokens, we
introduce an entropy-based regularizer: Ly, =
25:1 o log ;. The total loss is

)]

We encourage sparsity via entropy regularization
scaled by \. Relevance is disabled in early stages
(C = Z, A\ = 0) and enabled in the final stage with
A = 0.001. See Appendix E for implementation &
hyperparameters and Appendix H for cost analysis.
Table 7 and Appendix G demonstrate QuART’s
advantage over SOTA alignment methods.

LRAVEN = ['QuART + A»Creg



5 Alignment-Aware Multi-Stage
Training for Multi-Modal Reasoning

We adopt a three-stage training procedure to
optimize RAVEN and its query-conditioned
alignment module. [Each stage targets a dis-
tinct component—projection alignment, query-
token fusion, and robustness to input degradation—
stabilizing learning and reducing cross-modal in-
terference (Figure 3).

Stage I: Modality-Text Pre-Training. In this
pretraining stage, we use a large-scale, weakly
labeled dataset of modality-text pairs: {video,
text}, {image, text}, {audio, text}, and
{sensor, text}, collected from caption-rich
sources, e.g., WavCaps (Mei et al., 2024), and
InternVid-10M (Wang et al., 2023). We adopt a
sequential, modality-specific training strategy to
avoid inter-modal interference and stabilize pro-
jection learning. Supervision is provided via natu-
ral language captions or transcriptions paired with
raw modality inputs, such as video subtitles, au-
dio narrations, and wearable sensor logs. For each
modality m € {v,a, s}, we freeze the pretrained
encoder ®"(-) and language model II, and up-
date only the corresponding projection head P™ to
align with textual supervision. All three branches
are trained in succession using the same LLM de-
coder, promoting consistent language grounding
across modalities.

Stage II: Query-Token Alignment Joint-
Training. After modality-specific alignment, we
train the QUART module to perform token-level
fusion conditioned on natural language queries.
We use the AVS-QA dataset for this stage, which
provides synchronized video, audio, sensor, and
query-answer supervision (Equation 1). All
modality encoders ®V, ¢ &° and their projection
heads are frozen to preserve previously learned
alignments. We initialize QuART from scratch
and train it to compute relevance-weighted token
representations that bridge cross-modal infor-
mation and the query context. In parallel, we
fine-tune the LLM decoder II using Low-Rank
Adaptation (LoRA) (Hu et al., 2022) with rank
256, offering efficient adaptation to fused multi-
modal inputs without catastrophic forgetting.
This stage enables query-aware modality fusion,
teaching RAVEN to prioritize informative tokens
for reasoning and generation.

Stage III: Modal-Discrepancy Aware Fine-
tuning. To improve robustness under real-world
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conditions, we fine-tune RAVEN using per-
turbed multi-modal inputs that simulate modality
mismatch—such as dropped sensor packets or off-
screen audio. We apply stochastic transforma-
tions independently to each modality: video un-
dergoes frame jitter, dropout, or temporal inver-
sion; audio is corrupted with Gaussian noise, re-
versed, or replaced with unrelated samples; sen-
sor signals are perturbed with zero-centered Gaus-
sian noise based on empirical variance (see Ap-
pendix D). Perturbed inputs D = {#, a, 5} are en-
coded by frozen encoders ®"* and passed through
the trained QuUART module and LoRA-adapted de-
coder II. During this stage, we activate entropy
regularization to sharpen token relevance and en-
courage sparse, discriminative alignment. We set
A = 0.001 in the final stage, as it yields the best
trade-off between sparsity and accuracy (see Sec-
tion 6.2); earlier stages use A = 0. See Appendix E
for full training details.

6 Experimental Evaluation of RAVEN

Training Datasets. RAVEN is pretrained
(Stage I) on 13.1M weakly aligned modality—
text pairs (e.g., InternVid-10M, WavCaps, Sen-
sorCaps), and fine-tuned (Stages II-III) on 510K
high-quality QA pairs from AVS-QA. See Ap-
pendix E.1 for details.

Validation Datasets. We evaluate on seven audio-
visual QA benchmarks spanning exocentric and
egocentric domains: AVSD (Alamri et al., 2019),
MUSIC-QA (Li et al., 2022), AVSSD (Chen
et al., 2020), MSVD-QA (Alamri et al., 2019),
MSRVTT-QA (Xu et al., 2016), ActivityNet-
QA (Yu et al.,, 2019), and EgoThink (Cheng et al.,
2024a), plus the 58K held-out test set from AVS-
QA (Appendix F.2). Evaluation metrics (GPT
based) follow prior work (Maaz et al., 2023) as
detailed in Appendix F.3.

Baseline Models. We compare against SOTA
models across both domains. For egocentric
QA: Valley (Luo et al., 2023), VideoChat (Li
et al., 2023¢c), VTimeLLM (Huang et al., 2024),
PandaGPT (Su et al., 2023), MacawLLM (Lyu
et al., 2023), AV-LLM (Shu et al., 2023), Video-
LLaMA (Zhang et al.,, 2023a), AVicuna (Tang
et al., 2024), and Video-LLaMA2 (Cheng
et al.,, 2024b); for exocentric QA: Open-
Flamingo (Awadalla et al.,, 2023), BLIP-
2.6 (Li et al, 2023b), VideoChat-7B (Li
et al., 2023c), LLaVA-1.5 (Liu et al., 2024a),



Table 2: Comparison of RAVEN and prior MLLMs on exocentric open-ended video QA (MSVD-QA, MSRVTT-
QA, ActivityNet-QA) and audio-visual QA (AVSD, MUSIC-QA) benchmarks. Best and second-best scores are in

bold and underline. * indicates scores reproduced by us.

| Modality | ypic prwm |

MUSIC- MSVD- MSRVTT- ActivityNet-
Method 'Video Audio | M)  size | AVSP QA AVSSD QA QA QA
Valley v X 1.5 13B 65.4 45.7 26.5
VideoChat v X 25.0 7B 56.3 45.0 26.5
Video-ChatGPT v X 0.9 7B 64.9 49.3 35.2
VTimeLLM v X 0.7 7B - - - 69.8 58.8 45.5
PandaGPT v v 128.0 13B 26.1 33.7 32.7 46.7 23.7 11.2
Macaw-LLM v v 0.3 13B 34.3 31.8 36.1 42.1 25.5 14.5
AV-LLM v v 1.6 7B 52.6 452 - 67.3 53.7 47.2
Video-LLaMA v v 2.8 13B 36.7 36.6 36.7 51.6 29.6 12.4
AVicuna v v 1.1 7B 53.1 49.6 - 70.2 59.7 53.0
Video-LLaMA2 v v 2.0 7B 50.6* 66.3* 71.4 - - -
RAVEN | v v | 08 7B | 551,360 69.8.50% 70.2175 733,409 630549 57.6.5.0%

MiniGPT4 (Zhu et al., 2023b), InstructBLIP (Liu
et al., 2023b), LLaMA-Adapter (Zhang et al.,
2023b), VideoLLaVA (Lin et al., 2023a), and
ShareGPT4V (Chen et al., 2024a). All baselines
use official checkpoints (See Appendix F.1).

6.1 Quantitative Results

Exocentric Audio-Visual. Table 2 shows that
RAVEN outperforms SOTA models on video QA
(by up to 8.0%) and AVQA (by 5.0%), surpass-
ing QA-specific fusion models (e.g., AV-LLM,
MacawLLM). These gains stem from QuART’s
fine-grained, query-conditioned relevance scores,
which enhance alignment and suppress irrelevant
inputs. Performance is competitive but not supe-
rior on curated benchmarks like AVSSD, where
modality-based relevance scoring may be less im-
pactful due to limited cross-modal variability.
Egocentric Audio-Visual Results. Table 3 re-
ports results on EgoThink and AVS-QA. RAVEN
achieves the highest overall performance—53.5 av-
erage on EgoThink (+14.6%) and 0.67 on AVS-
QA (+7.5%)-with strong gains in Completeness
(0.71, +9.8%) and Correctness (0.69, +8.7%).
While baselines like OpenFlamingo-7B and BLIP-
2.6-7B perform moderately (e.g., 21.0 on Count,
0.31 on Completeness), and VideoLLaVA-7B ex-
cels in specific categories (e.g., 66.0 in Situated),
RAVEN delivers the best overall scores.
Sensor-Aware Evaluation on AVS-QA. Table 4
reports results on AVS-QA across modalities
(V/A/S) and metrics (Completeness, Coherence,
Accuracy, Avg). RAVEN performs better than
baselines like VideoLLaMA2 with A+V fusion
(+21.8% avg). However, RAVEN with A+V+S
achieves an additional performance gain of 16.4%
— highlighting the benefit of sensor modality and

sensor-aware reasoning. These results validate the
importance of query-guided sensor integration for
context-rich QA.

Cross-modal mismatch. Table 5 shows RAVEN
effectively handles cross-modal mismatch.
Trained with Stages I and II, it outperforms prior
SOTA on AVQA by 30-79%. On AVS-QA,
Stage III fine-tuning boosts performance to 0.71-
0.79, surpassing Video-LLaMA2 (0.51-0.54).
These gains stem from QuART s query-to-token
alignment, which emphasizes semantically rele-
vant tokens even under modality misalignment.

6.2 Ablation Study

Training Stages and Loss Conditioning. We
ablate training stages, loss formulation, and reg-
ularization strength across six QA benchmarks
(Table 6). Conditioning LguarT On contextual
embeddings C (vs. raw Z) in Stage II im-
proves performance (e.g., AVS-QA Avg: 0.49 vs.
0.44), confirming the value of context in align-
ment. Adding regularization in Stage III boosts
robustness but is sensitive to A: a high value
(1.0) hurts performance (AVS-QA Avg: 0.30),
while A = 0.001 yields the best results—raising
AVS-QA Avg to 0.78 (+43%), Coherence to 0.82
(+15.9%), and Accuracy to 0.73 (+16.4%). Simi-
lar gains appear on ActivityNet-QA (+18.4%) and
MUSIC-QA (+24.5%). Overall, best performance
is achieved with Stage III, context-aware LQuART>
and A = 0.001-highlighting the synergy between
structured alignment and calibrated regularization.
Effect of Learnable Relevance Projection
(W), Table 7 compares QuART s learnable
projection head W against raw attention and
two state-of-the-art token relevance methods: Q-
Former (Li et al., 2023b) and HierarQ (Azad et al.,
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Table 3: Comparison of RAVEN with MLLMs on the EgoThink (Reasoning) and AVS-QA benchmarks. RAVEN
outperforms across metrics and excels in reasoning. Bold and underline indicate the best and second-best scores.

\ EgoThink (Reasoning) \ AVS-QA
Method .
‘ Count Compar  Situated Avg ‘ Comp. Coher. Acc. Avg
OpenFlamingo 0.21 0.40 0.21 0.27 0.31 0.34 0.27 0.31
BLIP-2.6 0.03 0.21 0.33 0.19 0.22 0.26 0.21 0.23
VideoChat 0.36 0.39 0.32 0.36 0.29 0.33 0.37 0.33
LLaVA-1.5 0.20 0.47 0.37 34.7 0.46 0.47 0.52 0.48
MiniGPT-4 0.14 0.48 0.31 0.31 0.19 0.29 0.34 0.27
InstructBLIP 0.18 0.43 0.67 0.42 0.33 0.37 0.35 0.35
LLaMA-Adapter 0.29 0.39 0.25 0.31 0.25 0.31 0.29 0.28
PandaGPT 0.19 0.52 0.53 0.41 0.38 0.42 0.41 0.40
VideoLLaVA 0.39 0.38 0.60 0.46 0.42 0.46 0.45 0.44
ShareGPT4V 0.30 0.38 0.66 0.45 0.64 0.63 0.59 0.62
RAVEN | 040,570 054,540 066,55, 054,550 | 07105y  0.69.570 0.61.506, 0.67.750
Table 4:  AVS-QA results comparing Table 5: Comparison under cross-modal mismatch scenarios.

RAVEN with SOTA models using different RAVEN with Stage III fine-tuning consistently outperforms base-

modality combinations.

line methods across all evaluation metrics and benchmarks, demon-
strating superior robustness to modality perturbations.

Method ‘ vV A S ‘ Comp. Coher. Acc. Avg
JoX X| 027 032 023 027
Macaw-LLM ‘ VA ‘ 038 046 034 039 Viethod | Avsp MUSIC MSVD  Activity | AVS-QA
etho
JoX X| 036 042 033 037 | QA QA Net-QA | Comp. Cohr. Acc. Avg.
Panda-GPT Jo/ X | 043 049 038 043
- k : k PandaGPT 122 138 218 79 023 029 026 026
VideoLLaMa | ¥ X X | 037 033 028 033  Macaw-LLM 18.1 14.5 222 10.6 011 021 0.19 017
J O/ X| 048 051 041 047  AV-LLM 247 221 49.8 26.8 - - - -
viootiamn |/ % %[ 051 ose 043 o VideoLLaMA | 179 246 315 253 028 039 033 033
1deo. VA 0.56 0.59 051 055 AVicuna 34.1 31.3 51.7 31.9 - - - -
Video-LLaMA2 | 432 447 52.1 297 051  0.54 048 051
/X X| 06l 062 046 056
RAVEN /o7 x| o071 069 061 0.67 RAVEN] 11 51.9 63.7 66.4 52.6 0.69 071 0.64 0.68
v v v 078 08 073 078  RAVEN_; | 549 692 728 57.2 076 079 071 0.75

Table 6: Ablation on training stages (I & III), conditioning Lguart on Z Table 7: Effect of WZE. QuART out-

(Louart|Z) vs. C (Lguart|C), and regularization strength .

performs with fewer parameters.

Method Raw Q- HierarQ QuUART
. . attention Former
Training | (|| syep MUSIC oo, MSVD  Activity | AVS-QA

Stage ‘ ‘ QA QA Net-QA ‘ Comp. Cohr. Acc. Avg. #Params | ‘ 41M 188M 390M 45M

Upto | CommrlZ | - | 452 532 588 603 450 | 038 052 042 044 AVSD | 291 367 Sl

Stagell | £ [C | | 487 577 615 639 512 | 042 057 047 o049 MUSIC-QA | 236 366 628

| Wio Lreg | | 407 48.5 59.3 61.5 432 | 029 041 034 035 MSVD-QA | 422 516 662 TEED

Up to 1 415 453 53.2 57.9 39.7 023 037 029 030 A“""“XN“ 12.1 124 57.2 57.6
Stage Il | with 0.1 | 483 562 547 642 458 | 062 069 059 063 -Q

Lreg | 001 | 522 618 612 681 516 | 071 078 068 072  MSRVIT
0001 | 551 698 702 733 576 | 078 082 073 078 -QA 231 26 54l 4l
2025). QuART achieves the highest accuracy  via query-aware alignment, enabling robust rea-

across all benchmarks while using fewer param-
eters (45M vs. 188M/390M). By transforming
attention scores into query-conditioned relevance
weights, W enables efficient and interpretable
cross-modal alignment. Additional ablations — in-
cluding encoder choices, LoRA rank, token selec-
tion — are provided in Appendix G, along with
qualitative examples in Appendix 1.

7 Conclusion

In this paper, we present RAVEN, a unified
framework for multimodal question answering
that integrates video, audio, and sensor inputs

viii

soning under modality disagreement. To sup-
port this, we release AVS-QA—the first large-scale
dataset of synchronized {Audio, Video, Sensor,
QA} quadruples—curated via an automated actor-
evaluator-critic pipeline. ~ Spanning egocentric
settings and four QA types, AVS-QA enables
comprehensive benchmarking. Our three-stage
training—modality pretraining, query-conditioned
alignment, and perturbation-aware fine-tuning—
drives consistent gains across diverse multimodal
QA benchmarks. These results underscore the im-
portance of structured, query-aware reasoning in
handling real-world modality mismatch.



8 Limitations

While RAVEN provides a strong foundation
for multimodal question answering over audio,
video, and sensor inputs, our current experi-
ments are limited to a single backbone model,
Qwen-Instruct-7B, due to computational con-
straints. We do not explore larger LLM vari-
ants (e.g., 13B or 70B), which could further im-
prove performance but require significantly more
resources. Additionally, we leave the investigation
of alternative language backbones and more ad-
vanced fusion strategies (e.g., retrieval-augmented
alignment, memory-based conditioning) as future
work.

We also note that for longer recordings (ex-
ceeding ~5 minutes), particularly those involv-
ing visually dense scenes, RAVEN occasionally
underperforms on vision-heavy queries. This is
likely caused by our uniform frame selection strat-
egy, which may miss critical visual cues in longer
videos because of sparse temporal sampling. In-
corporating adaptive or query-guided frame selec-
tion could mitigate this issue and improve tempo-
ral grounding.

Finally, training RAVEN is computationally

expensive. Our current setup required approxi-
mately 120 hours on 4 NVIDIA A100 GPUs (each
with 80 GB of memory). While the design is ef-
ficient at inference time due to early token filter-
ing, future work could further reduce training cost
through distillation or parameter sharing across
modalities.
Future Directions. Future work on RAVEN in-
cludes exploring joint training strategies across
modalities to enable deeper cross-modal inter-
actions and more robust representation learning.
Incorporating a saliency-aware frame selection
mechanism may further improve performance on
long-form, visually complex inputs. Addition-
ally, reducing or eliminating the need to fine-tune
the LLM backbone when introducing new modal-
ities remains an open challenge. Addressing this
could significantly improve the scalability, adapt-
ability, and deployment efficiency of multimodal
language models.

9 Ethical Considerations

The AVS-QA dataset is derived entirely from pub-
licly released egocentric datasets (Ego4D (Grau-
man et al.,, 2022) and EPIC-Kitchens (Damen
etal., 2018)) that include usage licenses permitting

ix

research redistribution. Our processing pipeline
does not introduce new identity annotations, and
we do not extract or distribute personally identifi-
able metadata. AVS-QA contains synthetic ques-
tionanswer pairs generated from visual, auditory,
and sensor summaries, and no raw video, audio,
or IMU recordings are included in the release. We
follow best practices for anonymization and re-
spect the original datasets ethical use guidelines.

10 Risk Statement

Our multimodal language model integrates audio,
visual, and sensor inputs to enhance reasoning, but
it raises several concerns. First, misuse of MLLMs
in surveillance, biometric inference, or manipula-
tion of multi-sensory content raises ethical con-
cerns regarding user privacy and consent, espe-
cially when applied to egocentric or sensor-rich
environments. Additionally, the interpretability of
cross-modal reasoning remains limited, making it
difficult to identify failure cases or mitigate hallu-
cinations across modalities. We recommend care-
ful deployment of such systems with human over-
sight, ongoing auditing of training data sources,
and future work on explainability and robust align-
ment to reduce these risks.
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A  More Related Works

This section includes additional models, datasets,
and encoder variants relevant to our work that
were not cited in the related work of the main pa-
per due to space constraints. We list them here for
completeness and to acknowledge recent progress
in MLLMs and sensor-grounded QA.

Large Language Models. Mixtral (Jiang et al.,
2024), Vicuna (Zheng et al., 2023b), Phi (Ab-
din et al., 2024), OPT (Zhang et al., 2022),
PalLM (Chowdhery et al., 2023)

Sensor MLLMs. MentalLLM (Xu et al.,
2024b), IMUGPT2.0 (Leng et al., 2024), Sen-
sor2Text (Chen et al., 2024c), Penetrative Al (Xu
et al., 2024a), PH-LLM (Cosentino et al., 2024),
PHIA (Merrill et al., 2024)

Feature Alignment. VLMo (Bao et al., 2022),
FILIP (Yao et al., 2021), ALIGN (Li et al., 2021),
ImageBind (Girdhar et al., 2023), CoCa (Yu
et al., 2022), EgoVLPv2 (Pramanick et al., 2023),
HiTeA (Ye et al., 2023), Mixed Q-Former (Wang
et al., 2024)

B AVS-QA Dataset Details

B.1 Curation and Statistical Summary

Dataset Curation Stages. In the Actor phase, we
generated 387K question—answer pairs. The Eval-
uator filtered out 12.14% based on predefined con-
straints. In the Critic phase, an additional 40K QA
pairs were discarded based on aggregate scores
from multiple critics. This results in a final dataset
of 300K high-quality QA pairs used for training
and evaluation.

Distribution of Question Types. AVS-QA in-
cludes four primary question types to support di-
verse reasoning tasks: open-ended, close-ended,
true/false, and multiple choice. Figure 4 shows
the distribution of these four categories. “Oth-
ers” category include instructional or dialogue-
style prompts that do not fit traditional QA formats.
This variety enables comprehensive benchmarking
across free-form generation and structured predic-
tion settings.

Length Distribution of Questions and Answers.
We analyze the word-length distributions of ques-
tions and answers in AVS-QA to better understand
their linguistic diversity. As shown in Figure 5,
most questions are concise, with a mode around
9-10 words and a long-tail distribution extending
up to 40 words. This variation arises from the pres-
ence of both short, structured formats (e.g., true/-
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Figure 4: Distribution of question types in AVS-QA.
The dataset includes a diverse mix of open-ended,
close-ended, true/false, multiple choice, and other for-
mats, supporting comprehensive evaluation settings.
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Figure 5: Length of questions has some variation due
to different types of questions.

false, multiple choice) and more descriptive open-
ended queries.

Figure 6 shows that a large number of answers
consist of a single word, primarily due to true/false
and multiple choice formats. In contrast, close-
ended and open-ended questions yield longer and
more varied responses, contributing to a broad
distribution that peaks between 3—10 words and
extends beyond 25 words. These distributions
highlight the reasoning and generation challenges
posed by AVS-QA.

License. AVS-QA is released under a CC-BY 4.0
license, along with the full generation pipeline, in-
cluding prompts, templates, and filtering scripts.

B.2 Quality Ranking via LLM Scoring

To evaluate the quality of multi-modal (audio,
video, sensor) question-answer pairs, we design a
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Figure 6: True/false and multiple choice questions of-
ten lead to one-word answers, while open-ended and
close-ended formats yield a broader distribution of an-
swer lengths.

set of five quality assessment axes. Each axis is
rated on a 5-point Likert scale (1 = poor, 5 = ex-
cellent) by large language models (LLMs) using
structured prompts:
Answerability. Evaluates whether the question
is answerable based on the provided multi-modal
context. A high score indicates that the combined
modalities contain sufficient and coherent informa-
tion to support a correct and complete answer.
Hallucination Robustness. Measures the ex-
tent to which the answer avoids introducing infor-
mation not grounded in the provided modalities.
Higher scores indicate reliable adherence to the
multi-modal context, while lower scores reflect a
greater risk of hallucination.
Cross-Modal Grounding. Assesses the degree
to which the answer integrates information across
modalities (e.g., referencing audio to explain vi-
sual content). Higher scores reflect strong cross-
modal coherence and accurate alignment with
modality-specific cues relevant to the question.
Specificity. Measures the level of detail and preci-
sion in the answer relative to the question. Higher
scores indicate clear, specific, and well-defined re-
sponses that avoid vague or generic statements, of-
fering informative and actionable insights.
Relevance. Measures how directly the answer
addresses the intent and scope of the question.
Higher scores indicate focused, contextually ap-
propriate responses that are clearly aligned with
the queried scenario and available modalities.
Each QA pair is scored across the five axes by
LLaVA-1.5(Liu et al., 2024a), Gemeni Pro (Team
et al., 2023), Qwen-VL (Bai et al., 2023), GPT-40

XVi

(Achiam et al., 2023), LLaMA-3 (Grattafiori et al.,
2024) in a zero-shot setting. We compute the final
quality score by averaging the axis-level ratings.
We discard QA pairs where 2 axes receive a score
<3 from at least 3 of 5 LLMs. This threshold was
chosen based on alignment with human judgment
(see Appendix B.3).

B.3 Human Evaluation

We conducted a human evaluation on a randomly
selected subset of 300 question-answer pairs from
AVS-QA. Two expert annotators independently re-
viewed each sample and assigned quality ratings
based on the accompanying video, audio, and sen-
sor data. Ratings follow the same 5-point Likert
format as the LLM scorer.

We categorized the pairs based on human agree-
ment: Satisfied (both annotators rate 4), Okay
(mixed rating: one 4, one <4), and Not Satisfied
(both <4). We observe 81% Satisfied, 7% Okay,
and 12% Not Satisfied.

This aligns closely with the filtering per-
formed by our LLM critic, which rejected 40K
of the initial 340K QA pairs (11.76 %), indicat-
ing strong agreement between human and au-
tomatic judgments. This suggests that our LLM-
based scoring framework is a reliable proxy for hu-
man evaluation at scale.

We recruited two annotators through internal ad-
vertisements at the host institution. Both male an-
notators were between 25-35 years old and had a
basic understanding of large language models. Par-
ticipation was voluntary, and no financial incen-
tives were provided.

B.4 Prompt for Dataset Curation

We use a structured Actor-Evaluator—Critic
pipeline for automatic generation and refinement
of question—answer pairs. Figures 7-12 show the
system and user prompts used at each stage of this
pipeline.

In the Actor phase, a language model is pro-
vided with multimodal scene descriptionsinclud-
ing audio, video, IMU data summaries, and human
narrationand is prompted to generate diverse ques-
tions spanning open-ended, close-ended, multiple
choice, and true/false formats. The prompt encour-
ages context-aware and modality-specific reason-
ing (see Figures 7-8).

In the Evaluator phase, a second model ver-
ifies the answerability, modality grounding, and



I will provide you with 5 different pieces of information from
different modalities (visual, audio, IMU) about a scene where
someone performs some type of activity. The information
contains:

1. A narration for the entire scene

2. Objects present in the scene, and their normalized bounding
box as a list of tuples.

3. A summary of the scene from the audio describing the scene
only hearing the audio.

4. Statistical features from the IMU data for the accelerometer
and gyroscope in the x, y, and z-axis.

5. A human describing the activity.

I want you to be a smart agent, imagine yourself present in the
scene, and consider all the modalities to understand the entire
scene. Now you have to generate question-answer pairs of
different types (e.g., open-ended, close-ended, multiple choice,
True-False, etc.). The question-answers should require multi-
step and complex reasoning to answer. Use one or multiple
modality information to generate the questions and answers.
Ensure that the knowledge and reasoning chains in the question
are precise and sufficiently challenging, to the extent that
only experts in the respective field can provide adequate
responses.

Here are some examples of different question-answer types:

What is the person likely doing in the scene?

Answer: The person is likely eating at the table, as there is a
plate of <food_name>, and a <some_utencils>present.

The person is actively cutting <object_name_1>, and a
<object_name_2> is present. True or False?

Answer: Cutting <object_name_1> True, but <object_name_2> is not
present.

Figure 7: System prompt used for generating ques-

tions and answers in Actor phase.

Please generate two question answers of each type of open-ended,
close-ended, multiple choice and True-False. Generate five
answers for each open-ended question and single answer for other
type of questions. Give the output in a list of JSON format
e.g., [{{“question”: “Generated Question”, “answer_1”:
“Generated Answer 1”, “answer_2”: “Generated Answer 2”,
“question_type”: “question_type”}}, ...]. The “question_type”
would be of one of these four types (open-ended, close-ended,
multiple choice, True-False).

Entire Scene Narration: {}
Objects Present: {}

Audio Description: {}

IMU features: {}

Human description: {}

Figure 8: User prompt used for generating questions

and answers in Actor phase.

factual correctness of each QA pair.

The sys-

tem prompt (Figure 9) outlines constraints regard-
ing modality coverage, object grounding, and lan-
guage consistency. The human prompt (Figure 10)
ensures no hallucinated corrections are introduce-

donly local improvements to existing QA pairs.

I will provide you multiple questions and corresponding answers
which were generated using 5 different pieces of information
from different modalities (visual, audio, IMU) about a scene
where someone performs some type of activity. The information
contains

1. A narration for the entire scene

2. Objects present in the scene, and their normalized bounding
box as a list of tuples.

3. A summary of the scene from the audio describing the scene
only hearing the audio.

4. Statistical features from the IMU data for the accelerometer
and gyroscope in the x, y, and z-axis.

5. A human describing the activity.

I will also provide you the five different information that were
used.

I want you to be a smart evaluator who can analyze the quality
of generated questions and answer using the provided information
from all modalities.

You have to make sure that the following constrains have been
followed strictly.

The question-answer pairs must meet the following constraints:
1. MUST exclude terms like “according to the narration”,
“according to the audio description,”, "Human narration", "based
on scene description", "audio description"”, etc from both
Questions and Answers. You should generate questions and answer
them as if you are present in the scene and reason from one or
more modalities.

2. Question-answer pairs should be as diverse as possible.

3. Only ask the questions that can be answered. If a question
can not be answered from one modality try other modalities to
answer that. For example, if something is not visible (obscure
in visual modality) use audio or IMU to find the answer.

4. The answers should be less than 30 words.

5. When generating questions about any object, first make sure
that the object is present in the "objects present" list or
match with the entire scene narration.

6. Use both human description and entire scene narration when
describing the scene. if there is inconsistency between these
two, prioritize human description.

if the constraints are not met for any given question answer
pair, update them accordingly and save them in a similar form in
a json file. DO NOT CHANGE QUESTIONS ENTIRELY, ONLY IMPROVE
THEM. Additionally, do not add any co-ordinates.

Figure 9: System prompt used for generating ques-
tions and answers in Evaluator phase.
straints ensure avoiding some phrases or groups of
words to enhance the quality of question-answer pairs.

The con-

Please determine if the question-answer pair strictly follow the
constraints based on the following five information:

Entire Scene Narration: {}

Objects Present: {}

Audio Description: {}

IMU features: {}

Human description: {}

Only output the updated question and answers.
DO NOT MENTION ANY KEY IMPROVEMENTS IN THE OUTPUT OR ANY OTHER
TEXT EXCEPT QUESTIONS AND ANSWERS.

Figure 10: User prompt used for generating ques-
tions and answers in Evaluator phase.

In the Critic phase, large language models are
prompted to rate the quality of each generated
question—answer pair using four dimensions: rel-
evance, correctness, clarity, and depth. As shown
in Figures 11-12, the system prompt instructs
the model to consider all five available modality-
specific inputs (narration, object list, audio sum-
mary, IMU features, and human description) be-
fore assigning a score.

The user prompt standardizes the response for-
mat and explicitly prohibits speculative reasoning

or textual justificationensuring consistent, numer-
ical evaluations across samples. Each QA pair
receives two scores (one for the question, one
for the answer), which are then aggregated across
multiple critics to determine inclusion in the final
dataset. QA pairs with low aggregate scores are
discarded during the final curation step.

This prompt engineering strategy supports di-
verse and high-quality QA generation without
human-in-the-loop authoring.
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I will provide you multiple questions and corresponding answers
which were generated using 5 different pieces of information
from different modalities (visual, audio, IMU) about a scene
where someone performs some type of activity. The information
contains

1. A narration for the entire scene

2. Objects present in the scene, and their normalized bounding
box as a list of tuples.

3. A summary of the scene from the audio describing the scene
only hearing the audio.

4. Statistical features from the IMU data for the accelerometer
and gyroscope in the x, y, and z-axis.

5. A human describing the activity.

I will also provide you the five different information that were
used.

I want you to be a critic who can analyze the quality of
generated questions and answer using the provided information
from all modalities.

You have to analyze their relevance, clarity, depth and
correctness. Based on these four criteria rate the quality of
each questions and answers on a scale of 1-5.

Figure 11: System prompt used for generating ques-
tions and answers in Critic phase.

Please rate the quality of questions and answers considering the
relevance, correctness, clarity, and depth based on the
following five information:

Entire Scene Narration: {}

Objects Present: {}

Audio Description: {}

IMU features: {}

Human description: {}

DO NOT OUTPUT THE ORIGINAL QUESTIONS AND ANSWER. OUTPUT ONLY THE
QUALITY SCORE. DO NOT OUPUT ANY REASONING OR THOUGHT.

Please generate the response in the form of a Python dictionary
string with keys, 'Question', 'Answer’. For example, your
response should look like this:

{Question: 3.1, Answer: 4.8}

Figure 12: User prompt used for generating ques-
tions and answers in Critic phase.

C Additional Model Architecture Details

C.1 LIMU-BERT Pre-Training

As our sensor encoder, we employ LIMU-
BERT (Xu et al., 2021), a multi-head attention-
based encoder-decoder architecture. LIMU-BERT
is a lightweight, BERT-inspired self-supervised
representation learning model designed for mobile
IMU (Inertial Measurement Unit) sensing applica-
tions. It processes unlabeled IMU dataaccelerome-
ter, gyroscope, and magnetometer readingsto learn
generalizable features. The architecture incorpo-
rates a normalization and sensor fusion layer, fol-
lowed by a transformer encoder with cross-layer
parameter sharing to reduce model size. It adopts
a span-masking version of the Masked Language
Modeling (MLM) task to learn both distributional
and temporal patterns from the IMU sequences.
We adopt the official LIMU-BERT implementa-
tion under the MIT license for research use.

C.2 Unimodal Encoder Pre-Training

We use the VideoLLaMA2 (Cheng et al., 2024b)
codebase for pre-training the vision encoder. The
encoder is initialized from a SigLIP checkpoint
and fine-tuned with instructional video datasets in-
cluded in the VideoLLaMA?2 training suite. This
setup enables the model to learn temporal and
spatial reasoning over egocentric and exocentric
scenes. The code is released under the Apache 2.0
license and used strictly for research purposes.

C.3 Projection Layer

Each modality-specific encoder output is projected
to the LLM input dimension using a tailored strat-
egy. The output of the audio encoder is projected
through a two-layer multi-layer perceptron (MLP)
to align with the LLM dimension. For the video
encoder output, we use a spatio-temporal convolu-
tional (STC) connector for spatio-temporal learn-
ing of the video. STC connector uses RegStage
(Radosavovic et al., 2020) with 3D convolution for
downsampling the video output. We use a publicly
available adaptation of the STC-connector in our
implementation (Cheng et al., 2024b) under the li-
cense of Apache 2.0 for research purposes only.

D Cross-Modal Mismatch Generation
and Robustness Evaluation

Cross-modal mismatch refers to the condition in
which the semantic alignment between different
input modalitiessuch as audio, video, and sensor
streamsis disrupted. In real-world multi-modal
systems, such mismatches frequently arise due to
noise, missing data, or temporal desynchroniza-
tion between modalities. Understanding and ad-
dressing cross-modal mismatch is crucial for build-
ing robust models capable of effective reasoning
across modalities.

To systematically evaluate model robustness un-
der such conditions, we introduce a synthetic
cross-modal mismatch generation process. Given
a clean multi-modal datapoint D = {a,v,s},
where a, v, and s denote the synchronized audio,
video, and sensor streams respectively, we con-
struct a perturbed version D' = {a’,v’, s’} by ap-
plying one or more of the following perturbations:
Modality-Specific Noise Injection.: Gaussian or
environmental noise is added to the audio a and/or
video v streams, degrading signal fidelity while
preserving temporal structure.

Temporal Reversal.: The temporal sequence of
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Algorithm 1 Algorithm for generating Cross-Modal Mismatch

Define Pydio < {ADDNOISE, REVERSE, REPLACEWITHIRRELEVANT, NOPERTURBATION }
Define Pyigeo ¢ { ADDNOISE, REVERSE, REPLACEWITHIRRELEVANT, NOPERTURBATION }
Define Piensor < { ADDJITTER, REPLACEWITHIRRELEVANT, NOPERTURBATION }

1: function GENERATECROSSMODALMISMATCH(D = {a, v, s})
2 Initialize D' = {a’,v', s’} «+ {a,v, s}
3

4

5:

6 if RandomChoice([True, False]) then
7 a' < RandomChoice(P,yugio)(a)

8 else

9: a +—a

10 end if

11: if RandomChoice([True, False]) then
12: v’ <= RandomChoice(Pyigeo ) (V)
13: else

14: v v

15: end if

16: if RandomChoice([True, False]) then
17: 5" +— RandomChoice( Piensor)(5)
18: else

19: s+ s
20: end if
21 return D' = {d/, v, s'}

22: end function

audio or video is reversed independently, altering
the causal and sequential semantics of events.
Sensor Perturbation.: Random noise or jitter is
added to sensor streams (e.g., IMU data), simulat-
ing faulty or low-resolution sensor readings.
Modal Replacement.: One or more modalities
(e.g., audio) are replaced with semantically ir-
relevant counterparts sampled from other unre-
lated datapoints in the dataset, creating intentional
cross-modal conflict.

These perturbations simulate realistic mis-
matches commonly encountered in egocentric and
exocentric environments, such as microphone oc-
clusion, corrupted video frames, or misaligned
sensor logging. This synthetic mismatch gener-
ation enables controlled stress testing of multi-
modal models, revealing their capacity to handle
noisy, misaligned, or contradictory inputs across
modalities. Algorithm 1 explains the process used
for generating cross-modal mismatch.

E Training and Implementation Details

E.1 Dataset for Multistage Training

Along with our in-house data (AVS-QA), we use
publicly available datasets to train the video, au-
dio, and sensor encoders. To pre-train the sensor
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encoder, we use epic kitchen (Damen et al., 2018),
ego4D (Grauman et al., 2022),HHAR (Stisen
et al., 2015), UCI-HAR (Reyes-Ortiz et al.,
2016), Shoaib (Shoaib et al., 2014), Motion-
Sense (Malekzadeh et al.,, 2019), PAMAP2
(Roggen et al., 2010) data. We use pre-trained
SigLIP as our video encoder and then fine-tune
it with datasets from videoLLama2 (Cheng et al.,
2024b). Similarly, we use a pre-trained audio en-
coder, Beats, and fine-tune it with WavCaps (Mei
et al., 2024) datasets (Chen et al., 2022). We lever-
age SensoCaps and OpenSQA (Imran et al., 2024)
for the sensor pretraining part. Table 8 summa-
rizes the dataset used at different stages of train-
ing.

E.2

RAVEN has 8.5B parameters, including all the en-
coders, projection layers, QuART, and LLM back-
bone. Table 9 summarizes the key hyperparame-
ters used during training.

Hyperparameters for Training

E.3 Train-Test split

For all publicly available datasets used during
pre-training and fine-tuning, we adopt the of-
ficial train—test splits provided by their respec-
tive authors. For our curated dataset, AVS-



Table 8: Datasets used at each training stage of RAVEN. AVS-QA contributes to all three stages, enabling both
sensor-text alignment and robust fine-tuning under cross-modal mismatch.

Training stage Dataset #Pairs
InternVid-10M (Wang et al., 2023), WebVid-10M (Bain et al., 2021),
Vision-Text | Panda-70M (Chen et al., 2024b), VIDAL-10M (Zhu et al., 2023a), 122M
Modality-Text Pre-Training CC-3M (Changpinyo et al., 2021), DCI (Urbanek et al., 2024)
| Audio-Text | WavCaps (Mei et al., 2024) | 400K
‘ Sensor-Text ‘ OpenSQA (Imran et al., 2024), SensorCaps (Imran et al., 2024) ‘ 205K
AVQA(Yang et al., 2022), AVSSD (Chen et al., 2020),
Query-Token Alignment Joint-Training MUSIC-AVQA (Li et al., 2022), 403K
AVSD (Alamri et al., 2019), AVS-QA
AVQA (Yang et al., 2022), AVSSD (Chen et al., 2020),
Modal-Discrepency Aware Fine-Tuning MUSIC-AVQA (Li et al., 2022), 510K

AVSD (Alamri et al., 2019), AVS-QA

Table 9: Key hyperparameters used in training
RAVEN. Token counts reflect the number of input to-
kens per modality. We adopt a 6-layer transformer
with 8 attention heads, a LoRA rank of 4256, and use
AdamW for optimization.

Description Notation | Value

Number of audio tokens L, 1496
Number of video tokens L, 1352
Number of sensor tokens L, 120
Embedding dimension E 3584
Number of total token L 2968
Numer of heads h 8
Number of encoder layer N 6
Each head dimension d; 448
Batch size (local/global) - 1/4
LoRA rank r 4256
Optimizer - AdamW
Weight decay - 0.03

QA, we create a standardized train—test split
to ensure consistent evaluation and reproducibil-
ity. To prevent data leakage and overfitting,
we ensure the input sessions for curating AVS-
QA train and test split remain completely sep-
arated. The split files are publicly available
in our GitHub repository https://anonymous.
4open.science/r/RAVEN/avs-qa-dataset/.

F Evaluation Details

F.1 Evaluation Baselines

Video-LLaMA. Video-LLaMA extends LLaMA
by incorporating frozen video encoders (TimeS-
former, X-CLIP) to extract spatio-temporal fea-
tures, which are linearly projected into the LLM
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input space. It is trained via instruction tun-
ing and multi-modal supervised learning, enabling
video captioning, question answering, and reason-
ing with generalization from few-shot examples.
Video-LLaMA2. Video-LLaMA-2 builds upon
its predecessor by introducing spatio-temporal
connectors, which better align video representa-
tions with the LLM input through a more struc-
tured fusion mechanism. Additionally, Video-
LLaMA-2 leverages more powerful video en-
coders and larger training corpora, making it more
robust for real-world multimodal applications.
PandaGPT. PandaGPT integrates CLIP for visual
features and BEATS for audio features, followed
by a Q-Former to project them into the token space
of a language model (Vicuna). PandaGPT sup-
ports multi-turn dialogue grounded in both visual
and auditory content, enabling it to reason over
video-audio-text contexts.

Macaw-LLM. Macaw-LLM adopts a modular
design where a dedicated encoder process each
modality, and the features are fused into a shared
embedding space for the language model. Inspired
by BERT-style pretraining, Macaw-LLM supports
tasks such as cross-modal retrieval, multimodal
classification, and audio-visual QA.

VideoChat.  VideoChat introduces a video-
grounded dialogue system that enables interactive
conversations about dynamic visual content. It
uses a pre-trained video encoder (like X-CLIP
or SwinBERT) to extract frame-wise representa-
tions and then aligns these with LLaMA through
lightweight adapters. VideoChat supports both
single-turn and multi-turn video QA, offering real-
time conversational abilities over video inputs. It
was among the first open-source models to demon-
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strate effective temporal video grounding in LLM-
based dialogue.

VideoChatGPT. VideoChatGPT extends
VideoChat by incorporating end-to-end video-LM
alignment with improved temporal reasoning and
multi-frame understanding. It utilizes a stronger
video encoder and enhanced fusion modules (e.g.,
spatio-temporal attention layers) to feed richer
video context into the LLM.

VALLEY. VALLEY (VisuAL Langauge Learner
with Large memorY) is designed for multi-modal
memory-augmented video reasoning. It focuses
on long-term memory alignment across video seg-
ments and text, allowing the model to retain and
reference past frames effectively during reason-
ing. VALLEY combines a hierarchical visual en-
coder with a memory-enhanced transformer de-
coder that interacts with a language model, en-
abling it to handle long videos and multi-step
reasoning tasks such as procedural understanding,
storytelling, and temporal localization.
VTimeLLM. VTimeLLM (Video-Time Language
Model) focuses on temporal video understanding
by aligning spatio-temporal features with natural
language in a query-aware manner. It introduces
a temporal reasoning module that captures the or-
der, duration, and causality of events in video seg-
ments. Using a dual-stream architecture with tem-
poral attention and frame-level token sampling,
VTimeLLM fuses visual and language informa-
tion for downstream tasks such as video QA, mo-
ment retrieval, and video narration.

AV-LLM. AV-LLM integrates auditory and vi-
sual modalities using CLIP for images/videos
and Whisper or BEATs for audio with a frozen
LLaMA. It employs a cross-modal projection
layer and lightweight adapters to fuse the modal-
ities, enabling zero-shot and instruction-tuned
tasks like audio-visual QA, event description, and
sound-source reasoning.

AVicuna. AViCuna is a chat-centric audio-visual
instruction-following model that combines audio
and video features into a unified token stream for
a conversational LLM based on Vicuna. It uses Q-
Former modules to encode BEAT's for audio and
CLIP for video features, and feeds these to the
LLM via a learned query-token bridge.
OpenFlamingo. OpenFlamingo fuses a frozen
CLIP-ViT with a pre-trained language model via
a perceiver-style cross-attention module. The key
innovation lies in its interleaved visual-text token
interface, which allows the model to reason over
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multimodal sequences without further fine-tuning.
OpenFlamingo supports tasks such as image cap-
tioning, VQA, and multi-image reasoning in an ef-
ficient and instruction-following setting.
SahreGPT4V. ShareGPT4V emphasizes the im-
portance of caption quality in multimodal learn-
ing, showing that even a modest amount of rich,
semantically dense image-text pairs can signifi-
cantly improve LMM performance. It uses GPT-
4V to generate 100k captions and further extend
the dataset to a 1.2m sample by using a caption
model. ShareGPT4YV is then fine-tuned with this
caption dataset as a foundational MMLLM.
MiniGPT-4. MiniGPT-4 mimics GPT-4V’s capa-
bilities using open components. It pairs a frozen
CLIP-ViT with a Vicuna-based LLM via a linear
projection layer, trained with a two-stage instruc-
tion tuning pipeline. MiniGPT-4 achieves strong
performance with low computational cost.
BLIP-2.6. BLIP-2.6 is an evolution of BLIP-2,
further improving the alignment between vision
encoders and LLMs using a multistage pretraining
and fine-tuning strategy. It enhances the Q-Former
mechanism and supports longer and denser vision-
language interactions with better grounding fi-
delity. BLIP-2.6 shows improvements in instruc-
tion following, fine-grained captioning, and long-
context multimodal tasks while maintaining the
zero-shot generalization strength of BLIP-2.
InstructBLIP. InstructBLIP is an instruction-
tuned extension of the BLIP-2 family, designed
to align vision-language pretraining with task-
specific prompts. It introduces a flexible prompt-
ing mechanism and uses a frozen vision encoder
with a trainable Q-Former to bridge the modality
gap to an LLM.

F.2 Evaluation Datasets

InternVid-10M. InternVid-10M is a large-scale
video-text dataset comprising approximately 10
million video-caption pairs, designed to support
pretraining of multimodal large language models.
The videos are sourced from diverse domains, and
the captions are refined to improve visual-textual
alignment.

WebVid-10M. WebVid-10M consists of 10 mil-
lion video-text pairs harvested from web sources,
particularly short-form videos with associated
metadata or alt-text. Although noisier than manu-
ally curated datasets, its sheer scale makes it valu-
able for video-language pretraining.

Panda-70M. Panda-70M is a massive multimodal



dataset containing over 70 million aligned video,
audio, and text triplets. It is curated from open-
domain videos, including instructional content, to
cover a wide variety of real-world scenarios. The
dataset is designed for training models that re-
quire joint understanding of video, audio, and lan-
guage, enabling tasks such as multimodal reason-
ing, audio-visual captioning, and cross-modal re-
trieval at scale.

Vidal-10M. VIDAL-10M is a curated dataset com-
prising 10 million high-quality video-caption pairs
aimed at enhancing temporal and contextual un-
derstanding in multimodal models. It includes
dense and descriptive captions aligned with di-
verse video domains, enabling robust pretraining
for video-language models. VIDAL-10M empha-
sizes temporal consistency and semantic diversity,
supporting tasks like video QA, moment retrieval,
and event understanding.

CC-3M. CC-3M is a widely-used image-text
dataset containing approximately 3 million image-
caption pairs sourced from the web. The captions
are filtered and cleaned alt-text annotations that
loosely describe the visual content. While the de-
scriptions can be noisy and lack fine-grained detail,
it is valuable for large-scale vision-language pre-
training, especially for image-text retrieval, cap-
tioning, and contrastive representation learning.
DCI. DCI is a dataset developed to improve
instruction-following in vision-language models
by pairing images with rich, instruction-style de-
scriptions.  The captions are generated using
large language models guided by carefully de-
signed prompts to increase informativeness and
task relevance. DCI serves as a bridge between
standard image-caption datasets and instruction-
tuned models, supporting applications like visual
instruction-following, grounded question answer-
ing, and image-based reasoning.

WavCaps. WavCaps is a large-scale audio-text
dataset designed to enhance audio-language pre-
training. It includes over 400,000 audio clips
paired with captions, either collected from meta-
data or generated via model-based annotation
pipelines. Covering a wide range of sound events-
from speech and music to environmental and me-
chanical soundsWavCaps supports tasks such as
audio captioning, sound event detection, and cross-
modal audio-text retrieval.

SensorCaps. SensorCaps is a pioneering sensor-
language dataset that pairs time-series data from
inertial measurement units (IMUs) and other body-

worn sensors with detailed natural language de-
scriptions. Designed to support tasks like sen-
sor captioning and multimodal grounding, Sensor-
Caps bridges wearable sensing data with large lan-
guage models. It enables multimodal LLMs to
reason about human actions, physical context, and
temporal dynamics from sensor inputs.
OpenSQA. OpenSQA is a benchmark dataset for
sensor-based question answering, aiming to bring
structured reasoning capabilities to models pro-
cessing sensor time-series data. It includes labeled
QA pairs grounded in sensor streams from IMU
collected in real-world contexts. OpenSQA sup-
ports open-ended and multiple-choice questions,
making it a valuable testbed for evaluating sensor-
to-text alignment and semantic understanding in
multimodal models.

AVSD. AVQA is a benchmark dataset specifically
designed for evaluating audio-visual reasoning ca-
pabilities in multimodal models. It includes videos
paired with open-ended and multiple-choice ques-
tions that require joint analysis of both visual con-
tent and audio cues. AVQA challenges models
to perform fine-grained audio-visual fusion for an-
swering questions about actions, events, or contex-
tual elements that span both modalities.

AVSSD. AVSSD is a large-scale dataset contain-
ing over 200,000 audio-video clips spanning 310
sound classes. Each clip is approximately 10 sec-
onds long and is sourced from YouTube, covering
a wide range of natural and human-made sounds.
AVSSD supports weakly-supervised learning and
cross-modal modeling, especially for tasks like
sound classification, audio-visual event detection,
and audio grounding in video.

MUSIC-AVQA. MUSIC-AVQA is a specialized
dataset designed for audio-visual question answer-
ing in musical contexts, where questions require
understanding of both the visual performance and
the auditory output of musical instruments. It is
built upon the MUSIC dataset, which includes iso-
lated instrument performances. MUSIC-AVQA
extends MUSIC with over 7,000 QA pairs involv-
ing tasks such as instrument identification, sound
localization, source counting, and event timing.
The questions are crafted to assess fine-grained
audio-visual reasoning, where answers depend on
spatial, temporal, and semantic alignment of what
is seen and heard.

AVQA. AVQA is a benchmark dataset specifically
designed for evaluating audio-visual reasoning ca-
pabilities in multimodal models. It includes videos
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{"role": "system",

"content": "You are an intelligent chatbot designed for
evaluating the correctness of generative outputs for question-
answer pairs. "

"Your task is to compare the predicted answer with the correct
answer and determine if they match meaningfully. Here's how you
can accomplish the task:"

"H##INSTRUCTIONS: "

"- Focus on the meaningful match between the predicted answer
and the correct answer.\n"

"- Consider synonyms or paraphrases as valid matches.\n"

"- Evaluate the correctness of the prediction compared to the
answer."

1,

{"role": "user",

"content":

"Please evaluate the following video-based question-answer
pair:\n\n"

f"Question: {question}\n"

f"Correct Answer: {answer}\n"

f"Predicted Answer: {pred}\n\n"

"Provide your evaluation only as a yes/no, coherence where
coherence is a float value between © and 1 with 1 indicating the
highest meaningful soundness of the predicted answer with given
question, and score where the score is an integer value between
0 and 1, with 1 indicating the highest meaningful match. "
"Please generate the response in the form of a Python dictionary
string with keys 'binary_pred' 'coherence', and 'score', where
value of 'binary_pred' is a string of 'yes' or 'no' , value of
‘coherence’ is in FLOAT not STRING and value of ‘score' is in
FLOAT, not STRING."

“DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only
provide the Python dictionary string. "

"For example, your response should look like this:
{'binary_pred': ‘yes', 'coherence': ©.79, 'score': 0.7}."

¥

Figure 13: System and user prompt used to evaluate the
generated answer quality.

paired with open-ended and multiple-choice ques-
tions that require joint analysis of both visual con-
tent and audio cues. AVQA challenges models
to perform fine-grained audio-visual fusion for an-
swering questions about actions, events, or contex-
tual elements that span both modalities.
EgoThink. EgoThink is a benchmark designed
to evaluate the first-person perspective reasoning
capabilities of vision-language models (VLMs).
It comprises question-answer pairs derived from
egocentric video clips, focusing on six core ca-
pabilities across twelve detailed dimensions. The
dataset emphasizes tasks that require models to un-
derstand and reason from a first-person viewpoint,
such as anticipating future actions or interpreting
personal experiences. Evaluations of eighteen pop-
ular VLMs on EgoThink reveal that, while models
like GPT-4V perform well in certain areas, there
remains significant room for improvement in first-
person perspective tasks. EgoThink serves as a
valuable resource for advancing research in em-
bodied artificial intelligence and robotics.

F.3 Evaluation Metric

Following previous work (Maaz et al., 2023), we
leverage GPT-3.5-turbo to evaluate the generated
answer quality. Figure 13 depicts the evaluation
prompt.

Table 10: Comparison of video encoders across three
QA benchmarks. SigLIP consistently outperforms all
ViT variants, demonstrating stronger temporal and vi-
sual grounding for video-based question answering.

‘ Datasets
EZ:;Z‘; MSVD- MSRVTT- ActivityNet-
QA QA QA
VIT-B/16 | 65.7 51.4 459
VILL/14 | 673 53.7 472
VILH/14 | 675 542 475
SigLip 733 63.1 57.6

Table 11: Performance of audio encoders across QA
datasets. BEATSs achieves the highest accuracy on
all benchmarks, surpassing Whisper variants in multi-
modal reasoning tasks.

‘ Datasets
Eﬁ‘c‘j‘;‘;r MSVD- MSRVTT- ActivityNet-
QA QA QA
Whisper-T 66.5 51.6 46.2
Whisper-B 67.7 53.1 47.4
Whisper-S 68.1 53.9 47.6
BEATs | 733 63.1 57.6
G Ablation Study
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Figure 14: Impact of LoRA rank on QA accuracy
across five benchmarks. Accuracy improves steadily
with higher ranks, saturating near 256, indicating
that moderate-rank adapters suffice for effective mul-
timodal alignment and reasoning.

Effect of Modality Encoder. We investigate the
influence of visual and audio encoder choices on
model performance across three video QA bench-
marks (Tables 10, 11). For vision, scaling standard
ViT architectures from B/16 to H/14 yields only
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Table 12: Comparison of QuART with General Fusion
Approaches. QuART performs better due to its token-
level reasoning capabilities.

| Datasets
Fusion
MSRVTT-

Model AVSSD QA
Imagebind 27.8 27.8
MBT 64.1 -
AVFIC - 19.4
QUART | 70.2 63.1

marginal improvements (e.g., +1.8% on MSVD-
QA), suggesting limited benefits from increasing
model capacity alone. In contrast, substituting ViT
with SigLip, a vision-language pretrained model
leads to substantial performance gains (73.3 vs.
67.5 on MSVD-QA), demonstrating the impor-
tance of cross-modal alignment during pretrain-
ing. On the audio side, scaling Whisper en-
coders from Tiny to Small results in modest im-
provements (e.g., +1.6% on MSVD-QA), but all
Whisper variants are outperformed by BEATS, a
model pretrained on diverse acoustic signals. No-
tably, BEATSs achieves a +5.2% gain over Whisper-
Small on MSVD-QA, highlighting the efficacy of
domain-specific audio pertaining.

LoRA Rank Selection. Figure 14 shows an ab-
lation on LoRA rank. Lower ranks improve ef-
ficiency but may limit representational capacity,
while higher ranks offer greater adaptability at a
higher cost. Performance peaks at r = 256, indi-
cating it provides the best trade-off between com-
putational overhead and task effectiveness.
Comparison of QuART with General Fusion
Approaches. We compare QuART with state-
of-the-art general-purpose fusion models (Image-
Bind (Girdhar et al., 2023), MBT (Nagrani et al.,
2021), and AVFIC (Nagrani et al., 2022)), which
are not optimized for QA tasks. As shown in Ta-
ble 12, QuART outperforms these models, high-
lighting the benefit of QA-specific supervision and
token-level fusion for effective reasoning.

H Compute Cost and Environmental
Impact

We train our model using four NVIDIA A100
GPUs (80GB each) with a total CPU memory of
256GB. Evaluation is performed on four NVIDIA
L40S GPUs (46GB each). Training runs for 120
hours with a local batch size of 1 and a global

batch size of 4. We use a learning rate of 1 x 1073
for the projection layers and 1 x 10~ for fine-
tuning the encoder layers.

We estimate the total energy consumption to be
approximately 1,200 kWh, based on the average
power draw of an A100 system under mixed preci-
sion load. Following the ML CO5 emissions calcu-
lator (Lacoste et al., 2019), this corresponds to an
estimated carbon footprint of 420 kgCOse when
using the U.S. average energy mix.

I Qualitative Results

Figures 15 — 19 illustrate the performance of
RAVEN across diverse real-world scenarios.
While RAVEN demonstrates strong performance
using only audio and visual inputs, the inclusion of
sensor data consistently improves robustness and
interpretability.

In particular, 17 and 18 highlight how sensor in-
formation enhances the correctness and relevance
of both the predicted answer and its supporting ex-
planation. Conversely, Figure 19 presents a fail-
ure case where the model, even with full audio-
video-sensor input, fails to infer the correct task
due to subtle contextual clues across modalities
that might not clearly differentiate similar tasks,
hindering accurate inference.
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. Was the user actively cooking or stirring

4 Ml  something in the pot on the stove?

A pot on the stove with
a spoon or spatula inside,
indicating food preparation.
However, without motion
cues, it's uncertain if the
user is actively stirring or
simply placed the utensil
"*" there earlier. There's no
9, ¥ indication of speaking or
: e precise movement.

= Audio+Video % Audio+Video+
, Sensor

We observe a cooking setup
with a spatula in the pot.
Audio suggests no sound of
stirring. IMU data confirms
no hand or body movement,
consistent with no stirring or
shifting stance. Together,
these cues verify that the
user is not actively cooking,
moving, and speaking during
the activity.

Figure 15: Example illustrating the value of sensor input for activity disambiguation. Given the question Was
the user actively cooking or stirring something in the pot on the stove?, the Audio+Video model observes a
cooking scene but cannot confirm active engagement due to the absence of motion cues. In contrast, the Au-
dio+Video+Sensor model leverages IMU data to detect a lack of body movement and integrates audio signals to

confirm no stirring, allowing it to infer that the user is not actively cooking.

The person is likely
washing dishes especially
lathering a ladle in the
kitchen sink. The sound of

water running and dishes
AU A eSS poing washed with the

LY »
@*,) e Poommpat oo presence of sink and bowl,
bl and hand likely explain the

activity.

' What activity is the person likely engaged in?

Audio+Video 5

Audio+Video+

Sensor
The person is lathering a

ladle with hands in the
kitchen sink. The IMU data
confirms very small variance
due to the person's less

movement. Water running
sound and low IMU movement
suggest small washing
activity.

Figure 16: Example illustrating subtle activity disambiguation using multimodal reasoning. Given the question
What activity is the person likely engaged in?, the Audio+Video model identifies dishwashing activity based on
sink visibility and audio cues such as water flow. The Audio+Video+Sensor model enhances this understanding
by incorporating IMU data, which reveals low hand and body movement. This confirms a controlled, repetitive
action consistent with small-scale washing (e.g., lathering a ladle), demonstrating the added value of sensor input

for refining temporal and motion-level interpretations.
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Is the person involved in any other activities
A other than washing hands?

14 Audio+Video % Audio+Video+
Sensor

The person is not likely ~ The person is reaching for
doing any other activities soap besides washing hands.

‘ )) other than washing While presence of hands
hands. The presence of  and water running sound
hand and water sound establish washing hands

e confirm washing hands. activities, sudden changes

IO No other informationis  in IMU data suggest

4 »

- ———__ available to suggest other movement of the arm to
o activities. reach for the soap.

Figure 17: Example demonstrating the added value of sensor data in identifying subtle concurrent actions. Given
the question Is the person engaged in any other activities other than washing hands?, the Audio+Video model
detects only hand presence and water sounds, concluding that no other activities are evident. In contrast, the Au-
dio+Video+Sensor model identifies a sudden IMU spike, indicating arm movement associated with reaching
for soap—capturing a secondary action that is visually and acoustically ambiguous.

& What is the person doing with his bicycle?

4 AudiotVideo |4 AudiotVideo+
&

The person is likely talking ' Person might be
with someone while
standing near the bicycle.

adjusting the bike's tire
pressure while conversing.

The bicycle is parked in a
sidewalk and constant
changes in IMU data

The person is not riding
the bicycle as evident from
the sound made by the

(WX, M b . .

VN T 9n. 9
¢ | person and as it is parked confirms a continuous
o » ¢

vz < ol movement happening in the

scene.

Figure 18: Example showcasing multimodal reasoning for fine-grained activity understanding. Given the question
What is the person doing with his bicycle?, the Audio+Video model identifies that the person is not riding the
bicycle and is likely talking nearby. In contrast, the Audio+Video+Sensor model captures continuous IMU
fluctuations, suggesting active engagement, such as adjusting the bikes tire pressure, demonstrating the added
interpretive power of sensor input.
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@ Was the person washing dishes or putting the
Al bow! in the sink?

~.  Audio+Video+
()

Sensor
The person was washing ~ The person might be

dishes as evident from  washing dishes as sink,
the bowl, sink, towel, bowl, and bottle are

and bottle. Audio also present. Imu data
confirms water running  confirms some movement

NS o Ao SOUN N The likely due to washing
'(:*,; background. Thus the dishes. Water running
i person is most likely sound also could be heard
washing dishes. in the background.

Figure 19: Example illustrating confirmatory reasoning across modalities. Given the question Was the person
washing dishes or putting the bowl in the sink?, the Audio+Video model infers dishwashing based on visible
objects (bowl, sink, towel) and background water sounds. The Audio+Video+Sensor model tries to strengthen
this conclusion with IMU evidence from the wrong source, inconsistent with washing actions, reinforcing the
activity label through motion-based verification.
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